
Walden University
ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2019

An Examination of Abstraction in K-12 Computer
Science Education
Christine Lynn Liebe
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been
accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please
contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F6728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Education

This is to certify that the doctoral dissertation by

Christine Liebe

has been found to be complete and satisfactory in all respects,

and that any and all revisions required by

the review committee have been made.

Review Committee

Dr. Wade Smith, Committee Chairperson, Education Faculty

Dr. Danielle Hedegard, Committee Member, Education Faculty

Dr. Narjis Hyder, University Reviewer, Education Faculty

Chief Academic Officer

Eric Riedel, Ph.D.

Walden University

2019

Abstract

An Examination of Abstraction in K-12 Computer Science Education

by

Christine Liebe

MS, Walden University, 2008

BA, Michigan State University, 1989

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Education: Curriculum Instruction and Assessment

Walden University

April 2019

Abstract

Computer scientists have been working towards a common definition of abstraction;

however, the instruction and assessment of abstraction remain categorically

underresearched. Because abstraction is often cited as a component of computational

thinking, abstraction has been summarily likened to a higher order thinking skill. A broad

conceptual framework including philosophy, psychology, constructionism, and

computational thinking was aligned with the descriptive qualitative design and guided the

literature review and data analysis. This qualitative examination of how teachers

determine curriculum, deliver instruction, and design assessments in K-12 computer

science education provides insight into best practices and variables for future quantitative

study. The instructional strategies, objectives, and assessments of twelve K-12 computer

science teachers from 3 states were examined in this descriptive qualitative examination

of instruction using thematic coding analysis. The majority of teachers had little to no

professional development regarding teaching abstraction. All teachers in the study were

unsure what student abstraction abilities should be according to grade level. Teachers’

understanding of abstraction ranged from very little knowledge to very knowledgeable.

The majority of teachers did not actively assess abstraction. Teachers described

successfully teaching abstraction through multiple instructional practices and spiraling

curriculum. Practical descriptive insights illuminate additional variables to research the

instruction of abstraction qualitatively and quantitatively, as well as provide anecdotal

instructional successes.

An Examination of Abstraction in K-12 Computer Science Education

Christine Liebe

MS, Walden University, 2008

BA, Michigan State University, 1989

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Education: Curriculum, Instruction, and Assessment

Walden University

April 2019

Dedication

This study is dedicated to the prosperous and compassionate futures all students

deserve and that we can all have when all people learn to use computers as a tool for

ethical creative problem-solving. I would especially like to honor the volunteer teachers

who made this study possible. The teacher participants sacrificed personal time to share

their insights and expertise shared amongst demanding schedules, family obligations,

graduate studies, and health issues. I am deeply grateful.

Acknowledgments

Many thanks go to my mentors, committee members, and everyone who kept me

in their prayers, especially to the Creator. I would especially like to thank Steve

Kaufman, Dr. Tracy Camp, Dr. Debra Winston, Dr. Yvette Myrick, Dr. Janice Gardner,

Dr. Wade Smith, Dr. Danielle Hedegard, Dr. Narjis Hyder, Dr. Paula Dawidowicz, Dr.

Connie Warner, Dr. Sylvia Gholston, Dr. Andree Robinson-Neal and many other

colleagues who inspired and encouraged me. Thank you to Walden University. The Don

E. Ackerman Fellowship which I was awarded supported this scholarship. I am so

grateful for this life. I am grateful to my grandmother, Evelyn Vukin, a tireless classroom

teacher, my parents, Tom and Linda Drahnak, who gave their unconditional support, my

children, Mara and Pearce McLaughlin, who gave me inspiration, my aunt, Julie Nettere,

who stood by me, my two cousins, Laura Fisanick and Dawn Drahnak, who received

their doctorates several years ago, the many friends, Dr. Steve Lewis, and colleagues

along the way who cheered me on, and Greg Otto, who made me smile.

i

Table of Contents

List of Tables ... iv

List of Figures ..v

Chapter 1: Introduction to the Study ..1

Background ..6

Abstraction as a Skill and a Concept in Computer Science ...10

Problem Statement ...17

Purpose of this Study ...18

Research Questions ..19

Conceptual Framework ..20

Nature of the Study ..22

Definition of Terms..23

Assumptions ...24

Scope and Delimitations ..25

Limitations ...26

Significance..26

Summary ..27

Chapter 2: Literature Review ...29

Literacy Search Strategy ..30

Abstraction and Philosophy ...34

Abstraction and Psychology ..36

Situating Abstraction within Computational Thinking ..40

ii

Constructionist Instruction ...49

Instructional Implications for Abstraction ...50

Summary and Conclusions ..58

Chapter 3: Research Method ..60

Research Design and Rationale ...61

Role of the Researcher ...63

Methodology ..65

Data Analysis Plan ...71

Issues of Trustworthiness ...73

Summary ..77

Chapter 4: Results ..79

Evidence of Trustworthiness..89

Results ………………………………………………………………………..............93

Summary ..129

Chapter 5: Discussion, Conclusions, and Recommendations ..131

Interpretation of Findings ..131

Philosophy, Abstraction, and the Teacher Experience 133

Limitations of the Study...147

Recommendations for Future Research ...148

Implications for Computer Science Instruction ...149

Conclusion ...151

References ..152

iii

Appendix A: First Interview Base Questions ..178

Appendix B: Alignment of Research and Interview Questions179

Appendix C: Second Interview Base Questions ..180

Appendix D: Email to Participants ..181

iv

List of Tables

Table 1. Alignment of Research Questions with Interview Questions………..……….177

Table 2. Validity Matrix Mitigating Threats.…………………………………...…...… .74

Table 3. Teacher Participant Demographics……..………………………………………81

Table 4. Parent and Child Themes……………….………………………………………87

v

List of Figures

Figure 1. Computer science is about abstraction...11

Figure 2. A humorous example of abstraction...13

Figure 3. Example of SNAP software, drag and drop code…………………………...…16

Figure 4. Levels of computer languages…...…………………………………………….17

Figure 5. The PKG Hierarchy……………………………………………………………41

Figure 6. The pathway of a student who attains only theoretical competency …...……..44

Figure 7. The pathway of a student who attains only practical competencies…………...45

Figure 8. The goal “Create or Evaluate” can be attained through multiple pathways…..46

Figure 9. Logic model of research activities……………………………………………..85

Figure 10. Excerpt of exploring parent and child themes in NVivo……………………..86

Figure 11. Project map depicting relationships between parent and child themes………90

Figure 12. Word frequencies for knowledge of abstraction parent theme……………….99

Figure 13. Diagram of a full adder circuit………………………………...……………117

Figure 14. Teacher experience and parent themes………………………………...……124

Figure 15. Relationship between PKG hierarchy of abstraction with instructional

programming languages and conceptual metaphors…………………………...……….140

Figure 16. Algorithmic representations resulting in an abstract program……………...142

1

Chapter 1: Introduction to the Study

As computer science gains recognition and evolves as a discipline, the study of

abstraction, the ability to representationally minimize extraneous detail, is important for

student competency (Lau, 2018). Countries such as England, Scotland, Estonia, Finland,

Australia, Israel, and Singapore require computer science (CS) courses in secondary

school and in some countries CS education is required in middle school and even

elementary school (Deruy, 2017). In the United States, Iowa, Arkansas, Nevada, Texas,

and West Virginia require that computer science courses are offered and have adopted

computer science standards (Code.org, 2017). Many other states, such as Colorado, are in

the process of developing and adopting CS standards and have hired state level CS

education support specialists (Code.org, 2017). The cities of Chicago and New York City

require computer science credits for high school graduation (Code.org, 2017). Virginia

has embedded computer science into content standards (Code.org, 2017). Educational

trends, such as teaching drag and drop programming and computational thinking, are

useful instructional strategies in computer science, and additional curriculum and

instruction are necessary to assist students in gaining foundational knowledge required

for professional success (Denning, Tedre, & Yongpradit, 2017). The field of computer

science education is growing, and CS educational research will help teachers and students

around the globe.

Computer science is a deceiving name for a subject regarding using the computer

as a tool to express human intelligence and creativity. (Norman, 2006). The use of the

2

word computer highlights the tool, not the essence of the activity of solving problems and

using intelligence (Hazzan, Lapidot, & Ragonis, 2014; Norman, 2006). Just as telescopes

are tools for astronomers, particle accelerators assist physicists, and Petri dishes aide

biologists, the computer helps humans to solve complex problems (Norman, 2006).

Because the field of computer science is new and not well understood, the tool has

become associated with the essence of the subject (Norman, 2006). In 1986, Dr. Hal

Abelson explained on video that computer science formalizes intuition about the

processes of controlling complexity (Norman, 2006). In chess, the rules or procedures of

the game can be taught in minutes; however, the concept of the game and the

implications of the rules take much longer to master (Norman, 2006). CS has similar

concepts and procedures as chess.

Proficiency in computer science requires many thinking skills, such as

sequencing, induction, deduction, problem-solving, and creativity (CS10K, 2016; College

Board, 2016). The term computer science is used because creating programs involves

aspects of the scientific method, as well as creativity and design principles (Hazzan et al.,

2014). Many lines of code must be abstracted into representative features to make coding

efficient and elegant, thus controlling complexity (Colburn, 2015; Perrenet, 2010).

Additionally, computer science requires knowledge of algorithms, organizing and sorting

data, navigating the Internet, cybersecurity, as well as a basic understanding of computer

hardware and software systems (Brookshear, 2012). Instructors of computer science are

also encouraged to guide students ethically in creating technology that extends human

respect and compassion (College Board, 2016).

