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Abstract

A number of perfect simulation algorithms for multi-server First Come First Served
queues have recently been developed. Those of Connor and Kendall (2015) and Blanchet,
Pei, and Sigman (2015) use dominated Coupling from the Past (domCFTP) to sample
from the equilibrium distribution of the Kiefer-Wolfowitz workload vector for stable
M/G/c and GI/GI/c queues respectively, using Random Assignment queues as domin-
ating processes. In this note we answer a question posed by Connor and Kendall (2015),
by demonstrating how these algorithms may be modified in order to carry out domCFTP
simultaneously for a range of values of c (the number of servers).
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1 Introduction

There have recently been a number of significant advances in perfect simulation methods
for multi-server queues. Perfect simulation algorithms are able to return an exact sample
from the stationary distribution of an ergodic Markov chain (as opposed to an approximate
sample, as may be obtained from e.g. Markov chain Monte Carlo) at the expense of a random
run-time. The first practical algorithm in this line was the Coupling from the Past (CFTP)
algorithm, which was conceived by Propp and Wilson (1996) and used to sample from the
exact equilibrium distribution of the critical Ising model on a finite lattice. The original
CFTP algorithm has since been generalised in a number of ways, with the most significant of
these, for the purposes of this paper, being dominated Coupling from the Past (domCFTP)
(Kendall, 1998; Kendall and Møller, 2000). Importantly, domCFTP can be used for chains
with unbounded state space; it relies on knowledge of a dominating process for the chain of
interest, which can be simulated both in equilibrium and in reverse-time. Kendall (2005)
provides a nice introduction to perfect simulation algorithms, while a much more extensive
account can be found in the recent book by Huber (2016).

Stationary distributions arising from queueing systems involving multiple servers cannot in
general be computed explicitly, and so practical methods for sampling from such distributions
are of obvious interest. Sigman (2011) pioneered the use of domCFTP for super-stable M/G/c
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queues with First Come First Served (FCFS) discipline. (“Super-stable” means that the queue
would remain stable even if all but one of the c servers were removed.) The limitation to
super-stable queues is necessitated by Sigman’s use of a stable M/G/1 queue as dominating
process in the domCFTP algorithm. Connor and Kendall (2015) subsequently showed how
to generalise this idea to work for stable M/G/c queues, by using as dominating process
an M/G/c queue with Random Assignment (RA) discipline (under which the c servers are
independent). They describe two algorithms (outlined in Section 2 below) and compare their
efficiency; they show that their Algorithm 1, which requires waiting for the dominating process
to empty, is significantly less efficient than Algorithm 2, which relies on the coalescence of
sandwiching processes (in common with many other domCFTP algorithms).

Blanchet, Dong, and Pei (2018) were the first authors to show how to perform perfect
simulation for multi-server queues with general inter-arrival time and service time distributions
(i.e. relaxing the assumption of exponential inter-arrival times). Rather than using a random
assignment queue as dominating process, they make use of a so-called “vacation system”.
(This idea is also employed by Blanchet and Chen (2019) to sample from the equilibrium
of a generalized Jackson network of single-server queues.) However, Blanchet et al. (2015)
have since demonstrated how to make the random assignment dominating process work in
this setting. The hard part here is working out how to simulate the dominating process in
reverse-time; with renewal arrivals, as opposed to Poisson, the c servers in the RA model are
no longer independent. These pieces of work all serve to demonstrate that perfect simulation
is a practical and efficient method for simulating from a wide class of multi-server queueing
systems.

Connor and Kendall (2015) ask a very natural question: is it possible to carry out domin-
ated CFTP simultaneously for M/G/c queues with a range of c, the number of servers? The
authors refer to this as “omnithermal dominated CFTP”, borrowing a term used to describe
Grimmett (1995)’s coupling of random-cluster processes for all values of a specific parameter,
and applied to CFTP in Propp and Wilson (1996). The potentially difficult issue in the
queueing context is that of detecting a time at which we can be sure that the appropriate
sandwiching processes will coalesce for all c in the range being considered. In this paper
we show how such coalescence may be detected with the aid of a simple criterion that uses
information about the sandwiching processes only for the queue with the fewest servers.

The outline of the paper is as follows. In Section 2 we recall the definition of the Kiefer-
Wolfowitz workload process associated to a multi-server FCFS queue, and then sketch the
two perfect simulation algorithms of Connor and Kendall (2015). In Section 3 we present a
natural partial order between Kiefer-Wolfowitz vectors of different lengths, and subsequently
use this to determine a condition which ensures that the termination time of Connor and
Kendall (2015)’s Algorithm 2 is monotonic in the number of servers c. In Section 4 we use this
condition to produce an Omnithermal Algorithm, and briefly report on the results of applying
this to some M/M/c queues. Finally, in Section 5 we indicate how our results may be used
to perform omnithermal perfect simulation for queues with general renewal input, or in the
situation where we are interested in scaling the distribution of service durations, rather than
changing the number of servers. The question of sampling from the equilibrium distribution
of controlled or adaptive systems, e.g. where the number of servers is allowed to change over
time, is also briefly considered.
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2 Dominated CFTP for M/G/c queues

Consider a general ·/ · /c FCFS queue. We denote the Kiefer-Wolfowitz workload vector
(Kiefer and Wolfowitz, 1955) at time t ≥ 0 by V(t) = (V (1, t), V (2, t), . . . , V (c, t)), where
V (1, t) ≤ V (2, t) ≤ . . . . The entries of V(t) represent the ordered amounts of residual work in
the system for the c servers at time t, bearing in mind the FCFS queueing discipline. Customer
n arrives at time tn (for 0 ≤ t1 ≤ t2 ≤ . . .), with inter-arrival times denoted by Tn = tn+1− tn
(with t0 = 0). Customer n brings with it a service duration Sn. Observing V just before
arrival of the nth customer (but definitely after the arrival of the (n−1)th customer) generates
a process Wn = (Wn(1),Wn(2), . . . ,Wn(c)): in the case tn−1 < tn we have Wn = V(tn−).
This satisfies the well-known recursion

