
25

Explainable Product Search with a Dynamic Relation
Embedding Model

QINGYAO AI∗, School of Computing, University of Utah, USA
YONGFENG ZHANG, Department of Computer Sciences, Rutgers University, USA
KEPING BI, College of Information and Computer Sciences, University of Massachusetts Amherst, USA
W. BRUCE CROFT, College of Information and Computer Sciences, University of Massachusetts Amherst,
USA

Product search is one of the most popular methods for customers to discover products online. Most existing
studies on product search focus on developing effective retrieval models that rank items by their likelihood to
be purchased. They, however, ignore the problem that there is a gap between how systems and customers
perceive the relevance of items. Without explanations, users may not understand why product search engines
retrieve certain items for them, which consequentially leads to imperfect user experience and suboptimal
system performance in practice. In this work, we tackle this problem by constructing explainable retrieval
models for product search. Specifically, we propose to model the “search and purchase” behavior as a dynamic
relation between users and items, and create a dynamic knowledge graph based on both the multi-relational
product data and the context of the search session. Ranking is conducted based on the relationship between
users and items in the latent space, and explanations are generated with logic inferences and entity soft
matching on the knowledge graph. Empirical experiments show that our model, which we refer to as the
Dynamic Relation Embedding Model (DREM), significantly outperforms the state-of-the-art baselines and has
the ability to produce reasonable explanations for search results.

CCS Concepts: • Information systems → Document representation; Retrieval models and ranking; Retrieval
tasks and goals.

Additional KeyWords and Phrases: Product Search, Explainable Model, Knowledge Graph, Relation Embedding

ACM Reference Format:
Qingyao Ai, Yongfeng Zhang, Keping Bi, andW. Bruce Croft. 2019. Explainable Product Search with a Dynamic
Relation EmbeddingModel.ACM Transactions on Information Systems 9, 4, Article 25 (December 2019), 29 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Product search represents a special retrieval problem where users submit queries to a search engine
in order to find products. As the e-commerce market keeps growing1 and millions of new products
∗This work is done during his Ph.D. at University of Massachusetts Amherst.
1https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/

Authors’ addresses: Qingyao Ai, School of Computing, University of Utah, Salt Lake City, UT, USA, 84112-9205, aiqy@
cs.utah.edu; Yongfeng Zhang, Department of Computer Sciences, Rutgers University, Piscataway, NJ, USA, 08854-8019,
yongfeng.zhang@rutgers.edu; Keping Bi, College of Information and Computer Sciences, University of Massachusetts
Amherst, Amherst, MA, USA, 01003-9264, kbi@cs.umass.edu; W. Bruce Croft, College of Information and Computer Sciences,
University of Massachusetts Amherst, Amherst, MA, USA, 01003-9264, croft@cs.umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1046-8188/2019/12-ART25 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

ar
X

iv
:1

90
9.

07
21

2v
1

 [
cs

.I
R

]
 1

6
Se

p
20

19

https://doi.org/0000001.0000001
https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/
https://doi.org/0000001.0000001

25:2 Q. Ai et al.

are introduced every day, search has become one of the most effective and popular methods for
people to discover products. According to a recent marketing report2, the majority of sales on
Amazon comes from its product search service. Thus, the quality of product search affects both
user experience with online shopping and the profits of e-commerce companies.

Due to their applications in e-commerce, product search engines are usually optimized for user
transactions. In a typical product search scenario, users submit a query to a search engine, and the
system returns a list of products for users to explore. Items on the search engine result pages are
often sorted by their likelihood to be purchased so that the number of user transactions can be
maximized in each search session [6, 17, 57].
Showing relevant items on the top, however, is not enough to guarantee the effectiveness of

product search. Existing studies based on this paradigm often simplify the problem of product
search by assuming that users will purchase an item as long as it is observed and relevant [6, 57].
They ignore the fact that there is a significant gap between the item relevance perceived by search
engines and e-shopping users [75]. Because purchasing is expensive and highly personal [6], users
often need a good reason to justify their purchases. As modern product search systems become
increasingly sophisticated, it is difficult for normal users to understand why search engines retrieve
certain items for them. A direct consequence is that users may not perceive a retrieved item as
relevant even when it satisfies their search intents.
Therefore, to actually optimize user purchases, a good product search engine needs to retrieve

relevant products as well as providing good explanations of why retrieved items should be interest-
ing to users. Previous studies on product recommendation have shown that providing appropriate
explanations significantly improves user acceptance for recommended items [26, 55]. It benefits
recommendation systems in multiple ways including user satisfaction, system transparency, de-
bugging complexity, etc. [11, 15, 56, 74]. It is reasonable to assume that providing explanations for
retrieval results will be equally beneficial for product search.

Despite its potential, the explainability of retrieval systems has not been well studied in product
search. There are two problems that limit the development of explainable product search systems.
First, purchasing is a complicated behavior as it depends on multiple factors such as user preference,
product presentation, and search context. To provide high-quality explanations, we need to consider
the relationship between users and products from multiple angles (e.g., brands, categories, etc.). As
far as we know, no existing retrieval model can directly incorporate different product knowledge
for product search. Second, producing a readable explanation requires the system to have logical
reasoning. For example, the system should be able to infer that “Bob likes Apple products" after
seeing him search and purchase multiple products from Apple. An explanation is reasonable and
effective only when it is formulated based on well-grounded logic, while how to construct such a
product retrieval model with logical reasoning ability is still an open question for the IR community.

In this paper, we present our initial attempt to tackle the problem of explainable product search.
Inspired by the studies of relation prediction in knowledge base [12, 13], we propose to create a
unified knowledge graph on multiple types of product data, and conduct retrieval with it. Our
motivation is to integrate multi-relational product information for search, and generate explanations
with logic inference on the knowledge graph. Previous studies on knowledge graphs and embeddings
mainly focus on modeling static data relationships that do not change. In product search, however,
the relationships between users and items are not deterministic among different search sessions. For
example, a camera lens is relevant to a photographer when she searches for “camera”, but not when
she searches for “toothbrush”. To solve this problem, we propose a Dynamic Relation Embedding
Model (DREM) that dynamically models the relationship between users and items based on the

2https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Explainable Product Search with a Dynamic Relation Embedding Model 25:3

search context. Although inferring the relationship of an arbitrary user-item pair with observed
data is often infeasible due to data sparsity [69], we show that reasonable explanation paths can
be extracted with our proposed method through entity soft matching. Empirical experiments and
analysis with Amazon benchmark datasets show that incorporating different product knowledge
with DREM has significant potential for explainable product search.

Our main contributions can be summarized as follows:
• We propose a Dynamic Relation Embedding Model to construct a session-dependent knowl-
edge graph for product retrieval.
• We propose a Soft Matching Algorithm to efficiently extract explainable paths with knowledge
embeddings for search explanations.
• We conducted both retrieval experiments and case studies to verify the effectiveness of the
proposed approach in product retrieval and explainable search.

The rest of this paper is organized as follows. In Section 2, we discuss the related work. Then we
introduce our approach and how to extract explanations for product search in Section 3 and 4. We
describe our experimental setup and results in Section 5 and 6. Finally, we conclude our work and
discuss future studies in Section 7.

2 RELATEDWORK
There are four lines of studies that are related to our work: product search, explainable systems,
knowledge embedding, and neural information retrieval.

2.1 Product Search
Product search refers to the problem of retrieving relevant products for customers to satisfy their
purchase intents. Previous studies on product search mainly focus on retrieving products based on
their structured aspects such as brand, category etc. For example, Lim et al. [35] propose a document
profile model to suggest semantic tags for each item based on their structural aspects, so that we
can retrieve products by matching queries with multiple product aspects simultaneously. Despite
their success, searching with structured data cannot satisfy the need of e-shopping users today as
their intents become more and more complicated. As shown by Duan et al. [17], writing structured
search queries (e.g., SQL) is usually considered hard and inconvenient for search users. In most
cases, queries submitted to product search engines are free-form text that is difficult to structure.
However, there often exists a large vocabulary gap between the descriptions of products and user
queries [6, 57]. Nurmi et al. [44] find that the words customers used to write their shopping lists
are often different from those sellers used to describe their products. Because of these problems,
IR researchers have proposed to construct semantic latent space for product search and conduct
matching between queries and products with their latent representations. For instance, Yu et
al. [65] construct a Latent Dirichlet Allocation model with product information and use it to diverse
e-commerce search results. Van Gysel et al. [57] introduce a Latent Semantic Embedding model that
maps and matches n-grams from queries and product descriptions into a hidden space. Ai et al. [3, 6]
constructed hierarchical and attentive embedding models that models the generative process of
user purchases and product reviews so that items can be ranked by their likelihood to be purchased
given the user and the query. Guo et al. [20] propose a TranSearch model that can directly match
text queries with product images. Bi et al. [10] use the embedding representations of clicked items
as context information to refine the ranking of retrieved products. Zhang et al. [73] and Bi et al. [9]
also extract product aspects from review data and build embedding networks that encodes both
items and their extracted aspects for conversational product search and recommendation. Besides
latent embedding techniques, there is a variety of studies [7, 28, 30] on extracting different text and

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:4 Q. Ai et al.

product features and feeding them into learning-to-rank models for the optimization of different
product retrieval objectives. Wu et al. [61] manually extract multiple statistic features from product
search logs and construct an ensemble tree model to predict user clicks. Wu et al. [62] developed a
special ranking loss function that optimizes product search engines by maximizing the revenue
generated from online transactions. While they are effective for product search on unstructured
free text, it is difficult to extend these methods with structured metadata and their relationships.
As far as we know, our work is the first study that jointly models structured and unstructured
multi-relational data in a single latent space for product search.

2.2 Explainable System
While there have been a variety of studies on the transparency of complicated systems, such as the
interpretability of a machine learning model [27, 31, 42] and the importance of different ranking
features [25, 58], the concept of explainability in this paper refers to a system’s ability on generating
human-readable explanations for its results, so that users are more likely to conduct certain
behavior (e.g., clicks, purchases, etc.) after reading them. Explainability is an important criterion to
measure the quality of a production system and has been extensively studied for social and product
recommendation. Strategies investigated for explainable systems include straightforward methods
based on structured information (e.g. social tags, “people also bought") and complicated methods
based on the generated topic aspects from text data [70]. For example, Sharma and Cosley [50]
propose to incorporate social network information for music recommendation. They generate
recommendation explanations based on the social relationship between users and items. Zhang et
al. [74] conducted product recommendation with extracted product features and user opinions from
phrase-level sentiment analysis to provide explanations for the recommendation results accordingly.
He et al. [23] applied an aspect extraction algorithm [76] on product reviews and modeled the
ternary relation between users, items and aspects to conduct explainable recommendation. Tintarev
andMasthoff [56] studied different factors that affect the quality of an explanation, and tried to build
an evaluation guideline for explainable recommendation. Despite the popularity of explainable
systems in recommendation, there are few studies on explaining search results for retrieval systems.
To the best of our knowledge, this paper is the first work that tries to tackle the problem of
explainable search for product retrieval. Also, different from previous studies that attempts to
create explanations directly with the recommendation models, we propose a post-hoc explanation
algorithm that leverages the knowledge representations built by the retrieval model to generate
search result explanations.

