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A b s t r a c t  

We present a deterministic algorithm for computing 
the diameter of a set of n points in R3; its run- 
ning time O(n log n) is worst-case optimal. This im- 
proves previous deterministic algorithms by Ramos 
(1997) and Bespamyatnikh (1998), both with running 
time O(n log s n), and matches the running time of a 
randomized algorithm by Clarkson and Shot (1989). 
We also present a deterministic algorithm for com- 
puting the lower envelope of n functions of 2 vari- 
ables, for a class of functions with certain restric- 
tions; if the functions in the class have lower envelope 
with worst-case complexity O(f2(n)), the running 
time is O(f2(n)logn), in general, and O(f2(n)) when 
f2(n) = ~(n x+~) for any small fraction e > 0. The al- 
gorithms follow a divide-and-conquer approach based 
on deterministic sampling with the essential feature 
that planar graph separators are used to group sub- 
problems in order to limit the growth of the total 
subproblem size. 

1 I n t r o d u c t i o n  

We consider the problem of computing the diameter 
of a given set P of n points in 3-d space, that is, the 
maximum distance between any pair of points in P, 
and the problem of computing the lower envelope of 
a given set F of n functions of 2 variables, that is, 
the function defined as the pointwise minimum of the 
given functions. 
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1.1 P r e v i o u s  W o r k .  

3-D Diameter .  Yao [32] first showed that the 
problem can be solved in subquadratic time; he 
gave a deterministic algorithm with running time 
O((nlog n)1"8). Reporting on the status of the prob- 
lem in 1985, Preparata and Shamos [27] said: "In 
spite of its apparent simplicity, the computation of 
the diameter of a three-dimensional set has been a 
source of frustration to a great many workers." Then, 
Clarkson and Shor [12], in their ground-breaking pa- 
per on applications of random sampling in compu- 
tational geometry, gave a simple randomized algo- 
rithm which runs in expected time O(n log n). This 
is optimal, see e.g. [27]. They solve the diameter 
problem through a reduction to computing the in- 
tersection of congruent (equal radius) balls. Since 
then, it has been a challenge to match that time com- 
plexity with a deterministic algorithm: First, Agar- 
wai et al. [1] gave an algorithm with running time 
0(n4/3); then Chazelle et al. [11] improved the time 
to O(nl+~), where e > 0 is arbitrary and with the 
constant in the O notation depending on e; next, 
Matou~ek and Schwarzkopf [25] further improved it 
to O(n log c n) where c is a constant for which they do 
not give an explicit bound and is possibly very large; 
then Amato, Goodrich and Ramos [4] improved the 
time to O(nlog3n); finally, Ramos [30] improved it 
to O(n log 2 n). All these algorithms use the paramet- 
ric search technique and deterministic (derandom- 
ized) sampling. On a different track, without us- 
ing derandomization techniques, Ramos gave an al- 
gorithm with running time O(n log 5 n) [29] (this still 
uses parametric search), and later Bespamyatnikh [8] 
gave an elementary algorithm also with running time 
O(nlog ~ n), thus providing an alternative approach 
simpler than that of [30]. 

2-D Lower Envelopes.  This is an important prob- 
lem in computational geometry; in particular a 2-d 
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Voronoi diagram is the vertical projection on the ~2 
plane of the lower envelope of the distance functions 
to the sites determining the diagram. There is a con- 
siderable amount of work regarding the computation 
of Voronoi diagrams. Here, we only mention some di- 
rectly related work. Most algorithms make use of very 
specific properties and in many cases the only known 
optimal deterministic algorithms use sampling (de- 
randomization). Let f2(n) be an upper bound on the 
worst case complexity for a specific class of functions 
or Voronoi diagram. When f2(n) = ft(nl+~), the ver- 
tex accounting approach, introduced by Chazelle to 
compute optimal hyperplane cuttings [10], leads to 
an optimal O(f2 (n)) worst-case algorithm [30]. When 
f2(n) is linear or close to linear, this approch does not 
seem to work; but  then algorithms can take advan- 
tage of specific properties, like the fact that  each site 
contributes a single face to the diagram. This is the 
case of Voronoi diagram of segments, or the inter- 
section of congruent balls [4, 7]. However, a general 
solution, for the case in which f2(n) is close to linear 
and the single face property does not hold, does not 
seem to be know previously. Aggarwal et al [3] give an 
algorithm with complexity O(n2+~), which is almost 
or essentially optimal in that  O(n 2+~) is also the best 
general bound for the complexity of a lower envelope, 
but  we don't  know if it can be adapted so that its 
running time is dependent on the actual complexity 
f2 (n) of a particular class of functions. 

1 . 2  O u r  R e s u l t s  

3-D D i a m e t e r .  We present a new optimal random- 
ized algorithm that  can be easily derandomized using 
current standard techniques, while preserving the op- 
timal running time. Specifically, the derandomiza- 
tion only makes use of the efficient construction of 
e-nets by Matou~ek [23]. The algorithm is closely re- 
lated to that  in [11]. A new essential tool, combined 
with the use of random sampling, is the clustering 
of subproblems via planar-graph separators. In this, 
we follow its use by Dehne et al. [13] in the con- 
text of algorithms for Voronoi diagrams in coarse- 
grained multicomputers. This allows for a decompo- 
sition into subproblems for which, without additional 
effort, the total size of the subproblems increases only 
by a small factor. Furthermore, we observe that  para- 
metric search is not necessary. The result is a rela- 
tively simple divide-and-conquer algorithm, module 
the e-net computation. 

