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Overcoming Security Vulnerabilities in Deep
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Indoor localization is an emerging application domain for the navigation and tracking of people and as-
sets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions.
Further, the rapid growth in mobile hardware capability now allows high-accuracy deep learning–based
frameworks to be executed locally on mobile devices in an energy-efficient manner. However, existing deep
learning–based indoor localization solutions are vulnerable to access point (AP) attacks. This article presents
an analysis into the vulnerability of a convolutional neural network–based indoor localization solution to
AP security compromises. Based on this analysis, we propose a novel methodology to maintain indoor lo-
calization accuracy, even in the presence of AP attacks. The proposed secured neural network framework
(S-CNNLOC) is validated across a benchmark suite of paths and is found to deliver up to 10×more resiliency
to malicious AP attacks compared to its unsecured counterpart.
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1 INTRODUCTION

In the early 1980s, the unintended deviation of a commercial airliner from its designated path due
to unreliable navigation equipment led to 269 casualties [1]. This prompted U.S. authorities to
recognize the need for a reliable global localization solution. As a result, the Global Positioning
System (GPS) built for the U.S military, when completed, was promised to be available for public
use. In the subsequent decade, GPS technology was completely commercialized [2]. These his-
toric events reformed the global transportation industry and allowed vehicles to not only localize
themselves but also to navigate reliably. To further enhance security of GPS-based services, recent
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works have started to focus on the modeling and characterization of GPS spoofing [42] and time
reliability–based attacks [43] and further propose the utilization of crowdsourcing methodologies
to detect and localize spoofing attacks [44]. Regardless of such advances, the recent history of at-
tacks on GPS for outdoor navigation [3, 4] motivates stronger security features. However, indoor
localization is an emerging technology with a similar purpose and is poised to reinvent the way we
navigate within buildings and subterranean locales [49]. However, on the academic front, limited
attention is being payed toward securing indoor localization and navigation frameworks against
malicious attacks and ensuring that the future indoor localization frameworks are reliable.

Almost two decades of research has contributed to the evolution of the indoor localization and
navigation domain. Several commercial solutions and standards are being established today to
enable indoor localization in the public sector. For example, recently a new standard for Wi-Fi was
established in collaboration with Google that would allow anyone to set up their own localization
system by sharing their indoor floor map and the Wi-Fi router positions on that map with Google
[5]. Nowadays, companies such as Amazon and Target are also starting to track customers at their
stores [6]. With an increasing number of startups in the area of indoor localization services security
concerns pertaining to the commercialization of such technology are almost never discussed.

The explosion in the commercialization of indoor localization technology can be attributed to
its usefulness for a wide variety of non-critical and critical applications. For example, depending
on the context of the situation [45], navigating students to the correct classroom may represent
non-critical applications, where some factor of unreliability would not lead to any serious reper-
cussions. However, there are some applications in a time-critical response context and need an
enhanced level of reliability and security. Such scenarios include navigating medical staff and
equipment closest to a patient in the correct room at a hospital in real-time or notifying emer-
gency responders to the location of a person in case of a serious health hazard such as a heart
attack, collapse, or fire.

Unfortunately, malicious third parties can exploit the vulnerabilities of unsecured indoor local-
ization components (e.g., Wi-Fi Access Points or WAPs) to produce incorrect localization informa-
tion [7, 8]. This may lead to some inconvenience in non-critical contexts (e.g., a student arrives
at the wrong classroom) but can lead to dire consequences in more critical contexts (e.g., medi-
cal staff are unable to locate vital equipment or medicine needed for a patient in an emergency;
or emergency response personnel are misdirected, causing a loss of lives). Tainted information
from intentional or unintentional sources can lead to even more egregious real-time delays and
errors. Therefore, similar to outdoor navigation systems, establishing secure and reliable indoor
localization and navigation systems holds an uncontested importance in this domain.

Despite much research on indoor localization solutions, the security and reliability concerns of
the proposed indoor localization frameworks are often overlooked. The vulnerabilities and asso-
ciated security methodologies that can be applied to an indoor localization framework are often
tailored to the localization method used and a generalized security and reliability framework is
not available.

For the purpose of indoor localization, at one end of the spectrum are triangulation/trilateration-
based methods that either use geometric properties such as the distance between multiple APs
and the receiver/smartphone, [6, 9, 10] (trilateration) or the angles at which signals from two or
more APs are received [8, 11] (triangulation). Such techniques are often prone to Radio Frequency
(RF) interference and malicious node-based attacks. Some work has been done to overcome these
vulnerabilities through online evaluation of signals and packets [12]. However, these indoor local-
ization frameworks are inherently not resilient to multipath effects, where the RF signal reaches
a destination after being reflected across different surfaces, and shadowing effects, where the RF
signal fades due to obstacles. Some recent work has investigated multipath effects for triangula-
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Fig. 1. Average indoor localization error (in meters) for fingerprinting techniques based on deep neural
networks (DNNs), convolutional neural networks (CNNs), support vector machines (SVM), and k-nearest-
neighbor (KNN). Results are shown for two different indoor paths.

tion [13], but these works do not apply to commodity smartphones (expected to be the de-facto
portable device for indoor localization) and hence, have limited applicability.

On the other end of the spectrum are fingerprinting-based methods that associate selected in-
door locations (reference points) with a unique Received Signal Strength Indicator (RSSI) signature
obtained from APs accessible at that location [14, 15] (fingerprinting is discussed in more detail
in Section 2). These techniques have proven to be relatively resilient to multi-path reflections and
shadowing, as the reference point fingerprint captures the characteristics of these effects, leading
to improved indoor localization. However, fingerprinting requires a more elaborate offline-phase
(i.e., setup) than triangulation/trilateration methods, where RSSI fingerprints need to be captured
across indoor locations of interest and stored in a fingerprint database, before being able to support
localization or navigation (by referring to the database) in the online-phase, in real time.

Fingerprinting-based techniques are not only vulnerable to interference and malicious node-
based attacks but are also prone to database corruption and privacy/trust issues (discussed in the
next section). Among the mentioned vulnerabilities, RSSI interference and malicious node or AP
attacks are significantly easier to perform as they only require the attacker to gain physical access
into the indoor location where the attack needs to take place. Once the attacker is at the site,
they could, for instance, deploy battery-powered AP units that would either interfere with the
localization AP signals or spoof valid AP nodes. Moreover, a single malicious AP unit is capable
of spoofing multiple packets for multiple valid APs in the area.