Wn+1 = R(Wn + Sne− Tnf)+, for n ≥ 0 ,

where e = (1, 0, 0, . . . , 0), f = (1, 1, . . . , 1), R places the coordinates of a vector in increasing
order, and + replaces negative coordinates of a vector by zeros (see Chapter 12 of Asmussen
(2003)). In words, Wn+1 is obtained from Wn by performing the following sequence of
operations:

1. add the new workload Sn to the first coordinate (the server currently with least residual
work)

2. subtract Tn from each coordinate (since each server completes work at unit rate between
arrival times)

3. reorder the coordinates of the resulting vector in increasing order

4. replace any negative coordinates by zeros.

Note in particular that Wn(1) represents the time that the nth customer must wait before
commencing service.

For simplicity of exposition we shall primarily discuss M/G/c queues in what follows
(i.e. inter-arrival times are exponential). However, our method for performing omnithermal
perfect simulation for these queues applies equally well to GI/GI/c queues using an algorithm
of Blanchet et al. (2015), as will be observed in Section 5. Let the arrival rate be λ > 0, and let
service durations Sn be i.i.d. with mean 1/µ and E

[
S2
]
< ∞. (As explained in Connor and

Kendall (2015), this second moment condition is required in order to guarantee finite mean
run-time of their perfect simulation algorithms. In the case of GI/GI/c queues a little more
is required, namely that the inter-arrival times and service durations both have a finite 2 + ε
moment, for some ε > 0 (Blanchet et al., 2015).) Write ρ = λ/(cµ): the queue is stable if
and only if ρ < 1, in which case it is known that Wn converges as n→∞ to an equilibrium
distribution, and so we restrict attention to this scenario.

Connor and Kendall (2015) propose two domCFTP algorithms for sampling from the
equilibrium distribution of the Kiefer-Wolfowitz workload vector for a stable M/G/c queue
X. Both of these algorithms use as dominating process an M/G/c queue Y with Random
Assignment service discipline. That is, customers in Y are allocated upon arrival to a uniformly
chosen server; this renders the c servers independent, which allows us to easily simulate a
stationary version of the dominating process in reverse-time, as required by domCFTP. It
is possible to arrange for X to be path-wise dominated by Y as long as the two queues are
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coupled by assigning service durations in order of initiation of service. (Under FCFS customers
initiate service in the same order in which they arrive, but this is typically not the case for
other service disciplines.) The precise statement of this domination can be found in Connor
and Kendall (2015), an abridged version of which is reproduced here for convenience.

Theorem 1 (Theorem 3.3 of Connor and Kendall (2015)). Consider a c-server queueing
system viewed as a function of (a) the sequence of arrival times 0 ≤ t1 ≤ t2 ≤ t3 ≤ . . . and
(b) the sequence of service durations S1, S2, S3, . . . assigned in order of initiation of service.
Consider the following different allocation rules, in some cases varying over time:

1. ·/ · /c [RA];

2. ·/ · /c [RA] until a specified non-random time T , then switching to ·/ · /c [FCFS];

3. ·/ · /c [RA] until a specified non-random time T ′, 0 ≤ T ′ ≤ T , then switching to
·/ · /c [FCFS];

4. ·/ · /c [FCFS];

Then case k dominates case k + 1 (for k = 1, 2, 3), in the sense that the mth initiation of
service in case k + 1 occurs no later than the mth initiation of service in case k, and the mth

departure in case k+1 occurs no later than the mth departure in case k. Moreover, for all times
t ≥ T ′ the Kiefer-Wolfowitz workload vector for case 3 dominates (coordinate-by-coordinate)
that of case 4, with similar domination holding for cases 2 and 3 for all t ≥ T .

We can now summarise the two domCFTP algorithms of Connor and Kendall (2015).

Algorithm 1
1: Construct a stationary M/G/c [RA] process backwards in time until it empties at some

time T ∗ < 0;
2: Use this to create a forwards in time trajectory of an M/G/c [RA] queue Y started from

empty at time T ∗;
3: Use the sequences of arrival times and service durations in Y to construct an
M/G/c [FCFS] queue X = {Xt : T ∗ ≤ t ≤ 0} that is dominated by Y over [T ∗, 0],
and return X0.

Steps 1 and 2 of the algorithm are accomplished as follows (see Connor and Kendall (2015)
for further details.) We first simulate the path of a collection of c stationary M/G/1 queues,
each of which has arrival rate λ/c, and which complete work using the Processor Sharing
discipline (whereby all jobs are served simultaneously, at a rate depending upon the number
of jobs present). We perform this over the time period [0, T̂ ∗] where T̂ ∗ ≥ 0 is the first
time at which all c servers are simultaneously empty, and record the set of departure times
0 ≤ t̂1 ≤ t̂2 ≤ · · · ≤ t̂k = T̂ ∗ and associated service durations S1, . . . , Sk. The M/G/c [RA]
queue Y is then started from empty at time T ∗ = −T̂ ∗ and fed the sequence of arrival
times/service durations (−t̂k, Sk), . . . , (−t̂1, S1).

