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ABSTRACT
Batteryless image sensors present an opportunity for pervasive
wide-spread remote sensor deployments that require little mainte-
nance and have low cost. However, the reliance of these devices
on energy harvesting presents tight constraints in the quantity
of energy that can be stored and used, as well as limited, energy-
dependent availability. In this work, we develop Camaroptera, the
first batteryless, energy-harvesting image sensing platform to sup-
port active, long-range communication. Camaroptera reduces the
high latency and energy cost of communication by using near-
sensor processing pipelines to identify interesting images and trans-
mit them to a far-away base station, while discarding uninterest-
ing images. Camaroptera also dynamically adapts its processing
pipeline to maximize system availability and responsiveness to
interesting events in different harvesting conditions. We fully pro-
totype the Camaroptera hardware platform in a compact, 2cm x
3cm x 5cm volume, composed of three adjoined circuit boards. We
evaluate Camaroptera demonstrating the viability of a batteryless
remote sensing platform in a small package. We show that com-
pared to a system that transmits all image data, Camaroptera’s
processing pipelines and adaptive processing scheme captures and
sends 2-5X more images of interest to an application.

CCS CONCEPTS
• Computer systems organization → Sensor networks; Em-
bedded software; • Hardware → Wireless integrated network sen-
sors; • Computing methodologies → Object detection; Neural
networks.

KEYWORDS
Energy-harvesting, Intermittent computing, Edge computing, Com-
puter vision, Sensor systems

1 INTRODUCTION
Improvements in energy-harvesting systems have led to the emer-
gence of wireless IoT devices that are entirely energy-autonomous.
Such a system collects energy (e.g., RF, solar) from its environment,
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Figure 1: Camaroptera prototype

buffering the energy in a battery [1] or capacitor [2]. After col-
lecting sufficient energy, the system activates and performs some
sensing, computing, or communication for its application.

Existing ultra-low-power and batteryless IoT devices typically
support limited sensing, computing and communication modalities.
Today’s systems primarily sense low-data-rate time-series informa-
tion using sensors like accelerometers, barometers, hydrometers,
and gyroscopes. These devices perform low-intensity computation,
such as summarization (e.g., averaging), compression, and logging
and communicate over short distances (meters), using off-the-shelf
radios, such as Bluetooth Low-Energy (BLE). Unfortunately, fu-
ture applications, such as signals intelligence, enhanced situational
awareness, wildlife monitoring, and smart cities require more so-
phisticated sensing, computing, and communication modalities. Fu-
ture systems must support video and image sensor data to directly,
rather than indirectly, observe complex environmental phenomena
and furthermore demand deployment into environments requiring
wireless data backhaul at kilometer scale. The tandem requirements
of high-data-rate sensing and long-range communication pose a
key challenge for an energy-constrained system: how should a de-
vice use scarce bandwidth and energy to communicate interesting
signals to a far-away base station?

In this paper, we present the development of Camaroptera, a
batteryless remote image sensing system, which addresses all of
these future application requirements. Camaroptera senses visual
spectrum data using an ultra-low-power image sensor [3] and is
equipped with a LoRa [4] radio, enabling it to communicate over
long distances, even in the presence of urban signal occlusion [5].
Camaroptera is batteryless and harvests its operating energy using
small solar panels, storing energy in a small supercapacitor.

Camaroptera’s main contribution is two-fold. Camaroptera’s first
contribution is to address the challenge of energy and bandwidth
scarcity by instead spending energy to apply sophisticated near-
sensor processing to sensed data. Camaroptera processes images
locally and only transmits the interesting results to a base station.
Camaroptera’s flexible software pipeline architecture allows de-
ploying signal processing (e.g., compression, filtering), and machine
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inference using convolutional/deep neural networks (CNN/DNNs).
Based on the amount of ambient energy available, Camaroptera
can dynamically vary the processing it performs on input data.
This allows Camaroptera to optimize the system availability by per-
forming cheaper and quicker operations when there is less energy
available and employing more sophisticated techniques when there
is larger energy availability.