2-D L o w e r  E n v e l o p e .  We consider a class of func- 
tions such that  the the lower envelope allows a decom- 
position into cells such that: (i) the cells, which we 

call trapezoids, are of bounded complexity; (ii) the 
size of the decomposition is of the same order as the 
complexity of the lower envelope; (iii) the adjacency 
graph for the decomposition is of bounded degree; 1 
and (iv) whether the set below a trapezoid, which we 
call a brick, intersects a function can be described by a 
first order predicate of bounded size. Let f2(n) be an 
upper bound on the complexity of the lower envelope 
for the class of functions under consideration. We de- 
scribe an algorithm that  for n functions that  runs in 
time O(f2(n)logn),  in general, and O(f2(n)) when 
f2(n) = ~(nl+~), for any small e > 0. The algorithm 
uses a divide-and-conquer approach based on deter- 
ministic sampling. It combines the use of graph sepa- 
rators to limit the growth of the subproblem sizes, as 
in the diameter algorithm, with the vertex accounting 
approach of Chazelle [10]. This is a refinement over 
the randomized algorithms in [13, 14, 20] for Voronoi 
diagrams with the single face property. 

This paper consists of two main sections dedicated 
to each of the two problems under consideration. In 
the next subsection, we review the use of planar graph 
separators for clustering subproblems. 

1 .3  C l u s t e r i n g  v i a  G r a p h  S e p a r a t o r s  

The goal of the clustering is to minimize the size of 
the boundary between subproblems and, hence, to 
minimize the number of elements shared by subprob- 
lems. In this, we follow the work ofDehne et. al. [13]. 
First, we recall the planar graph separator result [21] 
in the particular form we need. 

L e m m a  1 Let G(V, E) be a planar graph with IV[ = 
71 and vertex degree bounded by a constant. Then 
V can be partitioned into sets V1 and V2 such that 
[VI[, IV2[ ~ [~//2] and the number of edges connecting 
V1 and V2 is o (  vr~). Furthermore, such sets can be 
determined in 0(71) time. 

The original separator theorem guarantees the ex- 
istence of a vertex separator of size O(v/-~ ). Because 
of the bounded vertex degree, this implies an edge 
separator of asymptotically the same size. Also the 
original theorem guarantees only a 2/3 to 1/3 bal- 
ance, and by iterating it the 1/2 to 1/2 balance is 

1This is unfortunately very restrictive. It is needed in order 
to apply the clustering via planar graph separators (see 1.3). 
However, it is likely that it still works even if the degree is not 
bounded, using a weighted graph separator. This would allow 
an arbitrary trapezoidal decomposition obtained with vertical 
rays (that is, constant x-coordinate), which would be more 
satisfactory. We are still investigating this. 
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obtained. Though this adds some further unneces- 
sary complication to the algorithm, it facilitates the 
argument and computation below. 

As in [13], the clustering is performed by iterat- 
ing the separator construction, until clusters (groups) 
consisting of at most t vertices are obtained. Thus, 
with l so that  2 i = ~?/t, the total separator size is 
big-O of 

i----0 

Thus, there is a gain ~(t 1/2) in the number of edges 
separating groups respect to the O(~) edges separat- 
ing the vertices of the original graph. 

2 3-D D i a m e t e r  

2 .1  I n t e r s e c t i o n  of Congruent B a l l s  

Let P be a set o f n  points in ~3. For p E P, let 
b(p, r) be the ball of radius r centered at p and let 
s(p, r) be the bounding sphere of b(p, r) (p and r may 
be omitted when they are understood or not rele- 
vant). Let B = B(P,r)  = {b(p,r) : p E S} and 
B = B(B) = NbEB b. • is a convex body which we call 
a spherical polytope. The boundary bd(B) of B con- 
sists of facets, edges and vertices corresponding to the 
intersection of one, two and three bounding spheres 
respectively (we assume that  the point set P is in 
general position so that  more than three bounding 
spheres have empty intersection; this can be achieved 
using symbolic perturbation [16, 34]). A facet of B is 
the intersection of spherical caps on the sphere that  
supports the facet (each cap resulting from the inter- 
section with another ball), which we call a spherical 
polygon. We point out that  a spherical polygon can be 
bounded by only two edges, and that  the intersection 
circle of two bounding spheres can contribute more 
than one edge to bd(B). The size of B, denoted IBI, is 
the total number of facets, edges and vertices. In gen- 
eral, if the radii of the balls are not equal, IBI can be 
f~(IBI2). However, for congruent balls, IBI is O(IBI) 
as a result of a "convexity" property of the faces [19],2 
which implies that  for the bounding sphere s of each 
ball in B, bd(B) n s has at most one connected com- 
ponent. Since the degree of a vertex in B is exactly 
three, it follows that  1131 is O(IBI). 

2For completeness: Let p, q be two points on bd(B) both on 
the same bounding sphere s (assuming IBI > 2, they cannot be 
antipodal). Then the geodesic segment fi'q connecting p and q 
on s (a portion of circle with radius equal to the radius of s) is 
also on bd(B), otherwise another ball b ~ contains p ,q  but not 
some other point in ~'q, and so b r would have a radius greater 
than that  of b. 

The structure of B is very similar to that  of a 2- 
d Euclidean Voronoi diagram. In fact, Clarkson and 
Shor [12], used their random incremental approach to 
construct B in optimal expected time O(n log n) much 
in the way the standard Euclidean Voronoi diagram 
is constructed. An optimal deterministic algorithm 
was given by Amato et al. [4], by a derandomiza- 
tion of a divide-and-conquer approach. The previous 
best algorithm for the diameter problem in [30] was 
based on such an optimal algorithm, in combination 
with parametric search. In contrast, the new algo- 
rithm requires the computation of an intersection of 
congruent balls only for small collections, and so a 
simpler algorithm suffices. 