Simple fingerprinting-based indoor localization frameworks that use techniques such as k-
nearest-neighbor (KNN) can utilize outlier detection-based techniques to overcome some security
issues [16]. However, recent work on improving Wi-Fi fingerprinting accuracy has tended to ex-
ploit the increasing computational capabilities of smartphones and utilize more powerful machine
learning techniques. For instance, sophisticated convolutional neural networks (CNNs) [15] have
been proposed and shown to improve fingerprint-based indoor localization accuracy on smart-
phones. Figure 1 shows the improvements when using CNN and deep neural network– (DNN)
[17] based localization approaches as compared to more traditional techniques such as KNN [14]
and support vector machines (SVM) [18]. Based on the improvements achieved through CNN- and
DNN-based algorithms, indoor localization solutions in the future are expected to benefit from
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the use of deep learning methodologies that have the potential to significantly reduce localization
errors. However, to date, no studies have been performed to assess the impact on accuracy for
malicious AP attacks on deep learning–based indoor localization.

In this article, we present a novel method to overcome the security vulnerabilities of deep
learning–based indoor localization frameworks. We use the recent deep learning–based localiza-
tion framework from [15] as an example and propose security enhancements for it. The novel
contributions of our work are as follows:

• We identify and model various AP-based attacks that impact the localization accuracy of
deep learning–based indoor localization frameworks, such as the frameworks from Refer-
ence [15] and Reference [17];

• For the first time, we conduct an in-depth experimental analysis on the impact of AP-based
attacks on CNN- [15] and DNN- [15] based indoor localization frameworks across indoor
paths;

• We present a novel methodology for constructing AP attack resilient deep learning models
to create a secure version of the CNNLOC framework from Reference [15] (which we call
S-CNNLOC) for robust and secure indoor localization;

• We compare the performance of S-CNNLOC against CNN-LOC for a varying number of
malicious AP nodes and across a diverse set of indoor paths.

2 BACKGROUND AND RELATED WORK

2.1 Received Signal Strength Indicator

RSSI is a measurement of the power of a received radio signal transmitted by a radio source. The
RSSI is captured as the ratio of the received power (Pr ) to a reference power (Pr ef , usually set to 1
mW). The value of RSSI is reported in dBm and is given by

RSSI (dBm) = 10 · loд Pr

Pr ef
. (1)

The received power (Pr ) is inversely proportional to the square of the distance (d ) between the
transmitter and receiver in free space and is given by

Pr = Pt ·Gt ·Gr

(
λ

4πd

)2

, (2)

where Pt is the transmission power,Gt is the gain of transmitter,Gr is the gain of receiver, and λ is
the wavelength. This inverse relationship between the received power and distance has often been
used by researchers to localize wireless receivers with respect to transmitters at known locations,
e.g., estimating the location of a user with a Wi-Fi capable smartphone from a Wi-Fi AP. However,
the free space models based on Equations (1) and (2) do not extend well for practical applications.
In reality, the propagation of radio signals is influenced by various effects. Figure 2 illustrates some
of these effects as a radio signal travels from its source (WAP2) toward location (L2). The signals
transmitted from WAP2 get scattered at the edges of the pillar, reflect off walls, and get attenuated
as they pass through the pillar to reach the reference point L2. Also, the signals from WAP2 follow
different paths (called multipath traversal) to reach location L2. These effects lead to an RSSI read-
ing at L2 that does not correspond to Equation (2), which was designed to function in free space.

2.2 Fingerprint-based Indoor Localization

Since the first efforts on fingerprinting-based indoor localization about two decades ago, such
as with the work in RADAR [19], a significant level of advancement has been achieved in this
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Fig. 2. A representation of the offline and online phases in the fingerprinting process for indoor localization
for a given floorplan.

area. However, the general premise of fingerprinting-based indoor localization has remained un-
changed. As shown in Figure 2, fingerprinting-based localization is carried out in two phases. In the
first phase (called the offline or training phase), the RSSI values for visible WAPs are collected for a
given floorplan at reference points L1, L2, L3, and so on, identified by some coordinate system. The
RSSI fingerprint captured at a given reference point consists of RSSI values (in dBm) for the WAPs
in the vicinity and the X-Y coordinate of the reference point. The resulting database of location-
tagged RSSI fingerprints (Figure 2) is then used to train models (e.g., machine learning based) for
location estimation such that the RSSI values are the input features and the reference point location
coordinates are the target (output) features. The trained machine learning model is then deployed
to a mobile device as shown in the offline phase of Figure 2. In the second phase (called online or
testing phase), the devices are used to predict the (X-Y coordinate) location of the user carrying
the device, based on real-time readings of WAP RSSI values on the device. Contrary to the super-
vised learning approach discussed so far, some recent work also explores adapting semi-supervised
deep reinforcement learning to deliver improved accuracy when very limited fingerprinting data
are available in the training phase [41]. One of the major advantages of using fingerprinting-based
techniques over other methods (e.g., trilateration/trilateration) is that knowledge of environmen-
tal factors such as multipath signal effects and RF shadowing are captured within the fingerprint
database (such as for the reference point L2 in Figure 2) in the offline phase and thus leads to
improved localization accuracy in the online phase, compared to other methods.

An important aspect of fingerprinting-based indoor localization is the choice of the signal-
source utilized. Some commonly used signal-source options include Ultra-Wide-Band (UWB) [20],
Bluetooth [21], ZigBee [22], and Wi-Fi [14]. The choice of signal directly impacts the achievable
localization accuracy as well as the associated setup and maintenance costs. For example, UWB
APs need to be specially purchased and deployed at the target site; however, they have been shown
to deliver a higher level of accuracy than many other signal types. However, Wi-Fi-based indoor
localization frameworks have gained traction due to the ubiquitous availability of WAPs in indoor
locales and the fact that most people nowadays carry smartphones that come equipped with Wi-Fi
transceivers, making WAP-based indoor localization a cost-effective and popular choice [14, 15].
For this reason, in our work, we assume the use of WAPs as signal sources for fingerprinting-based
indoor localization.

2.3 Challenges with Indoor Localization

As a result of the popularity of Wi-Fi fingerprinting, efforts in recent years have been made to
overcome its limitations, such as energy efficiency [14], variations due to device heterogeneity [23,
50, 51], and temporal degradation effects on localization accuracy [24]. However, in recent years as
indoor localization services are beginning to be prototyped and deployed, researchers have raised
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concerns about the privacy, security, and other vulnerabilities associated with fingerprinting-based
localization. Some commonly identified vulnerabilities and their mitigation strategies are discussed
in the rest of this section.