Camaroptera’s second contribution is to develop a fully- func-
tional, miniaturized energy-harvesting prototype. The 3D assem-
bly of the multi-board prototype fits a 2cm x 3cm x 5cm package.
The prototype works within these tight volume and surface area
constraints, which limit solar panel output to a few mW and en-
ergy storage volume (e.g., 33mF at 3V). The prototype supports
sophisticated software pipelines within the resource constraints of
a commodity ULP MCU: 256kB of total memory, a 16MHz clock,
and a 16-bit datapath.

Our measurements show that Camaroptera is a viable batteryless
remote image sensor, supporting long-range communication, by
leveraging efficient on-sensor computational pipelines. We first
present the design overview and describe how Camaroptera an-
swers several important research questions in meeting key design
requirements. We then measure Camaroptera’s basic operation in
a lab environment, demonstrating its ability to collect, process, and
selectively transmit image sensor data, operating entirely from its
limited solar power input.

2 BACKGROUND
Energy-harvesting systems are devices that extract their operating
energy from their environment, eliminating their dependence on
batteries by instead using highly durable and long-lived capacitive
energy storage. An energy-harvesting system may extract energy
from directed or ambient radio waves [6, 7], solar radiation [2, 8],
or other environmental sources and operates only intermittently,
as energy is available [9–15]. Energy-harvesting devices support
long-term deployments because they are limited by capacitor and
IC lifetimes only, rather than relatively shorter battery lifetimes.

Recent work [1] advocates for using batteries to avoid manag-
ing capacitive energy storage and to store surplus energy. While
simpler and appropriate for some tasks with low duty cycle and
low compute intensity, battery-powered devices are larger, heavier,
contribute to battery waste, and face lifetime issues, as fixed batter-
ies fail and rechargeable batteries wear out with recharge cycles.
Building energy-harvesting systems that rely on capacitive energy
storage is an appealing design to support very large numbers of
sensor systems to be deployed pervasively for long periods of time
and to support high duty cycle and high-intensity computation.

In addition to freedom from energy infrastructure, pervasively
deployed IoT applications must operate at potentially long dis-
tances from communications infrastructure. The recent maturation
of chirp spread-spectrum long-range radio technologies, such as
LoRa [16]/LoRaWAN [17], has given rise to long-range sensor data
backhaul options such as OpenChirp [5]. LoRa ICs are commercially
available, inexpensive, and offer communication over extremely
long distances (i.e., kilometers) at very low transmit power levels
(i.e., tens of mW).

Figure 2: System overview of Camaroptera

Additionally, the ability to communicate kilometers from a tiny,
energy-harvesting sensor device creates the opportunity for more
devices to be deployed to more environments than is possible using
legacy backhauls: for example, 4G/LTE is expensive per byte [18],
Bluetooth/BLE is range-limited [19, 20], and wifi requires deploying
many base stations for wide-area coverage.

While long-range communication technology is a key enabler
of pervasively deployed IoT devices, the energy required for com-
munication dominates a device’s total operating energy, even at a
low communication duty cycle.

Computing directly on sensor data using compute hardware
co-located with those sensors reduces the need to incur the high
energy cost of communication using a high-power radio. While
the computational capabilities of existing ultra-low-power micro-
controllers is limited, prior work has shown promise in evaluating
even sophisticated sensor data processing workloads on intermit-
tent, energy-harvesting systems. One recent study [21] found that
the time to collect energy needed to communicate a 28×28 pixel
image was approximately 360× greater than the time to collect
energy needed to intermittently evaluate a convolutional neural
network on that image. With architectural support for yet more
efficient computing in ultra-low-power MCUs [22–24], the com-
putational capabilities available to intermittent, energy-harvesting
sensor nodes will increase.

3 CAMAROPTERA DESIGN
Camaroptera is a batteryless image sensor designed to support
pervasive, long-term deployment. Its design is motivated by the
unique challenges of deploying a high-data-rate sensor over a large
area for a long time. We identify key design requirements for such
a deployment and provide an overview of Camaroptera’s design,
which meets these goals.

