
14

Bidiagonal SVD Computation via an Associated

Tridiagonal Eigenproblem

OSNI MARQUES, Lawrence Berkeley National Laboratory

JAMES DEMMEL, University of California at Berkeley

PAULO B. VASCONCELOS, Centro de Matemática & Faculdade Economia, University of Porto

The Singular Value Decomposition (SVD) is widely used in numerical analysis and scientific computing ap-
plications, including dimensionality reduction, data compression and clustering, and computation of pseudo-
inverses. In many cases, a crucial part of the SVD of a general matrix is to find the SVD of an associated
bidiagonal matrix. This article discusses an algorithm to compute the SVD of a bidiagonal matrix through the
eigenpairs of an associated symmetric tridiagonal matrix. The algorithm enables the computation of only a
subset of singular values and corresponding vectors, with potential performance gains. The article focuses
on a sequential version of the algorithm, and discusses special cases and implementation details. The im-
plementation, called BDSVDX, has been included in the LAPACK library. We use a large set of bidiagonal
matrices to assess the accuracy of the implementation, both in single and double precision, as well as to iden-
tify potential shortcomings. The results show that BDSVDX can be up to three orders of magnitude faster
than existing algorithms, which are limited to the computation of a full SVD. We also show comparisons of an
implementation that uses BDSVDX as a building block for the computation of the SVD of general matrices.

CCS Concepts: • Mathematics of computing → Solvers; Computations on matrices;

Additional Key Words and Phrases: Singular value decomposition, eigenvalues, eigenvectors, LAPACK, nu-
merical software, design, implementation

ACM Reference format:

Osni Marques, James Demmel, and Paulo B. Vasconcelos. 2020. Bidiagonal SVD Computation via an Associ-
ated Tridiagonal Eigenproblem. ACM Trans. Math. Softw. 46, 2, Article 14 (May 2020), 25 pages.
https://doi.org/10.1145/3361746

1 INTRODUCTION

The computation of the full set of singular values and vectors or a subset of them of a large,
general matrix A ∈ Rm×n , is a demanding task, especially when high accuracy is required. We
denote the decomposition A = USVT , with left singular vectors U = [u1,u2, . . .um], U ∈ Rm×m ,
right singular vectors V = [v1,v2, . . .vn], V ∈ Rn×n , U and V orthogonal matrices, and singular

This work was partially supported by the National Science Foundation under grant No. 1339676 (SI2 SSI: Collaborative
Research), Sustained Innovations for Linear Algebra Software (SILAS). The third author acknowledges the support from
Fundação para a Ciência e a Tecnologia (FCT) through the sabbatical fellowship SFRH/BSAB/142986/2018.
Authors’ addresses: O. Marques, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, MS 50A3111, Berkeley, California 94720 USA; email: oamarques@lbl.gov; J. Demmel, Computer Science Division,
University of California at Berkeley, Berkeley CA 94720 USA; email: demmel@berkeley.edu; P. B. Vasconcelos, Faculdade
de Economia da Universidade do Porto, Rua Dr. Roberto Frias 4200-464 Porto, Portugal; email: pjv@fep.up.pt.
ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the
United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for government purposes only.
© 2020 Association for Computing Machinery.
0098-3500/2020/05-ART14 $15.00
https://doi.org/10.1145/3361746

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

https://doi.org/10.1145/3361746
https://doi.org/10.1145/3361746
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3361746&domain=pdf&date_stamp=2020-05-19

14:2 O. Marques et al.

values s1 ≥ s2 ≥ . . . sn ≥ 0 on the main diagonal of S ∈ Rm×n . This article focuses on the real case,
but the discussion can be easily extended to the complex case.

Two main approaches exist for obtaining the singular value decomposition (SVD) via an eigen-
value problem formulation—through the eigenpairs of the normal equation matrix or through
those of an augmented matrix.

The first approach obtains the SVD through the eigenpairs (λ,x) of matrices ATA ∈ Rn×n and
AAT ∈ Rm×m , as long as the singular values are distinct. The nonzero eigenvalues of ATA and
AAT are thus the squares of the nonzero singular values of A. However, if A is square and orthog-
onal, then both ATA and AAT are the identity and provide little information about the singular
vectors, which are not unique—A = (AQ)I (QT) is the SVD of A for any orthogonal matrix Q . This
approach works well for the separation of large singular values, but brings small singular values
into a cluster. Once either the left or the right singular vectors are computed, the others require a
multiplication by A or AT , which can degrade accuracy. A potential difficulty for some algorithms
(e.g., the one presented in this article) is large clusters of singular values, as this may have an
impact on the orthogonality of the computed singular vectors.

The second approach consists in obtaining the SVD through the eigenpairs of the Jordan-
Wielandt matrix1

C =
⎡⎢⎢⎢⎢⎣

0 A

AT 0

⎤⎥⎥⎥⎥⎦ , (1)

with eigenvalues directly related to the singular values, while the left and right singular vectors can
be extracted from the corresponding eigenvectors. One advantage of using C is that the singular
values are not squared. One disadvantage is thatC is larger in size and the smallest singular values
are mapped into the interior of the spectrum. In this article, we focus on the casem = n. Then, one
can write [Golub and Kahan 1965]

C = J
⎡⎢⎢⎢⎢⎣
−S 0

0 S

⎤⎥⎥⎥⎥⎦ JT , (2)

where J ∈ Rn×n is defined as

J =
⎡⎢⎢⎢⎢⎣
U U

−V V

⎤⎥⎥⎥⎥⎦ /
√

2, (3)

which shows that the eigenvalues of C are ±s and its eigenvectors are mapped into the singular
vectors of A (scaled by

√
2) in a very structured manner.

An alternative to the two aforementioned approaches is given by the polar decomposition: the
SVD of A = (UV)SVT is obtained through A = UH , where U is orthogonal and H is symmetric
positive-semidefinite, with the symmetric eigendecomposition H = VSVT [Higham and Papadim-
itriou 1993]. Building upon the work of Nakatsukasa et al. [2010] on the QR-based dynamically
weighted Halley algorithm, Nakatsukasa and Higham [2013] proposed improved algorithms based
on the polar decomposition. However, we have not explored these developments since our goal
was to use functionalities available in LAPACK [Anderson et al. 1999], as discussed below.

In practical calculations, the SVD of a general matrix A involves the reduction of A to a bidiag-
onal matrix B through orthogonal transformations, i.e., A = Û BV̂T . The singular values are thus
preserved; the singular vectors of B need to be back-transformed into those of A.

If B is an upper bidiagonal matrix with (a1,a2, . . . an) on the main diagonal and (b1,b2, . . .bn−1)
on the superdiagonal, we can replace A with B in Equation (1) to obtainC = P TGK PT , whereTGK

1In Fan and Hoffman [1955], H. Wielandt was credited for this formulation.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:3

Table 1. Current (Bidiagonal, BD) SVD and (Tridiagonal, ST)
Eigensolvers Implemented in LAPACK

routine usage algorithm
BDSQR all s and (opt.) u and/or v implicit QL or QR
BDSDC all s and (opt.) u and v divide-and-conquer
STEQR all λ’s and (opt.) x implicit QL or QR
STEDC all λ’s and (opt.) x divide-and-conquer
STEVX selected λ’s and (opt.) x bisection and inverse iteration
STEMR selected λ’s and (opt.) x MRRR

The acronyms follow the naming scheme described in page 14, [Anderson et al. 1999]. The
last two letters in the acronyms identify the algorithm.

is the Golub-Kahan symmetric tridiagonal matrix,

TGK = tridiag
�	

a1 b1 a2 b2 . . . bn−1 an

0 0 0 0 . . . 0 0
a1 b1 a2 b2 . . . bn−1 an

��, (4)

with the perfect shuffle P = [en+1, e1, en+2, e2, en+3, . . . e2n], with ei , i = 1, 2, . . . 2n, corresponding
to the columns of the identity matrix of dimension 2n. Then, if the eigenpairs of TGK are (±s, z),
with ‖z‖ = 1, from Equations (2)–(3), we obtain

z = P

[
u
±v

]
1
√

2
,

where u and v are the singular vectors associated with s . Thus, we can extract the SVD of B from
the eigendecomposition of TGK .