Offline-Phase Database Security: The indoor localization fingerprint database consists of three
pieces of information in each entry of the database: WAP Media Access Control (MAC) addresses,
RSSI values of these WAPs, and the associated reference point location tag (e.g., XY co-ordinate of
a location). A malicious third party may corrupt the database by changing the RSSI values associ-
ated with the MAC addresses or change the location where the samples were taken. This kind of
an attack can completely jeopardize the functionality of an indoor localization framework, as the
offline database holds the most crucial information required for any fingerprinting-based indoor
localization framework to function. To mitigate such issues, researchers have proposed techniques
such as outlier detection-based identification of corrupted information [7, 8] and performing con-
tinuous sanity checks on the database using checksums [25]. Alternatively, even if the attackers
are able to read the database, they can use the information such as reference point locations and
WAP MAC addresses to launch other forms of attacks, as discussed next.

User Location Privacy: Some recently proposed indoor localization techniques exploit resource in-
tensive machine learning models that need to be executed on the cloud or some other form of
remote service instead of the user’s mobile device. These frameworks may compromise the user’s
privacy by either intentionally or unintentionally sharing the user’s location with a third party.
The leaked location and background information from one user can then be correlated to other
users for their information [26]. However, recent advances have been able to optimize the exe-
cution of complex machine learning models on resource constrained mobile devices such that the
location prediction computation does not need to be offloaded to the cloud or other types of remote
services [15].

AP Jamming or Interference: An attacker may deteriorate the quality of localization accuracy in a
specific region indoors by placing signal jammers (narrow band interference) in the vicinity [28,
29]. The jammer can achieve this goal by emitting Wi-Fi signals to fill a wireless channel, thereby
producing signal interference with any non-malicious WAPs on that channel. Alternatively, the
jammer can also continuously emit Wi-Fi signals on a channel such that legitimate WAPs never
sense the channel to be idle and therefore do not transmit any information [30]. Such an attack
may cause a mobile device to lose visibility of WAPs, reducing localization accuracy or preventing
localization from taking place altogether.

Malicious AP Nodes or Spoofing: In this mode of attack, a malicious third-party places one or
more transmitters at the target location to spoof the MAC address of valid WAPs used by the
fingerprinting-based localization framework. The MAC address could have been obtained by a
person capturing Wi-Fi information while moving in the target area. Alternatively, this informa-
tion could have been leaked through a compromised fingerprint database. Also, the behavior of
the malicious nodes in each case may change over time. The detection of spoofing-based attacks is
also an active area of research in the robot localization domain. Approaches proposed include the
empirical analysis of data collected at a post-localization phase [47] and using machine learning
[48]. However, both works solely focus on detecting a spoofing attack either in real time or offline.
Techniques such as the one presented in Reference [32] allow for the identification of malicious
nodes using linear regression on data collected over a certain period of observation time. However,
any delay in the mitigation of WAP-based attacks in real-time would leave the indoor localization
framework vulnerable and may lead to tainted predictions, thereby disrupting the localization ser-
vices or giving the attacker a window of opportunity.
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Fig. 3. A general representation of the various components of a CNN.

Environmental Alterations: Changes or alterations in the indoor environment can induce unpre-
dictable changes to the WAP-based fingerprints in the online phase. Such alterations could include
moving furniture or machinery or renovations in the building. Crowdsourcing-based techniques,
e.g., Reference [27], that update fingerprints on-the-fly may be more resilient to such effects, given
that ample number of (crowd-sourced) fingerprint samples are collected in the area where the
changes took place. However, deep learning–based techniques may need to be retrained to ac-
commodate for the changes, which may take several hours and thus be impractical for real-time
adaptation.

From the discussion in this section, one observation is that launching attacks, such as jamming
and spoofing, is relatively easy if the attacker is able to access the indoor location. Given the recent
interest in deep learning–based fingerprinting to improve indoor localization accuracy [15, 17, 41]
there is a critical need to analyze and address security vulnerabilities for such solutions. However,
to date, no prior work has explored the impact of malicious AP-based attacks on the accuracy and
reliability of deep learning–based indoor localization frameworks. Our goal in this work is to show,
for the first time, how deep learning–based indoor localization frameworks such as CNNLOC [15]
can be vulnerable to malicious AP-based attacks and further propose a methodology to address
such vulnerabilities without loss in localization accuracy, on commodity mobile devices.

3 CNNLOC FRAMEWORK OVERVIEW

This section provides a brief overview of convolutional neural networks (CNNs) and the CNNLOC
framework presented in Reference [15].

3.1 Convolutional Neural Networks

CNNs are a form of deep neural networks that are specially designed for image classification.
They have been shown to deliver significantly higher classification accuracy as compared to con-
ventional DNNs due to their enhanced pattern recognition capabilities. Note that from this point
onward, we use the term DNN to identify deep learning models that do not consist of convolu-
tional layers. As shown in Figure 3, a CNN model has three main functional components or layers:
convolution+Regularized Linear Unit (ReLU), pooling, and fully connected layers. The CNN model
learns patterns in images by focusing on small sections of the image, known as a frame, from the
input layer. The frame moves over a given image in small strides. Each convolutional layer consists
of filter matrices that hold weight values. In the first layer, convolutional operations (dot products)
are performed between the current input frame and filter weights followed by the ReLU activation
function. The pooling layer is responsible for down sampling the output from a convolution+ReLU
unit, thereby reducing the computational requirements by the next set of convolution layers. The
final classification is performed using a set of fully connected layers that often utilize a SoftMax ac-
tivation function to calculate the probability distributions for various classes. In the testing phase
of a CNN model, the class with the highest probability is the output prediction. Further details on
the design of CNNs can be found in Reference [15] and Reference [33].
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Fig. 4. A simplified overview of the conversion of an RSSI fingerprint to an image in the CNNLOC [15]
indoor localization framework.

3.2 Indoor Localization with CNNLOC

The CNNLOC indoor localization framework [15] consists of two major components in the offline
phase. The first component involves capturing the RSSI fingerprints for different locations and
then converting each RSSI fingerprint vector that is tied to a location (reference point) into an
image tied to the same location. The second component of the offline phase is the training of a
CNN model using the images created previously. In the online phase, the same process is used
to create an image (based on observed RSSI values), which is fed into the trained CNN model for
location prediction.

A simplified overview of the process of converting an RSSI fingerprint vector into an image is
shown in Figure 4. The RSSI vector consists of RSSI values in the range of –100 to 0 dBm (low
signal strength to high signal strength). These values are normalized to a range of 0 to 255, which
corresponds to the pixel intensity on the image. The dimensions of the RSSI image are set to be
the closest square to the number of visible WAPs on the path. For example, in Figure 4, the RSSI
vector has a size of 8, and the closest square would have 9 pixels in it; therefore, the dimensions of
the image are set to 3 × 3. A pixel with zero intensity is padded at the end to increase the size of
the vector as shown in Figure 4. The generated image then becomes a part of the offline database
of images used to train a CNN. In the online phase, this same process of image creation is used
with the RSSI vector observed by the user at any location, and the resulting image is fed to the
trained CNN model to get a location prediction. It is important to note that in the online phase of
CNNLOC, the input image will always remain the same size as in the offline phase, such that each
pixel in the image corresponds to specific MAC IDs. In case a specific MAC ID observed in the
offline phase is no longer visible in the online phase, the pixel value corresponding to that MAC
ID is set to zero.