To carry out Step 3, we reorder the set of service durations according to the corresponding
initiation of service in Y . We denote this reordered list by (S′1, . . . , S

′
k): if JYi is the time of

initiation of service S′i in Y , then T ∗ = JY1 ≤ JY2 ≤ · · · ≤ JYk . Finally, the M/G/c [FCFS]
queue X is started from empty at time T ∗ and fed the sequence of arrival times/service
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durations (−t̂k, S′1), . . . , (−t̂1, S′k). Since both Y and X see the same sequence of arrival times
over [T ∗, 0], and use a common sequence of service durations assigned in order of initiation of
service, the domination argument of Theorem 1 holds; a standard domCFTP argument then
shows that X0 is a draw from the required equilibrium distribution.

Algorithm 2
1: Fix a backoff (or inspection) time T < 0, and construct a path of the stationary
M/G/c [RA] queue Y over the time period [T, 0];

2: Construct sandwiching processes Lc = {Lct : T ≤ t ≤ 0} and U c = {U ct : T ≤ t ≤ 0} over
[T, 0] as follows:

1. LcT is empty, while U cT is instantiated using the same residual workloads present in
YT ;

2. over (T, 0], Lc and U c both evolve as Kiefer-Wolfowitz vectors of M/G/c [FCFS]
queues, using the same sequences of arrival times and service durations as Y (once
again ordered by initiation of service);

3: Check for coalescence: if Lc0 = U c0 return this value; else set T ← 2T and go to Step 1.

Connor and Kendall Connor and Kendall (2015) provide more details for each of the steps
outlined above, and demonstrate that Algorithm 2, although more complicated to describe, is
in general significantly faster than Algorithm 1.

3 Omnithermal perfect simulation

In this section we consider the following question: is it possible to adapt the domCFTP
algorithms outlined in Section 2 in order to simultaneously sample from the equilibrium of
M/G/(c + m) queues for all m ≥ 0? As pointed out in Connor and Kendall (2015), it is
straightforward to accomplish this using Algorithm 1: once an emptying time T ∗ has been
established for the M/G/c queue, then any M/G/(c+m) queue may be started from empty
at this time and run over [T ∗, 0] using the same arrival times and service durations; a simple
workload domination argument shows that its value at time 0 will form a single perfect sample
from the required equilibrium distribution. However, given the significantly faster run-time of
Algorithm 2, a far more interesting question is whether or not one can produce a comparably
efficient omnithermal domCFTP algorithm using sandwiching processes.

Suppose that we have implemented Algorithm 2, and have obtained one equilibrium sample
for the M/G/c queue. That is, we have established some backoff time T < 0, along with
sequences of arrival times and service durations, such that Lc0 = U c0 . Our first observation is
the following: suppose that we use these sequences to produce new FCFS processes Lc+m and
U c+m over [T, 0] in the manner described in Step 2 of Algorithm 2. More explicitly, Lc+mT

is empty, and U c+mT is constructed by feeding in all of the residual workloads present in YT ,
in order of their initiation of service in Y . (In particular, this means that if there are more
than c jobs present in YT then more than c coordinates of U c+mT will be non-zero.) Lc+m and
U c+m are then fed the same sequences of arrival times and service durations as Lc (and U c)
over (T, 0]. The results of doing this are that the workload vector for U c+mt will dominate
(coordinate-by-coordinate) that of Lc+mt for all t ∈ [T, 0], and if Lc+m0 = U c+m0 then this value
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will be a perfect draw from the equilibrium of the M/G/(c + m) queue, as required. This
follows from Theorem 1: due to the way in which it is instantiated, U c+m is a queueing system
that changes from M/G/c [RA] to M/G/(c+m) [FCFS] at time T . But the former of these
can be thought of as an M/G/(c+m) system with a random allocation rule which uniformly
distributes jobs amongst only a fixed c of the (c +m) servers; since this is less efficient than
the FCFS discipline, the proof of Theorem 3.3 in Connor and Kendall (2015) holds with this
slightly modified setup.

This observation implies that, given the arrival times and service durations used in Al-
gorithm 2 with c servers, we could just construct sandwiching processes Lc+m and U c+m over
[T, 0] and see whether they coalesce. If they do, then we have obtained a sample from the
required distribution; if not, then we need to extend the dominating process Y for this sample
further into the past (setting T ← 2T ), and then check again for coalescence. But this is not
as clean as we would like: as will be shown in the next section, coalescence of Lc and U c over
[T, 0] does not imply coalescence of Lc+m and U c+m over the same interval for all m > 0.
Thus it is possible that the extent to which any single sample path of Y needs to be extended
will vary with the value of m. Assuming that we want to obtain samples for a range of values
of m, this method is therefore rather inefficient. Ideally we would like to use Algorithm 2 to
produce a sample for the M/G/c queue, and then re-use the path of Y from this run of the
algorithm in order to draw from the equilibrium of M/G/(c+m) for any m > 0.

3.1 Comparing queues with different numbers of servers

Suppose that we have two FCFS queues, each seeing the same set of arrival times and as-
sociated service durations. We first of all need to show that the workload vector with fewer
servers dominates that of the other, with respect to a certain natural partial order.

Definition 2. For V c ∈ Rc and V c+m ∈ Rc+m, we write V c+m � V c if and only if

V c+m(k +m) ≤ V c(k) , k = 1, . . . , c .

Thus if V c and V c+m are workload vectors, V c+m � V c if and only if each of the c busiest
servers in V c+m has no more work remaining than the corresponding server in V c.

Proposition 3. Let V c and V c+m be Kiefer-Wolfowitz workload vectors for an M/G/c and
an M/G/(c+m) FCFS queue respectively. Suppose that V c+m

0 � V c
0 and that each queue sees

the same set of arrival times and associated service durations. Then V c+m
t � V c

t for all t ≥ 0.

Proof. It is clear that the ordering between V c and V c+m will hold until the first arrival time,
τ . Furthermore, once we show that V c+m

τ � V c
τ the result will follow simply by induction.