3

Abstraction is an essential and simultaneously advanced concept consisting of

several levels of procedure and conceptual awareness that computer programmers must

develop (Armoni, 2013; Colburn, 2000; Hazzan, Lapidot, & Ragonis, 2015). The ability

to use abstraction effectively is a teachable skill (Fuller et al., 2007). The knowledge of

many concepts, skills, and procedures are important to become proficient with abstraction

and with computers. Abstraction is an essential skill that programmers, engineers, and

technicians must understand and execute to create efficient and functional computational

solutions.

Unfortunately, little research exists that offers computer science instructors in K-

12 educational guidance about the age at which students can begin to learn abstraction.

Similarly, no research exists offering instructional guidance regarding teaching

abstraction. Researching abstraction instruction is challenging because the concept of

abstraction is complex and not easily defined (Armoni, 2013; Perrenet, 2010). Wing

(2006) introduced the concept of computational thinking, of which, abstraction is a

subskill. Wing’s concept of computational thinking has efficaciously integrated CS in

math and science content and has also propagated computer science instruction. The

majority of studies examining computational thinking have been conducted with

university participants, not K-12 students (Czerkawski & Lyman III, 2015; Grover &

Pea, 2013; Lim, Hosak, & Vogt, 2012; Lye & Koh, 2014). Because of the preponderance

of postsecondary CS educational research, this study may help inform the instruction

applied by K-12 computer science educators. Many of the K-12 studies involve the

assessment of student responses to a variety of instructional software programs (Bers,

4

2010; Bers et al., 2014; Lee et al., 2014; Wang et al., 2014; Reuker et al., 2013).

Computer scientists tend to construct software to teach students and then research the

effectiveness of the new software on the learning experience. Instead of researching

educational performance and variables, such research has focused on demonstrating the

viability of software to instruct students. Although challenges exist in defining

abstraction and researching the instruction of abstraction, I pursue a practical definition

and understanding of abstraction, namely minimizing extraneous detail, and share best

practices obtained from K-12 CS teachers in this qualitative examination.

This study may also provide qualitative information about instructional best

practices and professional development pathways for teaching computer science in K-12

classrooms. Engineering is a subject with formalized operations that guides people to

construct things constrained only by the tolerance of physics (Norman, 2006). According

to Abelson, captured on video in 1986, computer science is only limited by human

imagination (Norman, 2006). Computer science is not concrete but the product of human

imagination. Based on the assumption that computers are an abstraction of human

ingenuity, humans are needed to provide essential instruction in computer science

(Colburn, 2000). Variables needed for the effective instruction of abstraction may be

identified as a result of this qualitative examination. Several studies have qualitatively

examined the acquisition of computer coding skills (Denner, Werner, & Ortiz, 2014;

Fuller et al., 2007; Wang, Wang, & Liu, 2014) and computational thinking (Daily &

Eugene, 2013; Lee, 2010; Lee et al., 2014; Pellas & Peroutseas, 2016). In this qualitative

study, I examine how teachers acquire the knowledge, skills, and pedagogical theory that

5

they use to teach computer science. I also identify variables that future professional

development can address and variables that can be quantitatively researched to evaluate

the effectiveness of instruction. The qualitative examination of K-12 instruction of

abstraction will provide insight into the nature of effective CS teaching for a variety of

grade levels. Specifically, in Chapter 1, I provide information on the background,

problems, purpose, significance, research questions, nature, definitions, assumptions,

scope and limitations, and delimitations regarding this qualitative examination of the

instruction of abstraction.

Computer science education has the power to positively impact society,

educational systems, classroom systems, and individual students. Training teachers in all

content areas to teach computer science is a large but necessary undertaking if people are

going to learn to use the computer as the multi-faceted tool it was designed to be, not just

a printing or publishing device (Code.org, 2016; Computer Science Teachers Association

[CSTA], 2015). Computer science education that allows secondary students to explore

and create in collaboration with teachers, using portfolio-based assessment, supported by

computer science businesses, will improve the workforce and the economy. At the mega

level, humankind can benefit from the enhanced creativity and power over technology

that students will learn (Kaufman et al., 2003). Economies will benefit from increased

productivity, innovation, a more capable workforce, and increased employment resulting

from entrepreneurial endeavors. Educators will be able to assist students in becoming

scholar innovators. Students will learn to express their creativity to solve the world’s

6

problems. Computer science education can potentially change thinking on a personal,

societal, and global level from victimization due to technology to evolution because of

technology. Because abstraction is an essential thinking skill needed to code computers

effectively, this study will facilitate effective instruction in computer science, which is

ultimately the instruction of the technological equivalent of human creativity and

communication.

In this dissertation, I explain why abstraction is a multifaceted concept with many

procedural possibilities. Given the pervasiveness of technology; the fact that technology

is replacing jobs; the imminent need for Science, Technology, Engineering, and

Mathematics (STEM) workers (mainly computer science workers); and the lack of

computer science education research guiding K-12 curriculum, instruction, and

assessment, abstraction in computer science is a worthy topic to examine. Furthermore,

the study of the instruction of abstraction is essentially an interdisciplinary study that

bridges psychology, education, mathematics, and computer science. Examining the

experience of educators with the concepts and procedures related to abstraction in all

grade levels will provide important information for teachers, students, parents,

foundations, policy-makers, curriculum developers, software developers, and researchers

in several disciplines.

Background

According to computer science experts, we are experiencing a digital information

explosion and revolution (Fayer, Lacey, & Watson, 2017). Money, information,

documents, voices, and images are transferred wirelessly from country to country and

7

from device to device, in seconds as digital bits that can last forever (Abelson, Ledeen, &

Lewis, 2008). Just as fire can be used for heating and cooking or destruction, the way we

use information can enlighten, corrupt, or enslave as evidenced by online doctoral

education, hacking in the recent 2016 United States presidential election, and the

governmental control of China’s Internet (Abelson et al., 2008). Technology has made

privacy almost impossible, and laws have not kept up with technological changes

(Abelson et al., 2008). There is an urgent need for all democratic citizens to use

technology proficiently, intelligently, and ethically; otherwise, the majority of people will

continue to be at the mercy of technological advances (Abelson et al. 2008). Teaching

students to learn to use an advanced concept, such as abstraction effectively, will help

them become empowered users and creators of technology (Fayer et al., 2017). As Fayer

et al. (2017) assert, STEM employment is beginning to dominate the new positions being

created.

The economy will also benefit from an educational system that prepares students

to use computers effectively. Employment for workers with STEM skills was double that

of nonSTEM employment between 2009 and 2015, 10.5% to 5.2% for nonSTEM job

growth (Fayer et al., 2017). Computer occupations made up 49% of all 8.6 million STEM

jobs in 2015, and the need for software developers, systems analysts, network

administrators, information and systems managers, computer programmers, computer

sales and service representatives exceeds the need for mechanical and civil engineers

(Fayer et al., 2017). In 2015, the average STEM job wage was $87,570 double the

average wage for nonSTEM jobs, $48,320 (Fayer et al., 2017). The U.S. Bureau of Labor

8

and Statistics expects over a million openings for computer occupations from 2014 to

2024 (Fayer et al., 2017). In the near future, education will need to better prepare students

for computer occupations. In all disciplines, the professional with computer science

expertise will have a great impact in their field.

Education must prepare teachers to match the growing demand for STEM and

computer science proficient employees. There is a dire need for computer science

teachers. The ten fastest growing STEM jobs require a bachelor’s degree or higher

(Fayer, Lacey, & Watson, 2017). Web developers, computer support technicians, and a

variety of other occupations expected to grow by 2024 typically require an associate’s

degree or less (Fayer et al., 2017). Private coding boot camps are supplying a demand for

intensive higher education in computer science that community colleges and universities

are failing to provide (Code Fellows, 2019; General Assembly, 2019). Apple, Microsoft,

and Google offer free educational support and training to teachers and staff, and

sometimes even free computers (Apple, 2019; Google, 2019; Microsoft, 2019). The

National Science Foundation (NSF) offers millions of dollars in grants to support

computer science teacher development (CS10K, 2017). Cuny (2017), a National Science

Foundation program director, estimates there is a need for over 30,000 high school

computer science teachers, a figure that doesn’t include the need for teachers in middle

and elementary schools. The need for CS educators validates CS instructional research,

such as this dissertation study.

Nonprofit organizations, such as Code.org, are dedicated to promoting computer

science, especially computer coding in K-12 education. However, a nonprofit free CS

9

education curriculum will not solve the lack of CS courses and teachers in education.

Only eight states in the United States have K-12 computer science standards –

Washington, Idaho, Missouri, Illinois, West Virginia, New Jersey, Connecticut, and

Florida (Code.org, 2017). Thirty-three states plus the District of Columbia count

computer science classes towards high school graduation requirements (Code.org, 2017).

Most parents surveyed, 93%, want their children to learn computer science, but only 40%

of schools offer CS courses (Code.org, 2017). The private sector, foundations, nonprofits,

and parents are asking for increases in CS education. Policy-makers are beginning to take

heed.

