
Title Subject-dependent and -independent human activity recognition
with person-specific and -independent models

Authors Scheurer, Sebastian;Tedesco, Salvatore;Brown, Kenneth
N.;O'Flynn, Brendan

Publication date 2019-09-16

Original Citation Scheurer, S., Tedesco, S., Brown, K. N. and O'Flynn, B. (2019)
Subject-dependent and -independent human activity recognition
with person-specific and -independent models Proceedings
of the 6th international Workshop on Sensor-based Activity
Recognition and Interaction Rostock, Germany, 16-19 September.
doi: 10.1145/3361684.3361689

Type of publication Conference item

Link to publisher's
version

https://doi.org/10.1145/3361684.3361689 -
10.1145/3361684.3361689

Rights © 2019 Copyright held by the owner/author(s). Publication
rights licensed to ACM. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in HTTF 2019:
Proceedings of the Halfway to the Future Symposium 2019,
https://doi.org/10.1145/3363384.3363485

Download date 2024-04-26 21:40:41

Item downloaded
from

https://hdl.handle.net/10468/9643

https://hdl.handle.net/10468/9643


Subject-Dependent and -Independent Human
Activity Recognition with Person-Specific and

-Independent Models
Sebastian Scheurer

Insight Centre for Data Analytics

School of Computer Science and Information Technology

University College Cork

Cork, Ireland

sebastian.scheurer@insight-centre.org

Salvatore Tedesco
Tyndall National Institute

University College Cork

Cork, Ireland

Kenneth N. Brown
Insight Centre for Data Analytics

School of Computer Science and Information Technology

University College Cork

Cork, Ireland

Brendan O’Flynn
CONNECT Centre for Future Networks and

Communications

Tyndall National Institute

University College Cork

Cork, Ireland

ABSTRACT
The distinction between subject-dependent and subject-in-

dependent performance is ubiquitous in the Human Activity

Recognition (HAR) literature. We test the hypotheses that

HAR models achieve better subject-dependent performance

than subject-independent performance, that a model trained

with many users will achieve better subject-independent per-

formance than one trained with a single user, and that one

trained with a single user performs better for that user than

one trained with this and other users by comparing four al-

gorithms’ subject-dependent and -independent performance

across eight data sets using three different approaches, which

we term person-independent models (PIMs), person-specific

models (PSMs), and ensembles of PSMs (EPSMs). Our anal-

ysis shows that PSMs outperform PIMs by 3.5% for known

users, PIMs outperform PSMs by 13.9% and ensembles of

PSMs by a not significant 2.1% for unknown users, and that

the performance for known users is 20.5% to 48% better than

for unknown users.
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1 INTRODUCTION
Human Activity Recognition (HAR) systems are typically

evaluated for their ability to generalise to either unknown

users (people not represented in the HAR algorithm’s train-

ing data) or to known users (people represented in the train-

ing data), with the former known as subject-independent and
the latter as subject-dependent performance. The subject-in-

dependent performance can be estimated by performing a

leave-one-subject-out (LOSO) cross-validation (CV) across all

users in the data set, and the subject-dependent performance

by performing a separate k-fold CV for each user. Which

performance should be optimised when developing a HAR

system depends on how it is going to be commissioned and

https://doi.org/10.1145/3361684.3361689
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deployed. If commissioning a HAR system entails obtaining

examples of the activities of interest from its end users—the

people whose activities are to be recognised by the deployed

system—then we should optimise the subject-dependent per-

formance, which suggests that we train a personalised HAR

inference model for each user. We refer to models obtained in

this manner as person-specific models (PSMs), because they

are tuned for a specific person. If, on the other hand, the

system is to be deployed without prior commissioning (i.e.,

without being trained on data from its end users), then it

must ship with a HAR model that has been pre-trained on

data from a (presumably representative) sample of users. We

refer to a model obtained in this manner as a person-inde-
pendent model (PIM), because its performance is assumed to

be independent of the person using it. PIMs are usually eval-

uated on subject-independent performance (i.e., unknown

users), but it is not uncommon to see them evaluated on

subject-dependent performance (known users), an approach

that corresponds to a scenario where it is possible to obtain

sample data from (some of) the system’s end users during

commissioning, but not possible to identify users (and hence

the appropriate PSM) once the system has been deployed.