3.1 Camaroptera Design Requirements
There are several key design requirements for a batteryless re-
mote sensing system. These requirements are (R1) low cost, (R2)
zero maintenance, (R3) geographic distribution, (R4) bandwidth-
effective operation, and (R5) minimal environmental impact.
(R1) Cost. A pervasively deployed image sensing system must
have a low cost. Devices must be manufactured at large scale (i.e.,
millions) requiring each device’s cost to be low to minimize to-
tal cost. Minimizing cost minimizes operator liability as deployed
devices are at risk of damage or loss due to vandalism, animal
interactions [25] and weather.
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(R2) Maintenance. A pervasively deployed image sensing system
must operate for a long period of time without maintenance. A
device should require no component or battery replacements over
its lifetime. A device should operate without costly centralized
power or communications infrastructure; fully autonomous and
wireless operation is ideal.
(R3) Distribution. A pervasively deployed image sensing system
must cover a large geographic area while respecting cost and main-
tenance requirements in order to lower the number of high-cost
base stations that require continuous power (i.e., imposing an in-
frastructure cost) or large batteries (i.e., imposing a maintenance
cost). Long-range wireless communication is the only viable option
for a large-scale, geo-distributed remote image sensing systems.
(R4) Communication. A pervasively deployed image sensing sys-
tem should make judicious use of bandwidth. Long-range wireless
links typically have a low data-rate [5, 17, 21] and the system should
ensure that every transmitted byte is valuable to the end-to-end
application that the system implements. Moreover, to respect the
cost, maintenance, and distribution requirements, the system must
limit the number of required long-range receivers. The more data
each sensor sends to a receiver, the fewer devices each receiver can
support, and the more receivers are required [26].
(R5) Environmental Impact. A pervasively deployed image sens-
ing system must minimize its negative impact on the environment
into which it is deployed by being small, unobtrusive, and by not
interfering with existing (e.g., radio) infrastructure. A device must
minimize its environmental impact in the long term by minimiz-
ing the amount of hazardous chemical waste due to batteries and
other toxic components. Ideally, as technology permits, pervasively
deployed sensors should be manufactured from biodegradable semi-
conductors on thin, flexible, biodegradable organic substrates [27].

3.2 Camaroptera Design Overview
Camaroptera is a batteryless sensing, computing and communica-
tion system composed of a custom hardware platform, application-
level software components and an adaptive controller. Figure 2
presents a system overview of the different blocks that compose the
Camaroptera visual sensing system. Each Camaroptera device is
built on CamHW, a custom hardware platform. It includes a small,
low-power image sensor to collect images, a microcontroller with
an embedded memory to process images, a long-range radio chip
for communication, and a solar energy-harvesting power system
for collecting and storing energy from the environment.

The software of Camaroptera is built around CamSW, a simple
operating system and device driver layer that manages sensor data
collection and provides reconfigurable, at-sensor processing pipelines
to process collected images. It includes an adaptive controller that
monitors the device’s input power using dedicated hardware and
modifies the processing tasks based on energy availability. This
allows Camaroptera to maximize the system availability and respon-
siveness to interesting events by performing cheaper and quicker
processing in times of lower energy availability. When there is more
energy available to harvest, CamSWwill switch Camaroptera’s pro-
cessing pipeline to more sophisticated tasks.
Meeting Design Requirements. Together, Camaroptera’s hard-
ware and software meet the design requirements for a pervasive,
long-term image sensing device. Camaroptera’s design minimizes

Figure 3: Camaroptera prototype PCBs

its cost. CamHW is a low-cost 2-layer custom PCB populated en-
tirely with COTS components and ICs. Each fully-assembled de-
vice costs around USD$50, enabling large-scale deployements. Ca-
maroptera’s batteryless energy-harvesting power system is simple
to deploy and requires no maintenance once deployed. Batteryless
operation requires no battery replacements and produces no battery
waste. CamHW includes a LoRa IC, enabling communication over
kilometer ranges. Kilometer-scale communication is a key require-
ment for widespread deployment without excessive base station
infrastructure costs. CamSW is designed for immediate, at-sensor
processing of collected sensor data. Application-specific at-sensor
processing allows CamSW to identify uninteresting data and to
discard them immediately, avoiding consuming energy, time, and
bandwidth to send them to a base station, efficiently using scarce
bandwidth.