2.3 Knowledge Embedding
Knowledge embedding refers to a technique that models multi-relational data by constructing latent
representations for entities and relationships. The goal is to extract local or global connectivity
patterns between entities and use these patterns to understand and generalize the observed relation-
ships between a specific entity and others [12]. Inspired by the success of collaborative filtering in
product recommendation [49], most existing methods for multi-relational data are designed based
on matrix factorization or related approaches. For instance, Harshman and Lundy [21] introduce a
tensor factorization method for relation prediction. Singh and Gordon [52] propose a collective
matrix factorization method improve relationship predictive accuracy by exploiting information
from one relation while predicting another. Nickle et al. [43] propose a three-way model to conduct
collective learning on multi-relational data. Liang et al. [34] propose to jointly decomposes the
user-item interaction matrix and the item-item co-occurrence matrix with shared item embeddings.
There is also another line of studies trying to tackle the problem with non-parametric Bayesian
frameworks. Miller et al. [41] experiment with a non-parametric Bayesian model for link prediction

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:5

on social networks. Zhu et al. [77] further improve the framework by introducing a max-margin
technology. More recently, the advance of deep learning techniques has led many researchers to
explore the effectiveness of knowledge embedding with neural models. Sochet et al. [54] propose
a neural tensor network to infer unobserved knowledge base entries based on the embedding of
entities. Bordes et al. [13] propose to embed symbolic representations from knowledge bases into a
flexible continuous vector space with neural network architectures. Furthermore, Bordes et al. [12]
designed a translation-based embedding model (transE) to jointly model entities and relationships
within a single latent space. He et al. [22] propose a translation-based recommendation system to
predict users’ personalized sequential behaviors. Yang et al. [63] use the intermediate information
embedding built by existing recommendation systems to analyze user-item relationships and create
explanations. Zhang et al. [72] and Ai et al. [1] construct knowledge embedding graphs to generate
post-hoc explanations for recommendation results. In this work, we follow a similar paradigm with
previous work but focus specifically on adapting the existing knowledge embedding techniques for
explainable product search.

2.4 Neural Information Retrieval
Neural technology has attracted a lot of attention in the IR community in recent years. There
have been a variety of neural models proposed for different information retrieval tasks such as
ad-hoc retrieval [4], question answering [64], and recommendation [24]. For example, Huang et
al. [29] propose to embed tri-grams with neural network and generate rank lists according to the
cosine similarity between the aggregated tri-gram embeddings of queries and documents. Vulić
and Moens [59] conduct multi-lingual retrieval by representing queries and documents with their
averaged word embedding. Guo et al. [18] categorize existing neural retrieval models into two
groups – the representation-based models and the interaction-based models. Based on this idea, they
propose a deep relevance matching model that explicitly models the interaction patterns between
queries and relevant documents. There are also many studies on applying deep learning technology
on other complicated retrieval problems such as user modeling [14, 36] and context-aware relevance
modeling [2, 8]. Similar to Van Gysel et al. [57] and Ai et al. [6], we use neural networks, especially
the embedding-based neural retrieval framework, as the main technique for the development of
product retrieval models. However, as shown in Section 6, we also conduct a systematic comparison
of our proposed models and the state-of-the-art non-neural baselines.

3 MODEL DESCRIPTION
We now provide detailed descriptions of the Dynamic Relation Embedding Model (DREM) for
explainable product search. DREM jointly models different user/product knowledge, and creates
a knowledge graph with both static and dynamic relationships. In this section, we first provide
an overview of DREM and describe how to conduct product search with it. Then we discuss the
modeling of static and dynamic entity relationships in detail.

3.1 Overview
As discussed previously, explainable product search requires retrieval systems to be capable of
modeling and conducting logical inference with different product information. The relationships
between product-related entities usually are complicated and not injective. For example, an item
could belong to multiple categories and a category could include multiple items. One of the most
popular methods to model such multi-relational data is to construct a knowledge graph. In a
knowledge graph, each node represents an entity and each edge represents the existence of a
certain relationship between two entities. With this design, a knowledge graph satisfies the need of
logical inference because any relationship between an arbitrary pair of entities can be inferred by

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:6 Q. Ai et al.

Words

Items

Category

Users

Brand

⌦
Bob

Alice

Pixel 2

iPhone

AppleGoogle
Smart Phone

“high-resolution”

iPad

Lighting
cable

Tablet

Search&Purchase

Is_brand

Is_category

Also_bought

Also_viewed

Bought_together

“android”

Write

Fig. 1. An example of a knowledge graph created by DREM for product search.

the path between them. In this paper, we design DREM to construct a knowledge graph for product
data, and conduct explainable product search accordingly.
An example of a knowledge graph created by DREM is shown in Figure 1. In DREM, each user,

product and related entities are represented with vectors in a single latent space Ω. Two entities
are linked with an edge if there is a relationship between them. Each edge is labeled with a unique
symbol to denote the type of the relationship. In order to conduct product search with DREM, we
create a special edge named as Search&Purchase to model the relationship between users and items.
In a search session, a user will be Search&Purchase with an item if he or she purchases the item.
Thus, the problem of product search is to find items that are likely to have the Search&Purchase
relationship with the users.

Inspired by previous work on relationship prediction [12], we assume that all relationships can
be viewed as translations from one entity to another. Suppose that there exists a relationship r
between two entities x and y. Let x be the head entity and y be the tail entity, then we can directly
get y by translating x with r as

y = x + r

Therefore, any relationship in Ω can be treated as a linear transformation between entities and
represented with a latent vector that shares the same dimensionality with Ω. We refer to the latent
vectors of entities and their relationships in Ω as entity embeddings and relationship embeddings,
respectively.

The key of DREM is to effectively infer the embedding representations of entities and relationships.
Although a variety of methods has been proposed for learning knowledge base embeddings [12, 13],
none of them is applicable to DREM because the knowledge graph of DREM is not static. Usually,
user intent varies in different search sessions. The relationship between users and items cannot be
determined without the search context. Therefore, Search&Purchase is a dynamic relationship that

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:7

must be computed for product search on the fly. In the next sections, we describe how to jointly
model static and dynamic relationships in DREM.

3.2 Static Relation Modeling
Given the formulation of entities and relationships in the latent space, a generic solution to estimate
the embedding parameters is to use an EM-like algorithm [38]. For example, we can iteratively
minimize the empirical loss of (x , r) by computing r as the mean of y − x for all entity pairs with
r , and computing x as the mean of y − r for all entity pairs with both x and r . Such a method,
however, is not appropriate for search problems because it does not explicitly differentiate entities
with and without the relationship. A trivial solution that gives similar representations to all x and
y in Ω could still have a low empirical loss of (x , r) in practice. Based on this consideration, we
propose to learn DREM by maximizing the posterior probability of observed relationships and
minimizing the unobserved ones.
Let r be a static relationship between head entity x ∈ Xr and tail entity y ∈ Yr . Xr and Yr are

the sets of all possible entities that are of the same types with x and y, respectively. We refer to r
as static because it holds for x and y universally regardless of the search context. Inspired by the
study of embedding-based generative framework [5, 6, 39], we define the probability of observing
tail entity y given head entity x and relationship r as

P(y |x , r) =
exp

(
(x + r) · y

)∑
y′∈Yr exp

(
(x + r) · y′) (1)

where r ∈ Rα , x ∈ Rα and y ∈ Rα are the embedding representations of r , x and y with
α dimensions. We directly optimize DREM through maximizing the log likelihood of observed
(x , r ,y) ∈ S(x,r,y) triples for all static relationships as

L(S(x,r,y)) =
∑

(x,r,y)∈S(x,r ,y)

log P(y |x , r) (2)

where S(x,r,y) is the set of all observed static (x , r ,y) triples in the training data. As shown in
Equation (1), P(y |x , r) is a softmax function overy, which essentially assumes that

∑
y∈Yr P(y |x , r) =

1. Therefore, the maximization of L(S(x,r,y)) will minimize the probability of unobserved (x , r ,y).
Optimizing L(S(x,r,y)) directly, however, is prohibitive in practice. The computational complexity

of L(S(x,r,y)) is O(α |S(x,r,y) | |Yr |), and the size of S(x,r,y) and Yr can be large (e.g., there are millions
of items in Amazon product datasets). To efficiently train DREM on large-scale data, we adopt
a negative sampling strategy to approximate P(y |x , r) in L(S(x,r,y)). Negative sampling was first
proposed by Mikolov et al. [40] and has been widely applied in machine learning and information
retrieval tasks [4, 6, 32, 40, 71]. The idea of negative sampling is to approximate the denominator
of softmax functions by randomly sampling some negative samples from the corpus. Specifically,
we sample negative instance y ′ from Yr and compute log P(y |x , r) as

log P(y |x , r) = logσ
(
(x + r) · y

)
+ k · Ey′∼Pr [logσ

(
− (x + r) · y′)] (3)

where k is the number of negative instances, σ (x) = 1
1+e−x is the sigmoid function and Pr is a noise

distribution for y ∈ Yr .
In fact, as shown by previous studies [33], the optimization of L(S(x,r,y)) with the negative

sampling strategy is theoretically principled as it essentially guides the model to factorizing the
matrix of mutual information between relations and entities. Let ℓ(x , r ,y) be the expected loss on a
specific relation triple (x , r ,y) ∈ S(x,r,y) based on Equation (2) and Equation (3), then we have

ℓ(x , r ,y) = #(x , r ,y) · logσ (y · (x + r)) + k · #(x , r) · Pr (y) · logσ (−y · (x + r)) (4)

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:8 Q. Ai et al.

where #(x , r ,y) and #(x , r) are the numbers of observed relation triple (x , r ,y) and pair (x , r) in
S(x,r,y). If we derive the partial gradient of ℓ(x , r ,y) with respect to y · (x + r) and let it be zero, we
can easily get the following result:

y · (x + r) = log(#(x , r ,y)
#(x , r) ·

1
Pr (y)

) − logk (5)

In this work, we follow the common practice of defining Pr (y) as the normalized frequency of y
in all observed (x , r ,y) for r , so the right hand side of Equation (5) is actually a shifted version
of pointwise mutual information between (x , r) and y, and optimizing L(S(x,r,y)) with negative
sampling is similar to factorizing the mutual information matrix of (x , r ,y) ∈ S(x,r,y).

3.3 Dynamic Relation Modeling
In DREM, we create a relationship between users and products named as Search&Purchase. Due
to the nature of search tasks, this relationship is dynamic and cannot be determined without the
search context. For example, Canon cameras could be linked with users when the query is “digital
camera", but not when it is “mobile phone". Therefore, the embeddings of Search&Purchase are
session-dependent and have to be computed on the fly. For simplicity, we represent the context of
a product search session with the query submitted by the user. Note that other session information
such as previous queries and clicks [51] can also be incorporated into the framework if needed.