The distinction between subject-dependent and subject-

independent performance is ubiquitous in the HAR liter-

ature, and most empirical evaluations of HAR algorithms

make it clear which one was used. We intuitively hypothe-

sise that subject-dependent performance will be better than

subject-independent performance, that a PIM will outper-

form a PSM on subject-independent performance, and that

a PSM will outperform a PIM on subject-dependent perfor-

mance. Unfortunately, not many HAR papers report results

for more than one combination of personalisation-generali-

sation approach (PIM or PSM), and subject-dependent and

-independent performance, and none of them report results

for all four combinations, making it impossible to verify

whether these hypotheses are correct. This paper aims to

narrow that gap by presenting the first empirical comparison

of the subject-dependent and subject-independent perfor-

mance achieved with PIM and PSM on multiple (eight) HAR

data-sets, using four popular machine learning algorithms

that have been used extensively and successfully in the HAR

literature.

Related work
Bao and Intille [2] assess the subject-dependent performance

of PSMs for recognising 20 activities of daily living (ADLs)

across 20 users by training four learning algorithms on a

set of semi-controlled laboratory data and evaluating them

on a set of semi-naturalistic data, and the subject-indepen-

dent performance of a PIM by performing a LOSO CV on

the combined data from both sets. In a second experiment,

they assess the subject-dependent performance of a PSM

trained on three additional users’ laboratory data, and the

subject-independent performance of a PIM trained on five

different users’ laboratory data, using the three new users’

semi-naturalistic data for evaluation. Unfortunately, the dif-

ferences in the protocols for estimating subject-dependent

and -independent performance in the first experiment means

that we cannot compare them directly (the latter accuracies

are 17.7% to 49.7% higher than the former). The second exper-

iment, which affords a fairer comparison, directly contradicts

these findings: the subject-dependent PSM accuracy (77.3%)

exceeds the subject-independent PIM accuracy (73%) by 5.9%.

Weiss and Lockhart [17] assess the subject-independent and

-dependent performance of PIMs, and the subject-dependent

performance of PSMs for recognising six ADLs across 59

users and eight learning algorithms. They report that PSMs

outperform a PIM by 1.9% to 27.1% on subject-dependent

accuracy, and that the subject-dependent accuracy achieved

with a PIM is 11.1% to 41.1% higher than its subject-inde-

pendent accuracy. These results suggest that, all else being

equal, HAR methods will indeed perform better on data from

known users than on data from unknown users. However,

they tell us little about the size of the difference for a given

personalisation-generalisation approach (PGA) or about how

the trade-off between subject-dependent and -independent

performance relates to the PGA.

2 METHODS
We follow the standard approach to human activity recog-

nition comprised of data pre-processing, segmentation into

windows, feature extraction from those windows, and activ-

ity inference on them based on their features [4]—where the

inference step is implemented with machine learning algo-

rithms. We estimate and compare the performance of four

popular machine learning algorithms—L2 (Ridge) regularised

logistic regression, k-Nearest Neighbours (kNN), support

vector machines (SVM), and a gradient boosted ensemble of

decision trees (GBT)—using a set of features extracted from

eight publicly available data sets, which are summarised in

Table 1.

For each data set, Table 1 cites the relevant publication,

lists the number of activities (act) and people (ind), and the

average number of trials per activity (± standard error) and

sampling frequency (Hz). We chose data sets that were ac-

quired via wearable inertial measurement units (IMU) com-

prised of an acceleration and angular velocity sensor, and

worn either on the chest or the wrist. Where sensors were

worn on both wrists we chose the one associated with the

right wrist. Unfortunately, the information about whether a

user is right- or left handed is unavailable for most data-sets,

making it impossible to choose the dominant wrist consis-

tently. All data sets, except REALWORLD and SAFESENS

which used a chest-worn sensor only, used a wrist-worn
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Table 1: Number of (act)ivities and (ind)ividuals, trials/activ-
ity (± standard error), and sampling frequency (Hz) for each
of the data-sets