The set of LAPACK [Anderson et al. 1999] subroutines intended for the computation of the
SVD of bidiagonal matrices, and eigenvalues and eigenvectors of tridiagonal matrices are listed in
Table 1. We refer the reader to Demmel et al. [2008] for a discussion on the tradeoffs (performance,
accuracy) of the symmetric tridiagonal subroutines. We consider how the last three of those sub-
routines could be applied to Equation (4), specially for the computation of subsets of eigenpairs,
which, in turn, could reduce the computational costs when a full SVD is not needed (or for the
eventual computation of subsets of singular values and vectors in parallel).
STEDC could be potentially redesigned to compute a subset of eigenvectors, saving some work

but only at the top level of the recursion of the divide-and-conquer algorithm (see [Auckenthaler
et al. 2011]). On the other hand, STEVX and STEMR offer more straightforward alternatives.
STEVX performs bisection (subroutine STEBZ in LAPACK) to find selected eigenvalues followed

by inverse iteration (subroutine STEIN in LAPACK) to find the corresponding eigenvectors for
an O (n) cost per eigenpair. STEVX may occasionally fail to deliver orthogonal eigenvectors when
the eigenvalues are too closely clustered (although STEIN implements a modified Gram-Schmidt
reorthogonalization strategy).
STEMR uses a sophisticated algorithm called Multiple Relatively Robust Representations (MRRR)

[Dhillon 1997; Dhillon and Parlett 2004; Dhillon et al. 2006] that produces nearly guaranteed or-
thogonal eigenvectors. In fact, the computation of the bidiagonal SVD using MRRR, by applying
MRRR to the coupled eigenvalue decompositions of BTB and BBT , has been discussed in Grosser
and Lang [2003, 2005] and Willems et al. [2006]. However, an implementation discussed in Willems
et al. [2006] and named BDSCR was abandoned—unsatisfactory results (large residuals for the
SVD) were obtained in a number of cases, revealing gaps in the theory for the coupled approach.
The problem was found to be related to a potential mismatch in twisted factorizations used by
MRRR in that context [Willems 2010, p. 128,149]. Subsequently, an improved version of the MRRR

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:4 O. Marques et al.

algorithm targetingTGK for SVD computations was proposed in Willems [2010] and Willems and
Lang [2013]; however, our experiments with an implementation given in Willems and Lang [2013]
and named STEXR exposed deficiencies (inaccuracy) for relatively simple matrices. We show one
such case in Appendix B.

Therefore, we have decided to adopt STEVX for computing eigenvalues and eigenvectors of Equa-
tion (4), even though it also has known failure modes. In particular, in extreme situations of tightly
clustered eigenvalues, the bisection may potentially not converge to the desired accuracy, or not
all eigenvalues within an interval defined by indices may be found, or inverse iteration may fail
to converge with the allowed number of iterations. Although our exhaustive tests with STEVX (in-
cluding the ones shown in Section 5) have never detected such anomalies, we plan to replace
STEVX with a more robust implementation of MRRR for Equation (4) when such an implementa-
tion becomes available.2 MRRR would dispense with reorthogonalizations that can take a good
share of the computing time for matrices with tight clusters of eigenvalues. We emphasize that it
is not enough to obtain accurate eigenpairs for Equation (4): we also need the extractedu’s andv’s
to be accurate. We note that Björck [1996, Chapter 2] discusses the computation of singular values
by spectrum slicing, but not the computation of the corresponding singular vectors.

The main contribution of this article is to present and discuss an implementation of an algorithm
for the SVD of a bidiagonal matrix obtained from eigenpairs of a tridiagonal matrix TGK . While
the associated formulation is not necessarily new, as mentioned above, its actual implementation
requires care in order to deal correctly with multiple or tightly clustered singular values. The im-
plementation is called BDSVDX, which was first introduced in Linear Algebra PACKage (LAPACK)
3.6.0,3 with preliminary results reported in Marques and Vasconcelos [2016]. Here, along with a
detailed discussion of the algorithm, we use a larger set of test cases and present the results more
clearly. We elaborate on the refinement of vectors and give an in-depth explanation of the various
splitting possibilities. Also, we discuss the outliers, in single and double precision, and examine
the performance of the proposed algorithm.

To the best of our knowledge, no such implementation has been done and exhaustively tested.
In concert with BDSVDX, we have also developed GESVDX (real and complex versions), which takes
a general matrix A, reduces it to bidiagonal form B, invokes BDSVDX, and then maps the output of
BDSVDX into the SVD of A. In LAPACK, the current counterparts of GESVDX are GESVD and GESDD,
which are based on the BD subroutines listed in Table 1 and can only compute all singular val-
ues (and optionally singular vectors). The computation of a full SVD can be significantly more
expensive than a partial one. For example, our experiments showed that BDSVDX can be 3 orders
of magnitude faster than its counterparts, and GESVDX can be 10 times faster than its counterparts.

The rest of the article is organized as follows. First, we discuss how singular values are mapped
into the eigenvalue spectrum. Second, we discuss special cases, the criterion for splitting a bidi-
agonal matrix, and other implementation details. Third, we show the results of our tests with
BDSVDX using a large set of bidiagonal matrices to assess both its accuracy (in single and double
precision) and its performance with respect to BDSQR and BDSDC.4 We also compare the perfor-
mance of GESVDX with those of GESVD and GESDD (in double precision, real and complex), and
show how the time is spent in the various phases of GESVDX. Finally, we discuss limitations of the
algorithm and opportunities for future work. A pseudocode showing the main phases of BDSVDX is
given in Appendix A.

2At the time of this writing, [LAPACK 2018] lists two issues (bugs) related to STEMR. The issues are related to safeguards
mechanisms against NaNs, which may lead to an early termination of STEMR even for some relatively benign matrices.
3https://github.com/Reference-LAPACK
4A modified and potentially faster version of BDSDC exploiting low-rank properties of broken arrow matrices has been
proposed in [Li et al. 2014]; see also [Vogel et al. 2016].

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

https://github.com/Reference-LAPACK

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:5

2 MAPPING SINGULAR VALUES INTO EIGENVALUES

Similar to BDSQR and BDSDC, BDSVDX allows the computation of singular values only or singu-
lar values and the corresponding singular vectors. The returned singular values are the same
in both cases since STEVX is invoked in a way that forces the use of bisection, instead of QR or
the Pal-Walker-Kahan variant of the QL or QR algorithm, for computing the eigenvalues of TGK .
Borrowing features from STEVX, BDSVDX can be used in three modes, through a character variable
RANGE. If RANGE=“A”, all singular values will be found: BDSVDX will compute the smallest (negative
or zero) n eigenvalues of the correspondingTGK . If RANGE=“V”, all singular values in the half-open
interval [VL,VU) will be found—BDSVDX will compute the eigenvalues of the corresponding TGK

in the interval (-VU,-VL]. If RANGE=“I”, the IL-th through IU-th singular values will be found—the
indices IL and IU are mapped into values (appropriate VL and VU) by subroutine STEBZ, which ap-
plies bisection toTGK . VL, VU, IL, and IU are arguments of BDSVDX, which are mapped into similar
arguments for STEVX. Therefore, BDSVDX inherits the shortcomings of STEVX mentioned previously
(i.e., bisection may fail to converge, not all eigenvalues in a given interval may be found, or in-
verse iteration may fail to converge). For the mapping of indices into values, bisection could be
potentially replaced by dqds [Parlett 1995], possibly leading to gains in performance.

If the singular vectors of a matrix B of dimension n are requested, BDSVDX returns an array Z
of dimension 2n × p, where p ≤ n is a function of RANGE. Each column ofZ will contain (uT

k
,vT

k
)T

corresponding to singular value sk , i.e.,

Z =
⎡⎢⎢⎢⎢⎣
U

V

⎤⎥⎥⎥⎥⎦ , (5)

where U = [uk ,uk+1, . . .uk+p−1], V = [vk ,vk+1, . . .vk+p−1], with k depending on RANGE and pos-
sibly also VL, VU, IL, and IU.