4 LOCALIZATION SECURITY ANALYSIS

In this section, we perform a WAP RSSI vulnerability analysis on the deep learning–based in-
door localization frameworks presented in Reference [15] (CNNLOC) and Reference [17] (which
uses DNNs). For this study, we modeled the two deep learning frameworks and contrasted their
performance for the two indoor paths shown in Figure 5. The Office and Glover paths in the fig-
ure are 64 and 88m long and the reference locations used to capture Wi-Fi RSSI are marked by
blue dots. A detailed discussion on the salient features of these and other indoor benchmark paths
we consider can be found in the experiments section (Section 7). We used an HTC U11 smartphone
[39] to capture Wi-Fi fingerprints along the indoor paths and test for localization accuracy.
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Fig. 5. Two indoor benchmark paths (Glover and Office) with reference points denoted by blue markers. The
path lengths and Wi-Fi densities are denoted at the top of the maps.

Fig. 6. Fingerprint images generated from RSSI vectors using the methodology described in CNNLOC [15];
(a) represents the “mWAP0” fingerprint image that should be ideally generated when the initial RSSI vec-
tor is not tainted by a malicious WAP (mWAP = 0); panels (b)-(f) show fingerprint images in the presence
of different number of malicious WAPs. The label “mWAPX” indicates X malicious WAPs, which introduce
fluctuations in the RSSI values of the pixels corresponding to these WAPs.

A WAP-based security attack may include either WAP spoofing or WAP jamming. To estab-
lish the impact of such WAP-based attacks on localization accuracy, we must identify the behav-
ior of the Wi-Fi RSSI fingerprints in the presence of one or more malicious WAP nodes (Wi-Fi
spoofers/jammers). In our experience, the tainted fingerprint in the online phase will exhibit one
of three behaviors: (1) the RSSI values from one or more visible WAPs exhibits a significant in-
crease or decrease as compared to its offline counterpart, (2) a WAP whose RSSI value is usually
not visible at the current reference point becomes visible, and (3) a WAP that is usually visible at
the current reference point is no longer visible. As the range of received RSSI values from WAPs is
between –100 to 0 dBm, the impact of the malicious WAP behavior on the fingerprints is to induce
fluctuations in WAP RSSI values within this range, for the impacted fingerprints.
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Fig. 7. Results for the impact of malicious WAPs on deep learning model accuracy on the Office and Glover
paths. Average localization error for the CNN [15] and DNN [17] localization frameworks is shown for an
increasing number of malicious WAPs.

Figure 6 shows the fingerprint images generated using an RSSI fingerprint based on the method-
ology described in CNNLOC [15]. Each image has a resolution of 9 × 9. The original RSSI vector
(fingerprint) consists of 78 WAP values and is presented in its image form in Figure 6(a). This im-
age (Figure 6(a)) is not tainted by malicious WAPs (mWAPs) in the surrounding area and therefore
is labeled as “mWAP0.” The image labeled “mWAP2” (Figure 6(b)) is generated for the case when
two WAPs of 78 are malicious WAPs that generate spurious signals between –100 to 0 dBm (their
impact can be clearly seen with the two non-white pixels on the bottom half of the image). Simi-
larly, Figure 6(c)–(f) shows the generated images when the number of malicious WAPs is increased
to 4, 6, 8, and 10, respectively. For most of these images, the tainted pixel values can be visually
identified, and simple image local smoothing filters [34] may be applied to remove them. How-
ever, such filtering is not always possible. For instance, in Figure 6(d) with six malicious WAPs,
we observe only five tainted pixels that are visually decipherable as compared to the untainted
image (Figure 6(a)). This is because the sixth noisy pixel is a very minor disturbance that is hard to
detect visually. Unfortunately, the datapoint represented by this sixth pixel can have a significant
impact on localization accuracy. Such scenarios also exist for the case of mWAP8 (Figure 6(e)) and
mWAP10 (Figure 6(f)).

To test the vulnerability of deep learning–based indoor localization frameworks in the presence
of malicious WAPs, we analyzed the impact of a varying number of malicious WAPs on the lo-
calization accuracy of a CNN-based [15] and a DNN-based [17] indoor localization framework.
The results of this experiment are shown in Figure 7. We captured the average indoor localization
error for the Office and the Glover paths (shown earlier in Figure 5) for an increasing number of
malicious WAP nodes (along the x-axis). For a scenario with malicious WAPs (e.g., mWAP = 1), we
randomly selected the location of the malicious WAP over a 100 trials and averaged the resulting
localization error. From Figure 7, we observe that the average localization error of both CNN and
DNN learning models increases monotonically in a majority of cases. The results highlight the vul-
nerability of deep neural network–based indoor localization models toward WAP-based attacks.
Also, the CNN model for both paths is somewhat more vulnerable to malicious WAP-based attacks
as compared to the DNN model. One possible explanation for this may be that CNN models are
more sensitive to changes in patterns in the image as compared to variations across RSSI value
inputs for the DNN model.

To further analyze the accuracy degradation of these deep learning models, we present the
worst-case localization error for the two deep learning models in Figure 8. We can observe that
the worst-case localization errors for DNN and CNN models are significantly higher than the
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Fig. 8. Worst-case localization error for CNN and DNN, with respect to increasing number of malicious
WAPs on the Office and Glover paths.

average errors shown in Figure 7 as the number of malicious WAPs are increased. With only one
malicious WAP, the localization error in the worst case can be higher by up to 20× for both paths
and deep learning models. The worst-case localization error for the CNN model goes above 50m
with only six malicious WAPs for the Glover path, which would put a user’s predicted location
at a completely different area on an indoor floorplan! The DNN model appears to be much more
significantly impacted than the CNN model when it comes to worst case localization error.

From these experiments, it can be concluded that deep learning–based indoor localization frame-
works are highly vulnerable to WAP-based attacks. There is thus a strong motivation to improve
attack resilience for these frameworks, to achieve both robust and high accuracy indoor localiza-
tion. Even though DNN- and CNN-based models used for our experiments in this section produce
a relatively similar level of degradation in localization accuracy, in the rest of the article we fo-
cus on addressing vulnerabilities for indoor localization systems that utilize CNN models. This
is because CNNs have several advantages over DNNs when used for localization. A drawback of
DNN models is that their computational complexity increases significantly with increase in hid-
den layers, which is not the case for CNN models [35]. The pooling layers in CNN models reduce
the overall footprint after each convolutional layer, thereby reducing the computation required by
the successive set of layers. Therefore, localization solutions that utilize CNN models instead of
DNN models are inherently more scalable and energy efficient [33]. Also, CNN models are better
at identifying patterns in image data than DNNs, which make CNNs a more viable solution to
overcome device heterogeneity issues (that are more readily apparent in image form) with indoor
localization when using mobile devices [36].