4 HARDWARE DESIGN
Camaroptera hardware platform is designed for sensing, computing,
and long-range communication and is composed entirely of COTS
components to limit per-device cost.

Camaroptera is composed of 3 small boards. The sensor board
includes sensing, computing, and communication components. The
power system board includes energy storage and power conditioning
components. The solar board includes the device’s solar panels and
provides structural support for the manufactured device. Figure 3
shows a photograph of the populated sides of the three boards.

4.1 Sensor Board
The sensor board incorporates the main active components of Ca-
maroptera’s remote sensor system, including a microcontroller
(MCU), a low-power image sensor, and a LoRa transceiver with
a ceramic patch antenna. The sensor board hardware is agnostic
to its power system and can be powered by Camaroptera’s power
board or by a standard 3V supply.
MCU.Camaroptera’s MCU is a Texas Instruments Ultra Low-Power
MCU MSP430FR5994 [28] running at 16 MHz with 8kB of SRAM
and 256 kB of embedded non-volatile FRAM. The limited memory,
low clock frequency, and simple architecture are key challenges to
support sophisticated computations, as observed in prior work [21].
Image Sensor. Camaroptera uses a Himax HM01B0 [3] image
sensor, which is an ultra-low-power CMOS image sensor. Its sensor
has an active area of 320x320 pixels. Camaroptera configures the
camera to operate in QQVGA (160x120) mode, capturing 8-bit gray-
scale images.
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Transceiver. Camaroptera uses a Semtech SX1276 [4] LoRa chirp
spread spectrum [16] modulation transceiver IC [29]. The chip
incorporates an ultra-low-power 20 dBm power amplifier with a
sensitivity over -148 dBm. Camaroptera connects this LoRa IC to a
ceramic chip antenna with a maximum gain of 3.42 dBi.

4.2 Power board
The power board implements Camaroptera’s energy harvesting
power system, a two-stage voltage boosting circuit with hardware
voltage comparators to keep system voltage in the most efficient
operating range for the boosters. The power board also houses
Camaroptera’s supercapacitor-based energy storage.
Boosting. The first voltage boosting stage connects the solar panels
to the supercapacitor using an LTC3105 [30]. The booster is a high-
efficiency step-up DC/DC converter that operates down to 225mV
input and supports maximum power point control (MPPC). Both of
these features are important for operating on solar energy in low
light. The second boosting stage connects the energy storage to
the sensor board using a TPS61070 [31] synchronous voltage boost
converter. This boost IC provides efficiency over 85% with input as
low as 1.2V for a regulated output of 3V.

Camaroptera controls the booster operation, keeping it pow-
ered off when the supercapacitor voltage is outside its maximum
efficiency region.
Voltage Thresholding. Camaroptera uses two MIC841 [32] volt-
age comparators with an externally adjustable hysteresis to drive
the enable input of Camaroptera’s second booster and the reset line
of the MCU. The first comparator ensures that the second boosting
stage is enabled only when the energy storage capacitor is charged
between a lower threshold of 1.24V and its rated maximum of 3V.
Camaroptera’s second comparator holds the MCU in reset while
the VCC output of the second boosting stage stabilizes. The second
comparator is set to a low threshold of 2.2 V, the minimum voltage
to operate the LoRa modem, and a high threshold of 3V.
Energy Storage. Camaroptera stores energy in a high-density su-
percapacitor. Camaroptera’s supercapacitor must store sufficient
energy to ensure that its longest atomic task completes without ex-
hausting the device’s stored energy. Camaroptera’s largest atomic
task is sending a LoRa packet. We empirically determined that a
BestCap [33] 33mF high-density supercapacitor with a low Equiva-
lent Series Resistance (ESR) stores sufficient energy to send LoRa
packets in several radio modes. 33mF is the largest capacitance avail-
able in the small-form-factor supercapacitor size on Camaroptera’s
power board; a larger capacity would require a larger supercapaci-
tor volume and footprint size.