2 . 2  S p h e r i c a l - s i m p l i c e s  a n d  c - N e t s  

Spher ica l - s impl ices .  A spherical polytope B is de- 
composed into spherical-simplices as follows. First, 
each of the facets is decomposed into spherical- 
triangles by taking an arbitrary vertex of the facet 
and joining it to each of the other non-adjacent ver- 
tices of the facet with a geodesic segment (note that  
such geodesic segments do not intersect inside the 
facet). Then, we choose an arbitrary vertex of B and 
join it to the spherical triangles, thus obtaining a col- 
lection of O(IBI) = O(IBI) spherical simplices. 3 For 
B = B(B), we denote this decomposition by T(B) .  
The size of T(B)  is O(IBI). For a set of spheres S 
and a spherical simplex A, the conflict list SI~ is the 
set of those s E S such that  s fq A ~ ~. We denote the 
set of all the lists SIA , A E T, by T[S] and, abusing 
notation, denote the total size ~-~AE T ISl~ I by IT[S]I. 
Analogously, for a set of points P,  Plzx denotes those 
contained in A. 

Spherical-simplices define a collection Sp of ranges 
(subsets of) on the set of points P as follows: R C P 
is in Sp if for some radius r > 0 and some spherical- 
simplex A determined by spheres of radius r, R = 
SIA, where S = S(P,r). The range space (P, Sp) has 
a constant VC-exponent, that  is, for some constant c, 
ISPI = O(IPIC). This is most easily verified through 
linearization [33, 2, 25]. 4 For this, we only need to 

3We point out that  we have no canonical way to choose the 
vertex used in the triangulation of each facet polygon, so that  
the resulting decomposition into spherical simplices satisfies 
the properties of configuration spaces [12, 26, 24] needed for 
stronger sampling bounds to hold (choosing the bottom vertex 
does not work). Fortunately, we do not need such stronger 
bounds; it suffices to have a triangulation. 

4Let L d'k be the collection of l inear cells in •d of complex- 
ity at most k, where a linear cell in R d is the union of convex 
polyhedra, and its complexity is the total number of its faces. 
The range space induced by a class of range-objects ~" on a 
class of point-objects X is linearizable if there are integers d, k 
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verify tha t  for a spherical-simplex A and a sphere s, 
s A A ¢ 0 can be described by a first-order predicate 
of size O(1) in the theory of closed fields (one formed 
from polynomials inequalities using Boolean connec- 
tives and quantifiers). See [25] for a justification of 
this. 

N e t s .  An e-net N for a range space (X, ~ )  is a sub- 
set of X such tha t  for each R E 7~, if IRI > elXI, then 
N A R ~ 0 [18]. In particular, using the contrapos- 
itive, if N fq R = 0, then IRI < clXI, this leads to 
an effective way to decompose a problem into sub- 
problems with smaller size. Matou~ek [23] has shown 
that ,  for a linearizable range space (X, 7~) of constant 
VC-exponent d, there is a 5 = 5(d) > 0 such that  for 
r < n ~, a (1/r) -net  of size O(rlogr) can be com- 
puted in t ime O(n log r),  where n = IXI . Lineariza- 
tion translates the computat ion of an e-net for the 
range space (P, Sp) into the computat ion of an e-net 
for ranges induced by the union of O(1) simplices in a 
higher dimensional space ]~d, to which the algorithm 
in [23] directly applies. 

2.3 Conflict List Computa t ion  

Let B be a set of balls and let S be a set of spheres, all 
of equal radius, and let T = T (B) ,  the decomposition 
of B = 13(B) into spherical simplices. We want to 
compute efficiently all the conflict lists SIA, A E T. 
This is done by computing the conflicts of each s E S 
as follows: First determine a point v in s fq bd(B), if 
it exists, using a Dobkin-Kirkpatrick hierarchy, and 
then determine all the conflicts by walking on the 
triangulation of bd(B), following the boundary of the 
facet supported by s in I3(B U {b}), where b is the ball 
bounded by s. The correctness follows from the fact 
tha t  s contributes a connected facet to I3(B U {b}). 
Next, we elaborate on the hierarchy construction and 
the walk. 

Dobkin-Kirkpatrick ( D K )  H i e r a r c h y  Let B = 
B(P, r). A hierarchy for B(B) similar to that  for 
a 3-d convex polytope by Dobkin and Kirkpatrick 
[15] can be defined for B(B). The DK hierarchy 

and maps ~o : X ---r ~ d  and ¢ : T - +  ]~d,k such that for x E X 
and A E T, xAA ~ 0 iff ~a(x) e ¢(A). A general procedure to 
obtain ~ and ¢ is as follows (see [25]): Start with a first-order 
predicate II in the theory of closed fields (one formed from 
polynomials inequalities using Boolean connectives and quan- 
tifiers) that describes when x A A ¢ 0; then, using a quantifier 
elimination method, rewrite 17 as a disjunction of several con- 
junctions of polynomial inequalities; finally, by introducing a 
variable for each monomial that appeaxs in the polynomial in- 
equalities, obtain linear inequalities that correspond to a linear 
cell. 

is a sequence •(Bi), i = 0 , . . . , k ,  where Bo = B, 
Bi+l C_ Bi, Bk = O(1), IBi÷ll ~ alBil  for some con- 
stant 0 < c~ < 1, and Di = Bi - Bi+l consists of a 
set of balls such that:  (i) the facets of b, b' E Di in 
Bi are not adjacent, (ii) the facet of b E D~ in/~i has 
O(1) adjacent facets in Bi. The existence of such set 
Di follows from the planari ty of the adjacency graph 
of bd(Bi) [15]. Note tha t  k = O(log IBI). The DK 
hierarchy can be computed easily in t ime O(IBI). 