Let q be the query submitted by user u, {wq} be the words of the query, andv be the embedding
representation of the relationship Search&Purchase. Then we can computev with a function of q as

v = f (q) = f ({wq |wq ∈ q}) (6)

Previous studies have proposed several methods to model search intents with queries in latent
space [6, 57, 59, 66]. Ai et al. [6] have explored and compared three options including averaged
word vectors [59], non-linear projections [57], and recurrent neural networks (RNN) [45]. In their
experiments, the non-linear projection method usually produces the best and most robust results.
Suppose that the latent space of DREM has α dimensions, then the non-linear projection method
defines f (q) as

f (q) = tanh(W ·
∑
wq ∈q wq

|q | + b) (7)

where |q | is the length of q,wq is the embedding ofwq , andW ∈ Rα×α , b ∈ Rα are parameters to
be learned in the training process. In this work, we employ this non-linear projection function
to compute f (q). We tried other query embedding functions [45, 59] as well, but observed no
significant performance improvement in our retrieval experiments.
Similar to the modeling of static relationships, we use a softmax function to compute the

conditional probability of item i given user u with the dynamic relationship v as:

P(i |u,v) =
exp

(
(u +v) · i

)∑
i′∈I exp

(
(u +v) · i ′

) (8)

where I is the set of all items. Again, we employ the negative sampling strategy to approximate the
log likelihood of observed (u,v, i) triples as

log P(i |u,v) = logσ
(
(u +v) · i

)
+ k · Ei′∼Pi [logσ

(
− (u +v) · i ′

)
] (9)

where Pi is an uniform distribution for i ∈ I . Let D(u,v,i) be the set of observed (u,v, i) triples in
the training data, then the final optimization goal of DREM is to maximize the log likelihood of

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:9

D(u,v,i) and S(x,r,y) as

L =
∑

(u,v,i)∈D(u,v,i)

log P(i |u,v) +
∑

(x,r,y)∈S(x,r ,y)

log P(y |x , r)

=
∑

(u,v,i)∈D(u,v,i)

logσ
(
(u +v)·i

)
+ k ·Ei′∼Pi [logσ

(
−(u +v)·i ′

)
]

+
∑

(x,r,y)∈S(x,r ,y)

logσ
(
(x + r)·y

)
+ k ·Ey′∼Pr [logσ

(
−(x + r)·y′)]

=
∑

(u,q,i)∈D(u,q,i)

logσ
(
(u + f (q))·i

)
+ k ·Ei′∼Pi [logσ

(
−(u + f (q))·i ′

)
]

+
∑

(x,r,y)∈S(x,r ,y)

logσ
(
(x + r)·y

)
+ k ·Ey′∼Pr [logσ

(
−(x + r)·y′)]

(10)

where Search&Purchase (u,q, i) is the only dynamic relation in D(u,v,i). In DREM, u, i and embed-
dings for all other entities are jointly learned with the parametersW and b in Equation (7). To
conduct product search for a specific user u with query q, we simply rank products i ∈ I with their
estimated purchase probability P(i |u,v).

Empirically, the weight of static and dynamic relationships do not need to be equal in the model
optimization. To explicitly control their relative importance in the final entity representations, we
add a hyper-parameter λ in Equation (10) as

L =λ
∑

(u,q,i)∈D(u,q,i)

logσ
(
(u + f (q))·i

)
+ k ·Ei′∼Pi [logσ

(
−(u + f (q))·i ′

)
]

+ (1 − λ)
∑

(x,r,y)∈S(x,r ,y)

logσ
(
(x + r)·y

)
+ k ·Ey′∼Pr [logσ

(
−(x + r)·y′)] (11)

For simplicity, we assign equal weights for all relationships in most cases (λ = 0.5), but we discuss
the results of DREM with respect to different λ in Section 6.1.3. Also, in this paper, we assume that
all users and items have appeared in D(u,v,i) or S(x,r,y) at least once. We leave the exploration of
cold-start product search for future studies.

3.4 Time Complexity
The construction of DREM includes two phases: the offline training of entity/relation embeddings
and the online testing on unobserved user-query pairs. The time complexity in the training phase
mainly depends on the dimensionality of embedding vectors and the size of training data. For
each static relationship triple, the computation of local loss (Equation (3)) is O(kα), where k is
the number of negative samples, and α is the size of each embedding vector. For each dynamic
relationship triple, the computation of the relation embeddingv (Equation (7)) is O

(
(|q |+α)α

)
, and

the computation of local loss (Equation (9)) is O
(
(|q |+α+k)α

)
. Thus, the time complexity of training

DREM in one epoch is O
(
(Eq[|q |] + α + k)α |D(u,v,i) | + kα |S(x,r,y) |

)
, where Eq[|q |] is the average

number of words in each query, and |D(u,v,i) | and |S(x,r,y) | is the number of observed dynamic and
static relation triples, respectively. Because k and α are hyper-parameters, the computation cost of
DREM is linear to the size of the training data, which is considered to be efficient in general.
For online testing, each item must be assigned with a score to generate the ranked list for

a given user-query pair. As discussed in Section 3.3, we rank items according to the estimated
purchase probability P(i |u,v) in Equation (8). Because exp(x) is a monotone increasing function
and the denominator of the softmax function is equal for all items, we can directly rank items

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:10 Q. Ai et al.

“fashion”
Alice + Write Dress + Write

“warm”
Boots + Write
(Dress+Also_bought+Write)

Dress + Also_bought

Write Also_bought

Items

Words

Users

Alice

Dress

Boots

Fig. 2. An example explanation path from user Alice to item Dress through word “fashion” in DREM.

based on the dot product between i and u +v , which has O
(
(|q | + α)α

)
complexity. Because we

only need to compute v once per query, the computation cost for each testing user-query pair
is O

(
(|q | + α + |I |)α

)
, where |I | is the total number of items in the product collection. Since |I | is

much larger than |q | + α , the overall complexity is approximately O(|I |α). To further improve the
efficiency, one can reduce |I | by adding additional retrieval phases to filter out irrelevant documents
before applying DREM. We leave these for future studies.

4 EXPLANATION EXTRACTION
An important advantage of DREM is its support for explainable product search. With the knowledge
graph, we can directly infer entity relationships and provide explanations of why retrieved items
should be interesting to the users. In this section, we discuss how to construct explanation paths in
DREM and extract possible explanations for search results in product search.

4.1 Explanation Path
We formulate the problem of explaining why item i is retrieved for user u as finding an explanation
path between i and u in the knowledge graph. Figure 2 shows an example search session where we
retrieve a dress for user Alice. As shown in the figure, both the dress and Alice are linked with the
word “fashion” by the relationshipWrite in the knowledge graph. Based on this observation, we
can say that “we retrieve this dress for Alice because she often writes about fashion in her reviews
and fashion is frequently used to describe the dress by other users".
Formally, let Ωr

x and Ωr
y be the subspaces of Ω for the head and tail entities of relationship r ,

respectively. Then we define an explanation path from u to i as two lists of relationships {rku } (size
n) and {r ji } (sizem) that connects u and i:

u +
n∑

k=1
rku = e = i +

m∑
j=1

r ji (12)

where the head entity space of r 1u is same to the entity space of user u (Ωr 1u
x = Ωu), the head entity

space of r 1i is same to the entity space of item i (Ωr 1i
x = Ωi), the tail entity space of rnu is same to

the tail entity space of rmi (Ωrnu
y = Ω

rmi
y), and Ω

rk−1u
y = Ω

rku
x (k ∈ [2,n]), Ωr j−1i

y = Ω
r ji
x (j ∈ [2,m]). The

relationship rku and r ji can either be an identity relationship Φ (which projects an entity to itself)

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:11

or any relationship in the observed data S(x,r,y) and D(u,v,i). Here, e is an entity in Ω
rmi
y (Ωrnu

y) that
links u and i with {rku } and {r

j
i }. Given this explanation path, we can generate a search explanation

as “we retrieve item i for user u because u has relationships {rku } with e , and i is also linked with
e through {r ji }”. Therefore, the key of explainable product search is the finding of {rku } and {r

j
i }

given the user u and the retrieved item i .

4.2 Extraction Algorithm
Finding an explanation path, however, is difficult for an arbitrary (u, i) pair. Because we only
observe a limited number of relationship triples in the training data, the knowledge graph built
on product data usually is sparse [6, 69, 71] . In most cases, it is impossible to find two sets of
relationships {rku } and {r

j
i } that directly link the user u to the item i . To tackle this problem, we

propose a Soft Matching Algorithm (SMA) to extract explanation paths in DREM.
Let Ωe be a subspace of Ω that contains all entities with the type of e , and eu , ei be the projections

of u and i in Ωe given particular relation paths, then we define the soft matching score for u and i
through e ∈ Ωe as

S(e |u, i) = log
(
P(e |eu)P(e |ei)

)
= log P(e |eu) + log P(e |ei) (13)

where P(e |eu) and P(e |ei) are the probability of observing e given eu and ei . Intuitively, P(e |eu)
and P(e |ei) can be model with any functions that measure the similarity between e , eu , and ei . In
DREM, a straightforward method to compute P(e |eu) and P(e |ei) is to adopt the embedding-based
generative framework as described in Equation (1). This, however, ignores the length of the path
from u to i , and could potentially favor long and less meaningful search explanations in practice.
To explicitly encourage short explanation paths, we add a decay factor β and define P(e |eu) and
P(e |ei) as

P(e |eu)=
exp(eu ·e − βn)∑
e ′∈Ωe

exp(eu ·e ′)
, P(e |ei)=

exp(ei ·e − βm)∑
e ′∈Ωe

exp(ei ·e ′)
(14)

where β is a hyper-parameter that controls the effect of probability decay, and n,m are the length
of path pu = {rku }, pi = {r

j
i } that translate u, i to eu , ei . In this work, we set β as 1.

A summary of SMA for explanation extraction is shown in Algorithm 1. Let G = {Ωe , r } be
a graph where each node Ωe denotes a subspace of entity type e , and each edge r denotes a
relationship that connects two nodes with weight 1. First, given an arbitrary pair (u, i), we find
the shortest path from Ωu to Ωe and Ωi to Ωe as pu [e] and pi [e] with the Dijkstra algorithm [16].
Second, we compute their translations eu , ei in Ωe with pu [e], pi [e] and their soft matching scores
with e ∈ Ωe using Equation (13) and (14). Finally, we sort entity e from each Ωe ⊂ Ω with their
matching probabilities in descending order, and select the best path {pu [e], e,pi [e]} to generate
search explanations. We manually ignore the path that only contains Search&Purchase because it
does not provide any information for search explanation.