Let S denote the service duration attached to the arrival at time τ . Recall that the effect
of this arrival is that S is added to any outstanding work at the first (least busy) coordinate in
V c and V c+m, and then the resulting vectors are each reordered in increasing order. Suppose
that after this reordering has taken place, the coordinate with value V c

τ−(1) + S (the amount
of work now at the server to which the arrival at τ was allocated) is located in position ic of
V c
τ , etc. Note that the result of the reordering is precisely the following:

V c
τ (k) =


V c
τ−(k + 1) k < ic

V c
τ−(1) + S k = ic

V c
τ−(k) k > ic ,

and V c+m
τ (k) =


V c+m
τ− (k + 1) k < ic+m

V c+m
τ− (1) + S k = ic+m

V c+m
τ− (k) k > ic+m .

(1)
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If ic+m ≤ m then the result is trivial (since the last c coordinates of V c+m are unchanged by
the arrival at time τ , and so the ordering between the vectors at time τ− is clearly maintained).
So suppose that ic+m > m. Then for k < min{ic, ic+m −m} we have

V c+m
τ (k +m) = V c+m

τ− (k +m+ 1) ≤ V c
τ−(k + 1) = V c

τ (k) .

(Here both of the equalities follow from (1), and the inequality from the assumption that
V c+m
τ− � V c

τ−.) Analogously, for k > max{ic, ic+m −m} we have

V c+m
τ (k +m) = V c+m

τ− (k +m) ≤ V c
τ−(k) = V c

τ (k) .

For the remaining coordinates there are now two cases to consider, depending on which of
ic and ic+m −m is larger.

Case 1: ic ≤ ic+m −m. Then for k = ic, . . . , ic+m −m:

V c+m
τ (k +m) ≤ V c+m

τ (ic+m) = V c+m
τ− (1) + S ≤ V c

τ−(1) + S = V c
τ (i

c) ≤ V c
τ (k) .

Here the first and last inequalities hold since the coordinates of the workload vectors at
time τ are arranged in increasing order; the middle inequality follows from V c+m

τ− � V c
τ−,

and the equalities follow from (1)

Case 2: ic+m −m < ic. (Recall that we are already supposing that ic+m > m, and so ic > 1
here.) For k = ic+m −m, . . . , ic − 1, using similar arguments as for Case 1, we see that

V c+m
τ (k +m) ≤ V c+m

τ (k +m+ 1) = V c+m
τ− (k +m+ 1) ≤ V c

τ−(k + 1) = V c
τ (k) .

The proof is completed by observing that when k = ic,

V c+m
τ (k +m) = V c+m

τ− (ic +m) ≤ V c
τ−(i

c) = V c
τ (i

c − 1) ≤ V c
τ (i

c) .

3.2 Coalescence

Suppose once again that we have used Algorithm 2 to obtain a single perfect sample from the
M/G/c queue: this yields a backoff time T < 0 and a sequence of arrival times and associated
service durations such that the sandwiching processes U c and Lc coalesce over [T, 0]. DefineDc

to be the non-negative vector-valued process given by the coordinate-wise difference between
U c and Lc:

Dc
t = U ct − Lct , T ≤ t ≤ 0 .

Let T c be the coalescence time for this realisation:

T c = inf{t > T : Dc
t = 0} < 0 .

We shall write |Lct | for the number of customers in Lct , and Act for the set of coordinates where
U ct and Lct agree:

Act = {k : Dc
t (k) = 0, 1 ≤ k ≤ c} .

We are interested in the question of whether coalescence of U c and Lc implies coalescence
of U c+m and Lc+m (instantiated at time T as described in Section 2) over the same period.
The following example shows that this is not guaranteed.
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Example 4. Consider sandwiching processes for two and three server systems (i.e. c = 2 and
m = 1), as described above. Suppose that U2 and U3 are both instantiated at time T = −4
with a single service duration of length 1, and that these queues proceed to see pairs of arrival
times and services (t, S) as follows: (−3.9, 1.2), (−3.7, 1.8), (−3.2, 5). The evolution of these
processes viewed at arrival times is as follows:

t0 = −4 t1 = −3.9 t2 = −3.7 t3 = −3.2
U2 (0.0, 1.0) (0.9, 1.2) (1.0, 2.5) (2.0, 5.5)
L2 (0.0, 0.0) (0.0, 1.2) (1.0, 1.8) (1.3, 5.5)

If there are no further arrivals within the next two units of time, we see that U2 and L2 will
coalesce at time T 2 = −1.2 (since it will take two more units of time for their first coordinates
to agree, and their second coordinates are already matched).

However, feeding the same sequence of arrival times/services to U3 and L3, we see that
they will not coalesce before time T 2:

t0 = −4 t1 = −3.9 t2 = −3.7 t3 = −3.2
U3 (0.0, 0.0, 1.0) (0.0, 0.9, 1.2) (0.7, 1.0, 1.8) (0.5, 1.3, 5.2)
L3 (0.0, 0.0, 0.0) (0.0, 0.0, 1.2) (0.0, 1.0, 1.8) (0.5, 1.3, 5.0)

Furthermore, if we were to consider sandwiching processes for a four-server system, these
would coalesce by time T 2 using the above sequence of arrivals:

t0 = −4 t1 = −3.9 t2 = −3.7 t3 = −3.2
U4 (0.0, 0.0, 0.0, 1.0) (0.0, 0.0, 0.9, 1.2) (0.0, 0.7, 1.0, 1.8) (0.2, 0.5, 1.3, 5.0)
L4 (0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 1.2) (0.0, 0.0, 1.0, 1.8) (0.0, 0.5, 1.3, 5.0)

A simple, and intuitively obvious, condition which guarantees that the sandwiching pro-
cesses Lc+m and U c+m will coalesce by time T c is that no customer arriving at the lower
process Lc during the period [T, T c] has to wait to commence service:

Proposition 5. If |Lct | ≤ c for all t ∈ [T, T c] then Dc+m
T c = 0 (and so T c+m ≤ T c) for any

m ≥ 0.