The new observations and related discussions in this section highlight the importance of secur-
ing deep learning models against WAP-based attacks and serve as the motivation for our proposed
security enhancements in this work, that aim to secure deep learning models used for indoor lo-
calization. We discuss the specific attack models and associated assumptions made in our work in
the next section.

5 PROBLEM FORMULATION

We now describe our problem objective and the assumptions associated with establishing a secure
(WAP RSSI attack resilient) CNN-based indoor localization framework called Secure-CNNLOC (S-
CNNLOC). The assumptions for our framework are as follows:

• The offline fingerprint sampling process is carried out in a secure manner such that the
collected fingerprints only consist of trusted non-malicious WAPs.
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• The offline generated fingerprint database is comprised of images, each with a tagged ref-
erence point location; this database is stored at a secure, undisclosed location.

• A CNN model is trained using the offline fingerprint database and is encrypted and pack-
aged as a part of an indoor localization app that is deployed on mobile devices.

• Once the localization app is installed by a user, the CNN model can only be accessed by that
app.

• As the user moves about an indoor path, their mobile device conducts periodic Wi-Fi scans;
and the localization app translates the captured Wi-Fi RSSI information into an image.

• The generated image is fed to the CNN model within the localization app on the mobile
device, and the user’s location is updated in real-time on a map displayed on the device.

• The process of Wi-Fi scanning, fingerprint to image conversion, and location prediction
continues until the user quits the localization app on their mobile device.

We make the following assumptions about the indoor environment:

• An attacker can physically access one or more of the indoor locales and paths in the online
phase for which the indoor localization framework has been trained and set-up.

• The attacker can carry a smartphone equipped with Wi-Fi or any other portable battery
powered Wi-Fi transceiver to capture data about WAPs.

• The offline generated fingerprint database is secured and cannot be accessed by any mali-
cious third party.

• It is generally known (to the attacker) that the indoor localization framework utilizes a deep
learning–based approach, such as CNNs, to predict a user’s location.

• The attacker is capable of conducting the analysis described in the previous section and
place malicious WAP nodes at any randomly chosen locations along the indoor paths or
locales that are being targeted for a service disruption attack.

• The attacker can walk about an indoor path and collect Wi-Fi fingerprints while capturing
steps taken and walking direction data, similar to the approach described in Reference [37];
this would allow anyone with a smartphone to create their own fingerprint database, which
can be used to more strategically place Wi-Fi jammers or spoofed WAPs as discussed in
earlier sections.

Problem Objective: Given the above assumptions, our objective is to create a secure CNN-based
indoor localization framework (called S-CNNLOC) that is deployed on mobile devices and is re-
silient to malicious WAP RSSI attacks by minimizing their impact on the localization accuracy at
runtime (i.e., in the online phase).

6 S-CNNLOC FRAMEWORK

In this section, we discuss the design of our S-CNNLOC framework to overcome the vulnerability
of the CNNLOC [15] indoor localization framework against malicious WAP-based jamming and
spoofing attacks in indoor environments.

6.1 Offline Fingerprint Database Extrapolation

One of the major limitations of the CNNLOC framework comes from the small number of of-
fline fingerprints considered per reference point (10 fingerprints in Reference [15]). In general,
deep learning models often require a large number of samples per class to produce good results.
However, capturing Wi-Fi fingerprints in any indoor localization framework is a time-consuming
manual endeavor that is quite expensive to scale in volume (in terms of samples per reference
point).
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Fig. 9. An overview of the offline extrapolation of RSSI fingerprints and noise induction in the extrapolated
fingerprints. The noisy and extrapolated set of RSSI fingerprints are converted into images and used to train
the CNN model in our proposed S-CNNLOC framework.

To overcome this limitation, in our S-CNNLOC framework, we extrapolate the offline finger-
print database such that we obtain a larger number of samples per reference point. An overview
of this process is presented in Figure 9(a). We sample a total of S RSSI fingerprints at each location
(reference point) from L1 to LP, such that the RSSI vector has K WAPs (i.e., vector size is K). The
complete set of fingerprints that are manually collected at P locations become the offline finger-
print database. The distribution of each WAP RSSI at a given location is modeled by their means
and variances. This step is repeated for each reference point in the offline fingerprint database.
The mean and standard deviations along with the reference location information are temporarily
stored in tabular forms and are referred to as the seed tables (Figure 9(a)). The seed tables can be
represented as:

μS (i, j ), σ
2
S (i, j ), i ∈ [1,K] , j ∈ [1, P], (3)

where μS (i, j ) and the σ 2
S (i, j )

are the tables that contain the means and variances of S WAP RSSIs for

each location. These mean and variance seed tables (also shown in Figure 9(a)) can now be used
to extrapolate a larger fingerprint database.

To generate a new offline fingerprint for a given reference point, the normal distribution based
on the mean and variance (from the seed tables) for each WAP RSSI in each reference point fin-
gerprint is randomly sampled Q times:

RSSI (i, j )∼N (μS (i, j ),σ
2
S (i, j ) ) ∀ i ∈ [1,K], j ∈ [1, P], (4)

where RSSI (i, j ) is the RSSI in dBm of the ith WAP at the jth reference point, and N represents
the normal distribution. By randomly sampling each WAP from the reference point in seed tables,
we generate Q new RSSI fingerprint vectors for the given reference point. Through this random
sampling-based data extrapolation approach, we capture different combinations of RSSI values
in a fingerprint and also scale the size of our offline dataset beyond the few samples that were
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collected in the offline phase. The complete set of Q RSSI vector fingerprints per reference point
is the extrapolated fingerprint database, as shown in Figure 9(a). Subsequently, the extrapolated
fingerprint database is fed to the next stage where we deliberately induce noise in the fingerprints
in the database, as discussed next.

6.2 Malicious Behavior Induction

From our analysis of CNN-based indoor localization in Section 4, we observed that fluctuations in
one individual pixel value of the Wi-Fi fingerprint image can lead to significant deterioration in
the localization accuracy. This behavior can be attributed to the fact that the trained CNN model
is only good at making predictions for images (or RSSI information) that it has previously seen.
Therefore, the CNNLOC framework becomes vulnerable to minor deviations or noise in the images
that can be induced by WAP-based attacks or Wi-Fi jammer attacks in the online phase, when the
trained CNN model is used for location inference.