Because the time complexity of the Dijkstra algorithm [16] is O(|R | + |E | log |E |) where |E |
is the number of entities (or nodes) in the knowledge graph and |R | is the number of relations
(or edges) between the entities, the computational cost of SMA could be large if we want to
explore all possible paths in the explanation generation process. Thanks to the decay factor in
Equation (14), however, we could ignore the paths with more than certain number of hoops (e.g., 4 in
our experiments) and limit the Dijkstra algorithm [16] to a relatively small graph for efficiency. Also,
because search explanations can be extracted separately with the retrieval process, one could apply
an asynchronous web service that shows the search results first while waiting for the generation
of explanations to avoid hurting user experience. We leave the exploration of how to efficiently
generate search result explanations for future studies.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:12 Q. Ai et al.

ALGORITHM 1: Soft Matching Algorithm (SMA)
Input: u, i , β , G = {Ωe , r }
Output: path_set , score_set
Procedure Main()

1 Initialize pu ← {},pi ← {},path_set ← {}, score_set ← {}
2 for Ωe ∈ G do
3 pu [e] = Dijkstra(Ωu ,Ωe ,G)
4 pi [e] = Dijkstra(Ωi ,Ωe ,G)

end
5 for Ωe ∈ G do
6 for e ∈ Ωe do
7 score_set[e] = S(e |u, i) // Equation (13) and (14).
8 path_set[e] = {pu [e], e,pi [e]}.

end
end

9 return path_set , score_set
Function Dijkstra(Ωx ,Ωy ,G)

10 pxy ← the shortest path from Ωx to Ωy in G;
11 return pxy ;

5 EXPERIMENTAL SETUP
In this section, we describe the details of our experiment settings. We conduct experiments with
Amazon product datasets and compare our method with state-of-the-art product search systems
including both text-based models [46] and latent space models [6, 57].

5.1 Datasets
The Amazon product dataset3 is a well-known benchmark for product search and recommenda-
tion [6, 57, 71]. It contains information for millions of customers, products and associated metadata
including descriptions, reviews, brands, and categories. In our experiments, we used four subsets
of the Amazon product data, which are Electronics, Kinde Store, CDs & Vinyl, and Cell Phones &
Accessories. We use the 5-core data provided by McAuley et al. [37] where each user and product
has at least 5 purchases and 5 reviews.

Query Extraction. To the best of our knowledge, no large-scale query log is available on the
Amazon dataset. A common paradigm used by previous studies is to extract queries from the
category information of each product. Similar to Van Gysel et al. [57], we adopt a two-step process
to extract search queries for each user. First, given an arbitrary user and his purchase history, we
extract the hierarchical category information of each item with more than two levels. Second, we
remove duplicated words and stopwords from a single hierarchy of categories and concatenate
the terms to form a topic string. The topic string is then treated as a query submitted by the user
which leads to a purchase of the corresponding item. Because users often search for “a producer’s
name, a brand or a set of terms which describe the category of the product" in e-shopping [48],
queries extracted with this paradigm are usually sufficient to simulate real-world product search
queries [6, 57].

3http://jmcauley.ucsd.edu/data/amazon/

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

http://jmcauley.ucsd.edu/data/amazon/

Explainable Product Search with a Dynamic Relation Embedding Model 25:13

Table 1. Statistics for the 5-core datasets for Electronics, Kindle Store, CDs & Vinyl and Cell Phones &
Accessories [37].

Electronics Kindle Store CDs & Vinyl Cell Phones & Accessories

Corpus
Vocabulary size 142,922 95,729 202,959 22,493
Number of reviews 1,689,188 982,618 1,097,591 194,439
Number of users 192,403 68,223 75,258 27,879
Number of items 63,001 61,934 64,443 10,429
Number of brands 3,525 1 1,414 955
Number of categories 983 2,523 770 206

Relationships
Write per user 777.23±1748.6 1174.23±3682.39 1846.88±7667.51 500.01±979.78
Write per item 2373.62±5860.33 1293.47±1916.72 2156.83±4024.15 1336.64±2698.30
Also_bought per item 36.70±38.56 82.56±29.92 57.28±39.22 56.53±35.82
Also_viewed per item 4.36±9.44 0.16±1.66 0.27±1.86 1.24±4.29
Bought_together per item 0.59±0.72 0.00±0.04 0.68±0.80 0.81±0.77
Is_brand per item 0.47±0.50 0.00±0.00 0.21±0.41 0.52±0.50
Is_category per item 4.39±0.95 9.85±2.61 7.25±3.13 3.49±1.08
Train/Test
Number of reviews 1,275,432/413,756 720,006/262,612 804,090/293,501 150,048/44,391
Number of queries 904/85 3313/1290 534/160 134/31
Number of user-query pairs 1,204,928/5,505 1,490,349/232,668 1,287,214/45,490 114,177/665
Relevant items per pair 1.12±0.48/1.01±0.09 1.87±3.30/1.48±1.94 2.57±6.59/1.30±1.19 1.52±1.13/1.00±0.05

Entities and Relationships. In this work, we consider five types of entities and their rela-
tionships in product search. The entities we used are user, item, word, brand and category. We
ignore words that have appeared for less than 5 times in the corresponding corpus. Also, we split
hierarchical category information of each product into multiple distinct categories and replace
each category as a unique symbol in the training data. For example, a two-level category hierarchy
Camera, Photo→ Digital Camera Lences will be considered as two separate entities and anonymized
as foo1 and foo2. An item that belongs to this category hierarchy will be connected to both foo1
and foo2.
The relationships used in our experiments include
• Write : Wordw was written by user u in their reviews (u → w) or written for item i in the
item’s reviews (i → w).
• Also_bought: Users who purchased item i1 previously also purchased item i2 (i1 → i2).
• Also_viewed: Users who viewed item i1 previously also viewed item i2 (i1 → i2).
• Bought_together : Item i1 was purchased with item i2 in a single transaction (i1 → i2).
• Is_brand: Item i belongs to brand b (i → b).
• Is_category: Item i belongs to category c (i → c).

The statistics of entities and relationships in the Amazon product datasets are summarized in
Table 1. Similar to previous studies [6, 69, 71], the observed relation triples in our data are highly
sparse.

5.2 Baselines
To demonstrate the effectiveness of the DREM as a product search model, we incorporate five
baselines in our experiments: the language modeling approach for IR [46], a probabilistic retrieval
model (BM25) [47], a ensemble learning-to-rank model (LambdaMART) [61], the Latent Semantic
Entity model [57], and the Hierarchical Embedding Model [6].

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:14 Q. Ai et al.

5.2.1 QL. : The language modeling approach for IR, which is often referred to as the Query
Likelihood model (QL), is first proposed by Ponte and Croft [46]. It is a unigram model that ranks
documents based on the posterior probability of observing the query words given a document’s
language model estimated with maximum likelihood estimation. In this paper, we concatenate
the title, description and reviews of an item in the training data to form a document for it, and
compute its ranking scores with respect to a query q based on the language modeling approach
with Dirichlet smoothing [67] as:

log(P(q |d)) =
∑
w ∈q

#(w,q) log
#(w,d) + µ #(w,C)

|C |
|d | + µ

where #(w,q), #(w,d), and #(w,C) are the frequencies of wordw in the query q, document d , and
the corpus C , respectively; |d | and |C | are the lengths of d and C; and µ is a hyper-parameter that
controls the effect of Dirichlet smoothing.

5.2.2 BM25. Built on the bag-of-words representations of queries and documents, BM25 is a
classic probabilistic retrieval model proposed by Robertson and Walker. [47]. It assumes a 2-Poisson
distribution for observed words in the corpus, and ranks documents with a statistical scoring
function as

BM25(q,d) =
∑
w ∈q

IDF (w,C) · #(w,q) · (k1 + 1)
#(w,q) + k1 · (1 − b + b · |d |

avд(|d |))
where IDF (w,C) is the inverse document frequency of word w in the corpus C , avд(|d |) is the
average document length, and k1 and b are two hyper-parameters for the ranking function. Similar
to QL, we concatenate the title, description, and reviews in the training data to form a document
for each product.

5.2.3 LambdaMART. : As a representative study on applying learning-to-rank techniques to
product search, Wu et al. [61] construct a LambdaMART model for product search by manually
extracting a variety of ranking features for each item with their text data and user behavior logs.
In this paper, we construct a learning-to-rank baseline with LambdaMART following the same
pipeline used by Wu et al. [61]. Due to the limits of Amazon review datasets, we cannot compute
certain features such as session features and time features, but we manage to reproduce most global
statistic features and query-item features proposed by Wu et al. [61]. Detailed feature descriptions
are listed in Table 2.

5.2.4 LSE. : The Latent Semantic Entity model (LSE) is the first latent space model proposed for
product search by Van Gysel et al. [57]. It encodes queries and n-grams with a non-linear projection
function similar to Equation (7). It also learns the embedding representations of items bymaximizing
the similarity between an item and the encoded n-grams extracted from the corresponding item
reviews. Specifically, for each n-gram s in the product review of an item i , the similarity between s
and i in LSE is computed as

P(i |s) = σ (i · f (s))
where i is the representation of i in the latent space, f (x) is the non-linear projection function in
Equation (7), and σ (x) is a sigmoid function σ (x) = 1

1+e−x . Products are retrieved based on their
similarity with the query in the latent space.

5.2.5 HEM. : The Hierarchical Embedding Model (HEM) proposed by Ai et al. [6] is a state-of-
the-art retrieval model for personalized product search. It is constructed based on a generative
framework which assumes that reviews are generated by the language model of users/items and
purchases are generated by the joint model of users and queries. Similar to DREM, HEM learns

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:15

Table 2. A summary of the ranking features extracted for constructing a learning-to-rank model on the
Amazon product search dataset.

Global Statistic Features
Length The length of product title, descriptions, reviews.
Purchase The total number of purchases on each item in the training set.
Distinct Purchase The distinct number of users who have purchased a certain item in the

training set.
Query-item Features

TF The average term frequency of query terms in product title, descriptions,
reviews, and the whole document (title+description+reviews).

IDF The average inverse document frequency of query terms in product title, de-
scriptions, reviews, and the whole document (title+description+reviews).

TF-IDF The average value of t f · id f of query terms in product title, descriptions,
reviews, and the whole document (title+description+reviews).

BM25 The scores of BM25 [47] on product title, descriptions, reviews, and the
whole document (title+description+reviews).

LMABS The scores of Language Model (LM) [46] with absolute discount-
ing [68] on product titles, descriptions, reviews, and the whole document
(title+description+reviews).

LMDIR (QL) The scores of LM with Dirichlet smoothing [68] (which is same with
QL) on product titles, descriptions, reviews, and the whole document
(title+description+reviews).

LMJM The scores of LM with Jelinek-Mercer [68] on product titles, descriptions,
reviews, and the whole document (title+description+reviews).

the embeddings of users, items, and queries by maximizing the likelihood of observed review data,
and ranks items based on their posterior probability given the user and the query. However, HEM
only considers the information of users, items, and product reviews, and does not differentiate the
relations between different types of entities in the optimization process.

