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Abstract
Deep learning currently dominates the benchmarks
for various NLP tasks and, at the basis of such sys-
tems, words are frequently represented as embed-
dings –vectors in a low dimensional space– learned
from large text corpora and various algorithms have
been proposed to learn both word and concept em-
beddings. One of the claimed benefits of such em-
beddings is that they capture knowledge about se-
mantic relations. Such embeddings are most often
evaluated through tasks such as predicting human-
rated similarity and analogy which only test a few,
often ill-defined, relations. In this paper, we pro-
pose a method for (i) reliably generating word and
concept pair datasets for a wide number of rela-
tions by using a knowledge graph and (ii) evaluat-
ing to what extent pre-trained embeddings capture
those relations. We evaluate the approach against a
proprietary and a public knowledge graph and ana-
lyze the results, showing which lexico-semantic re-
lational knowledge is captured by current embed-
ding learning approaches.

1 Introduction and Related Work
Most of the recent interest in the area of word embed-
dings was triggered by the Word2Vec algorithm proposed
in [Mikolov et al., 2013], which provided an efficient way
to learn word embeddings by predicting words based on
their context and using negative sampling. Word embeddings
have become the usual input to natural language processing
(NLP) tasks, but also tasks for which previously knowledge
graphs were being used. Applications range from text clas-
sification [Kim, 2014] to machine translation [Kalchbrenner
and Blunsom, 2013; Sutskever et al., ; Cho et al., 2014;
Bahdanau et al., 2014], question answering [Khot et al., ;
Seo et al., 2016; Parikh, ] and knowledge graph construc-
tion and completion[Fu et al., 2014]. However, despite re-
cent efforts [Li et al., ; Garcia and Gomez-Perez, 2018;
Zeiler and Fergus, 2014], the nature and extent of the knowl-
edge captured by such embeddings and how they contribute
to accomplish the goal in question is still hard to interpret.

Embeddings have shown the ability to learn relations be-
tween words. However, most benchmarks [Schnabel et al.,

2015] focus on a specific family of relations involving re-
lations similarity and analogy. It is unclear whether such
relations simply happen to be well aligned with the statis-
tic analysis involved in the computation of the embeddings,
or whether the embeddings are capable of capturing a wider
range of relational knowledge. Indeed, standard benchmarks
show evidence that word embeddings may capture more types
of relations. It has been shown that algorithms like FastText
[Bojanowski et al., 2017], GloVe [Pennington et al., 2014]
and Swivel [Shazeer et al., 2016] learn embeddings that cap-
ture lexical and semantic information. However, the current
lack of a standard evaluation practice make it hard to study
which specific relations embeddings can effectively capture,
nor how to best quantify the signal of such relations.

At the same time, embeddings as a knowledge repre-
sentation mechanism is being explored by the traditionally
symbolic community that produced semantic networks and
knowledge graphs. Algorithms based on knowledge graph
(KG) embeddings, like RDF2Vec[Ristoski and Paulheim,
2016], ProjE[Shi and Weninger, 2017], TransE [Bordes et
al., 2013] and HolE[Nickel et al., 2016b], learn embeddings
representing the concepts, words and relations contained in
a KG and provide a vector representation of the knowledge
that is explicitly described in it. However, such KG em-
beddings may only encode knowledge that is already rep-
resented in the KG. One application of embeddings for this
community is generic entity-based KG completion and re-
finement [Riedel et al., 2013; Melo and Paulheim, 2017;
Nickel et al., 2016a; Paulheim, 2017; Lin et al., 2016], which
tries to use large text corpora to complete a partial knowl-
edge graph. However, such efforts have focused on ency-
clopedic (e.g. DBpedia) or domain-specific (family, com-
merce, finance, law) relations between entities rather than
lexical relations. On the opposite direction, KGs are also
used to refine vector space representations as in [Faruqui et
al., 2015]. Finally, efforts trying to learn lexical seman-
tic relations [Shwartz and Dagan, 2016; Gábor et al., 2017;
Turney and Mohammad, 2015; Roller et al., 2014; Fu et
al., 2014] have started looking at whether word embeddings
(and similar distributional approaches) can be used to pre-
dict certain types of lexical semantic relations. Many of these
approaches suffer from the difficulty to generate a training
dataset that serves this purpose [Levy et al., 2015] and most
of them focus on hypernymy relations or lexical inference,
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still a limited fragment of the whole spectrum of possible
lexical semantic relations. Also, WordNet tends to be the
only source of evidence used in such work, which may hinder
reaching a general understanding of the matter.