\ 

Figure 1: Search in the DK hierarchy. 

Let s = s(p, r) and b = b(p, r).  The DK hierarchy 
is used to determine a point v in the intersection of s 
and B(B), if it exists (this is also similar to the use 
of the DK hierarchy for convex polytopes): Star t  by 
locating a point Vk in sAB in t ime O(1) if it exists, else 
halt with failure; from v~+l in Bi+l one can obtain v~ 
in 13i in t ime O(1) if it exists by the properties of the 
DK decomposition: either vi = vi+l because vi+l is 
already a point in Bi, or only O(1) edges need to be 
checked. If vi+l does not exist, halt with failure. See 
Fig. 1. Thus, in t ime O(log IBI), a point v = v0 in 
s A B is obtained, if it exists. 

W a l k .  The walk for s starts  at the point v, and 
follows the boundary of the facet of s i n /3 (B  U {b}) 
through the triangulation for which an appropr ia te  
adjacency da ta  structure is available. This walk takes 
t ime linear in the number of conflicts found: This is 
the case because the walk for s only visits triangles 
that  actually conflict with s and, second, a given tri- 
angle t can only be visited at most 0(1)  times (be- 
cause the boundary of the facet supported by s in 
B(B U {b}) intersects the boundary of t 0(1)  times). 
Therefore, the total  t ime for computing the conflict 
lists is O(IS I log IBI + IT[S]I). 

2 . 4  C l u s t e r i n g  

We now apply the clustering to our problem: Let 
B = 13(B) for some set of balls B,  and let T = T(B)  
be its decomposition into spherical-simplices. Let 
be the dual graph of T (or more properly, of its re- 
striction to bd(B)). Let G be the set of clusters re- 
sulting from the procedure just described and let S 
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be a set of n spheres (all balls in B and spheres in S 
are congruent). For [] E G, let SID denote the con- 
flict list of S in [3, let G[S] be the set of all conflict 
lists SIp , [] E G, and let IG[S]I denote the total con- 
flict list size ~-]~[]eG ISIDI • We want to bound IG[S]I, 
under the assumption that  for any A E T, ISizxl _< ~. 
We observe that  the conflict region of any s E S, 
that  is, the union of the spherical triangles bounding 
the spherical simplices with which it conflicts, is con- 
nected (because a sphere contributes a single facet). 
Thus, if the conflict region of a sphere does not inter- 
sect the boundaries between clusters, then the sphere 
conflicts with only one cluster. This is illustrated in 
the figure where the boundary of a cluster is shown 
with a continuous line, and the boundaries of the con- 
flict regions for some spheres are shown with broken 
lines. Thus, using clustering as already discussed, we 

Figure 2: Connectedness of conflict regions. 

obtain the total size of subproblems IG[S]I is bounded 
by 

n + Ct-~/2 " ~. 

In our application, we have that  B is a (1/r)-net. So 
rl = C ' r l ogr  and ~ = n / r .  Then, choosing t = r 1/2, 
we have that  IG[S]I is bounded by 

_ l o g r \  
n " ( 1 +  C'o r-~T/4 ) • 

Choosing r = f ( n )  sufficiently large, e.g., r = 19(n~), 
the total subproblem size remains O(n) through all 
recursive levels of the computation. Actually, r = 
19(log c n) is sufficient. It would be interesting if r = 
19(1) could be used, as in this case the construction 
of a (1/r)-net is considerably simpler. Unfortunately, 
the analysis is not sufficient to support this. 

2 . 5  A l g o r i t h m  

Let dF(p, Q) denote the furthest distance between p 
and the point set Q, and dR(P, Q) denote the furthest 
distance between the point sets P and Q. The box 
below has the outline of procedure Fur thes t (P ,  Q), 
which determines dF(P,Q).  In Step 9, Centers(X) 
denotes the set of centers of the spheres in X,  and PID 
denotes the set of points PN[]. The diameter problem 
for a point set P is solved by a call to Fur thes t (P ,  P).  

Furthest (P~ Q) 

1. If IQI = 0(1) or IPI = O(1) then compute dF(P, Q) by 
examining all pairs and return this value 

2. Compute a (1/IQl~)-net N C Q with respect to spherical- 
simplex ranges 

3. Construct a furthest point data structure 2:> N for N 

4. For each p C P,  compute dp = dF(p,N)  using "D N 

5. Let D = maxpE P dp, B N = B(N,  D) and SQ -- S(Q, D) 

6. Construct BN = B(BN)  and T g = "]-(By) 

7. Cluster the simplices in TN into a set of clusters GN, each 
of size O(IQI ~/2) 

For each [] E G/v, determine SOl D and PID 

For each [] E GN, D D +-Furthest(Pil:3,Centers(SQiD) ) 

Return max( D , maxD e G N DD ) 

8. 

9. 

10. 

Figure 3: Furthest pair procedure. 