It is important to note that STEVX returns eigenvalues (and corresponding vectors) in ascending
order, so we target the negative part of the eigenvalue spectrum (i.e., −S) in Equation (2). As a
result, the absolute values of the returned eigenvalues give us the singular values in the desired
order, s1 ≥ s2 ≥ . . . sn ≥ 0. Only the signs of the entries in the eigenvectors that are reloaded toV
need to be altered.

3 SPLITTING: SPECIAL CASES

Our code must deal properly with cases when one or more of the 2n − 1 parameters (ai ,bi) vanish.
Most presentations just take the case when the bidiagonal matrix B is square. However, when
aj = 0, 1 < j < n, then B may be written

B =
⎡⎢⎢⎢⎢⎣
B1 0

0 B2

⎤⎥⎥⎥⎥⎦ , (6)

where B1 is (j − 1) × j and B2 is (n − j + 1) × (n − j). Thus, neither B1 nor B2 is square. In partic-
ular, B1 must have a normalized column null vector v̂ , B1v̂ = 0(j−1)×1, which exhibits the linear
dependence of B1’s columns. Likewise, there must be a null vector û, ûTB2 = 01×(n−j) , exhibiting
the dependence among B2’s rows. In general, B1’s rows and B2’s columns are linearly independent
sets if no other diagonal or superdiagonal entries are zero.

The Golub-Kahan matrix T (1)
GK

for B1 comes from the (2j − 1) × (2j − 1) matrix⎡⎢⎢⎢⎢⎣
0 B1

BT
1 0

⎤⎥⎥⎥⎥⎦ = P1T
(1)

GK
PT

1 ,

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:6 O. Marques et al.

where

T (1)
GK
= tridiag

�		

a1 b1 a2 b2 . . . aj−1 bj−1

0 0 0 0 . . . 0 0

a1 b1 a2 b2 . . . aj−1 bj−1

���,
and P1 is the perfect shuffle of appropriate dimension. In this case, T (1)

GK
is of odd order and must

be singular because T (1)
GK

is similar to −T (1)
GK

, so its nonzero eigenvalues come in plus-minus pairs,
and the sum of all the eigenvalues is zero. By the observation above, the corresponding null vector
must be

PT
1

[
0(j−1)×1

v̂

]
,

because

T (1)
GK

PT
1

[
0(j−1)×1

v̂

]
= PT

1

⎡⎢⎢⎢⎢⎣
0 B1

BT
1 0

⎤⎥⎥⎥⎥⎦ P1P
T
1

[
0(j−1)×1

v̂

]
= PT

1

⎡⎢⎢⎢⎢⎣
0(j−1)×1

0j×1

⎤⎥⎥⎥⎥⎦
since B1v̂ = 0(j−1)×1.

The expressions for B2’s singular triples (σ ,u,vT) follow a similar pattern, provided that we
write the augmented (2(n − j) + 1) × (2(n − j) + 1) matrix as⎡⎢⎢⎢⎢⎣

0 BT
2

B2 0

⎤⎥⎥⎥⎥⎦ = P2T
(2)

GK
PT

2 ,

since B2 has more rows than columns, where

T (2)
GK
= tridiag

�	

aj+1 bj+1 aj+2 . . . bn−1 an

0 0 0 . . . 0 0
aj+1 bj+1 aj+2 . . . bn−1 an

��
and P2 is the perfect shuffle of appropriate dimension. The row null vector for B2 must be
(01×(n−j), û

T)P2 because

(01×(n−j), û
T)P2T

(2)
GK
= (01×(n−j), û

T)P2P
T
2

⎡⎢⎢⎢⎢⎣
0 BT

2

B2 0

⎤⎥⎥⎥⎥⎦ P2 = (01×(n−j), 01×(n−j+1))P2

since ûTB2 = 01×(n−j) .

The other mappings between singular vectors of B1 and B2 and eigenvectors of T (1)
GK

and T (2)
GK

are the same as in the square case. We include them here for completeness. Consider B1v = uσ ,
uTB1 = σvT , σ > 0, ‖u‖ = ‖v ‖ = 1. Then,[

u
±v

]
σ =

[
0 B1

BT
1 0

] [
u
±v

]
= P1T

(1)
GK

PT
1

[
u
±v

]
,

which reveals that

PT
1

[
u
±v

]
1
√

2

are T (1)
GK

’s normalized eigenvectors for eigenvalues +σ and −σ .
In practice, and as mentioned before, we choose to compute only the wanted nonpositive

eigenpairs in monotone increasing order because that delivers the wanted singular triples in

the conventional monotone decreasing order of singular values. When T (1)
GK

’s spectrum is labeled
λ1 ≤ λ2 ≤ . . . λj−1 ≤ λj = 0 ≤ λj+1 · · · ≤ λ2j−1, then σ1 = |λmin | = |λ1 |. Finally, we note that the
case j = 1 fits the general pattern of Equation (6) with no first row (0 B2), and the case j = n fits
with no second row (B1 0).

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:7

Splitting and the output arrayZ
As discussed above, if, for a given i , bi = 0 (or it is tiny enough to be set to zero, as discussed
later), the matrix B splits and the SVD for each resulting (square) submatrix of B can be obtained
independently. In the following, we use small matrices B to illustrate the splitting in the main
diagonal and its effect onZ.

Zero in the interior. Let us assume that n = 5 and a3 = 0. Then, we have the following SVD:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

a2 b2

0 b3

a4 b4

a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
U1

U2

] [
S1

S2

] [
VT

1
VT

2

]
,

whereU1 andV2 are 2-by-2,U2 andV1 are 3-by-3, S1 is 2-by-3 (its third column contains only zeros),
and S2 is 3-by-2 (its third row contains only zeros). The first three columns of the eigenvector

matrices of T (1)
GK

and T (2)
GK

are

Z (1)
5×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v (1)
1,1 v (1)

1,2 v (1)
1,3

u (1)
1,1 u (1)

1,2 0

v (1)
2,1 v (1)

2,2 v (1)
2,3

u (1)
2,1 u (1)

2,2 0

v (1)
3,1 v (1)

3,2 v (1)
3,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D−1, Z (2)

5×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u (2)
1,1 u (2)

1,2 u (2)
1,3

v (2)
1,1 v (2)

1,2 0

u (2)
2,1 u (2)

2,2 u (2)
2,3

v (2)
2,1 v (2)

2,2 0

u (2)
3,1 u (2)

3,2 u (2)
3,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D−1,

where Z (1)
5×3 and Z (2)

5×3 show how the entries of the eigenvectors corresponding to the three smallest

eigenvalues of T (1)
GK

, λ(1)
1 < λ(1)

2 < λ(1)
3 , andT (2)

GK
, λ(2)

1 < λ(2)
2 < λ(2)

3 relate to the entries ofU1,U2,V1,

and V2, where v (1)
i j are the entries of V1 and so on. Note that the left and right singular vectors

corresponding to s3 are in different Z matrices, and D is a diagonal matrix with entries (
√

2,
√

2, 1).
In this case, the 10-by-5 array Z (see Equation (5)) returned by BDSVDX is

Z = P
⎡⎢⎢⎢⎢⎣
Z (1a)

5×2 Z (1b)
5×3

0 Z (2)
5×3

⎤⎥⎥⎥⎥⎦ ,
where P is the perfect shuffle of appropriate dimension, Z (1a)

5×2 contains the first two columns of

Z (1)
5×3, and Z (1b)

5×3 contains zeros in its two first columns and the last column of Z (1)
5×3 in its third

column.