4.3 Solar Board
Camaroptera’s solar board is entirely covered by solar panels and
mounts perpendicularly to the sensor and power boards. The solar
panels are an array of four IXYS [34] high-efficiency monocrys-
talline panels, measuring 1cm x 2cm each. The solar board provides
structure and power for the assembled device with mechanical and
electrical connections to the other boards.

5 SOFTWARE DESIGN
Camaroptera’s software subsystem, CamSW, is centered around
its use of near-sensor processing pipelines and an adaptive control

mechanism that varies its operating parameters depending on the
amount of incoming energy to ensure minimum quality of service
requirements.

5.1 Near-Sensor processing pipeline
Camaroptera implements a multi-stage pipeline that processes an
image after its capture in order to identify interesting images. The
goal of the pipeline is to process images locally, which has a low
time and energy cost, to avoid transmitting uninteresting images,
which has a high time and energy cost.
We describe Camaroptera’s processing pipeline in the context of a
representative driver application that is designed to identify and
transmit images containing people. This person detection pipeline
has both general and application-specific stages. It has the following
four stages.
Difference Filtering. We implemented a simple image differenc-
ing algorithm that compares the captured frame with the previous
frame. We deem images different from one another if the number
of different pixels exceeds a heuristically-defined threshold. We set
the threshold empirically to 400 pixels by observing that human
figures in our images tend to be around 20x20 pixels in size.

Camaroptera can supports more sophisticated methods, but that
would introduce additional computational complexity and latency.
We chose this method as it is simple, fast (requires only a few
subtractions, one addition and one comparison operation) and needs
the storage of a single historical image, which works well for our
space constrained device.
Inference. If a new image differs from a previous one, Camaroptera
runs an application-specific inference routine on that image to
identify whether it is interesting to the application. For our per-
son detection application, we have implemented a Convolutional
Neural Network (CNN) the structure of which is derived from the
LeNet [35] digit classification network.

As trained, even LeNet, which is a small CNN, does not fit in
the 250kB of avaliable memory on our MSP430 MCU. We manually
altered the network’s structure and performed hyperparameter op-
timization to make the network fit onto the device’s memory. To
reduce the size of the input layer, we pass our 160x120 input image
through a 4x4 average pooling layer before passing it to LeNet’s
first convolutional layer, reducing the input to 30x40 pixels. Next,
we used the Genesis [21] network minimization tool to perform hy-
perparameter (i.e., structural) optimization on our trained, modified
network. Genesis applies aggresive near-zero-pruning and layer
separation techniques such as Singular Value Decomposition. This
enables us to reduce a network’s weight storage requirements, the
size of its intermediate activations, the expected inference latency,
and the accuracy and precision of the network. The final network
occupies 20kB space for the weights, which is a significant reduction
on the 3.6MB occupied before optimization. It also occupies a fur-
ther 80kB for the intermediate activations and gives 78% accuracy
on the test set, with 40% False Positives and 1% False Negatives.
Pre-Transmission Transformation. If an image is deemed inter-
esting by inference, Camaroptera transforms the image to prepare
it for transmission. This could include a variety of encoding and
encryption, depending on application requirements. In our person
detection prototype, we compress each interesting image before
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(a) (b) (c)

Figure 4: Comparison between the original and compressed
version of a frame captured by Camaroptera. (a) Original im-
age. (b) Floating point JPEG. (c) Fixed point JPEG.

transmission by using an optimized version of baseline JPEG com-
pression, derived from the Moodstocks jpec encoder [36].

We modified the implementation to use fixed point arithmetic
instead of floating point because ourMCU does not natively support
floating point operations and software emulation is extremely slow.
Shifting to fixed point reduced the latency to compress a 160x120
image from 25 seconds to 7 seconds. Fixed point JPEG degrades
image quality, but not excessively, as Figure 4 shows qualitatively.