Correctness.  Step 1 takes care of the basis case in 
which one of the sets has size O(1). Step 2 computes 
a (1/r)-net with r = IQI a to be used as the sample for 
partitioning the problem. The value D = dF(P, N )  
obtained in Step 5 is a lower bound for dF(P,Q) .  
Then the spherical polytope BN is computed for balls 
of radius D and the spherical simplices in its decom- 
position are clustered in Step 7 as described in the 
previous section. Consider a cluster [] E GN, and its 
two sets SQI D and PIP. Clearly, for q E Q - SQI D 
and p E PID, the distance between p and q is smaller 
than D, so this pair does not need to be considered 
any further. This justifies recursing, in Step 9, on 
the pairs (PIP, Centers(SolD)). We point out that ,  as 
presented, there is no guarantee of size reduction for 
the set P; to correct this, the roles of the sets P and 
Q in the recursive calls could be switched. 

Step Detai ls  and T ime  Analysis .  Step 1 com- 
putes the farthest distance by looking at each pair; 
this takes time O(]P]) if ]Q] = O(1), or O(IQI ) if 
IPI = O(1). Step 2 is performed using an algo- 
rithm by Matou~ek [23], which computes an e-approx- 
imation, with e = O(1/]Q]6), as an intermediate step; 
this takes time O(IQ] logr) = O(IQI log IQI) and N 
has size O(r logr )  = O(IQlaloglQI). Step 3 com- 
putes the furthest point Voronoi diagram of N and 
a corresponding point location data  structure so that  
a query can be answered in time O(log INI); it can 
be completed using time and space O(IQI 2) using a 
divide-and conquer approach based on sampling [5] 
(this reference deals with the closest point Voronoi di- 
agram, but the approach is the same; this algorithm 
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is considerably simpler than the one by Chazelle et 
al. [9]).  Then, given this data structure, Step 4 
takes time O(IP Ilog IQI)- Step 6 can be performed 
in time O(IN I log INI) [4], but here it suffices a sim- 
pler O(INI 1+~) time algorithm that  uses the divide- 
and-conquer approach based on sampling (without 
worrying about the usual "blow-up" of the problem 
sizes). Step 7 can also be performed very efficiently, 
indeed in time linear in ITI [17], but again a simpler 
O(]T I log ITI) time algorithm, which simply uses the 
linear time graph separator algorithm [21] indepen- 
dently in each level of the iteration in the clustering 
procedure. In Step 8, the conflict lists So.in are com- 
puted by first computing the conflict lists SQIA as 
indicated in Subsection 2.3, and then grouping them 
(eliminating duplicates in the process). The lists PIt:] 
are computed by performing a point location in T us- 
ing a data  structure with logarithmic query time; for 
this, we can use the data  structure resulting from the 
construction of/3N in Step 6 (if a point is on a bound- 
ary, then it is assigned to one of the adjacent sim- 
plices, so that  each point is assigned to a single sub- 
problem). Thus, the computation of the conflict lists 
takes time O(IQI log ITI + IT[SQ]I) and O([PI log ITI) 
respectively. Note that  IT[SQ]I = (IQI/r)O(r l o g r )  = 

O(IQI log IQI). 
We determine the total running time by consider- 

ing all recursive calls of the procedure at the same 
level. Let Mi and Ni be the sum of the sizes of the 
sets P and the sets Q for all the calls in the i-th 
level, and let ni be an upper bound on the size of the 
sets Q in the i-th level. From the previous analysis, 
we obtain that  the running time in the i-th level is 
O((Mi + Ni) logni ) .  Clearly Mi = n and, because of 
the analysis of the clustering, ( 01o .1) (1 )  
Ni < N i - l  " 1 + , ~14 <_ N i - l "  1 +  n~,----~l 

"~i--1 

for 6 ~ = 5/4 + e, with e > 0 arbitrarily small and ni-1 
sufficiently large, and so 

N i < _ n .  H 1 +  . 
j = 0  

1-~/2 and so ni < n (1-~/2)~ • On the other hand, ni <_ ni_ 1 

The worst case for Ni occurs when ni = n (1-~/2)~ , and 
thus we obtain 

Ni <_ n .  I I  1 + n(l_~/~)~ ~, 
j=O  

Finally, since ~ i>o  logni = O(logn), then the total 
running time is O-(n log n). 

Theorem 2 The diameter of a 3-d point set of size 
n can be computed deterministicaUy in optimal time 
O(n log n). 

As a final remark, in a randomized version of the 
algorithm, Step 2 finds a net by simply taking a ran- 
dom sample, and substituting other procedures for 
possibly simpler randomized algorithms. 

3 2 - D  L o w e r  E n v e l o p e s  

3.1 P r o b l e m  

We consider the problem of computing the lower en- 
velope of a set F of functions f : 11( 2 -4 IR. The lower 
envelope £ (F)  is the function that  is the pointwise 
minimum over all the functions in F ,  and one is in- 
terested in a description into cells, in each of which 
£(F)  is achieved by the the same subset of F.  We 
assume a nondegeneracy by which in these 0-, 1- and 
2-dimensional cells, only 1, 2 and 3 functions achieve 
the minimum, respectively. 

Recall our assumptions (i-iv) described in the Intro- 
duction, regarding the existence of a decomposition 
of £ (F)  into trapezoids. For Voronoi diagrams, such 
a decomposition can usually be obtained by tracing 
a geodesic from each vertex in a face to the site de- 
termining the cell. For R C_ F,  we let T ( R )  denote 
the set of bricks below £(F) .  The conflict list Fla  of 
a brick A E T ( R )  is the set of functions in F that  
intersect it. 