5.3 Evaluation Methodology
To train and test different product search models, we partitioned each dataset into a training set
and a test set. Following the methodology used by Ai et al. [6], we randomly hide 30% of the user
reviews from the training data and use their corresponding purchase information as the ground
truth for testing. We randomly select 30% queries as test queries, and if all queries for an item were
selected as test queries, we randomly pick one from the test query set and put it back to the training
data. After that, we match the queries with user-item pairs in the test set to construct the final test
data. An item is relevant to a user-query pair if and only if it is relevant to the query and has been
purchased by the user. In this setting, all query-user-item triples in the test set are unobserved in
the training process. More statistics about our data partitions are shown in Table 1.

To evaluate retrieval performance in our experiments, we adopt three metrics, which include the
mean average precision (MAP), the mean reciprocal rank (MRR) and the normalized discounted
cumulative gain (NDCG). For each user-query pair, we only retrieve 100 items to generate the rank
list. Both MAP and MRR are computed based on the whole rank list, while NDCG is computed

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:16 Q. Ai et al.

only based on the top 10 items. Significant differences are measured by the Fisher randomization
test [53] with p < 0.01.

5.4 Implementation Details
For QL and BM25, we used galago4 to index and retrieve items. For LambdaMART, we manually
extract features from raw data and build the model with an open-source learning-to-rank package
ranklib5. And for LSE and HEM, we used the implementation provided by Ai et al. [6]6. QL,
BM25, LSE, and HEM conduct product search based on the text information of items, which is the
same as DREM built with theWrite relationship only. To further analyze the usefulness of other
relationships, we tested DREM built on Write together with other relationships. We refer to DREM
with Also_bought, Also_viewed, Bought_together, Is_brand and Is_category as DREMAB , DREMAV ,
DREMBT , DREMBnd and DREMCat , respectively. DREM withWrite only and the DREM with all
relationships are referred to as DREMNoMeta and DREMAll .
The latent space models (LSE, HEM, and DREM) are trained with stochastic gradient descent

with batch size 64. We manually clip the norm of batch gradients with 5 to avoid unstable parameter
updates. We train each model with 20 epochs and gradually decrease the learning rate from 0.5 to 0
in the training process. For baselines, we tuned the Dirichlet smoothing parameter µ of QL from
1000 to 3000, and the BM25 scoring parameter k1 and b from 0.5 to 4 and 0.25 to 1, respectively. The
number of trees and leaf nodes in LambdaMART are set as 1000 and 10, respectively, and we tuned
the personalization weight η of HEM from 0 to 1. We also tuned the embedding size α for LSE,
HEM, and DREM from 100 to 500. In order to better illustrate the importance of different product
relationships in different datasets, we fix the dynamic relation weight λ in Equation (11) as 0.5 for
most experiments, but we will discuss its effect in Section 6.1.3. We will release our data and code
upon the publication of this manuscript.

6 RESULTS AND DISCUSSIONS
In this section, we report the results of our experiments. We first present and discuss the re-
trieval performance of DREM and baseline models. Then we provide a case study to analyze the
effectiveness of DREM for explainable product search.

6.1 Retrieval Performance
Table 3 summarizes the results of our product search experiments on the four subsets of Amazon
product data. We group the models into three groups – the baseline models (QL, BM25, Lamb-
daMART, LSE, HEM); DREM withWrite and another relationship among Also_bought, Also_viewed,
Bought_together, Is_brand and Is_category (DREMAB , DREMAV , DREMBT , DREMBnd , DREMCat);
and the DREM with Write only or with all the relationships (DREMNoMeta , DREMAll)

6.1.1 Overall Results. As we can see from the table, the relative performance of bag-of-words
models (QL, BM25) and latent space models without personalization (LSE) varies across different
datasets. While QL and BM25 have comparable performance on all datasets, LSE outperformed
them on CDs & Vinyl but performed worse than them on Electronics and Kindle Store. As shown by
previous studies [18, 19], the main difference between unigram models and latent space models is
their ability to conduct semantic matching. The latter performs well when vocabulary mismatch
between queries and documents is severe, while the former works better in other cases. Our results
indicate that the severity of vocabulary mismatch is low on Electronics or Kindle Store, but high on

4https://sourceforge.net/p/lemur/wiki/Galago/
5https://sourceforge.net/p/lemur/wiki/RankLib/
6https://github.com/QingyaoAi/Hierarchical-Embedding-Model-for-Personalized-Product-Search

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

https://sourceforge.net/p/lemur/wiki/Galago/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/QingyaoAi/Hierarchical-Embedding-Model-for-Personalized-Product-Search

Explainable Product Search with a Dynamic Relation Embedding Model 25:17

Table 3. Comparison of baselines and DREM on the Amazon product search datasets. ∗, + and † denote
significant differences to all baselines (QL, BM25, LambdaMART, LSE, and HEM), DREMNoMeta , and all tested
models, respectively, in Fisher randomization test [53] with p ≤ 0.01. The best performance is highlighted in
boldface.

Electronics Kindle Store
Model MAP MRR NDCG MAP MRR NDCG
QL 0.289 0.289 0.316 0.011 0.012 0.013

BM25 0.283 0.280 0.304 0.021 0.013 0.014
LambdaMART 0.180 0.181 0.237 0.028 0.029 0.018

LSE 0.233 0.234 0.239 0.006 0.007 0.007
HEM 0.308∗+ 0.309∗+ 0.329∗+ 0.029 0.035∗ 0.033∗

DREMNoMeta 0.291 0.291 0.319 0.036∗ 0.044∗ 0.042∗
DREMAB 0.283 0.283 0.312 0.043∗+ 0.052∗+ 0.050∗+
DREMAV 0.318∗+ 0.319∗+ 0.349∗+ 0.035∗ 0.043∗ 0.041∗
DREMBT 0.320∗+ 0.321∗+ 0.346∗+ 0.037∗ 0.045∗ 0.042∗
DREMBnd 0.314∗+ 0.315∗+ 0.340∗+ 0.037∗ 0.044∗ 0.043∗
DREMCat 0.299+ 0.300+ 0.360∗+ 0.048∗+ 0.056∗+ 0.056∗+

DREMAll 0.366∗+† 0.367∗+† 0.408∗+† 0.057∗+† 0.067∗+† 0.067∗+†

CDs & Vinyl Cell Phones & Accessories
Model MAP MRR NDCG MAP MRR NDCG
QL 0.009 0.011 0.010 0.081 0.081 0.092

BM25 0.027 0.018 0.016 0.083 0.081 0.115
LambdaMART 0.054∗+ 0.057∗+ 0.051∗+ 0.121 0.121 0.148

LSE 0.018 0.022 0.020 0.098 0.098 0.084
HEM 0.034 0.040 0.040 0.124∗+ 0.124∗+ 0.153∗+

DREMNoMeta 0.034 0.041 0.040 0.107 0.107 0.127
DREMAB 0.046+ 0.054+ 0.054+ 0.098 0.098 0.120
DREMAV 0.034 0.041 0.040 0.095 0.096 0.096
DREMBT 0.037+ 0.044+ 0.042+ 0.089 0.089 0.096
DREMBnd 0.035 0.041 0.040 0.134∗+ 0.134∗+ 0.152+
DREMCat 0.059∗+ 0.068∗+ 0.070∗+ 0.193∗+ 0.193∗+ 0.229∗+

DREMAll 0.074∗+† 0.084∗+† 0.086∗+† 0.249∗+† 0.249∗+† 0.282∗+†

CDs & Vinyl. By incorporating personalization, HEM consistently outperformed QL and LSE on
all the datasets tested in our experiments. Because purchasing is a highly personalized behavior,
incorporating user information can help HEM better understand the search intents of each user and
retrieve items that suits different individuals. The results for LambdaMART are more complicated.
While it achieved superior performance on CDs & Vinyl, it also produced bad results on Electronics.
Further analysis on ranking features are needed in order to understand why learning-to-rank
models perform differently on different product categories, which is beyond the scope of this paper
and we will leave it for future studies.
After incorporating other product knowledge information discussed in Section 5.1, DREMAll

significantly outperformed all baseline models on all datasets. Its obtained 19%, 97%, 118% and 101%
improvements with respect to MAP over HEM on Electronics, Kinde Store, CDs & Vinyl and Cell

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:18 Q. Ai et al.

Phones & Accessories, respectively. This demonstrate the usefulness of multi-relational product data
and the effectiveness of DREM as a product retrieval model.
In Table 3, the performance of HEM and DREMNoMeta is competitive in most cases. HEM and

DREMNoMeta are both constructed based on users, items and their associated reviews. The only
difference between them is the method they used to model entity relationships. HEM directly uses
user embeddings to predict both review words and purchased items, while DREMNoMeta uses
relationship embeddings to project users into the space of words and items separately. According
to our results, the two paradigms are equally effective for product search and neither of them is
consistently better than the other. However, DREM is more powerful in terms of extendability
because it creates a knowledge graph that can integrate different kinds of product information for
retrieval tasks.

6.1.2 Usefulness of Different Relationships. In our experiments, we analyze the importance of
different relationships by training DREMs with each of the relationships separately. As shown in
Table 3, the importance of relationships varies considerably on different datasets. On Electronics,
nearly all types of product knowledge brought benefits to DREM except DREMAB , which is built on
theWrite andAlso_bought relationships. As shown by Ai et al. [6], the importance of personalization
for product search is less significant on Electronics than on other datasets. Two co-purchased items
in Electronics are less likely to satisfy the same type of user preference or search intent. For example,
users may not intend to buy a keyboard when they search for “mouse", despite that they often
buy keyboards before or after the purchase of a mouse. Therefore, the relationship Also_brought
introduces less information but more noise for DREM on Electronics.

In contrast to Electronics, the incorporation of Also_bought significantly improved the retrieval
performance of DREM on Kinde Store and CDs & Vinyl. DREMAB outperformed DREMNoMeta by
19% and 35% with respect to MAP on Kinde Store and CDs & Vinyl, respectively. This indicates
that co-purchased items often fit the same need of users in Kinde Store and CDs & Vinyl. This is
reasonable because Kinde Store and CDs & Vinyl consist of books and music, on which people
usually have consistent tastes. If a CD is relevant to a query, then other frequently co-purchased
CDs are also likely to be relevant.
As shown in Table 3, we observed that Is_brand is more useful for product search on Cell

Phones & Accessories than on other datasets. On Cell Phones & Accessories, DREMBnd significantly
outperformed DREMNoMeta with a 25% improvement on MAP. According to a recent report7, most
people have high loyalty to the manufacturer of their phones and 56% of people who currently
possess a smartphone used to own a phone from the same manufacturer. Thus, it is not surprising
to see that Is_brand exhibits high correlations with user purchases in Cell Phones & Accessories.