Zero at the top. If n = 4 and a1 = 0, then

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b1

a2 b2

a3 b3

a4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
U
] [0

S

] [
1

VT

]
,

where the left singular vector matrix U is 4-by-4, S is 3-by-3, and the right singular vector matrix
V is 3-by-3. If we construct a TGK from B, its first row and column will be zero, and the entries of
the eigenvectors corresponding to the five smallest eigenvalues ofTGK (again, related explicitly to

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:8 O. Marques et al.

singular values of B) relate to the entries of U and V as follows:

Z8×5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 u1,1 u1,2 u1,3 u1,4

0 v1,1 v1,2 v1,3 0
0 u2,1 u2,2 u2,3 u2,4

0 v2,1 v2,2 v2,3 0
0 u3,1 u3,2 u3,3 u3,4

0 v3,1 v3,2 v3,3 0
0 u4,1 u4,2 u4,3 u4,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D−1,

where D is a diagonal matrix with entries (1,
√

2,
√

2,
√

2, 1). In this case, the array Z (see Equa-
tion (5)) returned by BDSVDX is formed by taking the last four columns of Z8×5, and its last column
is concatenated with the first column of Z8×5.

Zero at the bottom. If n = 4 and a4 = 0, then

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a1 b1

a2 b2

a3 b3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
U

1

] [
S

0

] [
VT

]
,

where the left singular vector matrix U is 3-by-3, S is 3-by-3, and the right singular vector matrix
V is 4-by-4. If we construct a TGK from B, its last row and column will be zero, the entries of
the eigenvectors corresponding to the five smallest eigenvalues ofTGK (again, related explicitly to
singular values of B) relate to the entries of U and V as follows:

Z8×5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1 v1,2 v1,3 v1,4 0
u1,1 u1,2 u1,3 0 0
v2,1 v2,2 v2,3 v2,4 0
u2,1 u2,2 u2,3 0 0
v3,1 v3,2 v3,3 v3,4 0
u3,1 u3,2 u3,3 0 0
v4,1 v4,2 v4,3 v4,4 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D−1,

where D is a diagonal matrix with entries (
√

2,
√

2,
√

2, 1, 1). In this case, the array Z (see Equa-
tion (5)) returned by BDSVDX is formed by taking the first four columns of Z8×5, and its last column
is concatenated with the last column of Z8×5.

Criterion for splitting

In our implementation, we first form the matrix TGK and then check for splitting in two phases,
first the superdiagonal entries of TGK with row indexes 2, 4, . . . (i.e., bi). If a submatrix is found
(or the bottom of the matrix B is reached), we check the superdiagonal entries of TGK with row
indices 1, 3, . . . (i.e.,ai). Thus, if the matrix splits ina, the problem can be reduced to one of the three
special cases described above. The criterion that BDSVDX uses for splitting is the same that is used
in BDSQR; it is discussed in Demmel and Kahan [1990]. We note that the LAPACK subroutine that
performs bisection, STEBZ, also checks for potential splits, using a different criterion. However, in
our tests, we have not noticed any additional splits performed in STEBZ. Our testing infrastructure
contains matrices to trigger the cases of splitting discussed above. The infrastructure also allows
the setting of a percentage of entries of B that will be randomly set to 0, thus enabling the testing
of a variety of splitting patterns.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:9

4 REFINEMENT OF VECTORS

As discussed earlier, an eigenvector zi ofTGK , i ≤ 1 ≤ n, corresponds to zi = P (uT
i ,−vT

i)T /
√

2. This
means that we could simply create a vector ûi with the even entries of zi and a vector v̂i with the
odd entries of zi and multiply those vectors by

√
2 in order to obtain ui and vi . However, in our

implementation, we explicitly normalize ûi and v̂i . This allows us to check how far the norms of
ûi and v̂i are from 1√

2
, which may be the case if zi is associated with a small eigenvalue. In fact,

in Willems et al. [2006], the authors observe that there may be a deviation of orthogonality in the
singular vectors extracted from the eigenvectors of TGK for some bidiagonals with tight clusters
or very small singular values. This is related to the minors of TGK with an odd dimension, which
are all singular.

As a safeguard, if necessary, we apply a Gram-Schmidt reorthogonalization to ûi and v̂i against
the previous vectors. The test we have implemented to trigger reorthogonalization is based on
|‖û‖ − 1√

2
| ≥ tol , similarly for v̂ , where tol =

√
ε , and ε is the machine precision. While this re-

finement seems to work well for most cases, we have found situations for which the test based on
‖û‖ (and ‖v̂ ‖) is not sufficient. This is the case of the bidiagonal matrix B8×8 (n = 8) with diagonal
and superdiagonal entries defined as5ai = 10−(2i−1) , i = 1, 2, . . .n, bi = 10−(2i−2) , i = 1, 2, . . .n − 1,
whose two-norm is ≈ 1.005, two-norm condition number is O (1022), and the three smallest sin-
gular values are s6 = O (10−10), s7 = O (10−12), and s8 = O (10−22). For B8×8, |‖ûi ‖ − 1√

2
| < 10ε, i =

1, 2, . . .n. Similarly for vi , i = 1, 2, . . .n. However, taking the output U , S,V of BDSVDX in dou-
ble precision for B8×8, we obtain ‖UTB8×8V − S ‖/(‖B8×8‖nε) < 1.0, while ‖I −UTU ‖/(nε) and
‖I −VTV ‖/(nε) are O (105). To illustrate, Figure 1(a)–(b) show the orthogonality levels of U and
V . If we compare the entries of U and V obtained with BDSVDX with the ones obtained with
BDSQR (which returns U and V orthogonal to machine precision), we observe that the largest dif-
ferences in those entries are in the 7th entry of u8 and in the 8th entry of v8—the output from
BDSVDX agrees with the output from BDSQR to 10 and 9 digits, respectively, in those particular en-
tries, which areO (10−3) andO (10−6) . Figure 1(c)–(d) shows the differences in the entries ofu8 and
v8 computed by BDSQR and BDSVDX.

The eigenvectors z7 and z8 of the TGK obtained from B8×8, i.e., the eigenvectors associated
with eigenvalues −s7 and −s8, have small reciprocal condition numbers [Anderson et al. 1999,
p. 103], O (10−12), leading to singular vectors that are not orthogonal to machine precision. Yet,
the eigenvectors z of TGK as computed by STEVX are orthogonal to working precision; specifi-
cally, ‖I − ZTZ ‖/(2nε) = 0.125,Z = [z1, z2 . . . zn]. Experiments have shown that if we force the
reorthogonalization of u8 against ui , i = 4, . . . 7, we obtain ‖I −UTU ‖/(nε) < 1.0. Similarly, if we
reorthogonalize v8 against vi , i = 4, . . . 7, we obtain ‖I −VTV ‖/(nε) < 1.0. This suggests that the
strategy for triggering reorthogonalization needs also to take into account the separation and mag-
nitude of the eigenvalues and not only ‖û‖ and ‖v̂ ‖ (as in the current LAPACK implementation)
or simply a tighter tol . However, such a strategy remains to be further investigated.

5 NUMERICAL EXPERIMENTS

In this section, we discuss our experiments with BDSVDX using a large set of bidiagonal matrices.
We assess the accuracy of BDSVDX , in single and double precision, and compare its performance to
that of BDSQR and BDSDC. We also compare the performance of GESVDX against GESVD and GESDD.
Insights on the refinement of vectors are also provided.

5This matrix is not included in the tests in Section 5.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:10 O. Marques et al.

Fig. 1. Top: orthogonality level (surface mesh, log scale) of U and V for B8×8 computed by BDSVDX. Bottom:
difference in the j-th entry ofu8 andv8 computed by BDSQR and BDSVDX (the difference is scaled by ε , plotted
in log scale for values larger than 1).

Computational environment

We tested BDSVDX on a computer with a 4-core Intel Core i7-7700K processor at 4.2 GHz, 256 KB of
L1 cache (64 KB per core), 1 MB of L2 cache (256 KB per core), 8 MB of L3 cache, 32 GB of memory,
in double and single precision, using the Intel and GNU Fortran compilers. The results shown here
were obtained with the Intel compiler [Intel 2017a], with flags -O2 -fp-model strict, using
Intel’s MKL (BLAS) [Intel 2017b], and LAPACK 3.7.0.