Research on CS Abstraction

The term abstraction in computer science education is being professionally

defined and used, although specific research investigating teaching abstraction is limited

(Armoni, 2013; Fuller et al., 2007; Grover & Pea, 2013; Perrenet, 2010). Studies have

focused on the success of computer coding software for children and how children

interact with the software (Fessakis, Gouli, & Mavroudi, 2013; Kazakoff & Bers, 2012;

Lee, 2010; Wang et al., 2014). Other researchers included abstraction as a part of

computational thinking (Armoni, 2013; Bers, Flannery, Lee, 2010; Sullivan, Kazakoff &

Bers, 2013; Wang et al., 2014). Instructional theory regarding teaching abstraction in

math may offer solutions to teaching abstraction in computer coding (White &

Mitchelmore, 2010). Harlow and Leak (2014) observed elementary students exhibiting

beginning abstraction skills in computer coding. However, no qualitative or quantitative

studies found so far address the most effective age to introduce abstraction. I offer an

10

additional exploration of educational research regarding abstraction and similar topics in

the literature review of this dissertation.

Abstraction as a Skill and a Concept in Computer Science

Abstraction is a skill used in many disciplines. In computer coding, abstraction is

used to modularize and manage complex coding commands (Armoni, 2014; Colburn,

2000). Abstraction skills require the use of induction and deduction. For example,

software writers use induction when they have a lot of code that they want to simplify

and deduction when they want to choose one coding solution from many possibilities.

Minimizing detail while writing code is a classic use of inductive and deductive

reasoning, Computer science educators have debated whether abstraction is an innate

skill or a skill that can be taught (Armoni, 2014). Armoni reviewed the literature

regarding definitions of abstraction, theory on levels of abstraction, research regarding

abstraction as a precondition for relevant computer science work, research regarding

abstraction as a result of computer science education, and theory on teaching abstraction.

Levels of abstraction are categorized by size (large to small), meaning (how to what), and

thinking (problem to solution). Armoni’s literature review is not extensive, but the

research is current and the theory she cited came from respected academic sources. Given

the lack of research on the subject of abstraction, Armoni provided a convincing

foundation for her conceptual framework.

The Perrenet, Kassenbrood, and Groote (PKG) hierarchy is a significant

theoretical framework for abstraction (Armoni, 2014). According to the PKG hierarchy,

abstraction takes place on the execution level with the algorithm and the machine (Figure

11

5). Next abstraction occurs at the program level. Then at the object level, people perceive

a program or an algorithm as a thing rather than the complex processes they are. Finally,

abstraction takes place on the problem level when people deductively pose a solution,

then create code inductively abstracting the code to simplify making the code elegant.

The PKG hierarchy is complex enough to address the critical cognitive building blocks

needed for producing abstraction in computer science. The illustration in Figure 1, which

is an open educational resource, demonstrates graphically how abstraction as a concept

and skill progresses from the execution level, addressing the machine and algorithm, to

the program level, such as Fortran, to the object level, a computer game (Angry Birds) for

instance, to the problem level, a computer game that uses the computer’s graphic user

interface to have fun and make money.

Figure 1. Computer science is about abstraction.

12

CS teachers must teach students how to think and how to make the computer

work in order to teach abstraction. Abstraction skills allow programmers to use induction

when they have a lot of code and want to simplify it or when they want to choose one

coding solution from many possibilities (Hazzan et al., 2014). Deduction is also a part of

abstraction because programmers need to go back and forth in their minds from big

picture to small detail iteratively to create elegant code. Bloom’s taxonomy, does not

adequately provide course designers or instructors with the means to create and evaluate

instruction (Fuller et al., 2007). For this reason, it is important to recognize the

application of the PKG hierarchy provides a robust definition of abstraction and clear

objectives for computer science instruction and assessment. The complexity of both the

abstraction concept and the multiplicity of abstraction procedures may ultimately render

the PKG Hierarchy too simplistic; however, the PKG hierarchy is concise for educational

purposes. To evaluate teachers’ experiences and beliefs regarding the instruction of

abstraction, I explore the PKG hierarchy, computational thinking, critical thinking, and

other conceptual and theoretical frameworks. I do not develop theory; instead, I provide a

descriptive, robust and informative synthesis of this study regarding the instruction of

abstraction.

Abstraction in Computer Science Means a Representation

According to Waite (2016), abstractions in computer science are representations

that minimize extraneous detail in computer code. Abstractions in computer science are

representations, simplifications of larger, more complex code. For the beginning CS

educator, it may be tempting to think that teaching students to think abstractly means to

13

think about things that are not concrete or to simply to use one’s imagination. Although

the ability to imagine and process ideas is surely foundational for abstraction in computer

science, CS abstraction is more complex. Beyond merely thinking and imagining,

abstraction is a force that has propelled technology and computers into becoming one of

the most necessary aspects of modern life (Abelson et al., 2008). Abstraction is a concept

consistently applied in computer science allowing software and technology to become

more efficient and easier to program (Colburn, 2000). In Figure 2, the cartoon shows a

person expressing their imagination on the screen using the hardware and software at

their fingertips. The more CS teachers understand the complexity of abstraction as both

concept and skill, the more teachers will deliver effective instruction.

Figure 2. Humorous example of abstraction. Retrieved from https://xkcd.com/676/open

educational resource.

14

Rather than considering abstraction as a teachable skill, some educators might be

tempted to allow students to naturally discover abstraction through contextual learning

(trial and error) and to assume that abstraction is using thought to create. The “use-

modify-create” progression in learning is a typical instructional format in beginning CS

courses (Grover & Pea, 2013, p. 40). Indeed, the push to learn to compute through

gaming arises from this instructional orientation (Repenning et al., 2015). Learning by

doing, or learning contextually, is a natural and important piece of learning human

languages (Sanz, 2005). Direct instruction is also necessary for learning human languages

(Sanz, 2005). Learning by doing is a tenant of constructionism, predominant CS

instructional technique characterized by inquiry-based, collaborative, trial and error

learning (Papert, 1980). Students vary in their need for direct and contextual instruction

(Sanz, 2005). Although there is no researched correlation between learning human

languages and learning computer languages, instructional parallels between the two

subjects may assist CS instructors in teaching abstraction. According to Fuller et al.

(2007), CS students vary in their learning preferences. Clearer definitions of abstraction

and research on the instruction of abstraction facilitate a better understanding of effective

instruction, such as direct, contextual, or constructionism.

Colburn (2000) noted that as programming has evolved, the very language of

computer programming has become abstracted. According to Colburn, abstraction can be

procedural or content oriented, similar to the PKG hierarchy. In the past, programmers

considered it a badge of honor to be able to fix unruly programs consisting of binary code

(Colburn, 2000). The evolution of Fortran, one of the first computer languages, from

15

binary code to text was the beginning of the abstraction of programming languages.

Unlike math, which requires abstraction to eliminate content, CS uses abstraction to

enlarge content (Colburn, 2000); for instance, programmers can define lists, arrays,

functions, and variables allowing classrooms, shopping malls, and complex analyses to

existing in virtual space. Modern programming allows humans to create more realistic

representations of reality without using cumbersome computer commands. Abstraction is

the declarative and procedural vehicle that has facilitated the ease and speed of

computing (Colburn, 2000). An example of a highly abstracted computer coding

language called SNAP is illustrated in Figure 3. SNAP is an example of “drag and drop”

computer code that teaches introductory computer science students principles such as

recursion and variables which when used correctly demonstrate abstraction. The multi-

colored blocks snap into place as they are moved with the mouse on the computer screen.

Drag and drop code used in object-oriented programming is representative of much more

detailed line code and helps CS students to kinesthetically interact with abstract concepts

using the mouse.

Problem Solving and Abstraction

Problems must be analyzed and deconstructed to consider possible solutions. One

must deductively determine the main aspect of the problem, then inductively evaluate

possible remedies. Both abstraction and problem-solving use deduction and induction,

but to different ends. Problem-solving is akin to debugging in computer science, which is

identifying why a program is not working and fixing the program. can’t begin to offer

students instruction on abstraction, another reason to conduct this qualitative study.

16

Numerical data, as represented in Figure 4, is the foundation of all words and graphical

computer representation.

Figure 3. Example of SNAP software, drag and drop code

Abstraction is a symbolic categorization process that allows computer coders to

create efficient and effective code. High school students in Greece reported on surveys

that along with increased confidence in overall computer science skills after an

introductory computer science course; their problem-solving skills also increased

(Giannoukos et al., 2013). Abstraction may be taught successfully using problem-solving

17

instructional strategies. However, teachers who do not thoroughly understand abstraction,

The direct link between the abstraction of numerical data and our visual experience of

technology is another important reason that CS abstraction warrants research.

Problem Statement

There is a significant lack of educational research guiding computer science

instruction in K-12 and higher education. Although computer science educators agree that

abstraction is a necessary and crucial computer programming skill, they are unsure how

to teach abstraction (Armoni, 2013; Brennan & Resnick, 2012; Perrenet, 2010). Even less

educational research exists that addresses abstraction in computer science education.

Both qualitative and quantitative studies of computational thinking provide insight into

Figure 4. Levels of computer languages.

Figure 4. Computer language words

represent numbers

18

teaching abstraction, although computational thinking is a concept in development and

includes a variety of critical thinking skills seemingly better assessed by qualitative

research (Armoni, 2013; Brennan & Resnick, 2012; Lye & Koh, 2014; Perrenet, 2010).

Researchers examined teaching computational thinking in elementary school; however,

none specifically addressed the instruction for abstraction in computer coding (Bers,

2010; Bers et al, 2013; Denner, Werner, & Ortiz, 2012; Lee, 2010; Lee et al., 2014; Lye

& Koh, 2014; Wang, Wang, & Liu, 2014). Although researchers have concluded that

certain types CS instruction like constructionism, use-modify-create, and object-oriented

software assist in the development of computational thinking and computer coding skills,

no specific research informing best practices for teaching CS abstraction exists.

Therefore, this study focuses on K-12 computer science instruction for abstraction

qualitatively examining the teaching experience.