Although we have split each hierarchical category into distinct categories and anonymized them
in model construction, there might be a concern that incorporating category entities in DREM
may hurt the fairness of the evaluation since the test queries are generated based on the hierarchy
of categories. In our experiment, we indeed observed that DREM with Is_category (DREMCat)
performed better than the DREM with other relationships on Kinde Store, CDs & Vinyl and Cell
Phones & Accessories. However, it’s worth noticing that DREMswithout Is_category also significantly
outperformed the state-of-the-art baseline methods. In Table 3, DREMBT on Electronics, DREMAB
on Kinde Store, DREMAB on CDs & Vinyl and DREMBnd on Cell Phones & Accessories obtained 4%,
48%, 35% and 8% improvements on MAP over the best baseline (HEM), respectively. Again, these
results indicate the effectiveness of DREM and the usefulness of multi-relational product data for
product search.

7https://www.statista.com/statistics/716086/smartphone-brand-loyalty-in-us/

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

https://www.statista.com/statistics/716086/smartphone-brand-loyalty-in-us/

Explainable Product Search with a Dynamic Relation Embedding Model 25:19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dynamic Relation Weight λ

0.20

0.25

0.30

0.35

M
A

P

(a) Electronics

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dynamic Relation Weight λ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
A

P

(b) Kindle Store

0.0 0.2 0.4 0.6 0.8 1.0
Dynamic Relation Weight λ

0.00

0.02

0.04

0.06

0.08

M
A

P

DREM

(c) CDs & Vinyl

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dynamic Relation Weight λ

0.05

0.10

0.15

0.20

0.25

M
A

P

(d) Cell Phones & Accessories

Fig. 3. The performance of DREM with different dynamic relation weight λ.

6.1.3 Parameter Sensitivity. There are two hyper-parameters used in the training of DREM – the
dynamic relation weight λ in Equation (11) and the embedding size α . To analyze the parameter
sensitivity of DREM, we plot the MAP of DREMAll with different parameter settings in Figure 3
and Figure 4.
Figure 3 shows the performance of DREMAll on different product categories with respect to

the dynamic relation weight λ ranged from 0 to 1. When λ = 0, DREMAll learns nothing on the
dynamic relationships, and search queries would have no influence on the final search results,
which means that the model will be degraded from a search model to recommendation model.
As expected, the retrieval performance of DREMAll with λ = 0 is significantly worse than other
models. When λ = 1, DREMAll does not incorporate any information from static relationships.
While it performs reasonable well compared to the text-based baseline models such as QL and
LSE, it produces inferior performance compared to DREMAll with smaller λ. As shown in Figure 3,
DREMAll usually achieves the best performance when λ is larger than 0.1 but less than 0.7. This
demonstrates that both dynamic and static relationship information are valuable for product search.

Figure 4 plots the retrieval performance of both baseline methods (LSE and HEM) and DREMAll .
As we can see, the size of embeddings has minor effect on the performance of DREM. DREMAll

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:20 Q. Ai et al.

100 200 300 400 500
Embedding size α

0.20

0.25

0.30

0.35

M
A

P

(a) Electronics

100 200 300 400 500
Embedding size α

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
A

P

(b) Kindle Store

100 200 300 400 500
Embedding size α

0.00

0.02

0.04

0.06

0.08

M
A

P

DREM

HEM

LSE

(c) CDs & Vinyl

100 200 300 400 500
Embedding size α

0.05

0.10

0.15

0.20

0.25
M

A
P

(d) Cell Phones & Accessories

Fig. 4. The performance of DREM and baselines with different embedding size α . The red solid line with
triangles represents the numbers for DREMAll ; the green and blue dashed lines with circles and squares are
results for LSE and HEM, respectively.

obtained similar results with different α and outperformed LSE and HEM with large margins.
Therefore, in practice, we advise to start with a small α and increasing it when necessary.

6.2 Case Study
To show the effectiveness of DREM as an explainable product search model, we show an example
knowledge graph created by DREM in the experiments and conduct a laboratory study to analyze
the performance of its search result explanations.

6.2.1 Example Knowledge Graph and Result Explanation Generation. Figure 5 depicts the knowledge
graph created by DREMAll on Cell Phones & Accessories for query “sports outdoors accessory elec-
tronics gadget fitness track". Here we show the nodes and translations of user “A17V9XL4CWTQ6G",
item “B00GOGV314" (Up 24 Activity Tracker by Jawbone), and item “B00BKEQBI0" (Pebble Smart-
watch by Pebble Technology) in different entity subspace. Each edge in the graph represents
a particular type of relationship. Entities are connected with their translations through edges
with solid arrows. For clarity, we hide the item-item relationships (Also_bought, Also_viewed and

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:21

Up 24 Activity Tracker
by Jawbone

Pebble Smartwatch
by Pebble Technology

Smart	Watches	&	Accessories -0.84
Jewelry:	Interna-onal	Shipping	Available -1.07
Clothing,	Shoes	&	Jewelry -1.17
Ac7vity,	Health	&	Wellness	Monitors -3.38
Heart	Rate	Monitors -3.48
Health	&	Personal	Care -3.51

B00FH9I0EM -3.13
B00GGGQHPO -3.54
B009WE656I -3.64
B00J5HDEPC -3.68
B00BKEQBI0 -3.85
B00GOGV314 -3.85

portable -4.15
handy -4.22
outlet -4.22
compact -4.22
capacity -4.30
output -4.30

Pebble	Technology	Corp -1.55
Phone	Halo -2.08
ZTE -2.12
Coolstream -2.16
Logitech -2.22
General -2.61

bass -1.85
powerpak -2.00
astro -2.12
earbud -2.18
armband -2.39
capacity -2.50

Sports	&	Outdoors -0.94
Cell	Phone	Accessories -1.26
Clothing,	Shoes	&	Jewelry -1.46
Audio	Adapters -1.54
Jewelry:	Interna-onal	Shipping	Available -1.60
Health	&	Personal	Care -2.23

sleep -3.55
jawbone -3.62
app -3.72
fitbit -3.72
flex -3.77
waterproof -3.77

Jawbone -1.15
Anker -4.30
zBoost -4.40
Neptor -4.70
BELKIN -5.00
Pebble	Technology	Corp -5.00

Fitness	Trackers -1.05
Medical	Supplies	&	Equipment -1.10
Ac7vity,	Health	&	Wellness	Monitors -1.11
Heart	Rate	Monitors -1.15
Health	&	Personal	Care -1.20
Sports	&	Outdoors -1.39

pebble -2.73
watch -2.75
wrist -3.54
smartwatch -3.62
app -3.70
no7fica7on -3.89

Pebble	Technology	Corp -0.81
Displex -3.77
Sony -4.40
Anker -4.52
Hercules -4.70
Wireless	Extenders -4.70

B00BKEQBI0

B00GOGV314

A17V9XL4CWTQ6G

Search&Purchase

Is_brand

Is_category

Query: “sports outdoors accessory electronics gadget fitness track”

Words

Users Items

Brand

Category

Write

Fig. 5. The knowledge graph created by DREMAll on Cell Phones & Accessories for query “sports outdoors
accessory electronics gadget fitness track". Six top retrieved entities and the corresponding probabilities
(Equation (14)) are shown for each node.

Bought_together) in the graph. On each node, we show a list of six results selected from the top
retrieved entities with soft matching (Equation (13) and (14)). Entities shared by multiple lists in
the same subspace are highlighted with colors. We use u, i j , ip to denote the node of the user,
Up 24 Activity Tracker and Pebble Smartwatch, and use ®SP , ®B, ®C to denote the relationships of
Search&Purchase, Is_brand and Is_category.

As shown in Figure 5, given the Soft Matching Algorithm, we can find the following explanation
paths from user “A17V9XL4CWTQ6G" to Pebble Smartwatch “B00BKEQBI0":
• u+ ®SP+ ®B→Pebble Technology←ip+ ®B with S(e |u, i) = −2.36.
• u+ ®SP+ ®C→Clothing, Shoes, Jewelry←ip+ ®C with S(e |u, i) = −2.63.
• u+ ®SP+ ®C→Jewelry:International Ship←ip+ ®C with S(e |u, i) = −2.67.
• u+ ®SP+ ®C→Health&Personal Care←ip+ ®C with S(e |u, i) = −5.84.

With simple templates, we can create four explanations for why the user should be interested in
Pebble Smartwatch as
• “Based on your profile and query, you may like to see somethings by Pebble Technology, and
Pebble Smartwatch is a top product of this brand." (S(e |u, i) = −2.36)
• “Based on your profile and query, you may like to see somethings in Clothing, Shoes, Jewelry,
and Pebble Smartwatch is a top product in this category." (S(e |u, i) = −2.63)

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:22 Q. Ai et al.

• “Based on your profile and query, you may like to see somethings in Jewelry:International
Ship, and Pebble Smartwatch by Pebble Technology is a top product in this category." (S(e |u, i) =
−2.67)
• “Based on your profile and query, you may like to see somethings in Health&Personal Care,
and Pebble Smartwatch is a top product in this category." (S(e |u, i) = −5.84)

Similarly, for Up 24 Activity Tracker “B00GOGV314", we have the following explanation paths
that connect it to the search user “A17V9XL4CWTQ6G":

• u+ ®SP+ ®C→Sports&Outdoors←i j+ ®C with S(e |u, i) = −2.33:
“Based on your profile and query, you may like to see somethings in Sports&Outdoors, and Up
24 Activity Tracker is a top product in this category."
• u+ ®SP+ ®C→Health&Personal Care←i j+ ®C with S(e |u, i) = −3.43:
“Based on your profile and query, you may like to see somethings in Health&Personal Care,
and Up 24 Activity Tracker is a top product in this category."
• u+ ®SP+ ®B→Pebble Technology←i j+ ®B with S(e |u, i) = −5.81
“Based on your profile and query, you may like to see somethings by Pebble Technology, which
is a top brand related to Up 24 Activity Tracker by Jawbone."

Givenmore information on the query and corresponding products, we find that most explanations
above are actually reasonable. According to the query, the user is looking for electronic fitness
trackers. Pebble Technology is a company famous for its fitness tracking devices, while Pebble
Smartwatch is one of its bestsellers. Also, when the user is searching for fitness trackers within
the domain of Cell Phones & Accessories, it is likely that he or she is interested in wearable devices
with health tracking functions. Pebble Smartwatch is a wearable device well-known for its multi-
functionality and stylish design, while Up 24 Activity Tracker is one of its competitors that focuses
on health tracking functions and has a cheaper price. It is reasonable to recommend the former based
on its popularity in Clothing, Shoes, Jewelry, while recommend the latter based on its relationship
with Health&Personal Care. In fact, the query word “fitness" is more related to Health&Personal
Care, and the user purchased Up 24 Activity Tracker in the end.