data-set act ind trials/act Hz

[13] FUSION 7 10 90 ± 0 50

[1] MHEALTH 11 10 38 ± 0 50

[5] OPPORT 4 4 590 ± 258 30

[11] PAMAP2 12 9 81 ± 8 100

[15] REALWORLD 8 15 318 ± 42 50

[12] SAFESENS 17 11 91 ± 13 33

[9] SIMFALL 16 17 128 ± 8 25

[14] UTSMOKE 7 11 859 ± 7 50
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Figure 1: Number of instances per activity for each data set

sensor, and only two data-sets—PAMAP2 and SIMFALL—

employed both a wrist- and a chest-worn sensor. Figure 1

illustrates how the instances—each of which corresponds

to the features extracted from one window—are distributed

among the activities. Note that instead of distinguishing falls

from ADLs in the SIMFALL data-set, which Özdemir and

Barshan [9] were able to do with Sensitivity, Specificity, and

Accuracy all > 99%, we focus on the 16 ADLs shown in the

figure.

The experiments were implemented in Python and par-

allelised via GNU parallel [16]. Analysis was carried out

with R [10], and mixed effects models fitted with the lme4
library [3].

We consider another personalisation-generalisation ap-

proach in addition to the person-independent (PIM) and

-specific model (PSM), which we term an ensemble of PSMs

(EPSM). An EPSM maintains a PSM for each known user.

When an instance for a known user needs to be classified, an

EPSM simply applies that user’s PSM, but when an instance

originates with an unknown user, it applies each user’s PSM

to obtain confidence scores (e.g., the estimated probability)

for each activity of interest. Then the EPSM calculates each

activity’s mean score, and classifies the instance to the ac-

tivity with the maximum mean score. To deal with the (very

few) users for whom the data do not cover all the activities

of interest, and whose PSMs are therefore unaware of some

activities and hence unable to generate a confidence score

for those activities, we assume that those activities have a

probability of zero. This is not unreasonable if we accept that

some people never perform certain activities (e.g., smoking,

military crawling).

Pre-processing, segmentation, and feature extraction
Some data sets come with a constant timestamp for each

trial—presumably introduced by storing POSIX® epoch time-

stamps in (sub-) millisecond resolution in Microsoft® Excel®

spreadsheets. For these data-sets we generate timestamps

with a fixed inter-arrival time equal to the data set’s nominal

sampling frequency. Then, we separate the raw data into non-

overlapping natural trials by splitting the signal whenever

the activity changes or the inter-arrival time exceeds 1.5 s. To

ensure that we have at least two trials per user and activity,

each of the natural trials is then split into non-overlapping

batches of 15 s. Next, the body and gravity components of

each trial’s accelerometer signal are separated by the ellipti-

cal infinite-impulse response (IIR) low pass filter separates

described by Karantonis et al. [8]. After discarding the origi-

nal accelerometer data—which do not contain any informa-

tion beyond that in the gravity and body components—we

are left with three tri-axial signals: the gyroscope signal, the

body acceleration signal, and the gravity acceleration signal.

Finally, a set of time- and frequency-domain features is ex-

tracted along a sliding 3 s window with 50% (1.5 s) overlap

from each trial. From the angular velocity signal and both

acceleration components we extract the mean, standard devi-

ation, skew, and kurtosis, and from the angular velocity and

body acceleration signal the spectral power entropy, peak-

power frequency, signal magnitude area, and the pairwise

correlations between each signal’s axes. This amounts to a

total of 84 features that are extracted from each window.
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Activity inference and evaluation
We use logistic ridge regression with C = 0.98, a kNN classi-

fier with k = 2 and weighted voting, a SVM classifier with

a radial basis function with kernel coefficient γ = 0.001 and

cost penalty C = 316, and a GBT with a learning rate α =

0.02 and comprised of 750 trees. The parameters for kNN,

SVM, and GBT are taken from Scheurer et al. [12], who tuned

them for subject-independent performance on the 17 activi-

ties in the SAFESENS data-set. The ridge parameter of C =

0.98 corresponds to weak regularisation, and was chosen to

counteract the impact of correlated features. All features are

standardised ([x − x̄]/s) according to each feature’s mean

(x̄) and standard deviation (s) in the training data. We use

Cohen’s Kappa (κ) to quantify the predictive performance

because—unlike other performance metrics such as Sensitiv-

ity, Specificity, and Accuracy—it corrects for the probability

of obtaining the observed level of agreement between the

ground truth and predicted labels by chance, and because it is

designed to measure predictive performance for multi-class

classification.