Purpose of this Study

The purpose of this descriptive qualitative inquiry is to examine teachers’

experiences determining curriculum, delivering instruction, and designing assessments

regarding the topic of abstraction in computer science. The instruction of abstraction is

the primary phenomenon of this study. Teaching experience is defined as the

constructivist experience of teachers using their background knowledge to create

curriculum and teach objectives successfully (Connelly & Clandanin, 1988; Merriam &

Tisdell, 2016; Pappert, 1993).

19

Research Questions

This study is guided by one general research question: How do teachers decide

what effective instruction for teaching abstraction in computer coding is? Additionally,

three primary research questions shape the nature of this study,

Research Question 1: What types of instruction do K-12 teachers find most

effective for teaching abstraction in computer coding?

Research Question 2: How do teachers determine objectives and competencies for

teaching abstraction in computer coding?

Research Question 3: How do teachers assess student abstraction skills in

computer coding?

Additional questions regarding the teaching experience are expected to arise

during the semistructured interview process (Patton, 2002; Yin, 2014). As I began to

gather interview data, I began thematic coding analysis and inductively used “emic” or in

vivo structures to code interview data (Maxwell, 2013; Patton, 2002). Miles, Huberman,

and Saldana (2013), highly recommended coding, qualitative data analysis, concurrently

with data collection. Precoding structures arising from theoretical constructs are called

“etic” structures (Maxwell, 2013; Patton, 2002). Using a precoding method based on

theoretical constructs indicates a primary deductive method of coding (Patton, 2002). The

danger in using a precoding structure deductively is that researcher bias might cause the

analysis to be skewed (Maxwell, 2013). For this reason, I needed to focus on creating

illustrative descriptions of teaching experiences. It is possible that all aspects of their

lives and their experience as teachers may be valuable information. However, the

20

research focuses on curriculum development, instructional strategies, and assessment

methods of abstraction in computer coding. The primary strategic advantage in creating a

precoding structure from teacher interviews is that it helps maintain a focused study and

not get overwhelmed by extraneous data.

Conceptual Framework

Piaget’s reflective abstraction and cognitive development theory (1950, 2014),

Papert’s constructionism theory (1980), Wing’s computational thinking theory (2006),

and Vygotsky’s (1986) zone of proximal learning were the primary theories used to

conceptualize the literature related to the research questions. Learning is inextricably

connected to instruction. Piaget’s (1950, 2014) theories on reflective abstraction and the

development of cognition were used to understand the possibility of teaching abstraction

to all grade levels as well as developing the categories of instructional approaches used to

teach abstraction. Vygotsky’s (1986) zone of proximal learning was used to frame the

relationship of the teacher and the student, evaluate collaborative learning, developing

critical thinking, and developing advanced thinking skills like abstraction needed for

successful computer programming. Papert’s (1980) constructionism and Wing’s (2006)

computational thinking theories were used to understand current and enduring approaches

to computer science instruction. Because abstraction involves both deductive and

inductive thinking, the theories of Bloom (1956) and Marzano and Kendall (2007)

informed research on critical thinking, problem-solving, and computational thinking.

Additionally, theory from Fichte (as cited in Whistler, 2016) regarding abstraction and

potentiation, Floridi’s (2011) theory that computers facilitate epistemological

21

development, and Gobbo and Benini’s inforg theory (2012) regarding the abstract

essence of the human-computer relationship provide deeper understanding about the

complex nature of the concept of abstraction that teachers must understand in order to

teach. A more detailed analysis can be found in Chapter 2.

The development and nature of thinking bridges into psychology which is why

Piaget’s (2001, 1980) and Vygotsky’s theories informed Research questions 1 and 2.

Cognitive research demonstrates that 30% to 35% of adolescents reach the formal

operation stage (defined by Piaget) in which the cognitive ability to abstract occurs -

some adults never reach the formal operation stage (Armoni, 2012; Kramer, J., 2007).

Recent literature challenges abstraction as a cognitive process developing later in the

teenage years or as an adult (Braithwaite et al., 2016; Novack et al., 2015; Rittle-Johnson

& Schneider, 2014). Piaget later recanted the ability of young children to learn

abstraction calling the thinking process reflective abstraction. Nevertheless, Piaget’s

stages of cognitive development and reflective abstraction provide a context for

examining abstraction skills from elementary to post-secondary grades, as well as from

low to high abstraction levels (Armoni, 2012; Kramer, J., 2007). Finally, Vygotsky’s

(1986) zone of proximal learning theory informed Research Question 3 and may explain

multiple pathways for children in learning and expressing abstraction.

Papert’s (1980) constructionism and Wing’s (2006) computational thinking

theories, which informed Research Questions 1, 2, and 3, illuminate the ways and

primary content needed to shape thinking for learning computer science, as well as the

ways students demonstrate computer science knowledge. Constructionism is a prevalent

22

theory in CS education and has resulted in student-led guided inquiry instructional

strategies (Armoni, 2013: Bers et al., 2014; Denner, Werner, & Ortiz, 2012; Fessakis,

Gouli, & Mavroudi, 2013; Harlow & Leak, 2014; Kazakoff & Bers, 2012; Lee, 2010;

Papert, 1980; Wang, Wang, & Liu, 2014). Computational thinking has been used to guide

curriculum and learning experiences resulting in thinking that uses computers to solve

problems (Anton & Barany, 2013; Bers, 2010; Bers et al, 2014; Lee, 2010; Lee et al.,

2014; Lye & Koh, 2016; Pellas & Peroutseas, 2016; Bucher, 2016; Sanford & Naidu,

2016; Zhong et al., 2016; Czerkawski & Lyman, 2015; Shell & Soh, 2013; Wing, 2006).

Both constructionism and computational thinking can be used to inform assessment

choices. Papert (1980) adapted constructivism in computer science calling the concept

constructionism, meaning the construction of knowledge to create objects in the world.

Acquiring mastery of computer coding concepts and procedures are both necessary

aspects of learning abstraction (Zendler & Klaudt, 2012).

Nature of the Study

The basic qualitative descriptive inquiry is an effective research strategy for initial

investigation in educational subjects with many variables (Merriam & Tisdell, 2016).

This study explores how teachers generate the knowledge of their instruction, curriculum,

and assessments, and how they construct meaning regarding the teaching of abstraction in

computer science via constructivism (Patton, 2002). In this study, 12 teachers were

interviewed twice. Initially, the study required each teacher to submit five artifacts of

student coding exhibiting abstraction or the progression towards abstraction. Although

mitigating factors, which will be explained in Chapter 3, necessitated the change in data

23

collection to include two teacher interviews and analytic researcher memos after each

interview. Because teachers have a variety of instructional goals for teaching abstraction,

different students, ages of students, learning environments, and curricula, there are a

plethora of variables that cannot be controlled. Computer science courses may be taught

as a sub-discipline of Science, Math, or Technology because many states do not have

curricular requirements for CS. Additionally, CS teachers use many different computer

software programs to teach coding. The K-12 annual assessments in most states do not

test computer science competencies. A lack of quantitative data, consistent curriculum,

and teacher case variation necessitate investigating the instruction of abstraction using a

basic qualitative format.

Definition of Terms

Abstraction is the use of a variety of algorithms that shorten, hide, and simplify

computer code creates elegant and efficient computing. (Armoni, 2013).

Computational thinking is applying computational solutions to computer coding

or computational devices to solve problems (Wing, 2006).

Critical thinking is the ability to process information in a variety of ways

including synthesis, analysis, and metacognition (Faccione, 1996).

Instruction is the activity and delivery of experiences designed to affect learning

(Ambrose et al., 2010).

Assessment is the activity and process of evaluating learning (Ambrose et al.,

2010).

24

Objectives are specific skills and tasks designed to produce a certain learning

effect (Biggs & Collis, 2014).

Standards and Competencies are broad learning goals, skills, and thinking

abilities that guide specific course objectives (Biggs & Collis, 2014).

Recursion is an iterative algorithmic process that simplifies and shortens

computer code (Brookshear et al., 2012).

Variables are representative symbols that simplify computer code and represent

larger concepts (Brookshear et al., 2012).

Event handlers are algorithmic processes that simplify computer code (Brennan &

Resnick, 2012).

Assumptions

Assumptions are worldviews or beliefs that can bias a researcher’s observations

and interpretations (Corbin & Strauss, 2015). There are three major categories of

assumptions in this study regarding teacher honesty, the importance of abstraction, and

abstraction as a thinking skill in student coding. It is assumed that teachers provided

honest answers and comments in the interviews. This study also implies that in

accordance with computer science education, abstraction is a necessary skill (Armoni,

2013; Brennan & Resnick, 2012). The order of the importance of computer science

thinking skills, such as sequencing, using persistence, and implementing conditionals to

learn about computer science is unknown. Abstraction is not a necessary skill to begin

learning computer science; however, abstraction is necessary to produce effective elegant

25

computer code (Armoni, 2013). As the field of computer science education evolves, the

validity of assumptions is important to reflect upon and evaluate (Denning et al., 2016).

Scope and Delimitations

The purpose of this inquiry is to examine teachers’ experiences determining

curriculum, delivering instruction, and designing assessments regarding the topic of

abstraction in computer science. Identifying and describing teachers’ experiences with

abstraction can provide useful information for other teachers, educational researchers,

software developers, policy-makers, and additional professionals involved in CS

education. Because teachers are the primary facilitators of education, investigating their

experiences will inform future studies.

This inquiry is bounded by specific aspects of the teaching experience, namely

curriculum, instruction, and assessment, in order to identify useful teaching strategies and

variables for future research. Additionally, using purposeful sampling and limiting the

participants to four elementary, four middle school, and four secondary teachers, leads to

fewer variables, but make the data richer.