6.2.2 Laboratory User Study. Due to the limit of our experimental environment, we cannot access
the original users of the Amazon product dataset to evaluate DREM in terms of explanation
generation. Instead, we conduct a laboratory study and recruit graduate students to analyze the
performance of result explanations created by DREM. For each of our experimental datasets (i.e.,
Electronics, Kindle Store, CDs & Vinyl and Cell Phones & Accessories), we randomly sampled 50 test
search sessions and the top three explanations generated by the DREMAll for the first item retrieved
in each session. Because our annotators are not the original users who conducted the search,
it is neither reasonable nor reliable to let them judge whether the sampled result explanations
could satisfy the personal need of each user. Thus, in our experiments, we focus on evaluating
whether the generated result explanations can (1) provide more information for the users and (2)
attract people to purchase the item in general. Specifically, we follow the methodology proposed
by Wang et al. [60] and create three questions for the annotations of search result explanations in
our laboratory study:

• Q1: Item Information. After reading the search result explanations, have you learned more
about the item we retrieved?
• Q2: Query Information. After reading the search result explanations, have you learned more
about the query and what the relevant items may look like?

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:23

Table 4. The performance of search result explanations generated by DREM in the laboratory user study.
Q1, Q2, and Q3 refer to the questions of whether the explantion provide more information about the item,
whether the explanation provide more information about the query, and whether the explanation is useful
in persuading the user to purchase the item. Each question are answered with three-level annotations: 0
(irrelevant), 1 (fair), and 2 (excellent). For each question and each dataset, we show both the mean and the
variance of their evaluation scores.

Dataset Q1: Item information Q2: Query information Q3: Usefulness
Electronics 1.08±0.58 0.65±0.68 0.48±0.69
Kindle Store 0.88±0.60 0.26±0.46 0.40±0.54
CDs & Vinyl 0.93±0.55 0.42±0.53 0.44±0.57

Cell Phones & Accessories 0.85±0.62 0.27±0.47 0.19±0.46

• Q3: Usefulness. Overall, do you think people would be more likely to purchase the item after
they read the search result explanations?

Annotators are asked to do a 3-level judgments for each question: 0 for irrelevant, 1 for fair, and 2
for excellent. In total, we have 200 annotated sessions in which each session has been judged by
at least two graduate students with master or Ph.D. degrees in Computer Science. To the best of
our knowledge, DREM is the first model that can generate search result explanations for product
search, so we only conduct the laboratory study on DREM in this paper.

Table 4 shows the overall results of our laboratory study on DREM. As we can see, the average
scores of DREM in Q1 (item information) are approximately 1 on all datasets, which means that the
result explanations provided by DREM usually provide relevant information about the retrieved
items. The average scores of DREM in Q2 (query information), on the other hand, are relatively low
comparing to the scores of Q1. In DREM, we create result explanations by finding paths between
users and items, which are modeled as entities, on a knowledge graph where queries are simply
treated as a dynamic relationship. This approach may impose an emphasis on item modeling and
make the model more likely to retrieve relevant information about the item rather than the query.
As for Q3 (usefulness), DREM achieved a score of 0.48 on Electronics, 0.40 on Kindle Store, 0.44 on
CDs & Vinyl, and 0.19 on Cell Phones & Accessories. While these scores are far from perfect, they
indicate that the result explanations provided by DREM is useful in persuading people to purchase
the corresponding items in general.

To understand the relationship between different evaluation metrics, we further analyze the
distribution of the DREM’s scores in Q1, Q2 and Q3. Figure 6 shows the average Q1 and Q2 scores
of DREM in sessions with different explanation usefulness (i.e., the Q3 scores). Specifically, we
discretize the Q3 scores by labeling the sessions with [0, 0.5) as “0” (irrelevant), [0.5, 1.5) as “1”
(fair), and [1.5, 2] as “2” (excellent). The columns of “2” in Electronics, Kindle Store and CDs & Vinyl
are missing because there is no session with excellent result explanations in these datasets. As we
can see, there is a correlation between both the scores of Q1, Q3 and the scores of Q2 and Q3. Useful
result explanations (i.e., Q3 scores “1” or “2”) usually provide more information on the retrieved item
(i.e., higher Q1 scores) and the search query (i.e., higher Q2 scores) than unuseful explanations (i.e.,
Q3 scores “0”). Figure 7 depicts the percentage of annotated sessions with different <Q1, Q2> pairs
with respect to Q3 scores. Here, we apply the same discretization strategy to Q1/Q2 scores and treat
fair or excellent explanations as poistive instances (i.e, Q1+ and Q2+) and irrelevant explanations
as negative instances (i.e, Q1− and Q2−). As shown in Figure 7, useful result explanations (i.e., Q3
scores equal or greater than 1) almost always provide relevant item information (i.e., Q1+) or query
information (i.e., Q2+). This supports the hypothesis that result explanations can be useful only

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:24 Q. Ai et al.

0 1 2
Q3: Usefulness

0.0

0.5

1.0

1.5

2.0

(a) Electronics

0 1 2
Q3: Usefulness

0.0

0.5

1.0

1.5

2.0

(b) Kindle Store

0 1 2
Q3: Usefulness

0.0

0.5

1.0

1.5

2.0

Q1: Item information

Q2: Query information

(c) CDs & Vinyl

0 1 2
Q3: Usefulness

0.0

0.5

1.0

1.5

2.0

(d) Cell Phones & Accessories

Fig. 6. The average Q1/Q2 scores with respect to different usefulness (i.e., Q3 scores) for the result explanations
created byDREM in the laboratory user study. The usefulness of the explanations in each session are discretized
as “0” (irrelevant), “1” (fair), and “2” (excellent).

when its provide additional information that helps the queries or the retrieved items. Also, even
when their usefulness in persuading people to purchase the items is not good (i.e., Q3 scores are
0), the percentage of result explanations with <Q1−, Q2−> is lower than 16% in all datasets. This
indicates that the result explanations created by DREM can provide relevant information about the
items or the queries in most cases.

In our experiments, we haven’t observed significant correlation between the retrieval perfor-
mance and the result explanation usefulness on different datasets, but there are some interesting
comments provided by the annotators. First, the annotators find that different entity relationships
could have different value for the generation of result explanations in each dataset. For example,
the relationships of Also_viewed and Also_bought tend to be less useful in Kindle Store and CDs &
Vinyl because, when the annotators are not familiar with the topic of the retrieved item, they are
also not familiar with the items that are viewed or bought together with the retrieved item. Also,
the annotators note that the relevance of retrieved items could affect their judgment process. In
our laboratory study, we only sample the result explanations for the first retrieved items in each
sampled search session. In many cases, however, the first retrieved item of DREM are irrelevant

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:25

0

1

2

Q
3:

U
se

fu
ln

es
s

24%

100%

67% 9%

Q1+, Q2+

Q1− ,Q2+

Q1+, Q2−

Q1−, Q2−

(a) Electronics

0

1

2

Q
3:

U
se

fu
ln

es
s

23%

62%

69%

37%

8%

Q1+, Q2+

Q1− ,Q2+

Q1+, Q2−

Q1−, Q2−

(b) Kindle Store

0

1

2

Q
3:

U
se

fu
ln

es
s

50%

65%

44%

35%

6%

Q1+, Q2+

Q1− ,Q2+

Q1+, Q2−

Q1−, Q2−

(c) CDs & Vinyl

0

1

2

Q
3:

U
se

fu
ln

es
s

32%

92%

100%

51%

8%

16%

Q1+, Q2+

Q1− ,Q2+

Q1+, Q2−

Q1−, Q2−

(d) Cell Phones & Accessories

Fig. 7. The distribution of sessions with different Q1 and Q2 scores with respect to explanation usefulness
(i.e., Q3 scores) in the laboratory user study. The cases where Q1/Q2 scores are larger than 0.5 are treated as
positive (i.e., Q1+/Q2+), while the cases where Q1/Q2 scores are less than 0.5 are treated as negative (i.e.,
Q1−/Q2−).

to the query or not purchased by the user. The annotators find it particularly annoying when the
result explanations are relevant while the actual retrieved items are not. This raises an interesting
question of whether search result explanations should be created according to howmuch we believe
that the retrieved items are relevant to the users. We leave these topics for future studies.

7 CONCLUSION AND FUTUREWORK
In this paper, we present our initial attempt to tackle the problem of explainable product search.
We propose a Dynamic Relation Embedding Model that jointly learns embedding representations
for entities/relationships and creates session-dependent knowledge graphs. Empirical experiments
show that our approach significantly outperforms the state-of-the-art product retrieval methods
and has the ability to produce reasonable explanations for search results. This indicates that the
construction of dynamic knowledge graph with multi-relational product data is beneficial for the
effectiveness and explainability of product retrieval models.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

25:26 Q. Ai et al.

We believe that the study of explainable retrieval models is in an early stage and could be fruitful
for product search. In DREM, we generate search explanations based on each explanation path
separately. As shown in our laboratory user study, these result explanations are far from perfect.
In practice, it may be preferable to organize and combine multiple explanation paths to create a
single but more persuasive explanation. Also, in our framework, the explanation path extracted by
the Soft Matching Algorithm are scored by heuristic functions (Equation (13) and (14)), which are
empirically effective but not theoretically principled. How to unify product retrieval and search
explanation in terms of the model design is still an open question, and we believe that one promising
approach is to combine the power of neural embedding models with rule-based knowledge systems.
Last but not least, although it seems intuitive that good result explanations could improve the
transaction rate of e-commerce search, their actual effects on online systems are mostly unknown.
Understanding the real impact of expainable search systems and developing effective evaluation
metircs for result explanations are important research problems for the future of e-commerce search
engines. We will explore these topics in future studies.

8 ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent Information Retrieval and in part
by an award from Amazon.com. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect those of the
sponsor.

REFERENCES
[1] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018a. Learning heterogeneous knowledge base embeddings

for explainable recommendation. Algorithms 11, 9 (2018), 137.
[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018b. Learning a deep listwise context model for ranking

refinement. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,
135–144.

[3] Qingyao Ai, Daniel N Hill, SVN Vishwanathan, and W Bruce Croft. 2019. A Zero Attention Model for Personalized
Product Search. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management.
ACM.

[4] Qingyao Ai, Liu Yang, Jiafeng Guo, and W Bruce Croft. 2016a. Analysis of the paragraph vector model for information
retrieval. In Proceedings of the ACM ICTIR’16. ACM, 133–142.

[5] Qingyao Ai, Liu Yang, Jiafeng Guo, and W Bruce Croft. 2016b. Improving language estimation with the paragraph
vector model for ad-hoc retrieval. In Proceedings of the 39th International ACM SIGIR conference. ACM, 869–872.

[6] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. 2017. Learning a hierarchical embedding model
for personalized product search. In Proceedings of the 40th International ACM SIGIR Conference. ACM, 645–654.

[7] Kamelia Aryafar, Devin Guillory, and Liangjie Hong. 2017. An Ensemble-based Approach to Click-Through Rate
Prediction for Promoted Listings at Etsy. In Proceedings of the ADKDD’17. ACM, 10.

[8] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban, Xiyang Luo, Alan Mackey, and Ofer Meshi.
2018. Seq2Slate: Re-ranking and Slate Optimization with RNNs. arXiv preprint arXiv:1810.02019 (2018).

[9] Keping Bi, Qingyao Ai, Yongfeng Zhang, and W Bruce Croft. 2019a. Conversational Product Search Based on Negative
Feedback. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM.