In previous work[Denaux and Gómez-Pérez, 2017; De-
naux and Gomez-Perez, 2019]1 on joint word-concept em-
beddings, these outperformed word-only and knowledge
graph approaches over a selection of 14 benchmarks on se-
mantic similarity and relatedness as well as word-concept and
hypernym relation prediction tasks. In doing so, we suggested
it may be possible to extract knowledge about lexical seman-
tic relations from (joint word-concept) embeddings. In this
paper, we take into account lessons from the various commu-
nities discussed above to propose a method for evaluating to
what extent pre-trained embeddings contain knowledge about
a wide ranging of relations encoded in a KG. Our contribu-
tions are: (i) describing a (largely automated) method for (i.a)
word/concept relational dataset generation from a KG (i.b)
training of machine learning models and (i.c) evaluation of
the generated datasets and trained models; (ii) application of
this method to analyse to what extent (ii.a) various corpus-
and KG-based pre-trained embeddings capture (ii.b) various
types of lexico-semantic relational knowledge and (ii.b) what
the effect is various factors such as the size of the corpus and
the type of dataset (word or concept).

In Section 2 we describe a generic method for measur-
ing the predictive power of embeddings for specific relations.
In section 3 we describe how we apply this methodology to
study lexico-semantic relations and in section 4 we analyse
the gathered data.

2 Measuring Relation Predictive Power of
Embeddings with a KG

In this section we propose a method for studying the predic-
tive power of word and concept embeddings, depicted in Fig-
ure 1. The goal is to study how much knowledge about re-
lations is encoded in embedding spaces and can be exploited
by machine learning models. Note that our goal is not to gen-
erate the best models for predicting relations (which could be
achieved by combining different sources of evidence). The
method consists of three main phases: dataset generation,
model training and prediction results analysis.

Preliminaries We define a Knowledge Graph as a tuple
〈N,R,E〉, where N = C ∪ I ∪W is a set of node identi-
fiers, typically referring to concepts c ∈ C, instances i ∈ I or
words w ∈ W (human readable names for concepts and in-
stances); R is a set of relation types andE is a set of triples of
the form (r ni nj) where r ∈ R and ni, nj ∈ N . We define
an embedding space S as a tuple 〈V, Fd〉, where V is a vo-
cabulary, and Fd : V −→ Rd is a function that maps elements
in the vocabulary to its embedding: a vector of dimension d.

The main inputs for our method are a KG k =
〈Nk, Rk, Ek〉 and one or more embedding spaces si ∈ S′k ⊂
Sk ⊂ S. Sk is the set of all embedding spaces that have a
vocabulary that overlaps with Nk. S′k is a subset of embed-
ding spaces to study. The main output of our method is a

1Vecsigrafo: Corpus-based Word-Concept Embeddings

classification of tuples (r s), where r ∈ Rk and s ∈ S′k, into
predictable and non-predictable. Furthermore, for each such
tuple, we also derive absolute and relative relation prediction
metrics, providing a numerical assessment of how well the
embedding space s captures or encodes knowledge about re-
lationship r.

Dataset generation In the first phase, we aim to generate
datasets δ ∈ D, where each dataset δ is a finite set of triples
of the form δr = {〈ni nj l〉}, where l is a classification label
such that l = 1 if (r ni nj) ∈ Ek and l = 0 otherwise. We
generate datasets between words δw with tuples 〈wi wj l〉,
word-concepts δwc with tuples 〈wi cj l〉 and concepts δc with
tuples 〈ci cj l〉.

As a first step, we select a seed vocabulary Vseed =⋂|S′
k|

i=1 Vsi , as the intersection of all the studied vocabular-
ies. Next, Vseed and k are used to extract a set of positive
pairs for each r ∈ Rk; these correspond to partial datasets
δ+r = {〈ni nj 1〉 | (r ni nj) ∈ Ek ∧ ni, nj ∈ Vseed}. KGs
frequently define relations at a concept level, therefore, this
initial dataset will typically only contain concepts. To also
generate word-concept datasets for such relations, we also ex-
tract partial datasets {〈wi cj 1〉 | (r ci cj) ∧ (rw wi ci)},
where rw is the word-to-concept relation in k. Similarly,
we can extract a word dataset for r using {〈wi wj 1〉 |
(r ci cj) ∧ (rw wi ci) ∧ (rw wj cj)}.

Besides generating positive datasets for relations r ∈ Rk,
we also generate random datasets. These datasets serve as
baselines and will be used later on to prune biased datasets.
Since the generated datasets δ+r vary in size depending on the
number of relation tuples in Ek, we generate sets of varying
sizes 2 of “positive” random pairs {〈ni nj 1〉}, where ni and
nj are randomly sampled fromNk. We refer to these datasets
as δ+rand,x where x is the number of positive pairs generated.