In computing a 2-d lower envelope, the correspond- 
ing 1-d version appears naturally as the restriction of 
the 2-d lower envelope to a curtain, the set of points 
below an edge. Given a curtain V, the restriction 
is denoted £1.~(F). For a brick A, 7~A(R) denotes 
the decomposition into bricks of £(R) restricted to A 
(and similarly for clusters). 

We assume that  there are functions f l  (n) and f2 in) 
that  give upper bounds on the complexity (number 
of vertices and edges) in a 1-d and 2-d lower enevel- 
ope. The only assumptions we make about them are: 
f l (n )  = O(n 1+5) for a very small 5, and f 2  ---- ft(n). 
The condition on f l (n)  is appropriate in view of the 
upper bounds for Davenport-Schinzel sequences [31]. 

3.2 A l g o r i t h m  

The construction proceeds in rounds and is deter- 
mined by a sequence of probabilities pi. Let ni = 1/pi 
and ri = PdPi-1 = n i - t / n i .  The result of the i-th 
round is a set T~ of bricks that  cover the lower en- 
velope. These bricks are grouped into clusters Gi: 
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A region [] E Gi is the union of a set of bricks 
Ti,o (so it is not of constant description complex- 
ity) and has associated a set Ri,o C_ Fio which is 
the set of functions bounding the bricks Ti,o from 
above. Thus, Ti = UGe¢~ Ti,o. Unlike the strict 
divide-and-conquer, in the i-th round, the algorithm 
performs a clean-up within each cluster in Gi-1, that  
is, the courtains inside the clusters of the (i - 1)-st 
round are not final, and are modified according to 
the new sample obtained for the cluster. The con- 
struction in the i-th round proceeds as follows. For 
each [] E G~-I, take a pi-sample R•  C_ Fio - R i - l , O ,  
and let Ri,o = Ri - l ,o  U Ro. As usual in derandom- 
ization, the sample is actually computed via an e- 
approximation. Then compute Ti,o = Tio(Ri,o ) - 
this is the partial clean-up - and use it to decompose 
[] into a set of smaller clusters Go,  by clustering the 
bricks in Ti,o, as described in Sec. 1.3. The set of 
all these newer subclusters is Gi. A parameter ti de- 
termines how big the clusters are: each cluster in Gi 
consists of O(ti) cells. Thus, for A E Ti, D = T(Ri ,o)  
and []~ E Go: 

nA = O(ni log ri) and no, = O(niti  log ri). 

The parameters are determined by the following 
1/2 

choice: ri = n~_ 1 and ti = r i . The appropriate 
choice of the constant a follows from the analysis be- 
low. This choice implies.ni = n (1-a)~, ri = n (1-a)~a 
and Pi = 1/ni = n - 0 - ~ ) ' .  

The computation for [] E Gi-1 in the i-th round is 
summarized in Fig. 4. 

S t e p  De ta i l s .  Let no = IFiol. In Step 1, the ap- 
proximation is with respect to brick ranges; the com- 
putation uses an algorithm of Matou~ek [23] and re- 
quires time O(no log(I/el)) .  Step 2 is performed us- 
ing the method of conditional probabilities [28] and 
so requires time polynomial in IAol; the constant 
a is chosen so that  this is O(no) .  Step 3 is per- 
formed by reducing it to a point location among hy- 
perplanes via linearization, so that  it requires time 
O(no log[R~,ol + ITi,o[F]l ). Finally, Step 4 is per- 
formed as described in Section 1.3 and requires time 
polynomial in IRi,o I, and so O(no).  Here, we use need 
the assumption that  the adjacency graph for the de- 
composition is of bounded degree. The correctness is 
clear. Though, this procedure does not produce the 
decomposition T ( F ) ,  for most purposes (e.g. point 
location or ray-shooting) the decomposition obtained 
is satisfactory. 

Ana lys i s .  We now analize the algorithm to verify 
that  its total  running time is O(n log n + f2(n)). Let 

2D-Lower-Envelope (i-th round) 

Input: Cluster [3, its set of bricks Ti- l ,o ,  with conflict 
lists respect to F.  

Output: New decomposition Ti,o, with conflict lists re- 
spect to F,  and its clustering Go.  

1. Compute an el-approximation A •  for Fio , where 
1/el : ( r i _ l$ i_ l )  c, for a constant c. Let 15~ = 
pl]F I [] Il iA• ], the sampling probabili ty with respect 
to A[]. 

2. Compute a sample R •  C A[] and Ti,o = Tio(Ri,[] ) 
where Ri ,•  -- Ri-l,[] U R•  so tha t  : 

(i) ITi,~l and ITi,o[A[]]l have values at most a 
constant factor greater than the correspond- 
ing expected values for a/5o-sample, and 

(ii) for each A E Ti,•, ]FIA I : O(log(16m~m)//~D). 

3. Compute the conflict lists Ti,[] [F]. 

4. Perform the clustering using a separator decompo- 
sition on the adjacency graph Go, and let G[] be 
the new set of subregions in o.  

Figure 4: Lower envelope procedure 

Ji ° be the total number of edges bounding the regions 
[] in Gi. 

L e m m a  3 Let Xi  = J~-x • f l ( r i  logr i -1)  + f2(pin).  
Then the decompositions Ti,o computed in Step 2 sat- 
isfy: 

(i) EoeG,_l IT ,ol = O ( Z i ) .  

5 i )   oec,_l IT ,o[F]I = O(XJp ). 