Test matrices

Most of the bidiagonal matrices in our testbed were derived from symmetric tridiagonal matrices
described in Marques et al. [2008] (also used in Demmel et al. [2008]). In this case, we factored
T − νI = LLT (Cholesky) for a proper value of ν (obtained from the Gerschgorin bounds of T),
then set B = LT . The testbed includes a variety of tridiagonal matrices, for example:

• Matrices obtained by running the Lanczos algorithm ([Parlett 1998, Chapter 13], [Demmel
1997, Chapter 7], [Demmel et al. 2000, Chapter 4]) without reorthogonalization. This pro-
cedure can lead to matrices with very close eigenvalues (see one case below).

• Matrices used in Dhillon [1997] and Dhillon et al. [1997] (the matrices in the latter reference
inspired the development of the MRRR algorithm).

• Matrices used in Matsekh [2005] to test Godunov’s two-sided Sturm sequence.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:11

• Glued matrices defined as

tridiag
�	

γ1 γ2 γk−1

M1 M2 . . . Mk

γ1 γ2 γk−1

��, Mi =
�			

e (i)
1 e (i)

2 e (i)
ni−1

d (i)
1 d (i)

2 . . . d (i)
ni

e (i)
1 e (i)

2 e (i)
ni−1

����
for different types of matrices Mi , dimensions ni , and glue factors γi , i = 1, 2, . . .k . This
allows us to combine and experiment with a variety of eigenvalue distributions; see Parlett
and Vömel [2009] (and one case below).

• Classical orthogonal polynomials, see Abramowitz [1974, Chapter 22] and Olver et al. [2010,
Chapter 2018].

• Matrices that exposed bugs in LAPACK eigensolvers and provided by Intel, Mathworks, and
developers of the R package.

The testbed also includes random bidiagonal matrices, with entries obtained from a standard nor-
mal distribution and a uniform distribution, generated by LAPACK’s functions LARND and LARNV.
A notoriously difficult matrix (borrowed from the LAPACK SVD tester, CHKBD) has entries defined
as ex , where x is chosen uniformly on [2 log ε,−2 log ε], therefore ranging from ε−2 to ε2 (see one
case below). Our testing infrastructure as well as all matrices used in our experiments are available
upon request. The matrices will be included in a future release of LAPACK.

Accuracy tests

To test the accuracy of BDSVDX, we compute resid = ‖UTBV − S ‖/(‖B‖nε), orthU = ‖I −
UTU ‖/(nε), and orthV = ‖I −VTV ‖/(nε), where n is the dimension of B and ε is the machine
precision. To test the features RANGE=“I” and RANGE=“V” for a given B, we build the corresponding
T prior to invoking BDSVDX and compute its eigenvalues using bisection (i.e., STEBZ). Then, for
RANGE=“V”, we generate nV pairs of random indexes IL and IU, map those indexes into the eigen-
values of T , perturb the eigenvalues slightly to obtain corresponding pairs VL and VU, and then
invoke BDSVDXnV times with the corresponding pair of values. We need VL<VU, a requirement for
STEVXwhen RANGE=“V”, motivating the small perturbations in the eigenvalues ofT . For RANGE=“I”,
we simply generate nI pairs of random indexes IL and IU, and then invoke BDSVDX nI times with
the corresponding pair of indexes. We recall that in BDSVDX indices, IL and IU are mapped into val-
ues (as in STEVX). This mapping can produce values that differ from the ones obtained by simply
perturbing the eigenvalues.

Accuracy in double precision. Figure 2 shows the accuracy of BDSVDX in double precision. Fig-
ure 2(a)–(c) correspond to the computation of all singular values and vectors (RANGE=“A”), for 250
bidiagonal matrices with dimensions ranging from 9 to 4,006. Figure 2(d)–(i) show the accuracy of
BDSVDX for the same matrices of RANGE=“A”, but with nI = 10 (random) pairs of IL, IU (RANGE=“I”),
and nV = 10 (random) pairs of VL, VU (RANGE=“V”) for each matrix. In the figures, the matrices
(y-axis) are ordered according to their condition numbers (lowest to highest), which range from
1.0 to > 10200 (using singular values computed by BDSQR). For the sake of clarity, we use floor and
ceiling functions to bound the results in the x-axis, setting its limits to 10−1 and 104. In other words,
for plotting purposes we usemax (10−1, resid), andmin(104, resid) as limits; similarly for orthU and
orthV . We discuss the cases for which the results are bigger than the axis limit. To assist in the
interpretation of the results, Figure 3 shows a histogram of the symbols displayed in Figure 2.

For RANGE=“A”, as can be seen in Figure 2(a)–(c) and Figure 3(a), the majority of the results are
adequately below 1.0. There are three to five cases with results above 10.0, and we consider the
outliers to be the ones above 100. Specifically, in Figure 2(a):

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:12 O. Marques et al.

Fig. 2. resid, orthU , orthV (x-axis, log scale) for RANGE=“A”, “I”, and “V”, double precision. (2(a)–(c)) 250 matri-
ces (y-axis), increasing condition numbers; (2(d)–(f)) nI = 10 for each matrix of RANGE=“A”; (2(g)–(i)) nV = 10
for each matrix of RANGE=“A”.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:13

Fig. 3. Number of occurrences of resid, orthU , orthV (y-axis, log scale) for RANGE=“A”,“I”, and“V”, double pre-
cision, in the intervals [10−1, 100), [100, 101), [101, 102), and [102, 1/ε], ε ≈ 1.11 × 10−16. Note that RANGE=“I”
and“V” have 10 times more data points than RANGE=“A”, i.e., for each case in (a) there are 10 intervals in (b)
and (c).

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:14 O. Marques et al.

(a) Matrix 36 is a bidiagonal matrix of dimension 1,260 obtained from a tridiagonal matrix
computed by running the Lanczos algorithm without reorthogonalization (as discussed
above) 3 × n0 steps, where n0 is the dimension of the original (sparse) matrix (BCSSTK07,
from the BCSSTRUC1 set in MatrixMarket [2018]). The largest 138 eigenvalues of the tridi-
agonal matrix are of order O (10−3) and agree to 12 digits.

(b) Matrix 225 is a bidiagonal matrix of dimension 396 generated from a singular value distri-
bution with large clusters: the largest 41 singular values, for example, are of orderO (10−2)
and agree to 13 digits.

(c) Matrices 248–250 (outliers) are defined as ex , as discussed above. The dimensions of those
matrices are 125, 250, and 500, respectively. For n = 500, s1 ≈ O (10+31) and sn ≈ O (10−284)
(as computed by BDSQR). For these matrices, resid is O (10−2), but orthU and orthV are
O (10+13).

As expected, the effect of large clusters of singular values of matrices 36 and 225, and the oddities
of matrices 248–250 in Figure 2(a)–(c), are propagated to Figure 2(d)–(i). However, Figure 2(g)–(i)
contains additional results above 10.0. In these figures, case 966 (matrix 97 in Figure 2(a)–(c)) is
a bidiagonal matrix of dimension 2,100 obtained from a tridiagonal matrix formed by gluing 100
copies of the Wilkinson matrix W21+ (its diagonal entries are 10, 9, 8, . . . , 0, . . . 8, 9, 10 and its off-
diagonal entries are all 1) with glue factor γ = 10−11, so its eigenvalues (and, therefore, singular
values) are highly clustered. The values set to VL and VU in case 966 lead to the computation of
1,657 singular values and vectors.

Accuracy in single precision

Figure 4 shows the accuracy of BDSVDX in single precision. To assist in the interpretation of the
results, Figure 5 shows a histogram of the symbols displayed in Figure 4. Most of the 250 matrices
used in Figure 2 are read from files and are also used for the experiments in single precision.
The matrices that are generated at execution time in Figure 2 are regenerated in single precision
arithmetic.

Figure 4(a)–c) correspond to the computation of all singular values and vectors (RANGE=“A”).
Figure 4(d)–(i) show the accuracy of BDSVDX for the same matrices of Figure 4(a), with nI = 10
(random) pairs of IL, IU (RANGE=“I”), and nV = 10 (random) pairs of VL, VU (RANGE=“V”) for each
matrix. As in the double precision case, the matrices (y-axis) are ordered according to their con-
dition numbers. For convenience, we use floor and ceiling functions to bound the results in the
x-axis, setting its limits to 10−1 and 104.