We need both positive and negative examples in the
datasets to train a model. For ease of training, we aim to
generate balanced datasets with the same number of pos-
itive and negative examples. Randomly generating nega-
tive pairs based on the seed vocabulary or selecting positive
pairs of a different relation type is not optimal because models
can learn to identify words/concepts associated to the relation
rather than the relation itself [Levy et al., 2015]. Instead, we
apply negative switching, whereby positive pairs are switched
based on the subject and object vocabularies for the relation,
i.e. from positive pairs 〈ni nj 1〉 and 〈nk nl 1〉; thus sub-
ject vocabulary {ni, nk} and object vocabulary {nj , nl}, it is
possible to generate negative pairs 〈nk nj 0〉 and 〈ni nl 0〉.
Albeit practical, this approach does not take into account tran-
sitive relations and assumes a closed world. Also, for rela-
tions with unbalanced subject-object vocabularies, it may be
impossible to generate sufficient negative examples; in such
cases we fall back to selecting pairs from other relation types
or generating random pairs.

Model training We next use the generated datasets to train
binary classification machine learning models for each stud-
ied embedding space s ∈ S′k, we refer to the resulting trained
models as mδ,s,t, where δ is the generated dataset and t is the

2In this work we use sizes 200, 500, 1K, 5K, 10K and 50K.

https://bit.ly/2LykQ9T
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Figure 1: Generic approach for evaluating the predictive power of word and concept embeddings using a knowledge graph as a silver standard.

model type. We do not specify a type of machine-learning
model to be used; however, since the input and output are
very simple, we expect fully-connected neural networks to be
suitable and use these in our experiments.

Each sample 〈ninj l〉 in the dataset is converted into an in-
put vector for the model by combining the embeddings for
the subject and object arguments; i.e. Fs(ni) � Fs(nj). In
this work we use vector concatenation for �, but other op-
erations are also possible. However, to prevent models from
simply learning which embeddings are associated with a re-
lation type, during training we apply input perturbation: for
each batch, we generate a random vector v ∈ Rd and add it
to both the subject and object embedding. Thus the final in-
put to the model is (Fs(ni)⊕ v)� (Fxnj ⊕ v). This ensures
that the difference between the embeddings is the same as for
the original pair, but no individual embedding is seen twice.
Also, since different embedding spaces have different scales,
we adapt the amount of perturbation to each embedding space
by scaling the random perturbation to be within the standard
deviation of the embedding space.

Furthermore, to verify that the generated dataset does not
encode information about the relation, we also train models
using a baseline random embedding space srand ∈ Sk for the
seed vocabulary. Since the embeddings in srand are random,
they cannot encode any information about n ∈ Vseed and their
relations r ∈ Rk.

Each generated dataset is split into training, (validation)
and testing subsets; the latter is used to evaluate the trained
model by calculating metrics: precision, recall, accuracy and
f1. Since the performance of a model is affected by random
initialization of its parameters, we propose to perform multi-
ple runs, resulting inmδ,s,t

i for 1 ≤ i ≤ #runs. This allows us
to calculate the average and standard deviation for each of the
collected metrics. Below, we use µυδ,s to refer to the average
for metric υ for models trained on dataset δ and embedding
space s. If s is omitted, the average is taken over all models
trained on δ. Likewise for the standard deviation συ .

Prediction results analysis Once we have trained all our
models, we can do some statistic analysis on the collected
metrics. Since the dataset generation and model training are

mostly automated, our main goal here is to identify any non-
predictable relations. Using our baselines, we can discard re-
sults based on two reasons: (i) the generated dataset is biased
and (ii) the learned model’s results are not significant.

First, we define baseline ranges for prediction met-
rics. For this, we use the metrics gathered for the gener-
ated random datasets δrand,x and define the range thresholds
as τυmin

biased = µυδrand,x − 2συδrand,x and τυmax

biased = µυδrand,x +

2συδrand,x. Any metrics within these ranges could be due to
chance with 95% probability.

We consider a dataset to be biased if models can perform
well on them regardless of whether the embeddings used to
train the model encode any information. Intuitively, these
are datasets which are imbalanced in some way allowing the
model to exploit this imbalance during prediction, but that do
not reflect the knowledge encoded in the embeddings. To de-
tect these, we look at model results for models trained on
random embeddings (i.e. on models mδr,srand,t). We say
that δr is biased if µf1

δr,srand
is outside of the [τ f1min

biased, τ
f1max

biased]
range. The rationale is that even with random embeddings,
such models were able to perform outside of the 95% base-
line ranges.