P r o o f .  Let rio = IAo]. Let r •  = /Soft• = 
pinG, the expected size of RG. From the previ- 
ous round, no = O( t i - l n i -1  logr i_ l )  and so r •  = 
O(t i - l r i logr i -1 ) .  The size of Ti,o is big-O of the 
number of vertices of £1o(Ri, o), including those on 
the boundaries. For a bounding courtain % from 
the previous round ]Fbl = O(ni-1 logr i -1) .  Since 
[AGI~[ = O([Fbr[(fio/nD) + eifiD), then the expected 
value of ]RDI.y ] is O(/ho]Aoh] ) = O(ri logr i_ l  +eirG), 
and since rG = O( t i - l r i l ogr i -1 ) ,  then IRDI.y ] = 
O(ri logri_x) .  Thus, the number of vertices of 
£1o(Ri,o) on the bounding courtains is O(J~_ 1 • 
f l  (ri log r i-1)) ,  and this justifies the first term in (i). 
Now, we bound the number of interior vertices. Let 
vert(X, []) denote the vertices of the arrangement 
of X in []. For a vertex v, let tv = pilFfvl and 
iv = 15GIAD[vh the excess with respect to F and Ao. 
The expected number of vertices of £:1o (Ri,o) is big-O 
of 

Z /5~(1-/Sn)]A°'"l--< Z /53 .e -L'. 
rEver t (A• , • )  rEver t (A• ,O) 
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(We are ignoring vertices on the functions in Ri-i,D, 
which can be handled similarly; we omit the details 
here.) Now, we claim that  because Am is an ei- 
approximation for Tim, then (proof omitted): 

C l a i m  4 For ei = O((~/ri)C'), with c' a constant 
sufficiently large: 

. e  _ 

vEvert(At~ ,[2) 

E p3. e-t. <_/3"ti-1. 
vEvert(Fio ,n) 

For ~ = O(1), the accumulated error over all the 
clusters in Gi-1 is O(ti-1 "[Gi-1 l) = o ( g g - 1 ) ,  which is 
dominated by the first term in (i). Therefore, ignoring 
this error, the total number of interior vertices is big- 
0 of 

r-IEGI- 1 vEvert(FimO ) vEvert(F) 

pin  

<_ E p  3. [vert(F,(t  + 1)/Pi)l'e -t, 
t = l  

where vert(F, ~) denotes the set of vertices in level 
at most L By results in [12], [vert(F,~)l = O(~ 3- 
f2(n/~)), therefore the previous term is big-O of (here 
is where we use the vertex accounting idea of Chazelle 
[10], with the added ingredient of taking into account 
the exponential decay with the excess) 

a . ( t + l ~ a f 2  ( p i n  ~ .e_ t=O(f2(p in) ) .  
E P i  \---~i ] \ t + l ]  
t = l  

This completes part  (i). To verify part  (ii), we use 
from [12, 26] that  

1 
E[IT~,D[Ao]] = =--. E[IT~,[]I], 

pm 

and since nA < ha(nm/hm) + einm, then 

E[ITi,D[F]] = ( l+e inD) 'E[ lT i ,DI]  

: 

using ei < 1/(ti-lrilogri-1). From this, part (ii) 
follows. [] 

From this claim, and given the analysis for the 
clustering procedure, we conclude the following re- 
currence for J~, where A and B are some constants: 

J~ g AJ.~_lfl(rilogri-i ) 
+B .  J'~-ifl(ri log ri-i) + f2(pin) 

ti/2 
i 

Here, the first term corresponds to the subcourtains 
of older courtains due to the refined sampling, and 
the second term corresponds to the new introduced 
ones in the interior of the clusters. Form the analysis 
of the clustering in Sec. 1.3, Eqn. (1) introduces the 

.1/2 dividing term t i which is what limits the growth 
of the number of bounding courtains counted by jo .  
We solve this recurrence by expanding it, making use 
of the choice ri = n ~ and the assumptions f l (n )  = i - -1 '  
O(n i+6) and f2 = f~(n), with appropriate constants 
A ~, C: 

J~ < A' o r f2(pin) " J~- i f i ( i logr i -1)  + B -  .i/2 

< c .  I2 (pro) 
- -  . 1 / 4  

This is the essential feature resulting from the cluster- 
ing: the number of spurious courtains is maintained 

tl/a considerably smaller, by a factor ~i , than the ex- 
pected complexity O(f2(pin)) of the decomposition 
in the i-th round. Therefore, the total total size of 
the decomposition Ji is bounded as follows 

ITi,=l _< A.  joi_l " fl(rilogri-1) + B .  f2(pin) 
lYJEGi-1 

< X -  .f2(Pi-in) . fi(rilogri-1) + B .  f2(pin) 
- .i/a 

~i--1 

(A'r~i' ) 
< f2(p~n)" ~,--fiTT-/4 + B 

\ t i - 1  

< Cf2(pin). 

Finally, the total size of the conflict lists is 

K i =  E [ T i ' m [ F ] l = O ( f 2 ~ n ) )  " 
OEGI-i 

T i m e  Ana lys i s .  We want to verify that  in the 
i-th round, the computation for all [] E G i - i  
can be performed in time O(Kilogri). Step 1 re- 
quires time O(nDlog(1/ei)) for [] • Gi-1. Since 
log(I/el)  = O(logri_i  + logt i_l ) ,  we see that  
logt i_l  = O(logr i_i )  and assume that  from now on. 
Thus, Step 1 requires O(Ki- l logr i - i )  work in to- 
tal. The computation of RD from AD and Ri-I,D in 
Step 2 requires time O([A[]]c), for some constant c. 
Since the size of AD is O(1/e~+~), the total time is 

r c O(i_ i lTi - i ,D[) ,  for a new constant c. Added over all 
[] • G i - i ,  this is O(rCiJi_i) ,  and hence O(Ki-i)  for 
ri-x with r e i-i = O(ni-x), which is always the case as 

nc~ long as ri = O ( i - 1 )  for small a.  Step 3 requires time 
O(I Ri, [] I c + n= log ri-i + ITi,D [S] I),using linearization, 
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for [] E Gi-1, hence O(Ki-1 logri_l + Ki). Step 4 
can be performed in linear time [17], O(]Ti, D]) for 
[] E Gi-1, and hence O(Ji) in total (but a less effi- 
cient polynomial algorithm would suffice). Replacing 
Ki = O(f2(pin)/pi) in the bound O(Kilogri),  we 
obtain the following. 