Transferability of the findings from this study may inform the instruction of

abstraction across the United States. Recruiting teachers from a variety of states aides in

the transferability of results. The knowledge gained from comparing and contrasting the

experiences of teachers in a variety of grade levels may provide teachers with ideas about

appropriate grade-level instruction. Insights from this study may also help policy-makers

and educational researchers write grade-level appropriate standards.

26

Limitations

Potential weaknesses in this research proposal can be attributed to the qualitative

researcher and the small qualitative sample. Human bias from my perceptions (as the

researcher) of the literature review, the theoretical framework, precoding structures, and

perceptions of validity, and naiveté regarding threats to validity limit this study. Also,

the small number of participants required for a thorough qualitative study naturally limit

generalizability (Stake, 2006). Hopefully, this research will generate future quantitative

research that will utilize greater population sizes and more objective variables.

Significance

Better computer science instruction results in more people in all professions

having the technical knowledge to solve computational problems (Abelsen, Ledeen, &

Lewis, 2008). An informed digitally literate citizenry may be able to be more creative

with technology and make wise choices about technology for future generations.

Metaliteracy, a concept proposed by Jacobsen & Mackey (2013), encourages the use of

critical thinking and metacognition in the development of literacy needed to navigate

digital text and sources. As technology continues to increase the scope of education,

teachers need guidance, such as metaliteracy, about teaching technology, specifically

how to offer effective computer science education with specific and appropriate cognitive

objectives. Aligned curricula for computer science are in development, and there is a

need to understand what type of instruction is most useful (CSTA, 2015; CS10K, 2015).

Some predefined curricula from Code.org, Khan Academy, and others are taught at the

27

elementary, middle school, high school, and college levels because of a lack of

educational resources and a lack of trained teachers.

This study will inform the developing concept of computational thinking by

providing insight about when and how students learn abstraction (a component of

computational thinking). Computational thinking is the dominant theory guiding

computer science curricula and suggests a complimentary instructional approach to

critical thinking. Abstraction is one component of computational thinking. This study will

also help inform the development of computer science curricula.

Summary

The process of teaching like the process of computer science can be reduced to

input and output. If abstraction, an essential skill needed for computer programming is

the output, what types of instruction at what ages provide the optimal output or evidence

of learning? Computer science education is a developing field (Wagner, 2013). By

examining the perspectives of teachers in the field, this study will help to identify factors

of effective instruction of abstraction that can be quantitatively studied, as well as

additional educational variables, such as grade-level appropriate instruction. The appeal

of computational thinking is that it is a catchphrase for a necessary and straightforward

idea that people need to use computers more practically in all disciplines. The reality of

computational thinking is that it is a vast subject, and we have only begun to uncover the

many ways of thinking that require development to use computers effectively.

Examination of the instruction of abstraction will further our understanding as educators

about teaching computer science effectively. In Chapter 2, I comprehensively explore the

28

existing gap in literature affirming a qualitative examination of abstraction in K-12

instruction.

29

Chapter 2: Literature Review

If all people learn to use computers as the tools they were meant to be, the notion

of digital literacy will expand from simply navigating software, such as Microsoft Excel,

and evaluating Internet sources to programming computers and designing technology that

solves human problems (Abelson et al., 2008). Programming computers, as opposed to

operating computers, facilitates human creativity and knowledge. For multiple reasons,

such as the pervasiveness of abstraction in today’s technology, as well as the complexity

of the subject the instruction of abstraction in computer science may be difficult for

teachers to develop or broach. Abstraction is a necessary aspect of being a competent

computer programmer, but because the subject of abstraction has been poorly defined and

researched, the instruction of abstraction lacks guidance (Armoni, 2013). Perhaps

because abstraction is embedded in multiple layers of technology explaining abstraction

may appear overwhelming.

Colburn (2000) mentioned computers are essentially abstractions of human

thought, expanding content and capability. Because the subject of the instruction of

abstraction leaves many questions, this study will help to illuminate current pedagogy

and future research. The purpose of this descriptive qualitative inquiry is to examine

teachers’ experiences determining curriculum, delivering instruction, and designing

assessments regarding the topic of abstraction in computer science. There may be

different pathways to learning abstraction, similar to the theoretical concept proposed by

Fuller et al. (2007). In this literature review, I compare and contrast abstraction with

computational thinking and critical thinking. I also show how there are implications for

30

teaching abstraction from research on the instruction of computational thinking and

critical thinking. A discussion of philosophical and theoretical constructs regarding

abstraction provides a context for the research of this complex topic.

Literacy Search Strategy

I primarily used the ERIC and Sage databases, as well as Google Scholar, to

search keywords limiting the review to abstraction in computer science, instruction of

abstraction in computer science, and dissertations and peer-reviewed articles published

between 2013 and 2017. CT research usually indicates abstraction as a component of

computational thinking. Critical thinking also contains aspects of abstraction, namely

deduction and induction (Kong et al., 2014; Marzano & Kendall, 2007). Therefore, I used

computational thinking and critical thinking studies for the bulk of this literature review.

The following are the main keywords used to generate the literature review: computer

science coding + children, computer science instruction + children + coding, computer

science + language acquisition, computer science assessment + children, computer

science principles + instruction + age, computer coding + age, computer coding +

elementary, dissertations + computer science instruction, comparing coding with

different ages, computer coding developmental age, and computer coding teaching

vocabulary.

I found 116 relevant peer-reviewed scholarly publications from thousands of

studies were found using the keywords: instruction, computer science, abstraction, math,

computational thinking, and critical thinking. Seven of the 116 relevant publications

31

offered only commentary, curricular or instructional suggestions, and literature review;

the remaining publications were research studies.

Thirteen studies addressed how students learn abstraction in computer science

(Armoni, 2013; Carbonaro, Szafron, Cutumisu, & Schaeffer, 2010; Colburn & Shutte,

2007; Cooper, Perez, Rainey, 2010; Csneroch & Math, 2015; Guzdial, 2011; Katai, Toth,

& Adjani, 2014; Perrenet, 2010; Reuker et al., 2013; Saeli et al., 2012; Shirazi et al.,

2013; Wang, et al., 2014; Weintrop & Wilensky, 2014). Perrenet’s (2010) use of surveys

and interviews provided data on college students’ understanding of the diverse level of

abstraction. Fessakis, Gouli, and Mavroudi, (2013) and Harlow and Leak (2014)

investigated how elementary students learn abstraction and computational thinking via

video observation. Armoni (2013) surveyed high school students and found they were

capable of basic levels of abstraction.

After presenting at the 2017 Computer Science Teachers Association conference,

colleagues from England alerted me to the presence of two dissertation studies on

abstraction in computer science, one finished and one in progress. I conducted

dissertation searches using the Walden University library and all of the keywords listed

previously but did not find any dissertations on the instruction or learning experience of

CS abstraction. Teague (2015) conducted a dissertation mixed method study of

undergraduate Information Technology (IT) students and applied their mastery and

experience of learning abstraction to Piaget’s learning theory. In one semester, novice

programmers demonstrated proficiency with the sensorimotor and preoperational

reasoning but did not achieve proficiency in concrete operational stage thinking. Teague

32

noted that the most mature Piagetian stage, formal operational reasoning, was not

considered in depth in her study and concluded difficulty in the development of abstract

thinking limited novice programmers from achieving programming skills. Waite, Curzon,

Marsh, and Sentence (2016) recommended using visual instructional strategies, such as

graphic organizers, concept maps, and storyboards for teaching abstraction to young

learners. Waite is currently working on her dissertation in which she is studying the

instruction of abstraction in elementary computer science education. Teague (2015) and

Waite et al. (2016) illustrated that related research has focused on student learning and

not the teaching experience of abstraction.

Few researchers have investigated teaching in computer science, and their

research has not examined teaching abstraction. Researchers in only one study addressed

computer science teachers providing descriptive statistics from surveys to ascertain their

pedagogical content knowledge (Saeli, Perrenet, Jochems, Zwaneveld, 2012). Many

STEM teachers are not teaching computer science and consequently not teaching CS

abstraction. None of 38 science teachers who won the Presidential Award for Excellence

in Science Teaching surveyed included computer coding in their courses (Hakverdi-Can

& Dana, 2012). Scant research does not provide helpful information about CS teachers.

Instructors as students were the subjects of one study that indicated they were satisfied

with an online AppInventor introductory course (Hsu & Ching, 2013). As the push for

training CS teachers advances, CS educational research is being collected.

Beginning in 2004, CS educational and computer science experts at the Exploring

Computer Science (ECS) Project developed teacher professional development modules

33

designed for K-12 educators focused on expanding AP Computer Science teaching.

Margolis et al. (2011) created the ECS Project after reporting on gross racial and gender

inequities in computer science education. ECS teacher training has been successfully

implemented in Los Angeles and Chicago public schools (Ryoo et al., 2014). ECS

teacher training curriculum emphasizes including problem-solving and critical thinking,

specifically teaching the analysis of abstraction. ECS researchers report that the top three

CS instructor practices include connecting computing with equity and everyday issues,

encouraging collaboration, and using guided inquiry to facilitate metacognition and

computational thinking (Ryoo et al., 2014). ECS teachers asked more questions about

knowledge acquisition and analysis, and fewer questions about application and

evaluation. Abstraction is an important aspect of teaching CS computer science, and

additional research into the understanding of teachers’ experiences will facilitate better

teaching practices.