We consider a trained model mδr,s,t to be significant if
its predictions are statistically better than predictions made
by mδr,srand,t. Intuitively, this indicates that the embedding
space s contributes information about relation r with high
probability. Formally, we say that mδr,s,t is significant if
µf1
δr,s
− µf1

δr,srand
> 2max(σf1

δr,s
, σf1
δr,srand

).

3 Measuring Lexico-Semantic Knowledge in
Embeddings

We applied the method described above to two lexico-
semantic KGs (WordNet and Sensigrafo) and several embed-
ding spaces derived from different corpora and embedding
algorithms. In this section we describe how we applied the
methodology and present a summary of the results obtained.
In the next section we discuss analyze the results.3

3The code we used is available at https://github.com/rdenaux/
embrelassess

https://github.com/rdenaux/embrelassess
https://github.com/rdenaux/embrelassess


Sensigrafo WordNet
version 14.2 3.0
words/lemmas 400K 155K
syn(set/con) 300K 118K
relations 55 27
derived rel datasets 149 27
pair types lem2(lem,syn,POS) lem2lem

syn2(syn,POS)

Table 1: Lexical Knowledge Graphs used.

3.1 Knowedge Graphs and Relations
We applied our methodology to two KGs: (i) WordNet, a well
known lexico-semantic semantic network and (ii) Sensigrafo,
a proprietary lexical knowledge graph developed by Expert
System. Although similar in structure and scope –both KGs
aim to provide a sense lexicon per language and use hyper-
nymy as the main relation between senses–, Sensigrafo has
been developed independently and is tightly coupled to Ex-
pert System’s text analysis pipeline, enabling state of the art
word sense disambiguation with claimed 90% accuracy.

Table 1 provides an overview and comparison for the KGs.
WordNet does not have an explicit identifier for concepts;
instead, it defines sets of synonyms, i.e. lemmas with a
shared sense. Sensigrafo calls such sets syncons (synonym-
concepts), since they refer to specific concepts and assigns a
unique identifier to each. There are differences in terms of
size, granularity of concepts, structure of the network (e.g.
choice of central concepts) and types of relations. Finally,
because Sensigrafo is developed and maintained as part of a
text analytics pipeline, some of its features are tailored and bi-
ased towards supporting functionality and domains required
by Expert System customers. By comparison, being a com-
munity effort WordNet may benefit from a wider set of stake-
holders.

WordNet and Sensigrafo provide 27 and 55 types of rela-
tions respectively which we used to generate datasets. Table 2
shows an overview of the relations extracted; since discussing
the 88 relations individually is unwieldy, we group the rela-
tions into types following –and expanding– a categorization
described in the WordNet manual4. It suggests a top-level
distinction between Lexical –those that hold between words–
and Semantic –those that hold between concepts– relations
and lists relations also see, antonym, derivation, participle
and pertainym as lexical. However, antonym is clearly based
on the word’s meaning. Derivation and participle seem to
be truly lexical, while the others can also contain pairs which
are semantically related, as shown by the example pairs in the
table. Sensigrafo does not contain purely lexical relations.

The main relation type used by both KGs is hypernymy,
which relates narrower to broader concepts (or instances to
concepts). Although hypernymy is transitive, we only con-
sider direct relations explicitly stated in the KG during the
dataset generation.

Categorical relations are those that associate a concept
with some category. When categories are concepts, they can
be seen as an indirect hypernymy. WordNet has three types

4https://wordnet.princeton.edu/documentation/wninput5wn

of categories called domains: category –concept to a topic
domain–, usage –concepts to a type of use– and region –
concepts to places. Sensigrafo has a set of core noun and verb
concepts –called noun or verb categories, as well as tags–
which form the backbone of the hypernymy hierarchy. These
category syncons tend to be quite abstract concepts, hence we
have only considered these relations at the syn2syn level, as
they do not have lemmas in the seed vocabulary. Sensigrafo
also defines a list of about 400 domains (which are not syn-
cons), which is similar to WordNet’s category domain.

Meronymy relates concepts in whole-member relations.
WordNet distinguishes between membership –part of group–
, substance –when something is made of substances that are
orders of magnitude smaller than the whole– and part – re-
maining cases. Sensigrafo does not distinguish between these
cases and uses this type of relation sparingly.