[10] Keping Bi, Choon Hui Teo, Yesh Dattatreya, Vijai Mohan, and W Bruce Croft. 2019b. Leverage Implicit Feedback for
Context-aware Product Search. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. ACM.

[11] Mustafa Bilgic and Raymond J Mooney. 2005. Explaining recommendations: Satisfaction vs. promotion. In Beyond
Personalization Workshop, IUI, Vol. 5. 153.

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In Advances in neural information processing systems. 2787–2795.

[13] Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio, and others. 2011. Learning Structured Embeddings of
Knowledge Bases.. In AAAI, Vol. 6. 6.

[14] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A neural click model for web search.
In Proceedings of the 25th International Conference on World Wide Web. International World Wide Web Conferences

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:27

Steering Committee, 531–541.
[15] Henriette Cramer, Vanessa Evers, Satyan Ramlal, Maarten Van Someren, Lloyd Rutledge, Natalia Stash, Lora Aroyo,

and Bob Wielinga. 2008. The effects of transparency on trust in and acceptance of a content-based art recommender.
User Modeling and User-Adapted Interaction 18, 5 (2008), 455.

[16] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959),
269–271.

[17] Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013. Supporting keyword search in product
database: a probabilistic approach. Proceedings of the VLDB Endowment 6, 14 (2013), 1786–1797.

[18] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016a. A deep relevance matching model for ad-hoc retrieval.
In Proceedings of the 25th ACM CIKM. ACM, 55–64.

[19] Jiafeng Guo, Yixing Fan, Qingyao Ai, andWBruce Croft. 2016b. Semantic Matching by Non-LinearWord Transportation
for Information Retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 701–710.

[20] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Xin-Shun Xu, and Mohan Kankanhalli. 2018. Multi-modal preference
modeling for product search. In 2018 ACM Multimedia Conference on Multimedia Conference. ACM, 1865–1873.

[21] Richard A Harshman and Margaret E Lundy. 1994. PARAFAC: Parallel factor analysis. Computational Statistics & Data
Analysis 18, 1 (1994), 39–72.

[22] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2018. Translation-based Recommendation: A Scalable Method
for Modeling Sequential Behavior.. In IJCAI. 5264–5268.

[23] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-aware explainable recommendation by
modeling aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.
ACM, 1661–1670.

[24] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering.
In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[25] Yotam Hechtlinger. 2016. Interpretation of prediction models using the input gradient. arXiv preprint arXiv:1611.07634
(2016).

[26] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining collaborative filtering recommendations. In
Proceedings of the 2000 ACM conference on Computer supported cooperative work. ACM, 241–250.

[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

[28] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforcement Learning to Rank in E-Commerce
Search Engine: Formalization, Analysis, and Application. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18). ACM, New York, NY, USA, 368–377. DOI:http:
//dx.doi.org/10.1145/3219819.3219846

[29] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured
semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333–2338.

[30] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017. On application of learning to rank for
e-commerce search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 475–484.

[31] Viktoriya Krakovna and Finale Doshi-Velez. 2016. Increasing the interpretability of recurrent neural networks using
hidden Markov models. arXiv preprint arXiv:1606.05320 (2016).

[32] Quoc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents.. In ICML, Vol. 14.
1188–1196.

[33] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In Advances in neural
information processing systems. 2177–2185.

[34] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. 2016. Factorization meets the item embedding:
Regularizing matrix factorization with item co-occurrence. In Proceedings of the 10th ACM conference on recommender
systems. ACM, 59–66.

[35] Soon Chong Johnson Lim, Ying Liu, and Wing Bun Lee. 2010. Multi-facet product information search and retrieval
using semantically annotated product family ontology. Information Processing & Management 46, 4 (2010), 479–493.

[36] Pablo Loyola, Chen Liu, and Yu Hirate. 2017. Modeling User Session and Intent with an Attention-based Encoder-
Decoder Architecture. In Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, 147–151.

[37] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of substitutable and complementary
products. In Proceedings of the 21th ACM SIGKDD. ACM, 785–794.

[38] Geoffrey McLachlan and Thriyambakam Krishnan. 2007. The EM algorithm and extensions. Vol. 382. John Wiley &

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

http://dx.doi.org/10.1145/3219819.3219846
http://dx.doi.org/10.1145/3219819.3219846

25:28 Q. Ai et al.

Sons.
[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781 (2013).
[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words

and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.
[41] Kurt Miller, Michael I Jordan, and Thomas L Griffiths. 2009. Nonparametric latent feature models for link prediction.

In Advances in neural information processing systems. 1276–1284.
[42] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert Müller. 2017. Ex-

plaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognition 65 (2017), 211–222.
[43] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way Model for Collective Learning on

Multi-Relational Data.. In ICML, Vol. 11. 809–816.
[44] Petteri Nurmi, Eemil Lagerspetz, Wray Buntine, Patrik Floréen, and Joonas Kukkonen. 2008. Product retrieval for

grocery stores. In Proceedings of the 31st ACM SIGIR. ACM, 781–782.
[45] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song, and Rabab Ward. 2016.

Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on ASLP 24, 4 (2016), 694–707.

[46] Jay M Ponte and W Bruce Croft. 1998. A language modeling approach to information retrieval. In Proceedings of the
21st ACM SIGIR. ACM, 275–281.

[47] Stephen E Robertson and Steve Walker. 1994. Some simple effective approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval. Springer-Verlag New York, Inc., 232–241.

[48] Jennifer Rowley. 2000. Product search in e-shopping: a review and research propositions. Journal of consumer marketing
17, 1 (2000), 20–35.

[49] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommenda-
tion algorithms. In Proceedings of the 10th international conference on World Wide Web. ACM, 285–295.

[50] Amit Sharma and Dan Cosley. 2013. Do social explanations work?: studying and modeling the effects of social
explanations in recommender systems. In Proceedings of the 22nd international conference on World Wide Web. ACM,
1133–1144.

[51] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Context-sensitive information retrieval using implicit feedback.
In Proceedings of the 28th annual international ACM SIGIR conference. ACM, 43–50.

[52] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective matrix factorization. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 650–658.

[53] Mark D Smucker, James Allan, and Ben Carterette. 2007. A comparison of statistical significance tests for information
retrieval evaluation. In Proceedings of the sixteenth ACM CIKM. ACM, 623–632.

[54] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Reasoning with neural tensor networks
for knowledge base completion. In Advances in neural information processing systems. 926–934.

[55] Nava Tintarev and Judith Masthoff. 2007. A survey of explanations in recommender systems. In Data Engineering
Workshop, 2007 IEEE 23rd International Conference on. IEEE, 801–810.

[56] Nava Tintarev and Judith Masthoff. 2011. Designing and evaluating explanations for recommender systems. Recom-
mender Systems Handbook (2011), 479–510.

[57] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning latent vector spaces for product
search. In Proceedings of the 25th ACM CIKM. ACM, 165–174.

[58] Marina M-C Vidovic, Nico Görnitz, Klaus-Robert Müller, and Marius Kloft. 2016. Feature importance measure for
non-linear learning algorithms. arXiv preprint arXiv:1611.07567 (2016).

[59] Ivan Vulić and Marie-Francine Moens. 2015. Monolingual and cross-lingual information retrieval models based on
(bilingual) word embeddings. In Proceedings of the 38th ACM SIGIR. ACM, 363–372.

[60] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable recommendation via multi-task learning
in opinionated text data. In The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. ACM, 165–174.

[61] Chen Wu, Ming Yan, and Luo Si. 2017. Ensemble Methods for Personalized E-Commerce Search Challenge at CIKM
Cup 2016. arXiv preprint arXiv:1708.04479 (2017).

[62] Liang Wu, Diane Hu, Liangjie Hong, and Huan Liu. 2018. Turning Clicks into Purchases: Revenue Optimization for
Product Search in E-Commerce. (2018).

[63] Fan Yang, Ninghao Liu, Suhang Wang, and Xia Hu. 2018. Towards Interpretation of Recommender Systems with
Sorted Explanation Paths. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 667–676.

[64] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. 2016. aNMM: Ranking short answer texts with attention-based
neural matching model. In Proceedings of the 25th ACM International on Conference on Information and Knowledge

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

Explainable Product Search with a Dynamic Relation Embedding Model 25:29

Management. ACM, 287–296.
[65] Jun Yu, Sunil Mohan, Duangmanee Pew Putthividhya, and Weng-Keen Wong. 2014. Latent dirichlet allocation based

diversified retrieval for e-commerce search. In Proceedings of the 7th ACM international conference on Web search and
data mining. ACM, 463–472.

[66] Hamed Zamani andW Bruce Croft. 2016. Estimating embedding vectors for queries. In Proceedings of the ACM ICTIR’16.
ACM, 123–132.

[67] Chengxiang Zhai and John Lafferty. 2001. A study of smoothing methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th ACM SIGIR. ACM, 334–342.

[68] Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to information
retrieval. ACM Transactions on Information Systems (TOIS) 22, 2 (2004), 179–214.

[69] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base
embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 353–362.

[70] Yongfeng Zhang. 2017. Explainable Recommendation: Theory and Applications. arXiv preprint arXiv:1708.06409
(2017).

[71] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint representation learning for top-n recommen-
dation with heterogeneous information sources. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. ACM, 1449–1458.

[72] Yongfeng Zhang, Qingyao Ai, Xu Chen, and Pengfei Wang. 2018a. Learning over knowledge-base embeddings for
recommendation. arXiv preprint arXiv:1803.06540 (2018).

[73] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. 2018b. Towards conversational search and
recommendation: System ask, user respond. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management. ACM, 177–186.

[74] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014. Explicit factor models for
explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference. ACM, 83–92.

[75] Yongfeng Zhang, Jiaxin Mao, and Qingyao Ai. 2019. SIGIR 2019 Tutorial on Explainable Recommendation and Search.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, 1417–1418.

[76] Yongfeng Zhang, Haochen Zhang, Min Zhang, Yiqun Liu, and Shaoping Ma. 2014. Do users rate or review?: Boost
phrase-level sentiment labeling with review-level sentiment classification. In Proceedings of the 37th international ACM
SIGIR conference. ACM, 1027–1030.

[77] Jun Zhu, Jiaming Song, and Bei Chen. 2016. Max-margin nonparametric latent feature models for link prediction.
arXiv preprint arXiv:1602.07428 (2016).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 25. Publication date: December 2019.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Product Search
	2.2 Explainable System
	2.3 Knowledge Embedding
	2.4 Neural Information Retrieval

	3 Model Description
	3.1 Overview
	3.2 Static Relation Modeling
	3.3 Dynamic Relation Modeling
	3.4 Time Complexity

	4 Explanation Extraction
	4.1 Explanation Path
	4.2 Extraction Algorithm

	5 Experimental Setup
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Methodology
	5.4 Implementation Details

	6 Results and Discussions
	6.1 Retrieval Performance
	6.2 Case Study

	7 Conclusion and Future Work
	8 Acknowledgments
	References