The matrices that lead to results larger than 1,000 in single precision are similar to the ones
in double precision. Matrix 129 in Figure 4(a)–(c) has dimension 1,083, and it is another case of a
bidiagonal obtained from a tridiagonal matrix computed by running the Lanczos algorithm without
reorthogonalization. In double precision, its 139 largest eigenvalues are of orderO (10−8) and agree
to 12 digits. There are more results larger than 100 in single precision than in double precision for
RANGE=“I” and RANGE=“V”. For example, cases 1,030 and 1,501 in Figure 4(d)–(f) (matrices 103
and 151 in Figure 4(a)–(c)) are instances of bidiagonal matrices of dimension 2,100 obtained from
tridiagonal matrices formed by gluing 100 copies of the Wilkinson matrix W21+. As noted before,
these matrices have large clusters of tight singular values, and the single precision version exhibits
a slightly different behavior for RANGE=“I” and RANGE=“V”.

Refinement of vectors

The strategy for refinement of vectors discussed in Section 4 was set off for matrices 248–250 in
Figure 2(a), but it was not sufficient to produce orthogonal vectors. As mentioned before, the entries

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:15

Fig. 4. resid, orthU , orthV (x-axis, log scale) for RANGE=“A”,“I”, and“V”, single precision. (4(a)–(c)) 250 matrices
(y-axis), increasing condition numbers; (4(d)–(f)) nI = 10 for each matrix of RANGE=“A”; (4(g)–(i)) nV = 10 for
each matrix of RANGE=“A”.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:16 O. Marques et al.

Fig. 5. Number of occurrences of resid, orthU , orthV (y-axis, log scale) for RANGE=“A”, “I”, and “V”, single pre-
cision, in the intervals [10−1, 100), [100, 101), [101, 102), and [102, 1/ε], ε ≈ 5.96 × 10−8. Note that RANGE=“I”
and “V” have 10 times more data points than RANGE=“A”, i.e., for each case in (a), there are 10 intervals in (b)
and (c).

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:17

Fig. 6. Timings for BDSQR, BDSDC, and BDSVDX on 12 bidiagonal matrices with dimensions ranging from 675 to
4,006 (x-axis, dimensions in parentheses), in double precision, average time over 10 runs per matrix. BDSVDX:
all singular values/vectors, the largest 20%, the largest 10%, and the largest 5 singular values/vectors. For
each matrix, the timings (y-axis) are normalized with respect to the largest time and are plotted in log scale.

of those matrices range from ε−2 to ε2, and we have observed that almost all their singular vectors
are perturbations of ei , the columns of the identity matrix of appropriate dimension. Taking matrix
250 as an example, n = 500, u126 ≈ e80, and u144 ≈ e78, and we have verified that these are the only
two vectors that are not fully orthogonal: their inner product is O (10−10). On the other hand, the
strategy for refinement was set off for matrices 108, 242–245, and 249–250 in Figure 4(a). For all
these matrices, the resulting orthogonality level is smaller than 10. We note that the characteristics
of the jth matrix in Figure 4(a) may differ significantly from the characteristics of the jth matrix in
Figure 2(a) due to way the matrices are generated, and also differences in the condition numbers
in single and double precision.

Performance

We consider the time BDSVDX takes to compute all singular values and vectors and, most impor-
tantly, subsets of singular values and vectors. We compare these times with the times taken by
BDSQR and BDSDC. One of our goals is to identify a breakpoint in which the computation of a full
SVD would be preferable to a subset. We extend this analysis by comparing GESVDX, which is built
on top of BDSVDX, to its counterparts GESVD and GESDD, in double and double precision complex,
using a set of random matrices with a varying number of rows and columns.

Figure 6 shows the times taken by BDSQR, BDSDC, and BDSVDX on 12 bidiagonal matrices (a sample
from Figure 2(a)) with dimensions ranging from 675 to 4,006, in double precision. In our experi-
ments, we ask BDSQR to compute all left and right singular vectors. In turn, BDSDC has an option for
returning the left and right singular vectors in a compact form, but we ask BDSDC to compute the
left and right singular vectors explicitly. The matrices are ordered according to their sizes (x-axis),
and exhibit a variety of singular value distributions: they are related to applications in power sys-
tems and structural engineering (from the PSADMIT and BCSSTRUC1 sets in MatrixMarket [2018])
and computational chemistry provided by George Fann [Dhillon et al. 1997]. For BDSVDX, we ask

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:18 O. Marques et al.

Fig. 7. Performance of BDSVDX for the matrices in Figure 6. The data points (y-axis, log scale) correspond
to the computing times for the three subset scenarios (20%, 10%, largest 5) normalized with respect to tA,
where tA is the time required for the computation of all singular values/vectors.

for all singular values/vectors, the largest 20% singular values/vectors, the largest 10% singular
values/vectors, and the largest 5 singular values/vectors. For each matrix, the timings are normal-
ized with respect to the time taken by BDSQR. As somehow expected, BDSVDX is not competitive
for all or a relatively large set of singular values and vectors. The gains can be noticed for 10%
(or less) singular values/vectors; in particular, BDSVDX is about three orders of magnitude faster
than BDSQR and two orders of magnitude faster than BDSDC for the computation of the largest five
singular values and vectors of the largest matrix.

Note that the computation of the largest 10% singular values/vectors and the largest five singu-
lar values/vectors for matrix 6 takes about the same time; similarly for matrix 11. Those bidiagonal
matrices are obtained from tridiagonal matrices computed by running the Lanczos algorithm with-
out reorthogonalization, as mentioned before. Matrix 6 in Figure 6 is matrix 36 in Figure 2(a) (its
largest 138 eigenvalues are of order O (10−3) and agree to 12 digits) and matrix 11 in Figure 6 is
matrix 129 in Figure 2(a) (its largest 325 eigenvalues are of orderO (107) and agree to 13 digits). For
these two matrices, the mapping of IL=1 and IU=5 (for the largest 5 singular values) into VL and
VU results in intervals with a large number of very close singular values, intervals with 138 and
325 singular values, respectively. The additional computed values and vectors are later discarded
(to conform to the input values for IL and IU, as implemented in STEVX).

In terms of memory footprint, BDSDC is typically the most demanding when compared to
BDSQR and BDSVDX, requiring more than what is available in the three levels of cache of the com-
puter used for the experiments. The footprint of BDSQR and BDSVDX(A) are similar, less than 50%
of the footprint of BDSDC, and fitting in the cache for the three smallest matrices. In contrast, the
memory needed by BDSVDX(5) can be accommodated in the first two levels of cache for the small-
est matrices; it requires a fraction of the third level for some of the largest matrices. The exception
are the matrices with very tight clusters of eigenvalues, as mentioned above, since BDSVDX may
end by computing a large set of vectors.

Figure 7 shows the performance of BDSVDX for the matrices in Figure 6, for the computation
of the largest 20%, the largest 10%, and the largest 5 singular values/vectors. The data points in
Figure 7 correspond to the computing time in each of those three scenarios normalized with respect
to tA, where tA is the time required for the computation of all singular values/vectors. The figure

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:19

Fig. 8. Timings for GESVD, GESDD, and GESVDX on 16 random dense m × n matrices with m,n =
500, 1,000, 1,500, 2,000. GESVDX: the largest 20%, the largest 10%, and the largest 5 singular values/vectors.
For each matrix, the timings are normalized with respect to the time taken by GESVD. Average time over 10
runs per matrix.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:20 O. Marques et al.

Fig. 9. Time breakdown for GESVDX, for the matrices used in Figure 8(a) and (b); 5 largest singular
values/vectors. bdsvdx: computation of the singular values and vectors of B; U and V: back transformation of
the singular vectors of B to those of the input matrix. The bars are normalized with respect to the time taken
by reduction of the input matrix to bidiagonal form B. Average time over 10 runs per matrix.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:21

clearly shows how the performance of BDSVDX may be affected by the distribution of the singular
values, as discussed in the previous paragraph.