Proof. Since no server in Lc ever has more than one customer to deal with at any moment, the
same is true for Lc+m, and so Lc+mt (k +m) = Lct(k) for all 1 ≤ k ≤ c and for all t ∈ [T, T c].
Then by the domination established in Proposition 3, and the fact that U cT c = LcTc ,

U c+mT c (k +m) ≤ U cT c(k) = LcT c(k) = Lc+mT c (k +m) ,

for all 1 ≤ k ≤ c, and so the final c coordinates of Lc+mT c and U c+mT c must agree.
Moreover, coalescence of U c and Lc implies that there must exist an empty server in both

of these processes at time T c (see Connor and Kendall (2015)); i.e. U cT c(1) = LcT c(1) = 0.
Since U c+mT � U cT , Proposition 3 ensures that U c+mT c � U cT c , and so the first m coordinates of
U c+mT c , and of Lc+mT c , must all equal zero. Thus Lc+mT c = U c+mT c , as required.

The condition of Proposition 5 is rather strong, and can in fact be weakened, as we now
show.

Theorem 6. Suppose that any arrival time τ ∈ [T, T c] satisfying Lcτ−(1) = U cτ−(1) (equival-
ently, 1 ∈ Acτ−) also satisfies U cτ−(1) = 0. Then T c+m ≤ T c for any m ≥ 0.
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In other words, coalescence of U c+m and Lc+m is guaranteed by time T c as long as the
following holds: whenever an arriving job finds the same amount of residual work at its
allocated servers in U c and Lc, that’s precisely because both of those servers are idle at that
moment.

Remark 7. The condition of Proposition 5 is stronger than that of Theorem 6. To see this,
suppose that |Lct | ≤ c for all t ∈ [T, T c]. If at some arrival time τ ∈ [T, T c] we have Dc

τ−(1) = 0
but U cτ−(1) > 0, then there must be at least c customers in Lcτ− (since Lcτ−(1) = U cτ−(1) > 0).
But then the customer arriving at time τ would force |Lcτ | = c + 1, which would break our
initial assumption. Therefore if U cτ−(1) − Lcτ−(1) = Dc

τ−(1) = 0 it must be the case that
U cτ−(1) = 0.

On the other hand, consider a two server system in which U2 is instantiated at time
T = −2 with a single service duration of length 1, and which sees pairs of arrival times and
services (t, S) as follows: (−1.9, 1.2), (−1.7, 0.6), (−1.6, 0.2). It is simple to check that if there
are no further arrivals, U2 and L2 will coalesce at time −0.4. Furthermore, the only arrival
time at which D2

τ−(1) = 0 is τ = −1.9, with U2
τ−(1) = 0; thus the condition of Theorem 6 is

satisfied by this example. However, the condition of Proposition 5 clearly fails, since |L2
t | = 3

for t ∈ [−1.6,−1.1).
(Note that in Example 4 the condition of Theorem 6 clearly fails for arrival time t3.)

The key to proving Theorem 6 is to consider the time until coalescence of the sandwiching
processes U c and Lc when viewed at time t ≥ T , i.e. the time taken for U ct to clear all work
in coordinates which disagree with those in Lct . Let us write Cct for this quantity:

Cct = max
k/∈Ac

t

U ct (k) = U ct (n
c
t) , (2)

where we define nct = max{1 ≤ k ≤ c : k /∈ Act}.
It is clear that the process Cc = {Cct : T ≤ t} decreases deterministically at unit rate until

it either hits zero (at which point Lc and U c coalesce) or a new customer arrives. Consider
then what happens to Cc if there is an arrival at time τ with associated service duration S.
Let kU and kL be the coordinates satisfying U cτ (kU ) = U cτ−(1) + S and Lcτ (kL) = Lcτ−(1) + S.
That is, the arriving job gets allocated to the server with the least work in each of U cτ− and
Lcτ−, and then when the workload vectors are reordered this job finds itself in position kU in
U cτ and kL in Lcτ . To be explicit

kU = min{k : U cτ−(1) + S ≤ U cτ−(k + 1) , 1 ≤ k < c} ,

with kU = c if the minimum above is taken over the empty set. Note that this convention –
that the new job is placed at the lowest coordinate possible, after reordering, in U cτ – allows
us to deal with the possibility that U cτ−(1) + S = U cτ−(k + 1) for some 1 ≤ k < c, which
would result in the vector U cτ having two matching but non-zero entries. (When arrivals are
Poisson this possibility occurs with probability zero, of course, in which case this convention
is somewhat unnecessary.) In particular, this implies that

U cτ (kU ) > U cτ−(kU ) . (3)

There are two cases to consider when assessing the impact of an arrival on Cc, depending
on whether or not the servers with least workload in U cτ− and Lcτ− are in agreement.

Case 1: 1 ∈ Acτ−
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(i) Suppose first that kU ≥ ncτ−. Since U cτ−(k) = Lcτ−(k) for all k > ncτ−, it must be the
case that kL = kU ∈ Acτ . So ncτ = ncτ− − 1 and Ccτ = U cτ (n

c
τ ) = U cτ−(n

c
τ−) = Ccτ−.

(ii) Alternatively, if kU < ncτ− then ncτ = ncτ−, and so Ccτ = Ccτ− once again.

Thus there is no change to Cc if the arriving customer finds U cτ−(1) = Lcτ−(1).