Synonymy can be defined between lemmas in the same
synset/-con and is a special case of conceptual similarity.
The similarity relation in WordNet captures pairs of similar
adjectives. The attribute relation in WordNet relates adjec-
tives describing a value for a noun (similar, but more limited
than the adjective-class relation in Sensigrafo). The cause
relation in WordNet describes causality between verbs and is
similar in Sensigrafo. The entailment relation in WordNet de-
scribes an entailment between verbs, similarly to the syncon-
implication in Sensigrafo, which can also be applied to non-
verbs. Verb group in WordNet groups similar verbs. Syncon-
unification is assigned by linguists to syncon pairs that could
be merged as a single syncon. Antonym describes concepts
with opposite meanings.

Positional relations encode co-locations of concepts and
are only provided by Sensigrafo. Two main subtypes: one
relates adjectives or adverbs to other concepts while the sec-
ond relates verbs to concepts that appear as the verb subject
or object.

Sensigrafo provides about two dozens of prepositional
relations between concepts. Such relations are of the type
POS+preposition-POS. E.g. the pair rival-titleholder has re-
lation noun+to-noun. Sensigrafo also encodes geographic
relations between places. However, since the seed vocabu-
lary did not contain many place names, we could not generate
a dataset between lemmas.

Finally, we also generated datasets relating syncons to their
part-of-speech (POS) besides the various δrandom,x as ex-
plained in Section 2 (not included in Table 2 ).

We generated a total of 176 datasets, based on the 88 rela-
tions and a seed vocabulary consisting of 76K concepts and
71K lemmas (roughly corresponding to our smallest embed-
ding space, which was trained on a disambiguated version of
the English United Nations corpus [Ziemski et al., 2016]).
For WordNet, we only generated datasets between lemmas.
For Sensigrafo we also generated datasets between words,
word/concepts and concepts.

3.2 Embeddings and Corpora
The word and concept embeddings studied were derived
from 6 algorithms. Three provided embeddings based on se-
quences of either words or syncons: GloVe [Pennington et al.,
2014], FastText [Bojanowski et al., 2017], Swivel [Shazeer et

https://wordnet.princeton.edu/documentation/wninput5wn


type name KG example pair lem pairs syn pairs obj:subj voc tot
Lexical also see w mild-temperate 5800 1.25 2339

derivation w revoke-revocation 118888 1.0 18094
pertainym w regretfully-sorry 6516 1.37 6079
participle of w operating-operate 81 2.13 94

Hypernymy hypernym* w cinnamon-spice 110650 0.45 27048
sup/subnomen s ditto 56413 33696 1.98 19768
super/subverbum s kick-move 37660 9426 1.81 6630
instance hypernym* w gemini-constellation 2358 0.44 1526

Categorical category domain* w fly-air, tort-law 9116 0.13 4166
sensiDomain s antitrust case-commercial law 28610 0.02 17636
usage domain* w squeeze-slang 846 0.09 395
region domain* w legionnaire-france 1349 0.12 546
noun cat s flora-natural object 186797 0.004 50257
verb cat s belong-v. of generic state 27388 0.01 11498
tag s Christmas Eve-calendar day 31775 0.01 16825

Meronymy member meronym* w archipelago-island 1315 1.51 1147
substance meronym* w brine-sodium 369 0.98 378
part meronym* w aeroplane-wing 6403 1.39 4054
omni/parsnomen s construction-roofing 807 3110 1.22 597

Synonymy synonym w encourage-promote 74822 1.0 22304
synonym s ditto 69974 1.0 19130

Concept Simil similar w big-immense 20464 1.0 6790
attribute w short-length, good-quality 1718 1.0 859
cause w secure-fasten 719 0.93 445
syncon-cause s ring-sound, fright-fear 584 0.87 458
entailment w look-see, peak-go up 1519 0.89 956
syncon-implication s overtake-compete 1358 291 0.83 870
verb group w shift-change, keep-prevent 4944 1.0 1193
syncon-corpus s find-strike 97707 39644 1.11 10502
syncon-unification s ritual-rite, enclose-envelop 6599 2392 0.99 3366
antonym w release-detain 9310 1.0 4651
(adj,n,v)antonym s ditto 4656 1728 1.03 1823

Positional s-adjective-class s nightmarish-account 131853 33037 0.69 13972
adverb-(n,v,adj,adv) s below-criteria 15598 3367 1.12 2509
verb-object s counter-illness 108046 23163 1.24 9087
verb-subject s less-tension, plunge-index 46949 10131 1.01 7126

Prepositional 12 internoun s meeting-colleague 0.83 10748
10 verb prep noun s break down-tear 0.56 1848
verb prep verb s set-rise 287 1.19 196
4 adj prep noun s eligible-admission 1.62 299