We have used TAU [2018] to profile BDSVDX while computing the largest five singular val-
ues/vectors for a sample of the matrices. For matrices 6 and 11, for example, most of the time
is spent with reorthogonalization of the vectors (modified Gram-Schmidt, up to 80% of the total
time) followed by solves (inverse iteration). For matrix 9, bisection takes ≈ 10% of the total time,
while a combination of other operations (e.g., normalizations in BDSVDX) dominate.

We compare now the performance of the implementations for the SVD of general matrices. The
time taken by GESVD, GESDD, and GESVDX in double precision, on random dense m × n matrices
withm,n = 500, 1,000, 1,500, 2,000, is shown in Figure 8. GESVDX is also used to compute the largest
20%, the largest 10%, and the largest 5 singular values/vectors. GESVDX is consistently faster than
its counterparts, which are limited to a full SVD, for 10% or less singular values/vectors

In the double precision case, Figure 8(a), GESVDX is up to 14 times faster than GESVD and 2 times
faster than GESDD. We observe that BDSVDX is faster than BDSDC for all matrices, since the singular
value of those matrices are relatively well separated, in contrast to some of the matrices in Figure 6.
In the double precision complex case, Figure 8(b), GESVDX is up to 5.6 times faster than GESVD and
1.7 times faster than GESDD. We note that the performance of GESDD may be greatly penalized if a
non-optimized BLAS library is used.

Finally, Figure 9 shows how the time is spent by GESVDX for the matrices of Figure 8, for the
five largest singular values/vectors scenario. The relevant calculations are a reduction of the input
matrix to bidiagonal form B, computation of the singular values/vectors ofB with BDSVDX, and back
transformation of the singular vectors of B to those of the input matrix. The bars in the figure are
normalized with respect to the time taken by the reduction to bidiagonal form, which typically
dominates the costs. As it can be observed, the computation of the singular values/vectors and the
back transformation phases are much faster than bidiagonal reduction.

6 CONCLUSIONS

In this work, we presented an algorithm for computing the SVD of a bidiagonal matrix by means
of the eigenpairs of an associated tridiagonal matrix. The implementation, BDSVDX (first included
in the LAPACK 3.6.0 release), provides for the computation of a subset of singular values/vectors,
which is important for large problems where the full set is not required. Our experiments revealed
that this feature can lead to significant gains in computing times, when compared with existing
implementations that are limited to the computation of the full SVD. These gains are transmitted
to a higher level routine intended for the computation of a subset of singular values/vectors of a
general matrix (GESVDX).

We carried out extensive experiments using a large set of test matrices to evaluate the effective-
ness of the algorithm. Numerical results substantiated the accuracy of the implementation; the few
exceptions are related to matrices with very large condition numbers or highly clustered singu-
lar values. We have also identified pathological cases (typically matrices with very small singular
values) for which the computed singular vectors may not be orthogonal to machine precision. A
more robust strategy to identify and cope with such cases remains to be investigated.

Potential future work includes the parallel implementation of the algorithm presented in this
article, building upon the workflow of the parallel subroutines PDSYEVX or PDSYEVR implemented
in ScaLAPACK [Blackford et al. 1997; ScaLAPACK 2012]. The former is based on bisection and
inverse iteration, with the caveat that it does not do reorthogonalization with vectors on distinct
processes, so the returned vectors may not be orthogonal in the case of tight clusters of values.
The latter is based on the MRRR algorithm and presumably delivers more satisfactory results and
scalability [Voemel 2010]. Specific tests will be required (e.g., with cases similar to the difficult ones

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:22 O. Marques et al.

in Figure 2) to assess the best alternative. We observe that once a matrix similar to Equation (5) is
obtained, the back transformation of the singular vectors of B to those of the input matrix can be
then parallelized in different ways.

Finally, we are aware that a modified version of BDSVDX invoking MRRR has been used in Don-
garra et al. [2018] (with the assistance of the first author of this article). However, the focus of
Dongarra et al. [2018] was on performance and not accuracy.

APPENDICES

A A HIGH-LEVEL DESCRIPTION OF BDSVDX

Table A.1 summarizes the main steps performed by BDSVDX. The steps are matched to the sections
where they are discussed, in particular:

(a) This step determines the singular values/vectors to be computed according to the variable
RANGE, using bisection, as discussed in Section 2. We note that if RANGE=“I”, then il,iu
are mapped into values.

(b) This test is for splittings in b. These splittings are trivial in the sense that the associated
bidiagonal matrices are square, as discussed in Section 3.

Table A.1. Pseudo-code Summarizing the Workflow of BDSVDX

BDSVDX: input(range,n,a,b,vl,vu,il,iu), output(s,z)
% range: ‘‘A’’, ‘‘V’’ or ‘‘I’’
% n: dimension of the bidiagonal matrix B
% a: diagonal entries of B
% b: superdiagonal entries of B
% vl,vu: bounds of the interval to be searched for singular values
% il,iu: indexes of the smallest/largest singular values to be returned
% s: singular values
% z: array containing the singular vectors
form matrix (4): t(1:2:2n)=a, t(2:2:2n-1)=b, jl = 1
determine singular values/vectors to be computed (a)
for i = 2:2:2n

if t(i) is negligible or i = 2n, jr = i, then (b)
for j = jl:2:jr

if t(j) is negligible or j = jr, then (c)
invokeSTEVX to process active matrix (d)
normalize singular vectors (e)
apply reorthogonalization (f)

end
end

end
end
sort singular values/vectors
discard singular values/vectors depending on range (g)
reorder array z (h)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:23

(c) This test checks for splittings in a. These splittings may be nontrivial in the sense that the
resulting bidiagonal matrices may be rectangular, as discussed in Section 3. At this level,
a bookkeeping is needed for the subsequent composition of the singular vectors.

(d) If a submatrix is found or the bottom of the matrix is reached, we have obtained an “active
matrix” and STEVX is invoked to compute eigenvalues/vectors of that matrix according
to the mapping indicated by RANGE. In this step, STEVX could be replaced by MRRR, as
discussed in Section 1. This step also offers opportunities for computing eigenvectors in
parallel.

(e) After the singular vectors are extracted from the eigenvectors, this step performs an ex-
plicit normalization of the singular vectors, as discussed in Section 4.

(f) Reorthogonalization of the singular vectors may be needed in pathological cases, as also
discussed in Section 4.

(g) This step is for postprocessing, to discard singular values and vectors that may have been
computed in excess. This situation can happen when il,iu are mapped into values in
large clusters, as we have seen in Figure 7.

(h) This reordering is to conform to Equation (5) in Section 2.2.

B A CASE OF FAILURE IN STEXR

We show here a case of misbehavior of STEXR (double precision) introduced in Willems and Lang
[2013], by using a tridiagonal matrix T generated with the prescribed eigenvalue distribution

λi = c
− (i−1)

(n−1) , c = 1/
√
ε, i = 1, 2, . . .n,n = 10 (i.e., λ1 ≈ 1.49 × 10−8, . . . λn = 1.00). We call the LA-

PACK subroutine LATMS to generate a random symmetric matrix with those eigenvalues followed
by SYTRD to tridiagonalize the matrix. Table B.1 lists the entries of T used in the test. Here, we
have used the GNU Fortran compiler because the distribution in Willems and Lang [2013] does
not provide a configuration for the Intel Fortran compiler. Although not shown, the eigenvalues
of T computed with the eigensolvers listed in Table 1 and also STEXR are in very good agree-
ment. Specifically, ‖T − ZXRΛXRZ

T
XR‖/(‖T ‖nε) ≈ 0.6, where ΛXR contains the eigenvalues returned

by STEXR on its main diagonal, and ZXR is the matrix of eigenvectors returned by STEXR. How-
ever, ‖I − ZT

XRZXR‖/(nε) ≈ 3.95 × 104; see Figure B.1. In contrast, ‖I − ZT
VXZVX‖/(nε) ≈ 0.9 and ‖I −

ZT
MRZMR‖/(nε) ≈ 0.1, where ZVX and ZMR are the vectors returned by STEVX and STEMR, respectively.
We have identified other matrices for which STEXR failed to produce orthogonal eigenvectors,

for example the Wilkinson matrix W21+ mentioned earlier. Our exhaustive tests revealed that

Table B.1. Entries of T , λi = c
− (i−1)

(n−1) , c = 1√
ε
, i = 1, 2, . . .n,n = 10

i ti,i ti,i+1 = ti+1,i

1 1.893161597943482E-01 3.880873104122968E-01
2 8.128005558065539E-01 -3.516122075663728E-02
3 1.258328488738520E-01 3.077875339462724E-02
4 2.448430650126851E-02 -4.746410482563373E-03
5 3.268662131212184E-03 -6.983851144411338E-05
6 2.759036513821439E-04 -1.142712831766173E-04
7 9.443722972151846E-05 6.941905362025514E-06
8 6.149112437832172E-06 -7.426637317219540E-07
9 2.117627370984594E-07 1.892470326809461E-08

10 1.071603546505181E-07 -

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

14:24 O. Marques et al.