Cooper, Perez, and Rainey (2010) recommended that the role of the teacher in the

process of learning abstraction should be studied. It is essential to understand if the

output, or student learning which most studies examine, is happening. Alternately, by

addressing learning input, or instruction, researchers can guide teaching best practices.

Precedent exists from this literature review for interviewing and surveying teachers to

obtain information regarding their teaching experience of abstraction in computer

science. Philosophical and theoretical viewpoints also inform current understanding of

the instruction of abstraction.

34

Abstraction and Philosophy

In order to understand the breadth of context for abstraction existing in computer

science, I begin this literature review with an examination of theory and conceptual

frameworks from philosophy, psychology, and computer science. According to Flick

(2013), theory and conceptual frameworks can be used to illuminate participant

perspectives (p. 48). Famous philosophers such as Kant, Hegel, and Fichte expounded on

the nature of abstraction, existence, and thought. Philosophers have debated how reason

evolves as an abstraction of thought allowing humans to transcend experience (Whistler,

2016). According to Fichte (as cited in Whistler, 2016), abstraction of thought occurring

from induction (observation to theory) and subsequently deduction (theory to

confirmation of reason) is either potentiation or depotentiation. Abstracting can be used

to pull out the essential nature of something and expose it, making it more potent, or

abstraction can be used to delve deeper into the nature of something deconstructing it,

depotentiating it, and to make it less “potent”. The conventional use of abstraction in

computer science is like Fichte’s potentiation, whereby abstraction preserves the essential

nature of the computer program (Gobbo & Benini, 2012). Instructors may find that

assisting students in honing their metacognitive skills will assist the student in thinking

about thinking (metacognition), leading to thinking about coding efficiently because

coding essentially represents thought. Therefore, philosophy may be a useful subject

assisting teachers and students in understanding abstraction in computer science.

Teaching abstraction may benefit from discussions about the nature of the human-

computer relationship. Ben-Ari (2001) pointed out that most students do not have an

35

explicit model of the computer. A computer is not an animal that is a soft-tissue being

like us and thinks like a human. A computer metaphorically has a different body than a

human. However, a computer does have structure and function, very similar to language

that has words, syntax, and grammar. In fact, computer programming “symbolically

represents algorithms as numbers” basically hiding information, the very act of

abstraction (Gobbo & Benini, 2012, p. 4). Abstraction can be found in both human

thoughts and subsequently in computer programming. The computer requires

programming code to function, thereby becoming an ontological extension of thought

(Ben-Ari, 2001; Gobbo & Benini, 2012). Computers represent and express our thoughts,

thereby seeming human.

Abstraction becomes more complex because the inforg, or human-computer

interaction, as an object produces more levels of organization and explanation, or levels

of abstraction (Gobbo & Benini, 2012). Coding is a part of the human-computer

interaction, e.g. choosing printing options on a printer and accessing cloud-based services

(Gobbo & Benini, 2012). Computers have always been tools to extend the thinking

process and knowledge. Computers also facilitate epistemological development or the

development of knowledge (Floridi, 2011). As computers become easier for humans to

program, Fichte’s 19th-century notion that abstraction produces reason indifferent to the

self seems to have manifested in the form of the human-computer inforg. The level of

abstraction may be as simple as an app on a phone or as complex as a robot that learns

how to help older adults. Both computer examples require elegant and efficient computer

code, and both are extensions of human creativity serving human needs. The complexity

36

of human and computer interactions makes the concepts and skills needed to understand,

teach, and learn abstraction challenging.

Abstraction and Psychology

Piaget (1950, 2014) asserted that the development of abstract thinking, which he

defined as the ability to realistically imagine a problem and a solution, occurs around age

11. The instructional implications for abstraction would be that teachers focus on

knowledge acquisition and algorithmic procedure, like memorizing math facts and

computational procedures, until middle school when students have learned the coding

process and can think of ways to apply and use both deductive and inductive reasoning. It

might be too much to assume that elementary students could demonstrate the independent

application of abstraction in computer coding. Elementary students might be able to

model abstraction at the Perrenet, Kassenbrood, and Groot (PKG) execution level, or

algorithm level, but not independently demonstrate abstraction (Perrenet, Groote, &

Kassenbrood, 2005). More research is required to understand student learning and

capacity for abstraction.

Reflective abstraction, coined by Piaget (cited in Mudrikah, 2016), has been used

to organize math instruction and provide insight into instructional best practices for

teaching abstraction in computer science. Capetta and Zolman (2013) recommended

using peer instruction, reflective thinking exercises, and instructor dialogue to stimulate

reflective abstraction in calculus students. Open-ended questions and story problems

were found to influence the development of abstraction among Thai 4th grade math

students (Promraksa, Sangaroon, & Inprasitha, 2014). African high school students

37

exhibited more creativity in solving math problems when instructed with a learning

process emphasizing doing, reflecting, thinking, and applying concrete experience,

reflective observation, abstract visualization, and active experimentation (Chesimet,

Githua, & Ng'emo, 2016). Cognitive disequilibrium, another Piagetian concept, could

also be used to encourage abstraction given that cognitive disequilibrium initiated critical

thinking in over 400 college students surveyed (Cole & Zhou, 2014). Collaborative,

inquiry-based instruction emphasizing metacognition and critical thinking development

appear to be effective instructional practices for teaching abstraction in math.

Vygotsky and Teaching Critical Thinking through Interpersonal Learning

When exposed to examples of inductive and deductive reasoning, children learn

the concepts of abstraction, critical thinking, and computational thinking. Vygotsky’s

(1986) interpretation of how thought develops through language is an important reminder

to teach vocabulary and concepts similar to how children learn language - verbally,

interpersonally, and repetitively. Vygotsky’s zone of proximal development helps to

explain how children could be learning without being able to produce evidence of such

learning. According to Vygotsky (1978), “the actual developmental level characterizes

mental development retrospectively, while the zone of proximal development

characterizes mental development prospectively” (pp. 88-87). Following Vygotskian

theory, students learn more than they are capable of expressing and students learn best

socially.

Computer science and critical thinking research demonstrate the validity of the

zone of proximal learning. Over 85 medical school faculty surveyed agreed that critical

38

thinking was an ability that could be learned and required interpersonal interaction,

insinuating that abstraction would also require collaborative learning (Rowles et al.,

2013). Interpersonal or collaborative learning focusing on controversial topics has been

shown to increase critical thinking in honors college students (Cargas, 2016). Another

application of interpersonal learning involves mentors. Middle school computer science

students in a New York City after-school robotics program learned how to build robots

from adult mentors, persistence, STEM instruction, and critical thinking skills (Groome

& Rodriguez, 2014). Even if children might be too young for direct instruction, indirect

instruction via stories or demonstrations, even anthropomorphizing computers could be a

way for them to absorb and model the vocabulary and conceptual means to think

abstractly, critically, and computationally.

Vygotsky’s inner speech, or “talking” to oneself, internal dialogue, begins around

age 7 (Flavell et al., 1997). The development of inner speech, the beginning of

metacognition, is necessary for abstraction, critical thinking, and computational thinking

(Mahn, 2012). Elementary students may be able to begin to understand abstraction, which

is one reason why this study includes elementary teachers. Huang et al. (2016) illustrated

how math instruction for multiplication could be simplified and made more efficient for

middle and high school students using collaborative learning and metacognition. CS

educators recommend paired programming for teaching computer science (Porter et al.,

2013). Speech helps develop thought; research shows that computer science instruction

highlighting collaborative learning and paired programming validates Vygotsky’s theory

(Harlow & Leak, 2014; Mahn, 2012). In a large quantitative study of 525 high school

39

students, Asku and Korkulu (2015) provided evidence that critical thinking instruction is

correlated with math competency and students must have a positive attitude to be

successful in math. If the instruction that focuses on developing an inner dialogue,

metacognition, and critical thinking facilitates math competency, similar instructional

techniques could help students learn abstraction.

Although collaborative social learning may not be entirely correlated with

learning critical thinking, computational thinking, and ultimately abstraction,

incorporating verbalizing thoughts might be helpful. Peer-led team learning (PLTL) and

critical thinking gains were not correlated in a study conducted with undergraduate

biology students; however, PLTL was an instructional strategy positively related to

increased self-efficacy and social skills (Synder & Wyles, 2015). Additionally, critical

thinking was not correlated with student social presence in Korean online courses,

possibly indicating that actual voice or speech may indeed be a necessary critical thinking

component (Costley, 2015). Undergraduate students who learned to detach and listen

were effectively engaged in critical thinking and group decision-making (Dwyer et al.,

2014). Process-oriented guided inquiry learning (POGIL) is an instructional technique

originating in 1994 designed for chemistry education (Hu, et al., 2016). POGIL protocol

advises using small group collaborative learning where teachers act as facilitators asking

questions to stimulate students to construct meaning, solve problems, and develop critical

thinking. In surveys, 32 CS secondary and college educators indicated strong agreement

with POGIL instruction improving student engagement, interpersonal skills, active

learning, and CS learning outcomes. Actively engaging, verbalizing, with other students

40

or with the instructor, may be important instructional activities that facilitate learning

abstraction.