Geographic geography s Brussels-Brussels Capit. Reg. 1555 0.23 1584
Part-of-Speech Noun s entity-GNoun 45961 n/a 76138

ProperNoun s Underground Railway-GPNoun 4134 n/a 8273
Verb s cleanse-GVerb 11343 n/a 22691
Adjective s record-GAdjective 12585 n/a 25175
Adverb s in my opinion-GAdverb 2110 n/a 4225

Table 2: Overview of lexico-semantic relations studied.



al., 2016]. Two provided joint word and concept embeddings:
Vecsigrafo [Denaux and Gómez-Pérez, 2017] based on a dis-
ambiguated corpus and HolE [Nickel et al., 2016b], which
directly generates embeddings from a KG (not from a cor-
pus) and thus serves as a reference point. The embeddings
were either publicly available or provided to us by [Denaux
and Gómez-Pérez, 2017]. We also generated random embed-
dings srand for the seed vocabulary.

The embeddings were trained on three different corpora,
which we chose to study whether relation prediction capac-
ity varies depending on the corpus size: the English United
Nations corpus[Ziemski et al., 2016] (517M tokens), the En-
glish Wikipedia (just under 3B tokens) and Common Crawl
(around 840B tokens). Although we aimed at using embed-
dings with 300 dimensions, in a few cases we had to diverge
as the embeddings were only available with other dimensions.

3.3 Training and Results
We generated models based on fully connected neural net-
works (NN) with either 2 or 3 hidden layers. Initially we
also generated models with logistic regression, which consis-
tently underperformed. The 2 and 3 layer NNs generally pro-
duced similar results, suggesting they converge for the given
datasets. For the standard case of embedding dimension 300,
the input to the net is a vector of 600 dimensions, followed by
hidden layers of 750 and 400 nodes for the NN2; and (750,
500, 250) for the NN3 (similar architectures were defined
for single embedding relations such as syn2POS). The output
layer has 2 nodes and uses 1-hot-encoding to encode posi-
tive or negative examples. For regularization, we use dropout
between layers with value 0.5. We used a heuristic rule that
varies the number of epochs to train a dataset depending on its
size. Datasets with < 300 positive examples are trained for
48 epochs, those with < 5K for 24, < 30K for 12 and large
datasets are trained for 6 epochs. We use the Adam optimizer
with learning rate 1−5 and the cross entropy loss function. A
scheduler reduces the learning rate on plateau. All of these
hyper-parameters where derived through trial and error with
a few sample relation datasets and kept constant to automat-
ically train models without manual inspection. We used a
random 90, 5, 5 split for training, validation and test from the
input dataset. For WordNet relations we used a mixture of
NN2 and NN3 models and trained each model either 3 or 5
times. As training the models is the main bottleneck of our
approach, for Sensigrafo relations we only trained NN3 mod-
els, training each model 3 times.

We trained a total of 10,560 models, resulting in 1,596
evaluation metrics averaged over n runs: 126 for the random
relation datasets, 149 trained on random embeddings, 1,065
for Sensigrafo relations and 268 for WordNet relations. Each
run resulted in metrics for relation prediction on unseen pairs
during training.

4 Analysis and Discussion of Results
Biased datasets and non-significant models We apply the
prediction result analysis described in Section 2: based on
12 random datasets δrand,x and 126 prediction results we ob-
tained µf1

δrand
= 0.41 and σf1

δrand
= 0.12, resulting in a base-

line range for prediction metrics (i.e. [τ f1min

biased, τ
f1max

biased]) of
[0.16, 0.65].

Using this range, we identify 38 of 156 datasets as be-
ing biased. With other words, even though we took care
not to generate non-biased datasets by using negative switch-
ing, a little more than a quarter of the datasets generated
in this way contains clues about the relation. Interestingly,
word-pair datasets are much more likely to be biased (38%)
while word/concept pairs are unlikely to so (only 7%) (see
Table 3). These result suggest that using KGs as a silver stan-
dard [Paulheim, 2017] is of limited use for word-pair predic-
tion, but is suitable when linking words to concepts.

We see that using a KG to build datasets for certain kind
of relations is very difficult. This is the case for word pair
datasets for categorical relations (all of the 52 generated
datasets were biased); this is likely due to such relations be-
ing highly unbalanced with only a few words in the object
position, further compounded by ambiguity of words com-
pared to concepts. We think word ambiguity also plays a role
in the difficulty producing non-biased datasets for positional
relations.