To estimate an algorithm’s subject-dependent performance,

the trials are used to generate the folds in a k-fold cross val-

idation (CV), a method we call Leave-Trials-Out (LTO) CV.

LTO CV ensures that the raw data used to derive an instance

in a training split are never used to derive the instances that

constitute the corresponding test split, an issue that is bound

to occur when working with instances derived from partially

overlapping sliding windows [7], as we do here. PIM per-

formance for known users is estimated by carrying out a

k-fold LTO CV across all the users in each data-set, and PSM

performance by carrying out a separate k-fold LTO CV for

each user. In both cases k = n, where n denotes the number

of people in the data-set. To estimate the subject-indepen-

dent performance, we carry out a leave-m-users-out CV with

m = 1 for EPSM and PIM, andm = n − 1 for PSM.

3 RESULTS, ANALYSIS, AND DISCUSSION
Figure 2 illustrates the trade-off between the performance

(κ × 100) when the user was known—i.e., represented in the

training data—on the horizontal axis, and the performance

when the user was unknown (not represented in the train-

ing data) on the vertical axis. In this figure, each data point

corresponds to a single person (user), except in the case

of person-specific models, where it corresponds to the me-

dian performance a model trained on data from the known

user achieved on the other users in the data set. The symbol

and colour indicate which personalisation-generalisation ap-

proach (PIM, PSM, or EPSM) was used. Table 2 summarises

the results depicted in Figure 2, but using the PSM perfor-

mance for all rather than, as shown in the figure, only that for

the average unknown user. The table lists the mean κ (in %)

± standard error for each PGA, machine learning algorithm,

data set, and sensor location.

Performance for known vs unknown user
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Figure 2: Subject-independent versus subject-dependent
κ (%)

Analysis of the performance for known users
We can pair the performance when a person-specific model

(PSM) is combined with a machine learning algorithm and

applied to the data from a known person for a given data-set

and sensor, to the performance when the same algorithm is

combined with a person-independent model (PIM) and ap-

plied to the same data-set, sensor, and person. A paired t-test

of these data yields a 95% Confidence Interval (C.I.) of 4.2 to

5.3 percentage points (hereafter, points) for the difference

between the κ achieved with PSMs and that achieved with

PIM, with a mean difference of 4.8 points (t443 = 16.7, P <

2.2 × 10
−16

), suggesting that we can be 95% confident that a

PSM outperforms a PIM on data from known users by 4.2 to

5.3 points. However, it is unlikely that the t-test’s underlying

assumption of identically and independently distributed (IID)

data is met, because the difference in the subject-dependent

performance between PIM and PSM might depend not only

on the data-set—which is expected due to the different ac-

tivities of interest, and evident in Figure 2—but also on the

learning algorithm.

A more appropriate tool for analysing data, such as these,

that are not IID is the linear mixed effects model (LMM). A

LMM extends linear regression with so-called random effects
which allow us to impose structure on the residuals. We can,
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Table 2: κ (%) ± standard error when learning algorithms (mla) are combined with a person-independent model (PIM), a per-
son-specific model (PSM), or an ensemble of PSMs (EPSM), and tested on known or unknown users