We additionally optimized the transmission of JPEG headers
with the observation that the first 500 bytes of the compressed bit
stream remain constant for a fixed image resolution and quality
factor. We store the header on the receiver and avoid sending the
500 bytes of header data, which amounts to the transmission of two
LoRa packets and seconds or minutes of device operation.
Transmission. In the last stage, Camaroptera packetizes the image
and transmits each of an image’s packets in sequence using its LoRa
radio. In this stage useful information regarding the time between
the transmission of the different packets is also collected. This
data will be used to infer the luminosity level and exploited by the
adaptive reconfiguration routine.

5.2 Adaptive Reconfiguration Routine
Camaroptera’s software adapts to changing lighting conditions by
varying the operations that it performs in its pipeline. The goal of
this reconfiguration is to maximize system availability, by minimiz-
ing the end-to-end latency required for capturing, processing and
transmitting an image. To achieve that goal, we consider three pos-
sible modes of the CamSW processing pipeline. These are send all,
diff+send, and diff+infer+send, which include different subsets
of the pipeline stages described above. Here diff corresponds to
Difference Filtering and infer corresponds to Inference.

The reconfiguration routine uses a measure of available energy
to choose the appropriate operating mode. It does this by recording
the supercapacitor charging rate after sending every individual
radio packet. This charging rate is measured using a local timer
present on the MCU. After all the packets for an image are sent, the
individual charging rates are averaged and the average charging
rate is used to select the best operating mode for processing the
next image. The measured charging rate corresponds to the power
available in the environment, which in turn corresponds to the light
level.

The reconfiguration routine is pre-loaded with a table that in-
dicates the mode with minimum end-to-end latency for a range
of charging rate values. This table is based on a measured pre-
characterization of Camaroptera’s end-to-end latencies in different
modes across varying light levels. At runtime, the reconfiguration

routine chooses the operating mode that minimizes latency for its
measured charging rate value, thereby making the system available
for recording and processing maximum interesting events.

6 EVALUATION AND RESULTS
We evaluated Camaroptera’s power consumption, and end-to-end
latency across a range of operating conditions in a controlled lab-
oratory environment. The evaluation centers on a representative
application that detects people outdoors. For this application, an
interesting image is one containing at least one person.

6.1 Power Consumption Analysis
Camaroptera’s energy harvesting system consumes 197 µW when
disconnected from the sensor board, with the supercapacitor fully
charged. The sensor board consumes 5.1 mW while capturing a
QQVGA image: 3 mW by the microcontroller and 2.1 mW by the
camera sensor. Image capture time varies from aminimum of 661ms
to a maximum of 1.62 seconds, because the camera needs more time
for exposure calibration in low light conditions. Image difference
computation takes 46.14 ms, and the MCU draws 5.77 mW of power.
JPEG compressing a QQVGA image takes 7.23 seconds, and the
MCU consumes 5.17 mW of power on average. CNN inference
takes 11.9 s, with a power consumption of 4.85 mW. Sending a LoRa
packet dominates power consumption, with a 363.8 mW power
draw for a transmit power of 17 dBm.

The LoRa chipset’s Spreading Factor (SF) and Bandwidth (BW)
parameters determine its transmit latency and the effective receiver
sensitivity. Receiver sensitivity is the minimum signal strength
that the receiver can detect, which determines feasible transmit
range. A larger-magnitude, negative receiver sensitivity translates
to a larger range: the signal can travel further and attenuating
more while remaining detectable at the receiver. To find the best
combination of these parameters in terms of energy and range, we
measured the transmission energy for sending a 255-byte packet at
different SF and BW combinations, showing data in Figure 5. Our

Figure 5: Relationship between LoRa radio sensitivity and
energy requirement for sending a packet of 255 bytes. The
operating points with feasible energy requirements for our
33mF capacitor are blue highlighted.
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Table 1: Recharge time for Camaroptera operations in sec-
onds. ‘+’ indicates ability to run continuously due to suffi-
cient input power.