CNN models are designed to recognize one or more patterns within images that may be very
different from each other, or may only have slight differences from each other. In our approach,
we conjecture that relatively small-scale variations within and between images constructed from
WAP RSSI values (for the purpose of pattern recognition for indoor localization) can be learned
to be ignored by a CNN model. One way to accomplish this is by integrating an image filter with
the CNN prediction model. A recent work [38] has shown how a salt and pepper noise filtering
technique can provide some noise resilience for general image processing with CNNs. A separate
set of convolutional layers are used in Reference [38] whose sole purpose is to denoise an image.
However, such an approach would be extremely inefficient for our problem as it would require
using two different CNNs: one for denoising and another for classification, which would increase
prediction time. Moreover, using an additional CNN would increase the memory footprint of our
framework, which is a big concern for resource-constrained mobile devices.

We propose to use a single CNN-model for both image denoising and classification. Based on
our analysis presented in Section 4, we decide to conceptually model malicious behaviors such
as WAP spoofing, WAP jamming, and even environmental changes as random fluctuations in the
fingerprint data and expect the CNN model to be resilient to such fluctuations. Thus, by a calculated
introduction of noise in the input dataset that is used in the training phase of the CNN model, we
hope to teach the model to learn to ignore noise (due to malicious WAPs) in the inference phase.
Toward this goal, as shown in Figure 9(b), for each fingerprint in the “clean” (mWAP0) extrapolated
database generated as discussed in the previous sub-section, M copies are constructed in a separate
table. Then each of the M fingerprint vectors are fed to the proposed noise induction module that
introduces random fluctuations in the WAP RSSI values, based on an upper limit (Ø) that is set by
the user. The noise induction module (Figure 9(b)) has three major components. For a given RSSI
vector, the noise level selector submodule picks values from a discrete uniform distribution such
thatθ∼U{0, Ø}, where “θ” is the number of WAPs in the RSSI vector whose RSSI value would be
altered by the noise induction module. The random WAP selector arbitrarily identifies the set of
WAP candidates “Wθ ,” where each WAP candidate “wc ” is picked to be between 1 to K as described
by the expression:

wc∼U {1,K }, c ∈ [1,θ]
s .t .,Wθ = {w1,w2,w3 . . .wθ }.

(5)

The newly generated RSSI vectors (RSSIN oisy

(i, j )
) are tainted by random noise at the ith

WAP position, if the WAP was chosen by the random WAP selector submodule as shown by
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Equation (6):

RSSI
N oisy

(i, j )
=

{
I , i f i ∈Wθ

RSSI (i, j ), otherwise
j ∈ [1, P], I∼U {−100, 0},

(6)

where I represents noise sampled from a discrete uniform distribution between –100 dBm to 0
dBm, RSSI(i, j) is the clean (untainted) RSSI from Equation (4) and P is the number of reference
points on a benchmark path for which fingerprint data has been collected. Thus, our proposed
approach generates RSSI vectors that may have up to Ø noise-induced RSSI WAP values. Having
a uniform distribution of 0 to Ø malicious WAPs ensures that the CNN model trained using the
generated data is resilient to a range of malicious WAP numbers and locations in the localization
environment in the testing phase.

Following this process for all fingerprints in the clean training database, we generate G = Q ×M
fingerprints per reference point. The final number of RSSI fingerprints in the secure AP attack
resilient (SAAR) database constructed by following the processes described in this section is G × P,
where P is the number of reference points on a benchmark path. The SAAR training database is
then used to train the CNN model, which is subsequently deployed as an app on a mobile device
and used to make online (real-time) location predictions for the user carrying the mobile device.

7 EXPERIMENTS

7.1 Experimental Setup

We initially compare the accuracy and stability of our proposed (S-CNNLOC) framework to its
vulnerable counterpart (CNNLOC [15]) using two benchmark paths. These paths are shown in
Figure 5 with each fingerprinted location (reference point) denoted by a blue marker. The paths
were selected due to their salient features that may impact location accuracy in different ways.
The 64-m Office path is on the second floor of a relatively recently designed building with a heavy
use of wood, plastics, and sheet metal as construction materials. The area is surrounded by small
offices and has a total of 156 WAPs visible along the path. The Glover path is from a very old
building with materials such as wood and concrete used for its construction. This 88-m path has
a total of 78 visible WAPs and is surrounded by a combination of labs (heavy metallic equipment)
and classrooms with open areas (large concentration of users).

In the offline phase for S-CNNLOC, a user carried the HTC U11 smartphone and traversed
the path with reference points at 1-m intervals and captured 10 Wi-Fi scans at each reference
point, storing the scanned values tagged with the corresponding reference point location data. The
fingerprint sampling and storage methodology within the smartphone is similar to that described
in CNNLOC [15]. The trained S-CNNLOC model was deployed as an Android app on the HTC
U11 smartphone. The values of Q and M (discussed in Section 6) are set to 100 and 10, respectively.
Based on these values of Q and M, the Office path has 64,000 samples and the Glover path has 88,000
samples. To study the impact of malicious WAPs on indoor localization performance, we used a
real Wi-Fi transceiver [40] to induce interference (from spoofing/jamming) and obtain “tainted”
RSSI values in the vicinity of the indoor paths. These values were observed in the online phase. For
some of our scalability studies where we consider the impact of multiple malicious WAPs, multiple
such transceivers were considered to generate multiple “tainted” RSSI values.

7.2 Experimental Results

7.2.1 Analysis of Noise Induction Aggressiveness. We first performed a sensitivity analysis on
the value of Ø (upper limit of noise induction; discussed in Section 6.2). Several CNN models
were trained: S-CNNLOC1 (Ø = 0; no malicious WAPs), S-CNNLOC2 (Ø = 1), up to S-CNNLOC20
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Fig. 10. Heatmaps for the mean localization prediction errors with their annotated standard deviation for the
Office (top) and Glover (bottom) benchmark paths; results are shown for our proposed S-CNNLOC frame-
work with Ø = 0, Ø = 1, . . .Ø = 20 (y-axis).

(Ø = 20), using the fingerprint data collected during the offline phase. Then the devised models
were tested with fingerprints observed along the indoor paths in the online phase, in the presence
of different numbers of malicious WAPs.

Figure 10 shows the heatmap for the mean localization errors (in meters) with annotated stan-
dard deviation of various scenarios on the Office path (Figure 10(a)) and the Glover path (Fig-
ure 10(b)). The y-axis shows various S-CNNLOC variants with different values of Ø varying from
1 to 20. The x-axis shows the number of mWAPs present in the online phase. In Figure 10, the bright
yellow cells of the heatmap, with higher annotated values, represent an unstable and degraded lo-
calization accuracy, whereas the darker purple cells, with lower annotated values, represent stable
and higher levels of localization accuracy. Each row of pixels in the heatmaps of Figure 10(a) and (b)
represents the vulnerability of the specific S-CNNLOC model to an increasing number of mWAP
nodes.