known unknown

dataset sensor mla PSM/EPSM PIM PSM EPSM PIM

FUSION wrist gbt 97.7 ± 0.4 97.9 ± 0.4 82.6 ± 2.6 90.4 ± 2.6 92.6 ± 2.1

knn 94.2 ± 1.0 94.1 ± 0.9 76.6 ± 1.4 87.5 ± 2.8 85.9 ± 2.0

logreg 97.4 ± 0.4 96.7 ± 0.6 81.4 ± 2.0 89.5 ± 2.8 91.9 ± 2.1

svm 97.8 ± 0.4 97.7 ± 0.3 81.8 ± 2.0 90.3 ± 2.7 90.9 ± 2.1

MHEALTH wrist gbt 97.1 ± 1.2 96.8 ± 1.0 59.1 ± 1.7 72.3 ± 3.6 82.3 ± 3.4

knn 93.7 ± 1.4 91.3 ± 1.8 55.6 ± 2.0 71.4 ± 2.6 76.1 ± 3.1

logreg 95.7 ± 1.4 91.9 ± 1.5 54.6 ± 2.3 70.0 ± 2.9 78.9 ± 3.3

svm 96.8 ± 1.0 94.4 ± 1.3 58.9 ± 2.3 72.0 ± 3.9 82.0 ± 2.6

OPPORT wrist gbt 83.3 ± 2.4 81.7 ± 2.6 58.7 ± 4.3 66.9 ± 8.1 68.8 ± 7.1

knn 74.8 ± 2.7 71.3 ± 2.5 40.8 ± 1.7 54.5 ± 5.4 51.4 ± 4.2

logreg 76.7 ± 3.0 72.6 ± 3.5 46.6 ± 3.9 56.7 ± 6.7 59.9 ± 7.0

svm 81.0 ± 2.4 81.5 ± 2.3 46.2 ± 1.7 61.7 ± 6.6 65.4 ± 6.7

PAMAP2 chest gbt 87.7 ± 0.7 77.7 ± 9.7 57.9 ± 3.5 72.6 ± 4.3 69.4 ± 9.3

knn 78.5 ± 1.2 67.2 ± 8.4 51.0 ± 3.2 67.7 ± 3.2 56.5 ± 7.4

logreg 85.4 ± 0.9 73.5 ± 9.2 50.2 ± 3.4 69.3 ± 4.9 64.2 ± 8.7

svm 85.1 ± 0.8 76.4 ± 9.6 51.3 ± 3.7 69.4 ± 5.1 65.7 ± 9.1

PAMAP2 wrist gbt 85.9 ± 0.8 76.9 ± 9.7 57.2 ± 2.7 71.5 ± 2.9 70.2 ± 9.1

knn 78.9 ± 1.6 68.7 ± 8.7 49.9 ± 4.6 68.1 ± 3.9 57.9 ± 8.1

logreg 83.5 ± 1.3 72.8 ± 9.2 53.7 ± 4.4 68.8 ± 4.9 66.3 ± 9.0

svm 83.3 ± 1.3 75.3 ± 9.5 47.4 ± 3.8 68.2 ± 4.5 65.0 ± 9.3

REALWORLD chest gbt 96.1 ± 0.4 93.3 ± 0.6 40.2 ± 3.5 62.4 ± 3.9 71.7 ± 4.4

knn 91.3 ± 1.0 85.1 ± 1.5 40.2 ± 3.1 61.8 ± 3.7 59.3 ± 3.4

logreg 95.4 ± 0.5 83.8 ± 1.8 32.4 ± 3.4 57.2 ± 4.2 60.7 ± 5.8

svm 95.5 ± 0.4 92.0 ± 0.7 31.9 ± 3.8 54.9 ± 4.5 62.4 ± 5.1

SAFESENS chest gbt 97.0 ± 0.8 93.5 ± 0.8 29.3 ± 2.9 47.9 ± 5.0 68.3 ± 3.5

knn 87.8 ± 1.5 81.1 ± 1.7 31.7 ± 3.4 54.7 ± 3.2 55.7 ± 3.5

logreg 93.1 ± 1.0 78.4 ± 1.5 27.2 ± 2.7 54.0 ± 2.7 64.1 ± 3.0

svm 95.2 ± 0.8 87.9 ± 1.1 30.8 ± 3.4 51.9 ± 2.6 66.9 ± 2.7

SIMFALL chest gbt 65.9 ± 1.3 57.1 ± 1.2 19.8 ± 0.8 33.5 ± 1.5 44.0 ± 1.7

knn 50.0 ± 1.3 44.9 ± 0.9 20.4 ± 0.6 33.3 ± 1.0 30.3 ± 0.7

logreg 52.3 ± 1.2 38.0 ± 0.9 14.8 ± 0.7 29.1 ± 1.0 34.5 ± 1.1

svm 49.5 ± 1.6 49.8 ± 0.8 14.3 ± 0.6 25.9 ± 1.0 38.2 ± 1.4

SIMFALL wrist gbt 62.4 ± 1.5 55.6 ± 1.5 20.2 ± 0.8 32.6 ± 2.2 40.4 ± 2.3

knn 48.8 ± 1.2 44.6 ± 1.2 20.1 ± 0.7 31.8 ± 1.6 29.2 ± 1.5

logreg 49.6 ± 1.3 37.1 ± 1.4 17.3 ± 0.7 27.9 ± 1.7 32.7 ± 2.1

svm 45.9 ± 1.5 48.1 ± 1.3 14.4 ± 0.7 27.1 ± 1.5 36.0 ± 2.3

UTSMOKE wrist gbt 90.8 ± 0.9 81.0 ± 1.5 55.7 ± 1.2 65.3 ± 3.3 68.8 ± 2.9

knn 81.2 ± 1.2 76.2 ± 1.3 51.8 ± 1.5 60.7 ± 2.8 61.6 ± 2.4

logreg 84.1 ± 1.2 69.0 ± 2.0 51.0 ± 1.0 59.4 ± 2.5 63.2 ± 2.5

svm 89.1 ± 0.9 83.8 ± 1.3 53.7 ± 1.6 63.6 ± 2.9 69.2 ± 2.7