Illuminance (klx)

1.5 5 15 25 35 45 55 65 75 85 95

Cap. 23.2 1.7 + + + + + + + + +

Diff. 1.6 + + + + + + + + + +

Inf. 216.2 25.3 + + + + + + + + +

Comp. 245 14.97 6.5 + + + + + + + +

Tx 500/7 307 17.3 6.6 4.24 3.4 2.6 1.9 1.7 1.3 1.1 0.7

Tx 500/8 803 44.6 16.7 9.4 6.3 4.5 4.0 3.1 2.5 2.2 1.8

Tx 250/7 1096 64.7 18.5 10.3 7.5 5.3 4.1 3.5 2.9 2.3 2.0

33 mF supercapacitor can store enough energy for any of three
different operating modes – (BW/SF) 500/7, 500/8, 250/7. Each of
these modes has a higher receiver sensitivity than the previous, but
also a higher total energy per packet.

6.2 Performance Analysis and Results
We characterized the latency to collect energy for different sub-
operations that make up Camaroptera’s capture, processing, and
transmission pipeline. In a controlled lab setup, we varied illumi-
nance from 1.5 klx to 95 klx to simulate different light conditions.
Table 1 shows results. We show energy collection latency to trans-
mit a single packet for three different radio configurations. The data
show that above 15 klx (outdoors on a bright day), all operations
except radio transmission can run continuously without recharging
because the input power is sufficient to power the MCU and camera.
The radio is power limited and always draws more power than the
panels provide. The data also illustrate a key trade-off: collecting
energy for inference at low light levels (e.g., <5 klx) has high latency,
but that latency is significantly less than the combined energy col-
lection latency to compress and transmit an image. The data thus
show that at-sensor inference minimizes end-to-end latency at low
light levels.

We evaluated the fraction of interesting images captured and
sent and the end-to-end frame latency. We evaluated each of the
three operating modes of CamSW for these metrics and present the
results in Figures 6 and 7. For evaluating the fraction of interesting
images captured, we measured and averaged data from 30 trials
per configuration. As we observe in Figure 6, at lower light lev-
els, diff+infer+send sends the most interesting images because
inference saves the time and energy that other modes spend trans-
mitting packets. As light level increases, the benefit of sophisticated
processing diminishes as inference has a flat latency cost, whereas
communication recharge latencies reduce. At higher light levels,
diff+send is superior. The CamSW adaptive controller selects the
best operating mode for a light level, and hence captures the highest
fraction of interesting images.

Finally, we show Camaroptera’s average end-to-end per-image
latency in Figure 7, across different operating modes and for differ-
ent light levels, measured by averaging 40 trials per configuration.
The data shows that across light levels, average latency is highest
when the system sends all images without filtering, much higher
than the modes with image filtering. This demonstrates the effect
of Camaroptera’s near-sensor processing on the overall per-image

Figure 6: Comparison of the fraction of interesting images
captured and sent in every mode at different light levels.
The adaptive mode selects the best mode at every light level.
’Ideal’ and ’Cont’ are continuously powered configurations
using a bench power supply. ’Ideal’ case is power limited to
the datasheet-maximum power of our solar panel array.

Figure 7: Average time for capturing, processing and trans-
mitting a frame for 3 different working modes.

latencies, where local filtering makes the system more available to
newer interesting events by discarding uninteresting ones.

7 CONCLUSIONS
Developing smart devices that can autonomously adapt and recon-
figure based on the environment condition where they are installed,
is the key solution to maximize the ratio between acquired use-
ful data and the available energy. In this paper we presented Ca-
maroptera, the first batteryless remote image sensing system with
the ability to communicate over extremely long distances using an
active LoRa radio. Camaroptera is designed to avoid the high cost of
communication using this long-range radio by processing data lo-
cally, using at-sensor processing pipelines. Results have highlighted
how using machine inference on sensed data substantially reduces
energy costs leading to captures and sends 2-5X more images of
interest to an application.
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