It can be observed that the S-CNNLOC0 model is least resilient to an increasing number of
mWAPs on both paths. However, as the value of Ø is increased for the S-CNNLOC models, they
perform significantly better than S-CNNLOC0 (as illustrated by the darker rows for these models).
This is because the S-CNNLOC0 model is not trained to mitigate variations for WAP RSSI values.
Another observation is that beyond Ø = 18, the standard deviation and mean error for low values
of malicious WAPs (mWAPs < 4) starts increasing for both paths. This is because highly noisy
images in the SAAR database are unable to retain the original pattern required to localize in safer
environments (no malicious WAPs) or the opted CNNLOC model is unable to recognize underlying
patterns in the input fingerprint images.

Overall, we observe that training the S-CNNLOC models with fingerprint extrapolation and
noise induction (via the generated SAAR database) leads to better localization accuracy. Based on
the results of these experiments we found that S-CNNLOC18 delivers good results across both
paths. Therefore, we use the value of Ø = 18 in SAAR to train S-CNNLOC and use it for the rest of
our experiments. Henceforth, whenever we refer to S-CNNLOC, we are referring to S-CNNLOC18
(S-CNNLOC with Ø = 18).

7.2.2 Comparison of Attack Vulnerability. In this section, we contrast the performance of our
proposed S-CNNLOC framework with CNNLOC [15]. Figure 11(a) and (b) shows the cumulative
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Fig. 11. Localization performance of CNNLOC [15] with a varying number of malicious WAPs (from 0 to 20)
in the online phase.

distribution function (CDF) of the localization error for the CNNLOC models in the presence of dif-
ferent numbers of malicious WAPs (from 0 to 20 malicious WAPs per observed fingerprint), for the
Office and Glover paths. The most immediate observation from the results is that the localization
errors are significantly low (less than 1 m for a majority of scenarios) when there are no mali-
cious WAPs (CNNLOC-mWAP0), However, in both the Office (Figure 11(a)) and the Glover paths
(Figure 11(b)), localization accuracy degrades as the number of malicious WAPs are increased. This
degradation in accuracy does not scale linearly with increasing malicious nodes. For example, in
the Office path, increasing the malicious AP nodes from 16 to 20 does not significantly increase
the localization errors. A similar observation can be made from the Glover path in Figure 11(b),
where the localization error does not scale by much when going from 12 malicious WAPs to 16
and 20.

An important aspect to note from looking at Figure 11 is the significant drop in localization
accuracy when going from a scenario with no malicious WAPs (CNNLOC-mWAP0) to a scenario
with one malicious WAP (CNNLOC-mWAP1). This accuracy drop is apparent on both paths and
clearly depicts the high vulnerability of unsecured CNN models to the presence of even a single
malicious WAP node.

From Figure 11, we can conclude that a malicious third party can significantly degrade the lo-
calization accuracy of a CNN-based indoor localization model such as CNNLOC [15], with just a
very small number of malicious WAP nodes.

Figure 12 highlights the resiliency of the S-CNNLOC model toward malicious WAP-based at-
tacks for the same setup as for the experiment with CNNLOC in Figure 11, where the number of
malicious WAPs in the online phase is varied from 0 to 20. We observe that 95-percentile of the
localization error for the S-CNNLOC model, when under attack by up to 20 malicious WAP nodes
(S-CNNLOC-mWAP20), remains under 2.5 m for the Office path (Figure 12(a)) and under 3.5 m for
the Glover path (Figure 12(b)). The S-CNNLOC model for the Office path performs better than for
the Glover path as the Wi-Fi density on the Office path is about 2× the Wi-Fi density of the Glover
path, and thus malicious WAPs only impact a small fraction of the total WAPs along the Office
path.

In summary, based on the results shown in Figures 11 and 12, we observe that our S-CNNLOC
framework is about 10× more resilient to accuracy degradation in the average case, as compared
to its unsecure counterpart CNNLOC [15], for the Office and Glover paths.
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Fig. 12. Localization performance of our S-CNNLOC with a varying number of malicious WAPs (from 0 to
20) in the online phase.

Table 1. Additional Benchmark Paths and Their Features

Path Name Length (m) Number of WAPs Environmental Features

EngrLabs 62 120 electronics, concrete, labs
LibStudy 68 300 wood, metal, open area
Sciences 58 130 metal, classrooms

Office 64 156 wood, concrete
Glover 88 78 wood, metal, concrete

7.2.3 Extended Analysis on Additional Benchmark Paths. We conducted further experimental
analysis on a more diverse set of benchmark indoor paths. Table 1 presents the salient features of
the three new benchmark paths used in this analysis. The benchmark path suite shown in Table 1
consists of the EngrLabs, LibStudy, and the Sciences paths, with a description of environmental fac-
tors that may affect the localization performance of Wi-Fi-based indoor localization frameworks.
Each path has a length ranging from 58 to 68 m and 10 Wi-Fi fingerprint samples were collected
at 1-m intervals on each path, similarly to what we did with the Office and Glover paths described
earlier. The EngrLabs path is in an old building mostly made of concrete and is surrounded by
labs consisting of heavy metallic instruments. The LibStudy and Sciences paths are situated in rel-
atively newer buildings consisting of large amounts of metallic structures. The LibStudy path is
in the library and is in a relatively open area and is usually heavily populated at most times. The
Sciences path is surrounded by large classrooms.

Figure 13 presents the means and standard deviations of the localization error with our proposed
S-CNNLOC and the CNNLOC [15] framework on each of the three paths while it is under the
influence of 2 to 20 malicious WAPs in the online phase. We observe an increasing trend in mean
and standard deviations of localization errors on all three paths for both S-CNNLOC and CNNLOC.
However, we observed that the mean localization error of CNNLOC on all three paths is always
more than 4× the average error for S-CNNLOC. For some situations, such as for two and four
malicious WAPs on the EngrLabs and Sciences paths, the localization error for CNNLOC is about
25× higher (worse) on average as compared to its S-CNNLOC counterpart. The accuracy along the
Libstudy path is relatively less affected than for the other paths. This can again be attributed to
the fact that the LibStudy path has an unusually dense Wi-Fi network compared to the EngrLabs
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Fig. 13. The average localization error and its standard deviation of the proposed S-CNNLOC framework as
compared to CNNLOC [15] for the benchmark path suite from Table 1.

and Sciences paths, and thus a relatively fewer number of malicious WAPs do not have as much
of an impact on accuracy. These experiments with additional benchmark paths indicate that our
proposed S-CNNLOC framework scales well over a wide variety of indoor paths with different
environmental features whereas the unsecured CNNLOC [15] framework experiences a significant
degradation in its localization error. The S-CNNLOC model consistently reduces the vulnerability
of the proposed localization framework and thus represents a promising solution to secure deep
learning–based indoor localization frameworks.