Situating Abstraction within Computational Thinking

Brennan and Resnick (2012) proposed a framework of thinking that includes

abstraction as a subskill. As stated previously, various levels of abstraction must be

applied to make computers express thought through design. The specific levels of

abstraction are subjective. Brennan and Resnick, professors at MIT, have offered a

framework for computational thinking that includes computational concepts (sequences,

loops, parallelism, events, conditionals, operators, and data), computational practices

(being incremental and iterative, testing and debugging, reusing and remixing, and

abstracting and modularizing), and computational perspectives (expressing, connecting,

questioning). Brennan & Resnick’s framework for computational thinking, concepts –

practices – and perceptions, is akin to the PKG hierarchy (Figure 5). Computational

practices are similar to the execution and program levels of abstraction. Object and

problem levels require an understanding of computational concepts. Computational

perspectives are also necessary for the object and problem levels of abstraction. Although

Brennan & Resnick’s framework has not been used as much as Wing’s more simplified

definition of computational thinking, the delineation of multiple ways of thinking needed

for computational thinking provides further understanding of a working definition of

abstraction.

Computational thinking (Wing, 2006) has taken on multiple meanings, and is the

most noted theoretical framework and rationale for many studies (Anton & Barany, 2013;

41

Bers, 2010; Bers et al., 2014; Czerkawski & Lyman, 2015; Lee, 2010; Lee et al., 2014;

Lye & Koh, 2016; Pellas & Peroutseas, 2016; Bucher, 2016; Sanford & Naidu, 2016;

Shell & Soh, 2013; Zhong et al., 2016). According to Wing (2006, 2008), head of the

computer science department at Carnegie Mellon University, computational thinking

requires abstraction and automation.

Figure 5. PKG Hierarchy

Although computational thinking (CT) has become pervasive in computer science

education, it is also a way of thinking necessary in the 21st century (Cooper, Perez, &

Rainey, 2010). Computational thinking enshrines abstraction as one of its primary

components (Grover & Pea, 2013). Cooper, Perez, and Rainey (2010) attribute the

development of abstraction to the externalization of human knowledge interfacing with

computers, a similar interpretation of Floridi’s (2008, 2011) works. According to Floridi

(2008), human beings are turning into information organisms being increasingly

Execution
level

Program
level

Object level

Problem
level

42

dependent on computer information in an infosphere (p. 2). Computational thinking will

help students determine the difference between computers and humans, especially with

the advent of artificial intelligence (essentially an abstraction of human intelligence) and

machine learning. Because abstraction is a necessary aspect of CT, this proposed study

may provide valuable insight into the instruction of both computational thinking and

abstraction.

Comparison of Abstraction, Computational Thinking, and Critical Thinking

 Academic articles begin with an abstract or a condensed summary of the broad body

of knowledge. In a sense, a car, a microwave, and a computer are tools that we operate by

understanding abstraction and not with knowledge of the complex mechanism and coding

of the machines (Brookshear, 1997). Applying levels of abstraction enables people to

program complex computer operations that would otherwise make computer

programming overwhelming (Brookshear, 1997). Similarly, student computer

programmers can follow the procedures indicating abstraction, but may not fully

understand the concept of abstraction enough to create technological innovation.

According to Dale and Walker (2007), abstraction as a model allows

programmers to remove extraneous detail and make the code more efficient. Computer

science educators are in the process of defining abstraction (Armoni, 2013; Brennan &

Resnick, 2012; Fuller et al. 2007). The thinking skills of induction and deduction are two

common ideas in their definitions. Induction and deduction are also critical thinking skills

defined by Marzano and Kendall (2007) as specifying and generalizing roughly

equivalent in Bloom’s taxonomy as analysis, synthesis, and evaluation. By comparing

43

and contrasting the definitions of abstraction given by the computer science education

scholars listed above as situated in the critical thinking taxonomies of Marzano and

Kendall and Bloom, essential elements of learning abstraction are identified.

Wing (2006), Brennan and Resnick (2012), Armoni (2013), and Fuller, et al.

(2007) offer varying definitions of abstraction sometimes included in computational

thinking. To further complicate the issue, Armoni offered a synthesis of important

scholarly constructs of abstraction in which he avoids defining abstraction and instead

utilizes the PGK hierarchy to support a framework for teaching abstraction. The PGK

hierarchy describes four levels of abstraction. First, the execution level involves

expressing abstraction thinking through the algorithms needed to run computers. The next

level is the program level, which requires applying algorithms to a variety of programs,

essentially making computers do similar things with different programs. The next level of

abstract thinking involves perceiving an algorithm as an object allowing computer

programmers to simplify code and make it elegant. Finally, abstraction on the problem

level expresses the solution via computer. Armoni further simplified abstraction by

adding that it is understanding of the process and problem in size from large to small (and

vice versa) as well as in meaning from how to what (and vice versa).

Abstraction is mentioned in the thorough synthesis of learning taxonomies by

Fuller, et al. (2007), although the specific taxonomy they developed for computer science

courses is based on Bloom’s taxonomy (because of its widespread prevalence in

computer science education research) and indirectly addresses abstraction. On one side of

the taxonomy are activities for producing (apply and create) and on the other side are

44

cognitive domain activities for interpreting (remember, understand, analyze, and

evaluate). The taxonomy is based on the fact that reading computer code, understanding

code, and writing code are two different processes, similar to reading and writing a

language. Abstraction is one of the skills required for the production activities of

applying and creating; abstraction is utilized in all the categories of interpretation.

Therefore, this taxonomy does not explicitly recognize abstraction and does not

adequately offer a means to evaluate student abstraction skills. Nevertheless, the

taxonomy of learning computer science does suggest something novel regarding critical

thinking and learning abstraction.

Figure 6. The pathway of a student who attains only theoretical competency (Fuller, et al.

2007).

Fuller et al. (2007) posited that students use multiple pathways for producing and

interpreting computer coding to attain higher order thinking. Many subjects are learned

by interpreting and analyzing; however, computer coding also requires practicing and

applying knowledge. Figure 6 illustrates how students learn computer coding by

remembering (R), understanding (U), analyzing (An), and evaluating (E), purely through

45

cognitive channels. Figure 7 shows how other students learn computer coding through

remembering (R), understanding (U), applying (Ap), and creating (C).

Figure 7. The pathway of a student who attains only practical competencies (Fuller, et al.,

2007).

English literature teaches students how to analyze and critique, but rarely are students

required to write (create) a novel. In computer science students must produce software;

therefore, the simplicity of Bloom’s taxonomy which focuses on conceptual

understanding does not adequately support computer science course design or

measurement of course objectives which also requires procedural understanding. Because

Bloom’s taxonomy is used so readily, educators often assume that the higher levels of

Bloom’s, i.e., analyzing, synthesis, and evaluation create a better learning experience.

The beauty of the taxonomy for learning proposed by Fuller, et al. (2007) is that they

recognize multiple pathways for developing critical thinking and achieving proficiency in

computer science illustrated in Figure 8.

46

Figure 8. The goal “Create or Evaluate” can be attained through multiple pathways

(Fuller, et al.).

The other theoretical constructs for learning abstraction, computational thinking, and

critical thinking, do not recognize students might have varying cognitive pathways for

achieving CS proficiency (Armoni, 2013; Brennan & Resnick, 2012; Marzano &

Kendall, 2007; Wing, 2006).

Critical thinking defined by philosophy usually emphasizes the “nature or quality

of thought”; whereas, critical thinking defined by psychology stresses cognitive processes

(Atabaki et al., 2014). In a complex taxonomy of learning including the cognitive,

affective, psychomotor, and self-system domains, Marzano and Kendall (2007) identified

abstraction as the process of generalizing and specifying akin to Bloom’s analyzing,

synthesizing, and evaluating. Stating that inferences can be both inductive and deductive,

Marzano and Kendall (2007) have defined generalizing as retroduction, a process more

like induction but requiring both induction and deduction during the process.

Additionally, generalizing involves pattern recognition, the ability to focus on specifics,

47

identifying connections that explain patterns (Marzano & Kendall, 2007). Focusing on

the words induction and deduction may help inform the instruction of abstraction.

The theoretical constructs suggested by Armoni (2013), Wing (2006), and

Bloom’s taxonomy (Fuller et al., 2007) as well as the producing/interpreting taxonomy

(Fuller et al., 2007), concentrate solely on the cognitive domain of learning although

Fuller et al. (2007) admit that the affective domain is a critical part of computer science

education because students are expected to create professional soft skills for evaluating

ethical behavior, evaluating the ethical implementation of technology, and facilitating

clients. Brennan and Resnick (2012) and Marzano and Kendall’s (2007) theoretical

constructs include the affective domain. Marzano and Kendall’s new taxonomy of

learning also includes the self-system maintaining that personal beliefs and metacognition

are the most important aspect of achieving critical thinking.

Turkish researchers found a positive correlation between self-confidence in

reasoning ability and critical thinking after testing 400 K-12 teachers, providing

testimony to the probable positive relationship between the self-system and development

of critical thinking (Emir, 2015). Affective and emotional domains associated with the

self-system also influenced critical thinking acquisition in Russian, advanced English

Language, Science, and Social Studies courses (Vanicheva, Kah, & Ponidelko 2016).

Kwan and Wong (2014) found in studying over 900, ninth grade, Hong Kong, humanities

students that critical thinking resulted from the interaction between cognitive learning

strategies and student motivational beliefs. No clear correlations between learning styles

and critical thinking were found in college nursing students; however, researchers

48

recommended more studies (Andreu et al., 2015). Ultimately, the affective domain and

self-system theoretical constructs may be more valuable for the instruction in all

disciplines; whereas, the cognitive domain theoretical constructs may be more relevant

for assessment.