Case 2: 1 /∈ Acτ−

(i) Suppose that kU ≥ ncτ−. Since U cτ−(k) = Lcτ−(k) for all k > ncτ−, it must be the
case that kL ≤ kU . We claim that kU /∈ Acτ , and so ncτ = kU ; it then follows that
Ccτ = U cτ (n

c
τ ) = U cτ (kU ) = U cτ−(1) + S > Ccτ−.

To see that ncτ = kU , we need to show that Lcτ (kU ) < U cτ (kU ). Notice that

Lcτ (kU ) = max{Lcτ−(kU ), Lcτ−(1) + S} and U cτ (kU ) = U cτ−(1) + S .

Clearly Lcτ−(1) + S < U cτ−(1) + S (since 1 /∈ Acτ−). Furthermore, Lcτ−(kU ) ≤
U cτ−(kU ) < U cτ (kU ) thanks to (3).

(ii) Alternatively, if kU < ncτ− then kL ≤ ncτ− also, and so ncτ = ncτ−. Thus Ccτ = Ccτ−.

Thus when 1 /∈ Acτ−, Ccτ = max{U cτ−(ncτ−), U cτ−(1) + S}.

In summary, we see that Cct increases only at arrival times τ for which 1 /∈ Acτ− and
kU ≥ ncτ−. That is,

Ccτ =

{
Ccτ− if 1 ∈ Acτ−
max{Ccτ−, U cτ−(1) + S} if 1 /∈ Acτ− .

(4)

The next result is key to the proof of Theorem 6: it shows that, under the same assumption
as the theorem, the time to coalescence with c + m servers is dominated by the time to
coalescence with c servers.

Lemma 8. Fix some m ≥ 0, and suppose that the following two conditions both hold at arrival
time τ :

• Cc+mτ− ≤ Ccτ−

• if 1 ∈ Acτ− then Lcτ−(1) = U cτ−(1) = 0.

Then Cc+mτ ≤ Ccτ .

Proof. We consider the two possible scenarios seen by the customer arriving at time τ .

1. 1 ∈ Ac+mτ− .

2. 1 /∈ Ac+mτ− and 1 /∈ Acτ−.

(Note that the third possibility, that 1 /∈ Ac+mτ− and 1 ∈ Acτ−, is excluded by our assumption.
Indeed, if 1 ∈ Acτ− then our assumption forces Lcτ−(1) = U cτ−(1) = 0. So the arrival at time
τ would find a server empty in U c, and hence must also find a server empty in U c+m and,
therefore, in Lc+m. But that would imply that 1 ∈ Ac+mτ− .)

We treat these two scenarios in order.
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1. Since 1 ∈ Ac+mτ− , we know from (4) that the coalescence time for Lc+m and U c+m is
unchanged by the new arrival. In addition, the coalescence time for Lc and U c cannot
decrease due to this arrival. So

Cc+mτ = Cc+mτ− ≤ Ccτ− ≤ Ccτ .

2. Here the arrival potentially affects the time until coalescence for both pairs of sandwich-
ing processes. However,

Cc+mτ = max{Cc+mτ− , U c+mτ− (1) + S} ≤ max{Ccτ−, U cτ−(1) + S} = Ccτ ,

where the inequality follows from the second assumption of the Lemma, and the previ-
ously established fact that U c+mτ− � U cτ−.

We can now complete the proof of Theorem 6. Recall that the sandwiching processes Lc+m

and U c+m are started at time T < 0 with Lc+mT empty and U c+mT instantiated using the same
set of residual workloads that are present in U cT . Now, it is clear that departures in U c+m

occur no later than in U c, and since CcT is simply the time taken for all customers present in
U cT to depart, it follows that

Cc+mT ≤ CcT .

Given that the assumption of Theorem 6 holds, Lemma 8 tells us that this ordering is preserved
for all t ∈ [T, T c]:

Cc+mt ≤ Cct , t ∈ [T, T c] .

But since Lc and U c coalesce at time T c < 0, we see that Cc+mT c = CcT c = 0, and so T c+m ≤ T c,
as claimed.

4 Simulations

The result of Theorem 6 provides us with a recipe for performing omnithermal perfect simu-
lation for M/G/(c+m) queues, for any m ∈ N ∪ {∞}.
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Omnithermal Algorithm
1: Use Algorithm 2 to establish a backoff time T < 0 and upper and lower sandwiching

processes U c and Lc over [T, 0] such that U c0 = Lc0:

(i) Calculate the coalescence time T c ∈ [T, 0] of U c and Lc;

(ii) If either

(a) the condition of Theorem 6 is satisfied for all arrival times in [T, T c], or

(b) the upper process U c is empty at some time in [T, 0]

go to Step 2.

(iii) Otherwise, set T ← 2T , and use Algorithm 2 to extend the simulation of the sand-
wiching processes over the new window [T, 0].
Go back to Step 1(i).

2: For each required m ∈ N ∪ {∞}, construct Lc+m over [T, 0], using the same sequence
of arrival times and services as in the construction of Lc. Return Lc+m0 as a perfect
equilibrium draw of the Kiefer-Wolfowitz vector for the M/G/(c+m) queue of interest.

Remarks. 1. In Step 1(ii), in addition to checking whether the condition of Theorem 6 is
satisfied, we check whether the upper sandwiching process U c has emptied. This is an-
other sufficient condition for coalescence of all pairs of sandwiching processes with more
servers (as pointed out at the start of Section 3), and including this condition allows for a
simple argument that the run-time of the Omnitheral Algorithm has finite expectation.
Indeed, let TRA = sup{t ≤ 0 : Yt = 0}, where Y is the random assignment dominating
process used in Algorithm 2 during Step 1. Our standing assumption that E

[
S2
]
<∞

ensures that the stationary process Y is positive recurrent, and so E [|TRA|] < ∞. If
Step 1 uses a backoff time T satisfying T < TRA then the upper process U c constructed
over [T, 0] will clearly be empty at time TRA (since U c is dominated by Y ); condition
1(ii)(b) of the Omnithermal Algorithm will then prevent any further backing off. Hence
the final backoff time T , and hence the run-time of the Omnithermal Algorithm, has
finite expectation as claimed.