Fig. B.1. Surface plot of |I − ZT
XRZXR |/(nε) in log scale, where ZXR contains the eigenvectors returned by

STEXR for the tridiagonal matrix given in Table B.1. The first four columns of ZXR are linearly dependent:
those columns correspond to λ1 ≈ 1.49 × 10−8, λ2 ≈ 1.10 × 10−7, λ3 ≈ 8.17 × 10−7, and λ4 ≈ 6.06 × 10−6.

STEMR may also fail for matrices with very close eigenvalues (e.g., matrices formed by gluing
Wilkinson-type matrices). To the best of our knowledge, STEXR is no longer maintained, justifying
our choice of STEVX for the first implementation of BDSVDX.

ACKNOWLEDGMENTS

The authors thank Beresford Parlett for his comments and suggestions on earlier versions of the
manuscript.

REFERENCES

M. Abramowitz. 1974. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Pub-
lications, Inc., New York, NY.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A.
McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). Society for Industrial and Applied Mathematics,
Philadelphia, PA.

T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems. 2011.
Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37
(2011), 783–794.

Å. Björck. 1996. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadel-
phia, PA.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.
Stanley, D. Walker, and R. C. Whaley. 1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

J. Demmel. 1997. Applied Numerical Linear Algebra. Vol. 56. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A

Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. Bai, Zhaojun (Ed.).
J. Demmel and W. Kahan. 1990. Accurate singular values of bidiagonal matrices. SIAM J. Sci. and Stat. Comput. 11 (1990),

873–912.
J. Demmel, O. Marques, C. Voemel, and B. Parlett. 2008. Performance and accuracy of LAPACK’s symmetric tridiagonal

eigensolvers. SIAM J. Sci. Comput. 30 (2008), 1508–1526.
I. Dhillon. 1997. A New O(N2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. Ph.D. Dissertation.

University of California, Berkeley.
I. Dhillon, G. Fann, and B. Parlett. 1997. Application of a new algorithm for the symmetric eigenproblem to computational

quantum chemistry. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing. SIAM,
Philadelphia. http://www.cs.utexas.edu/ inderjit/public_papers/fannchem1.ps.

I. Dhillon and B. Parlett. 2004. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal
matrices. Linear Algebra Appl. 387 (2004), 1–28.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

http://www.cs.utexas.edu/ inderjit/public_papers/fannchem1.ps

Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem 14:25

I. Dhillon, B. Parlett, and C. Voemel. 2006. The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw.

32 (2006), 533–560.
J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki. 2018. The singular value decomposition:

Anatomy of optimizing an algorithm for extreme scale. SIAM Rev. 60, 4 (2018), 808–865.
K. Fan and A. Hoffman. 1955. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc. 6, 1 (1955), 111–116.
G. Golub and W. Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. J. Society for Ind. Appl. Math.

Ser. B Numer. Anal. 2, 2 (1965), 205–224.
B. Grosser and B. Lang. 2003. An O (n2) algorithm for the bidiagonal SVD. Linear Algebra Appl. 358, 1 (2003), 45–70.
B. Grosser and B. Lang. 2005. On symmetric eigenproblems induced by the bidiagonal SVD. SIAM. J. Matrix Anal. and Appl.

26, 3 (2005), 599–620.
Nicholas J. Higham and Pythagoras Papadimitriou. 1993. Parallel Singular Value Decomposition via the Polar Decomposition.

University of Manchester, Department of Mathematics.
Intel. 2017a. Intel(R) Fortran Compiler 2018 Update 1 for Linux.
Intel. 2017b. Intel(R) Math Kernel Library 2018 Update 1 for Linux.
LAPACK. 2018. LAPACK—Linear Algebra PACKage. https://github.com/Reference-LAPACK.
S. Li, M. Gu, L. Cheng, X. Chi, and M. Sun. 2014. An accelerated divide-and-conquer algorithm for the bidiagonal SVD

problem. SIAM. J. Matrix Anal. and Appl. 35 (2014), 1038–1057.
O. Marques, J. Demmel, C. Voemel, and B. Parlett. 2008. A testing infrastructure for symmetric tridiagonal eigensolvers.

ACM Trans. Math. Softw. 35 (2008), 8:1–8:13.
O. Marques and P. B. Vasconcelos. 2016. Computing the bidiagonal SVD through an associated tridiagonal eigenproblem. In

12th International Conference on High Performance Computing for Computational Science (VECPAR 2016) Porto, Portugal,

June 28-30, 2016, Revised Selected Papers. Springer, Heildeberg, Germany, 64–74.
MatrixMarket. 2018. Matrix Market. Retrieved from http://math.nist.gov/MatrixMarket.
A. M. Matsekh. 2005. The Godunov-inverse iteration: A fast and accurate solution to the symmetric tridiagonal eigenvalue

problem. Appl. Numer. Math. 54, 2 (2005), 208–221.
Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. 2010. Optimizing Halley’s iteration for computing the matrix polar

decomposition. SIAM J. Matrix Anal. Appl. 31, 5 (2010), 2700–2720.
Yuji Nakatsukasa and Nicholas J. Higham. 2013. Stable and efficient spectral divide and conquer algorithms for the sym-

metric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput. 35, 3 (2013), A1325–A1349.
F. Olver, D. Lozier, R. Boisvert, and C. Clark. 2010. NIST Handbook of Mathematical Functions Hardback and CD-ROM.

Cambridge University Press, New York.
B. Parlett. 1995. The new QD algorithms. Acta Numer. 4 (1995), 459–491.
B. Parlett. 1998. The Symmetric Eigenvalue Problem. Vol. 20. Society for Industrial and Applied Mathematics, Philadelphia,

PA.
B. Parlett and C. Vömel. 2009. The spectrum of a glued matrix. SIAM J. Matrix Anal. Appl. 31, 1 (2009), 114–132.
ScaLAPACK. 2012. ScaLAPACK, version 2.0.2. Retrieved from http://www.netlib.org/scalapack.
TAU. 2018. TAU Performance System. Retrieved from https://www.cs.uoregon.edu/research/tau.
C. Voemel. 2010. ScaLAPACK’s MRRR algorithm. ACM Trans. Math. Softw. 37 (2010), 1–35.
J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan. 2016. Superfast divide-and-conquer method and perturbation analysis for

structured eigenvalue solutions. SIAM J. Sci. Comput. 38, 3 (2016), A1358–A1382.
P. Willems. 2010. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD. Ph.D. Dis-

sertation. University of Wuppertal.
P. Willems and B. Lang. 2013. A framework for the MR3 algorithm: Theory and implementation. SIAM J. Sci. Comput. 35

(2013), 740–766.
P. Willems, B. Lang, and C. Voemel. 2006. Computing the bidiagonal SVD using multiple relatively robust representations.

SIAM. J. Matrix Anal. and Appl. 28 (2006), 907–926.

Received April 2018; revised January 2019; accepted September 2019

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 14. Publication date: May 2020.

https://github.com/Reference-LAPACK
http://math.nist.gov/MatrixMarket
http://www.netlib.org/scalapack
https://www.cs.uoregon.edu/research/tau