T h e o r e m  5 The lower envelope of n functions of 
2 variables, belonging to a class with a decomposi- 
tion satisfying the assumptions stated above, and with 
lower envelope of worst-case complexity O(f2 (n) ), can 
be computed deterministically in time 0 (f2 (n) log n), 
in general, or O(f2(n)) when f2(n) = fl(nl+~). 

4 C o n c l u d i n g  R e m a r k s  

The idea of clustering to reduce the usual size "blow- 
up" of divide-and-conquer algorithms based on ran- 
dom sampling seems quite useful and we expect fur- 
ther applications. In fact, some of our previous work 
on computing segment intersections [5] can be im- 
proved using this approach and this has been reported 
in [6]. It remains to investigate further applications, 
and the possibility of applying the technique to higher 
dimensional problems. For the latter, a major diffi- 
culty is the lack of results guaranteeing the existence 
of separators. 
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A P r o o f  of  Claim 4 
P r o o f .  The analysis here is similar to one used in [9]. To 
simplify notation, we omit the subindex i in Pi and loi. For a 
region [] (it can be a brick or a cylinder below), and a function 
f(t) ,  let 

E~f= ~ pS.f(t.), 2o f=  ~ ~3.f(t~), 
vEvert(S,o) vEvert(A,D) 

and 2 o ]  : E j~3. f(t,v). 
vEvert(A, n) 

We want to bound lEAf  -- EA]I  for f ( t )  = e - t .  For this, we 
separate the error into two parts: 

I E : , f  - 2 , ' , i l  < I S : , f  - 2 , x f l  + ] 2 : , f  - 211. 

First, we deal with the second part.  Because AA is an e- 
approximation for S]A, it follows that  Itv - tv[ < erA, and 
so, using the mean value theorem, 

lf(t~)- f(t~)[ < [~-t~ I. max ]f'(t)l 
- t E [ t ~ , ~ ]  

< erA. max I f ' ( t ) l  
- -  t E [ t v , [ v ]  

and 

l ~]z~fi- E~'f] ~-- p3erh " E max [f'(t)] 
vEvert(AA,A) rE[iv ,t,:] 

< :3erhlvert(AA,A)].  max max [ft(t)[ 
-- vEvert(A~,,A) tE[tv,~] 

= O ( e r  4 .  max max [ f l ( t ) ] ) .  
vEvert(A~ ,A) tE [tu,t'.] 

TO deal with the first part,  it is convenient to consider an 
e~-net NA and the decomposition E of its arrangement into 
cylinders, and consider the error in each O E E. Since 
[NA[ = O((1 /e ' ) log( l / e ' ) ) ,  then ]-~[ = O(1/e '7) (with a good 
margin). Let fM and f~n be the max and the min of f ( tv )  
over v E vert(S,O),  and let ho( f )  = fM _ f ~ .  We have, 

[Eo f  - 2 o f ]  _~ [Eo f  - ~ofM[ 4: [~of  M -- 20 fM[  

÷IEo I M - 2of[  

~ pS]ver t (S,O)lho(f)  + [pa[ver t (S,O)l-  

jSSlvert(m~, O)[[ fo  M + ~31vert(A , O)[ho( f )  

Ip 3[vert(S, O)[ - ~5 a[vert(AA, O)1 [ fM + 

(p3]vert(S, O)1 +/531vert(m, O)[ ) ho(f) .  

Using the mean value theorem and the net property, we have: 

ho(f)  <e 'rh"  max max [f '( t)] ,  
- -  vEvert(S,O) te[0,tv] 

and using the approximation property for vertices in [9], we 
have: 

[153 • Ivert(AA, O ) 1 -  p3 .  ivert(S, O)1[ < er 3. 

So, we obtain: 

I~Af  -- 2Af [  _< E I ~ o f  -- 2 o f ]  
oE~" 

( E £r3 cM _ AJO + p 3  E [vert(S'(~)l" h~(f )  + 
o~ = <>EE 

~a E Ivert(A' O)1" ho( f )  

r~ e r3 CM . C e % 4  max [f '(t)[.  < '~e-7~ ASA T • max -- vEvert(S,A) tE[0,t.] 

For f($) ---- e - t ,  l g  <_ 1, 

max max ]f '(t)[ < 1 and 
vEvert(S,A) tE[0,t~] 

max max ]Sift)] < 1, 
vEvert(A A ,A) $E[tv ,iv] 

and so 

I~AI  - 2A] I  _( I]EAf -- ~,,A fl  + I~,ZXI -- 211 
e 3 +er4) < C( rA +e'4 

= o ( # ) ,  

taking e' = O(B/r 4) and e = O(/~S/r31). This gives the error 
inside a brick A, To obtain the error in a cluster D, we multiply 
by O(ti-1), the size of a cluster. [ ]  
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