2. If we are called upon to use Step 1(iii) of the algorithm and extend the simulations of U c

and Lc further into the past, we are guaranteed that these new sandwiching processes
(Ũ c and L̃c, say) will still coalesce by time T c: this follows from Theorem 5.1 of Connor
and Kendall (2015), which implies that

Lct � L̃ct � Ũ ct � U ct , t ∈ [T, 0] .

3. Note that in Step 2 we have included the possibility that m =∞: with infinitely many
servers each customer is assigned its own server upon arrival, irrespective of how many
customers are being served at the time. If the condition of Theorem 6 holds then it is
simple to see that the bounding processes U∞ and L∞ will coalesce before T c, and thus
the Omnithermal Algorithm can also be applied in this setting.
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Simulation results from 1,000 runs of the Omnithermal Algorithm forM/M/c queues with
various parameter combinations are presented in Table 1. In each case we recorded how
many runs of Algorithm 2 required additional backoff (as in Step 1(iii) of the Omnithermal
Algorithm) in order to produce an omnithermal sample. This increased with ρ, as might be
expected. Possibly more surprising however, is the observation that for any fixed value of ρ the
proportion of runs which required extending initially increased before decreasing as a function
of c. For those runs which did need extending, we also recorded the number of additional
backoffs required. Table 1 shows the median, upper quartile and maximum of these values:
note that for all combinations of parameters the upper quartile was at most 2. This indicates
that the additional computational overhead of using the Omnithermal Algorithm is relatively
minimal in most cases considered here.

The final line of each entry in Table 1 shows the percentage of runs for which the stronger
condition of Proposition 5 was satisfied, i.e. for which no customer arriving at the lower
sandwiching process Lc before coalescence had to wait to commence service. Note the negative
correlation between this figure and the proportion of runs which needed to be extended. For
relatively low values of ρ the stronger condition is nearly always satisfied, but for higher values
the difference in practice between the conditions of Proposition 5 and Theorem 6 becomes much
more apparent.

Table 1: Simulation results obtained from applying the Omnithermal Algorithm to an M/M/c queue
with µ = 1 and a range of values of c and ρ = λ/(µc); 1,000 runs were performed for each combination
of parameters. For each table entry: the first line shows the percentage of runs which needed extending
further into the past using the binary backoff scheme in Step 1(iii) of the algorithm; for those runs which
required extending, the second line reports the (median, upper quartile, maximum) of the number of
additional backoffs required; the third line shows the percentage of runs for which the condition of
Proposition 5 was satisfied.

ρ \ c 2 4 8 16 32 64

0.65
1.5%
(1,2,3)
96%

3.2%
(1,1,2)
93%

7.6%
(1,1,3)
94%

1.5%
(1,1,2)
98%

0.4%
(1,1,1)
99%

0%
(–)

100%

0.75
2.3%
(1,1,2)
88%

8.3%
(1,1,2)
78%

18.5%
(1,1,5)
76%

13.9%
(1,1,3)
83%

6.2%
(1,1,5)
92%

0.7%
(1,1,1)
99%

0.85
1.9%
(1,1,3)
69%

14.2%
(1,1,2)
47%

32.3%
(1,2,5)
30%

34.4%
(1,2,9)
24%

30.6%
(1,2,10)
26%

14.3%
(1,1,6)
53%

Finally, as a simple demonstration of the desirability of being able to produce omnithermal
samples, we used our algorithm to investigate the effect on workload of changing server number
for a heavily loaded M/M/c queue. We ran the algorithm 5,000 times using arrival rate
λ = 2.85, service rate µ = 1 and c = 3 (ρ = 0.95); 333 runs (7%) needed extending further
into the past as in Step 1(iii) of the algorithm, with only two of these requiring more than
two additional backoffs. We then used the output to produce perfect samples of the Kiefer-
Wolfowitz workload vectors for m ∈ {0, 1, 2, 3}. Figure 1 shows the mean value of each
coordinate of the vectors obtained. Increasing the number of servers from three to four can
be seen to decrease the value of the first coordinate (which represents the expected waiting
time of a customer arriving in equilibrium) by a factor of ten. Further detail is provided in
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Figure 2, where we show the effect on the distribution function of the remaining workload in
equilibrium at the first and last coordinates of the Kiefer-Wolfowitz vectors for the same set
of simulations.
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Figure 1: Mean of each coordinate of the workload vector for an M/M/(c+m) queue with λ = 2.85,
µ = 1, c = 3 and m ∈ {0, 1, 2, 3}. (Results from 5,000 runs of the Omnithermal Algorithm.)
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Figure 2: Distribution functions for workload at (a) first and (b) last coordinates of the workload
vector, for the set of simulations presented in Figure 1.

5 Variants and conclusions

We have shown how the efficient Algorithm 2 of Connor and Kendall (2015) for M/G/c
queues may be modified to allow for omnithermal perfect simulation; our new algorithm uses a
simple test to determine whether or not the dominating process used for the c-server algorithm
needs to be extended further into the past in order to allow for simultaneous sampling from
M/G/(c+m) queues for any m ∈ N∪ {∞}. The Omnithermal Algorithm has finite expected
run-time and, furthermore, we have provided numerical evidence which suggests that for a
wide range of parameters it involves relatively little additional computational expense. We
conclude by briefly considering two variants of our algorithm.