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for example, specify that the performances within data-sets

are correlated, or even that the difference in performance

between PGAs varies depending on the data-set. The random

effects are assumed to add up to zero, and hence the fixed

effects (which are analogous to linear regression coefficients)

can be estimated via (restricted) maximum likelihood. Un-

fortunately, there is no consensus on how to obtain P-values

for LMM coefficients, but it is possible to obtain C.I.s via

likelihood profiling, bootstrap sampling, or by making as-

sumptions about the likelihood function’s shape in which

case a Wald test can be used. For a detailed treatment of

LMMs we refer interested readers to Gelman and Hill [6].

A LMM that models the subject-dependent performance

(ln[κ + 1], to be precise) as a combination of (fixed) effects

attributable to the machine learning algorithm and persona-

lisation-generalisation approach—either PIM or PSM, since

subject-dependent EPSM performance is identical to that of

its constituent PSMs—and a random effect to control for the

variation of the PGA effect between data sets, explains the

observed variation in the response with a residual standard

deviation of 6.3 points. This model reveals that the (random)

effect of applying PSM to a data-set, which varies with a stan-

dard deviation of 1.9 points between data-sets, is moderately

inversely correlated (−0.53) with PIM performance, which

varies with a standard deviation of 9.3 points, on the same

data-set. This confirms the intuition that a PSM likely confers

less advantage when applied to a data-set on which a PIM

performs well. The restricted maximum likelihood (REML)

estimates of the fixed effects indicate that GBT—with an es-

timated κ of 84.6% and a 95% (bootstrap) C.I. of 71.9% to

97.1% when used as a PIM—outperforms SVM by 2.9% (1.7%

to 4.1%), logistic regression by 5.4% (4.2% to 6.6%), and kNN

by 5.5% (4.1% to 6.7%), regardless of the PGA. They further

show that PSMs outperform the corresponding PIM by 3.5%

(1.7% to 5.2%) when evaluated on known users.

Analysis of the performance for unknown users
A paired t-test for the difference between PIM and EPSM

performance for unknown users yields a 95% C.I. of 4.4 to

5.8 points with a mean difference of 5.1 points (t443 = 14.7, P
< 2.2 × 10

−16
), indicating that PIM significantly outperforms

EPSM. A paired t-test for the difference between subject-de-

pendent PIM performance and median PSM performance for

unknown users yields a 95% C.I. of 19.1 to 21 points with

a mean difference of 20 points (t443 = 41, P < 2.2 × 10
−16

).