On the bright side, about 71% of the models were
trained on a non-biased dataset and we use these to identify
(non)significant models. Overall, we found that 46.5% of the
trained models using pre-trained embeddings were not sta-
tistically significant different from a baseline using random
embeddings. About 1% of the models performed worse than
the baseline. These were typically small datasets and rela-
tions that were hard to learn. In any case this 1% is below
the 2.5% that can be expected by using the 2σ threshold for
significance.

Conversely, only about 24% of the models trained using
pre-trained embeddings significantly outperformed the base-
line. For word/concept pair datasets this percentage jumps to
almost 49% while for concept pairs it plummets to only 3.4%.
Since most of the pre-trained embeddings we are using are
corpus-based, this shows that such embeddings have trouble
capturing the relations at the purely conceptual level. At the
same time, these models are relatively good at relating words
to concepts using semantic relations. In the sections below
we only discuss results for the models that outperformed their
baseline.

4.1 Relation Types in Embeddings
In the last two columns of Table 3 we see the absolute and
relative f1 measures for the models that significantly outper-
formed the random baseline. We see that most of the results
with an average f1 score higher than 0.8 are for relations be-
tween concepts; these were all achieved by training models
on the HolE embeddings. Swivel embeddings also obtained
good results for predicting categorical relation (0.846 f1, but
this result just cleared the 2σ significance threshold). One
model trained on FastText embeddings achieved (0.666 f1 on
a meronymy relation). This confirms that the studied corpus-
based embeddings are not capable of capturing semantic re-
lations at the concept level.

For the models trained on word/concept or word pairs, we
can go through the relation types. Absolute prediction accu-
racy for lexical relations is poor, the Vecsigrafo and GloVe



models metrics
dataset rel KG datasets non-predictable “predictable” absolute relative

# # biased # % biased % not signif. % better % worse µf1 ∆µf1

all both 156 38 1281 28.6 46.5 23.9 0.9 0.687 0.173
all wn 19 6 216 27.8 39.4 30.1 2.8 0.684 0.149
all sensi 137 32 1065 28.8 48. 22.6 0.6 0.688 0.181

concept sensi 44 10 293 22.9 73.7 3.4 0. 0.870 0.608
word/concept sensi 43 3 172 7. 43.6 48.8 0.6 0.664 0.162
word sensi 50 19 600 38. 36.7 24.5 0.8 0.690 0.162

lexicalw wn 4 0 32 0. 75. 25. 0. 0.652 0.167
hypernymc sensi 2 1 14 50. 42.9 7.1 0. 0.916 0.696
hypernymw/c sensi 2 1 8 50. 0. 50. 0. 0.699 0.148
hypernymw sensi 2 1 24 50. 0. 50. 0. 0.713 0.143
hypernymw wn 2 1 24 50. 4.2 37.5 8.3 0.756 0.106
categc sensi 3 1 21 33.3 52.4 14.3 0. 0.891 0.671
categw/c sensi 4 1 16 25. 12.5 62.5 0. 0.744 0.263
categw sensi 1 1 12 100. 0. 0. 0.
categw wn 4 4 40 100. 0. 0. 0.
meronymc sensi 2 0 14 0. 92.9 7.1 0. 0.667 0.020
meronymw/c sensi 1 0 4 0. 50. 50. 0. 0.664 0.296
meronymw sensi 1 0 12 0. 91.7 0. 8.3
meronymw wn 3 0 48 0. 66.7 31.2 2.1 0.708 0.166
synonc sensi 0 0 0 0. 0. 0. 0.
synonw/c sensi 1 0 4 0. 25. 75. 0. 0.804 0.249
synonw sensi 1 0 12 0. 8.3 91.7 0. 0.677 0.114
synonw wn 1 0 8 0. 0. 100. 0. 0.680 0.135
similc sensi 6 1 42 16.7 81. 2.4 0. 0.909 0.688
similw/c sensi 7 0 28 0. 57.1 42.9 0. 0.624 0.210
similw sensi 7 1 84 14.3 38.1 47.6 0. 0.628 0.128
similw wn 5 1 64 12.5 43.8 39.1 4.7 0.655 0.153
positionc sensi 6 1 42 16.7 78.6 4.8 0. 0.886 0.667
positionw/c sensi 6 1 24 16.7 37.5 45.8 0. 0.721 0.120
positionw sensi 7 5 84 71.4 21.4 6. 1.2 0.703 0.069
preposc sensi 19 4 133 21.1 78.9 0. 0.
preposw/c sensi 22 0 88 0. 51.1 47.7 1.1 0.629 0.124
preposw sensi 27 11 324 40.7 48.5 9.9 0.9 0.677 0.097
POSc sensi 5 1 20 20. 70. 10. 0. 0.882 0.665
POSw/c sensi 0 0 0 0. 0. 0. 0.
POSw sensi 4 0 48 0. 2.1 97.9 0. 0.746 0.262