5.1 Varying other system parameters

An alternative natural setting in which one may be interested in omnithermal simulation is
that in which the stability of the queue is increased by having shorter service durations, rather
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than adding more servers. (We could equivalently consider queues with longer inter-arrival
times of course; however, for the domination arguments of Section 3 to hold it is essential
that the two systems being compared have the same set of arrival times. It is therefore more
convenient to adjust the service durations instead.) Suppose that service times in the more
stable system are distributed as βS for some β ∈ (0, 1]: this is equivalent to the service times
being distributed as S, but with each server now completing work at rate β−1. So we can
compare the two systems as in Section 3, feeding both the same sets of arrival times and
service durations, but with the time until coalescence in (2) replaced by

Cβt = βUβt (n
β
t )

(where we have once again used the superscript to indicate the parameter that varies between
the queues under consideration).

In a similar manner to Example 4, it is easy to conjure up a set of arrival times and service
durations such that the system completing work at rate β−1 has Cβt > C1

t for some values of
t. However, we note that in this new setting equation (4) becomes

Cβτ =

{
Cβτ− if 1 ∈ Aβτ−
max{Cβτ−, β(U

β
τ−(1) + S)} if 1 /∈ Aβτ− .

Using this, it is a simple exercise to check that if the condition of Theorem 6 is satisfied, the
sandwiching processes for the faster-working system will coalesce no later than do U c and Lc

for the originalM/G/c queue. In other words, we can perform omnithermal simulation in this
setting by simply replacing Step 2 of the Omnithermal Algorithm with the following variant:

2′. For any β ∈ (0, 1), construct Lβ over [T, 0], using the same set of arrival times and
services as in the construction of Lc. Return Lβ0 as a perfect equilibrium draw of the
Kiefer-Wolfowitz vector for the M/G/c queue, in which work is completed at rate β−1.

(Step 1 – in which we possibly extend some simulations further into the past – does not change
at all.)

In addition, we note that the coalescence arguments underpinning Section 3 do not rely
in any way on the distribution of inter-arrival times. As noted in the introduction, Blanchet
et al. (2015) have recently shown how to implement domCFTP for GI/GI/c queues using a
random assignment dominating process with upper and lower sandwiching processes in the
style of Algorithm 2 above. It is therefore possible to perform omnithermal simulation for
these queues, by using their algorithm in place of Algorithm 2 in Step 1 of the Omnithermal
Algorithm.

5.2 Perfect simulation for adaptive systems

In practical queueing situations it may be possible, indeed desirable, for a queue manager to
alter the number of servers being employed at any given time, in response to either endogenous
or exogenous effects, in order to strike a balance between server utilization and customer wait-
ing times. A variety of mathematical models exist for such adaptive systems, with relevance
to applications in telecommunication and road traffic networks. See, for example, Li and Yang
(2000); Kafetzakis, Kontovasilis, and Stavrakakis (2011); Bruneel, Wittevrongel, Claeys, and
Walraevens (2016).
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Given that the Omnithermal Algorithm allows for simultaneous sampling ofM/G/(c+m)
queues for any m ≥ 0, it is natural to wonder whether it can also be applied to systems in
which the parameter m is allowed to vary as a function of the set of customers present in the
system. Unfortunately, for many natural models of adaptive systems it is not the case that the
monotonicity of workload vectors established in Proposition 3 is guaranteed to be maintained;
in particular, it becomes possible for customers to depart from the upper sandwiching process
sooner than from the lower one. Examples of such models include ones in which the number of
servers at time t, ct, evolves as a function of ct− and either the length of time since some server
was last idle (the length of the current busy period), or the number of customers waiting to
begin service at time t.

Similarly, models in which servers can take vacations when idle, or in which the service
rate can be altered as a function of the number of customers waiting, can be seen to exhibit
monotonicity problems. The only sensible adaptive model which seems to (somewhat obvi-
ously) maintain monotonicity between upper and lower sandwiching processes is one in which
ct depends upon sgn(Qt − ct−), where Qt is the number of customers in the system at time t.
That is, ct depends upon whether (taking into account a possible arrival or departure at time
t) the system has a surplus, just the right number, or a deficit of servers. (But, importantly,
the size of any deficit can’t be used to control ct.) With this setup, one could allow ct to evolve
according to the rule: if there is a deficit, and there are servers to spare, add one immediately;
if there is a surplus, reduce the number of servers if you wish. This system still obeys the
monotonicity of Proposition 3, meaning it is possible to sample perfectly from its equilibrium
distribution using a simple variant of the Omnithermal Algorithm. However, the resulting
equilibrium could just as easily be obtained by sampling from the M/G/(c +mmax) system
(where (c+mmax) is the maximum available number of servers, possibly equal to∞) and then
ignoring any servers which are idle at time zero.

For more interesting adaptive systems, for which the monotonicity of Proposition 3 fails
to hold, it may be possible to carry out perfect simulation under the assumption that the
(variable) number of servers used is always at least c, with the corresponding M/G/c system
being stable. In this case we may be able to use the Omnithermal Algorithm with Step
1(ii)(a) removed: for reasonable control processes (e.g. ones in which ct is increasing in some
measure of how busy the system is), U c will dominate the workload vector for the adaptive
system started from zero at time T , and so we simply have to backoff until U c empties before
time zero. Variations on this idea may be necessary, or of course there may be some other
monotonicity which could be exploited to produce an entirely different algorithm, depending
upon the exact control policy. Note that the time taken for U c to empty will in general be
rather large (e.g. for the simulations presented in Table 1, U c emptied before time zero in less
than 1% of runs with c ≥ 8), but will certainly be no greater than the run-time of Algorithm 1.
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