8 GENERALITY OF PROPOSED APPROACH

In this section, we highlight the generality and the versatile nature of our proposed security aware
approach by applying it to another deep learning–based approach proposed in Reference [17]. We
first present a discussion of the proposed work in Reference [17]. Later, we use Wi-Fi fingerprints
generated in Section 7.1 to train the secure-DNN (SDNN) model and compare its prediction accu-
racy results to the conventional methodology described in Reference [17].

8.1 Denoising Autoencoder-based DNN Framework

The DNN-based approach in Reference [17] consists of three stages in the online phase. In the first
stage, features are extracted from the RSSI fingerprints using a Stacked Denoising Autoencoder
(SDA). The SDA’s output is fed to a four-layer DNN model in the second stage that delivers a
coarse location prediction. In the final stage, additional Hidden Markov Model (HMM) is used to
finetune the coarse localization perdition received from the DNN model.

The SDA enables the DNN model to identify and learn stable and reliable features from the
input fingerprint information. Intuitively, SDA achieves this by zeroing-out input features based
on a predefined probability and identifying input features that have a significant impact on the
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Fig. 14. Heatmaps for the mean localization prediction errors with their annotated standard deviation for
the Office (top) and Glover (bottom) benchmark paths; results are shown for our proposed S-DNN framework
with Ø = 0, Ø = 2, . . . , Ø = 20 (y-axis).

output. Further, the HMM allows for greater resistance to minor variations in WAP RSSI over
time.

8.2 Security-aware DNN Training in the Offline Phase

To train the SDNN model, we use the augmented security aware fingerprints used to train the
S-CNNLOC model in the previous section, the only difference being that the fingerprints are not
converted into images. To identify the stable value of Ø for noise induction module, we perform
a sensitivity analysis using DNN models as done in Section 7.2.1. The results for this experiment
are captured in Figure 14.

In Figure 14, we observe that the mean localization errors for the baseline SDNN0 models for the
Office and Glover paths increase by 48× and 13× in the presence of 20 malicious nodes, respectively.
For SDNN models trained with a larger value of Ø (14, 16, 18), the localization error remains lower
as the number of malicious nodes in the online phase increase. For simplicity, we set the value of
Ø to 18 for all paths. Beyond this point any reference to an SDNN model refers to DNN model [17]
trained with Ø = 18. In the next subsection, we present an extended analysis on the performance
of SDNN as compared to a conventional unsecured DNN model.

Figure 15 presents an analysis on the stability of the conventional unsecured DNN-based frame-
work [17] as compared to secure-DNN (SDNN) model in the presence of an increasing number of
malicious WAPs on a set of versatile paths with varying environmental characteristics as dis-
cussed in Table 1. From Figure 15, we observe the prediction accuracy of the conventional DNN-
based approach presented in Reference [17] systematically degrades (increased average error) as
the number of stochastically placed malicious Wi-Fi access points on various paths are increased.
The SDA stage in Reference [17] is supposed to learn prominent features by learning to encode
prominent input features (ignoring noise) in the training phase. However, the noise in the training
features over a short period of time is significantly lower and different from the addition of mali-
cious WAPs in the online prediction phase. Due to the fact that the SDA does not learn to denoise
malicious fingerprints in the training phase the prediction accuracy of the method proposed in
Reference [17] degrades with the introduction of malicious WAPs in the testing or online phase.
Further, the HMM model is unable to stabilize the final location prediction, because it is designed
to improve the fine-grain location based on the assumption that the consecutive coarse-grain
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Fig. 15. The average localization error and its standard deviation of the proposed S-DNN framework as
compared to DNN [17] for the benchmark path suite from Table 1.

predictions from the DNN are sufficiently close together. However, in the presence of malicious
WAPs this assumption does not hold for the coarse-grain predictions causes the HMM to deliver
unstable results.

However, the SDA component of the SDNN-based model learns to denoise and ignore malicious
WAPs. This is achieved through stochastically zeroing out RSSI values, identifying stable trusted
WAPs and denoising malicious WAPs over various fingerprints. As observed for various paths in
Figure 15, this greatly improves SDNN’s resilience to malicious WAPs in the online phase and
delivers up to 10× better mean prediction accuracy such as in the case of 16 malicious WAPs on
the EngrLabs path.

A notable aspect of our proposed approach is that it allows for the deep learning model to ignore
malicious WAPs in the testing phase; however, the extent of resilience to the malicious WAP-based
attacks is dependent on the deep learning model’s ability to identify underlying pattern in the
training fingerprints. Deep learning models such as CNNs and SDA-based approaches are more
likely to deliver promising results as they are both designed to identify underlying stable patterns
in the training phase. However, designing a deep learning model that delivers the best results in
all situations is beyond the scope of this work.

Through experiments performed and the discussion of presented results, we can conclude that
our proposed approach delivers superior stability of prediction accuracy of deep learning–based
models over a versatile set of benchmark paths. Furthermore, since our proposed approach of
securing deep learning–based models focuses on the training dataset instead of the model design,
it can be generalized to a wide variety deep learning–based indoor localization frameworks.

9 CONCLUSIONS AND FUTURE WORK

In this article, for the first time, we presented a vulnerability analysis of deep learning–based in-
door localization frameworks that are deployed on mobile devices, in the presence of WAP spoofing
and jamming attacks. Our analysis highlighted the significant degradation in localization accuracy
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that can be induced by an attacker with very minimal effort. For instance, our experimental stud-
ies suggest that an unsecured CNN-based indoor localization solution can place a user up to 50
m away from their actual location, with attacks on only a few WAPs. Based on our new observa-
tions, we devised a novel solution to provide resilience against such attacks and demonstrated it
on a CNN-based localization framework to address its vulnerability to intentional RSSI variation-
based attacks. To further highlight the generality of our proposed security aware approach we
implemented it on a DNN-based indoor localization solution. Our proposed vulnerability resilient
framework was shown to deliver up to 10 × superior localization accuracy on average, in the pres-
ence of threats from several malicious attackers, compared to the unsecured CNN- and DNN-based
localization framework.

As a part of future work, we will be focusing on improving the quality of localization and navi-
gation. Toward this goal, a possible extension of our work can be to predict the path taken by the
user using multiple Wi-Fi fingerprints as an attack is taking place. In such situations, the machine
learning model could correct a previous prediction (path taken) based on the upcoming predic-
tions and vice versa. This methodology may improve the localization accuracy and stability in
corner cases in the online phase where fingerprints at a location are similar in structure to others
fingerprint that are spatially separated by large distances.
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