Finally, a paired t-test for the difference between EPSM and

median PSM (subject-independent) performance yields a 95%

C.I. of 14.2 to 15.6 points with amean difference of 14.9 points

(t443 = 41.3, P < 2.2 × 10
−16

). These results indicate that a

PIM outperforms an EPSM by 5.1 points and the average

PSM by 20 points, and that an EPSM outperforms its average

constituent PSM by 14.9 points when evaluated on data from

a user who was not represented in the training data.

The same LMM fitted to the subject-independent perfor-

mance (ln[κ − 1]) explains the observed variation in the re-

sponse with a residual standard deviation of 8.6 points. This

model reveals that the (random) effect of applying EPSM

to a data-set, which varies with a standard deviation of 3.2

points between data-sets, weakly correlates (0.21) with PIM

performance (EPSM is likely to perform better on data sets

on which PIM performs better, too), that the PSM effect,

which varies with a standard deviation of 6.4 points, cor-

relates weakly (0.31) with PIM performance, which varies

with a standard deviation of 9.7 points, and that the PSM and

EPSM effects correlate strongly (0.78) with each other (PSM

and EPSM tend to perform better on the same data sets). The

REML estimates of the fixed effects indicate that GBT—with

an estimatedκ of 67.5%, and a 95% C.I. of 56.1% to 78.9% when

used as a PIM—outperforms kNN by 1.3% (0.7% to 1.9%), SVM

and logistic regression by 3.4% (with respective 95% C.I.s of

2.7% to 4% and 2.8% to 4.1%), regardless of the PGA. The

estimates further show that although a PIM outperforms the

corresponding PSMs by a clear 13.9% (9.1% to 19.3%), it only

narrowly beats an EPSM by a not significant 2.1% (−0.3% to

5%).

Discussion
These results suggest that the best subject-dependent per-

formance is achieved with PSMs, and the best subject-inde-

pendent performance with PIMs. Hence, in order to optimise

both subject-dependent and -independent performance, we

should use PSMs for known users and a PIM for unknown

users wherever possible. If we use a PIM, rather than a PSM,

for known users we forego an expected improvement of

3.5% in the subject-dependent performance, and if we use a

PSM (rather than a PIM) for unknown users we forego an

expected improvement of 13.9% in the subject-independent

performance. Perhaps surprisingly, we found that although

an EPSM—whose subject-dependent performance is identi-

cal to that of its constituent PSMs—does perform 2.1% worse

than a PIM for unknown users, that estimate comes with a

95% C.I. of −0.3% to 5%, according to which we do not have

enough evidence to reject the (null) hypothesis that there is

no real difference in the subject-independent performance

between PIM and EPSM.

With respect to the difference between the subject-depen-

dent and -independent performance, our findings imply that

a PIM performs 20.5% to 26.1% better for known users than

for unknown users, an EPSM 27.5% to 33.3% better, and a

PSM 42% to 48.5% better. In all cases the difference is smallest

with kNN, followed by logistic regression with differences

of 23.1%, 30.2%, and 45.1%, GBT with differences of 25.4%,
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32.6%, and 47.8%, and SVM with differences of 26.1%, 33.3%,

and 48.5%, respectively.

4 CONCLUSION
We compared the subject-dependent and -independent per-

formance of person-independent models (PIMs) and person-

specific models (PSMs), and ensembles of PSMs (EPSMs)

when used with four popular HAR algorithms across eight

publicly available HAR data-sets. Analysis with mixed effects

models showed that GBT outperforms the other algorithms

on both subject-dependent and -independent performance,

that PSMs outperform a PIM by 3.5% when evaluated on

known users, and that a PIM outperforms a PSM by 13.9%

when evaluated on unknown users. The analysis further

showed that although PIMs outperform EPSMs on unknown

users, according to the 95% C.I. the 2.1% difference is not

significant. We estimated that the difference between sub-

ject-dependent performance and subject-independent per-

formance ranges from 20.5% to 26.1% with PIMs, 27.5% to

33.3% with EPSMs, and from 42% to 48.5% with PSMs.
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