Table 3: Overview of results.



are the only embeddings that can predict pertainym relations
with over 0.7 f1 score. Prediction of hypernym relations
is good; the best performing model is trained on HolE on a
word/concept dataset (0.797 f1); from the corpus-based em-
beddings, FastText performs best (0.766). Prediction of cate-
gorical relations (only for word/concept pairs) is quite good;
corpus-based embeddings using Vecsigrafo perform similarly
to HolE (around 0.82 f1) for nouns; corpus-based embed-
dings have trouble with categorical relations between verbs,
with performance dropping below 0.6 compared to 0.8 for
HolE. For meronymy relations, the datasets generated on
Sensigrafo were rather small, resulting in f1 performances
around 0.69 with Vecsigrafo embeddings; WordNet-derived
datasets produce good performance with FastText, GloVe and
Vecsigrafo having scores between 0.75 and 0.81 for the part-
meronym relation; substance- and member-meronym rela-
tions accuracy drops below 0.7. Performance for synonym
relations depends strongly on the used embedding; the best
performers are HolE (0.93 f1), Vecsigrafo (0.79) and FastText
(0.75) while Swivel performs poorly. Prediction of similarity
relations is mediocre; the best embeddings are HolE (0.81),
followed by GloVe and FastText (around 0.74); depending on
the relation, prediction f1 can drop to 0.6. For positional re-
lations, Vecsigrafo (0.76) outperforms even HolE (0.74) with
FastText and Glove trailing (0.7); this is similar for prepo-
sitional relations. For part-of-speech, FastText and GloVe
perform well (f1 above 0.8).

4.2 Impact of embedding type and corpus size
Unsurprisingly, the larger the corpus the better the overall
results for Sensigrafo datasets. Average f1 scores for em-
beddings trained on the UN corpus, Wikipedia and Common
Crawl were 0.66, 0.69 and 0.73. For WordNet datasets (only
lem2lem), the scores are similar: 0.68, 0.72 and 0.71. Thus,
although increasing the corpus size helps, for many types of
relations, the gain from training on a very large corpus is rel-
atively small.

Table 4 summarizes the performance of the different em-
bedding learning algorithms for predicting relations grouped
by the pair type. For word pair prediction, FastText outper-
forms other embedding learning algorithms, including HolE
(although this difference is not major). HolE excels at pre-
dicting relations between senses, but its performance de-
creases as lemmas are introduced, since it cannot disam-
biguate between the senses. Vecsigrafo and GloVe both are
not far behind the performance of FastText and HolE, but
produce significant predictions for more relations than Fast-
Text and HolE. Standard Swivel with words lags behind, es-
pecially in the number of relations that it can predict.

Impact of joint word-concept learning
Vecsigrafo co-trains word and concept embeddings. Table 4
shows that compared to Swivel, this co-training improves, for
word pairs, both the number of relations that can be predicted
(double the number) and the average f1 score (we assume
that the additional predicted relations push the average score
down). Similarly, we see that compared to word pairs, Vecsi-
grafo is able to produce predictions for more relations when
considering word/concept pairs. As discussed above, corpus-

datasets algo F1avg F1std pair type
8 HolE 0.90 0.02 concept
1 Swivel 0.85 0.0 concept
1 FastText 0.67 0.0 concept

26 HolE 0.67 0.09 word/concept
48 Vecsigrafo 0.64 0.08 word/concept
38 FastText 0.74 0.08 word
12 HolE 0.72 0.09 word
43 Vecsigrafo 0.68 0.07 word
43 GloVe 0.68 0.08 word
21 Swivel 0.66 0.06 word

Table 4: Average F1 scores for predicting relations with different
pair types and embeddings.

based, joint word-concept training does not seem to capture
relations between at the concept level, suggesting there is
room to improve such algorithms.

5 Conclusion
This paper presented a methodology for studying whether
embeddings capture relations as well as KGs and applied it
to study lexico-semantic relations between words and con-
cepts. The results show that for a few relations, word embed-
dings can outperform embeddings derived directly from KGs.
Also, corpus-based embeddings fail to capture relations at the
concept level. However, for most relation types, embeddings
only can predict relations with an accuracy under 0.7. Our re-
sults provide evidence that correct capture of relations should
happen at the concept level and may not be achievable with
high accuracy at the word level. As future work, we want to
apply our method to study contextual embeddings.
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