Regarding structure, the taxonomies of Armoni (2013), Fuller et al. (2007), and

Marzano and Kendall (2007) are most convincing because each synthesizes the work of

multiple theories, definitions, and learning taxonomies. Marzano and Kendall elaborated

on their new taxonomy for learning in a book. Wing (2006), a highly respected professor

of computer science and head of her department at Carnegie Mellon, offered her

definition of computational thinking in an opinion editorial piece, which minimizes her

definition’s robustness. Brennan and Resnick (2012) do not provide a literature review

for their expanded definition of computational thinking, instead simply offer anecdotal

qualitative evidence from student interviews and artifacts. To gain a thorough sense of

the complex nature of learning abstraction, the viewpoints of researchers regarding

critical thinking, computational thinking, and abstraction are all relevant, some more

illuminating and credible than others.

Abstraction is a skill used in many disciplines and is a skill used in computer

coding to modularize and manage complex coding commands. Abstraction skills allow

computer coders to use induction, for example, when they have a lot of code and want to

simplify it or when they want to choose one coding solution from many possibilities.

According to Faccione & Gittens (2016) deduction is ideological reasoning or top-down

thinking. Deduction is also a part of abstraction because students debug their programs

49

and examine their computer programs’ goals compared to the actual program function

and execution. Induction or bottom-up empirical reasoning is needed when wading

through the code to find pieces of code from other software languages or published

programs that could be used to accomplish the goal of the program. Bloom’s taxonomy,

although simple and seemingly abstract itself, does not adequately provide course

designers or instructors with the means to create and evaluate instruction (Fuller, et al.,

2007). For this reason, it is important to recognize the salient qualities of Armoni (2013),

Brennan and Resnick (2012), Fuller et al. (2007), and Marzano and Kendall (2007). By

focusing on production, interpretation, the affective domain, the self-system, as well as

the cognitive domain, computer science educators can create more effective learning

opportunities and provide students with better feedback through assessment.

 Constructionist Instruction

Additional theoretical constructionist frameworks provide more context for the

instruction of abstraction in computer science. After defining the specific cognitive

learning objectives in CS education, abstraction, and computational thinking, educational

policymakers and researchers can consider common theoretical CS frameworks to

evaluate the instruction of abstraction. Papert (1980), a strong proponent of

computational thinking, was an advocate of elementary children learning through

creating and directing computers. Both math and reading can be simultaneously taught

using computers, which is why now reading, writing, arithmetic, and algorithms are being

touted as the four R’s (Czerkawski & Lyman III, 2015).

50

Primarily, researchers use constructionism from Papert (1980) to describe the

natural tendency students and instructors engage in when learning and teaching coding

(Armoni, 2013: Bers et al., 2014; Denner et al., 2012; Fessakis et al., 2013; Harlow &

Leak, 2014; Kazakoff & Bers, 2012; Lee, 2010; Wang et al., 2014). Computational

thinking is becoming a theoretical framework. Computer science education researchers

also utilize (Bers, 2010; Lee et al., 2014; Lye & Koh, 2014). Vakil (2014) added Freirean

pedagogy to constructionism in his qualitative research teaching AppInventor in a middle

school after-school program for disadvantaged urban students. Vakil’s approach

illustrates how current and known pedagogy can be combined with CS educational

frameworks.

As CS educators become more familiar with existing pedagogy, such as POGIL,

and teachers learn to understand constructionism and computational thinking, more

overlapping instructional theory will undoubtedly emerge. Kivunja (2014) proposed

changing educational pedagogy based on Vygotsky and social constructivism to embrace

social connectivism, critical thinking, and digital literacy necessary for 21st-century

workforce success. Computer science education that includes explicit abstraction

instruction will ultimately facilitate both the acquisition of critical thinking skills and

advanced computer science skills.

Instructional Implications for Abstraction

 Addressing the pervasive need for CS curricula and resources, CS researchers

developed and tested software as a means of legitimate instruction. Tangible software,

software that requires the manipulation of objects to create code, has been shown to

51

increase sequential thinking and even computational thinking, even in kindergartners

(Bers, 2010; Kazakoff & Bers, 2012; Wang et al., 2014; Zhong et al., 2016). Gaming

software is another type of instructional software, and studies have shown promise in

providing software that stimulates computational thinking (Carbonaro et al., 2010; Lee et

al., 2014). Additional studies utilizing gaming and robotic software also suggest that such

instructional methodology is effective in engaging students, teaching problem-solving,

and introducing them to computational thinking (Denner et al., 2012; Grout & Houlden,

2013; Kaleliegoulu & Goulabar, 2014; Pellas & Peroutseas, 2016; Reppening, 2016).

Although many of these studies were conducted in after school or summer camp

programs, gaming software instruction was correlated with improved motivation,

engagement, and computational thinking, especially with female and minority K-12

students, (Daily & Eugene, 2013; Denner et al., 2012; Grout & Holden, 2013; Pryzbylla

& Romeike, 2014; Sanchez et al., 2011; Vakil, 2014;). Middle school and high school

girls who identified confidence and interest in problem-solving also had a correlated

interest in all STEM courses; girls with interest in creativity and design had a correlated

interest in computer science and engineering (Cooper & Haeverlo, 2015). Gaming and

robotics software appear useful in making computer science fun, attractive to learn, and

improving student retention.

Additionally, several studies on CS instruction and computational thinking imply

best practices for teaching abstraction. Many standard instructional practices, such as

utilizing Universal Design for Learning (UDL) are recommended for teaching computer

science and increasing computational thinking (Israel et al., 2015). Tung, Lin, and Lin

52

(2013) shared a curriculum module for introductory CS students using scaffolding and an

algorithm plagiarism detector (providing instant technological feedback), which students

found helpful when surveyed. Applying universal design for learning and global

immersion therapy, Israel et al. (2015) found that elementary, middle school and college

students could be successful in learning computer science. Recognizing that computer

science requires visual intelligence, using visualization and encouraging students to draw

or writing code using human language, called pseudo code, has been shown to facilitate

visualization capabilities (Baloukas, 2009; Shane & Sherman, 2014; Arnoux & Finkel,

2010; Fouh, Akbar, & Shafer, 2012; Ozurt, 2015). Csernoch et al. (2015) indicated that

using dance, music, and theater to teach introductory computer science to college

students improved test scores, grades, and retention.

Another instructional tactic deemed helpful in generating computational thinking

was the immersion into microworlds, such as Unity or Second Life (Jenkins, 2015;

Reuker et al., 2013). Interestingly, using kinesthetic instruction and sketching, improved

the acquisition of two-dimensional spatial design and computational thinking (Youssef &

Berry, 2012). Chang (2014) noted that the visual programming software, Alice, is better

suited to alleviate stress and improve confidence with low-performing introductory

computer science students than Scratch, insinuating that some instructional software is

better for learning object-oriented programming, a programming paradigm designating

objects as classes of data in fields with specific procedures (Uysal, 2016). According to

Uysal (2016), novice programmers had difficulty learning Java, an object-oriented

programming language, due to cognitive load theory. Object-oriented programming may

53

not be necessary for learning abstraction although more research would help to prove this

point. (Gobbo & Benini, 2012). Instructional best practices, such as scaffolding,

providing instant feedback, applying universal design for education, engaging multiple

intelligences, providing visual and spatial intelligence training, and encouraging

creativity and imagination may also be useful to foster abstraction abilities.

Use of the Internet, rubrics for critical thinking, and instructor training are also

indicated from critical thinking research at the college and university level. In higher

education, computer science students who utilized common aspects of the Internet such

as GoogleMaps, apps, and other web services, were more engaged and had better grades

(Lim, Hosak, & Vogt, 2012). When college engineering instructors use critical thinking

rubrics, they teach more critical thinking (Ralston & Bays, 2015). Also, providing

instructional development seminars regarding the use of critical thinking rubrics in

college engineering courses was correlated with improved student cognition and affective

engagement (Adair & Jaeger, 2016; Haynes et al., 2016). Unfortunately, African college

instructors often do not use cooperative learning to assist in the development of critical

thinking because they are not trained to do so (Malatji, 2016). Questioning taxonomies

focused on evaluative thinking and metacognition are additional teaching practices that

can facilitate the instruction of abstraction (Buckley et al., 2015; Festo, 2016; Lihui et al.,

2015). Connecting with the Internet, using rubrics for abstraction, and supporting K-12

CS instructors with professional development in using abstraction rubrics might facilitate

better instruction of abstraction in computer science.

54

Moreover, research indicates that collaborative learning environments,

interdisciplinary instruction, and ipsative portfolio-based assessment provide effective

learning experiences for computational thinking. As stated previously, abstraction is an

important element of computational thinking (Wing, 2006). In a qualitative study of

third-grade elementary students, Harlow and Leak (2014) determined that memes were

propagated during constructionist CS instruction when teachers offered suggestions or

guidance. When a student found a solution, he or she communicated the solution with

other students allowing them to share in learning, thus propagating a meme. Writing,

Science, and English as a Foreign Language are subjects successfully paired with CS

instruction facilitating computational thinking (Alsamani & Daif-Allah, 2015; Chang,

2014; Kafai & Burke, 2015; Merricks & Henderson, 2013). Assessment using portfolios,

similar to writing, is recommended although surveys and quizzes are being developed to

assess execution skills and programming knowledge (Sanford & Naidu, 2016; Zhong et

al., 2016). Critical thinking assessments benefit from utilizing standards from multiple

disciplines (Liu, Frankel, & Roohr, 2014). Abstraction assessments can similarly be

informed from a variety of disciplines, such as critical thinking, Science, and Math. It

appears that although there are not many studies on the instruction of abstraction,

guidelines like using collaborative constructionist learning environments that allow

students to gain CS skills and knowledge in a variety of ways will assist the attainment of

computational thinking and subsequently in abstraction.

55

Literature Justifying the Inclusion of Elementary Teachers

Because contradictory evidence in recent literature exists regarding the age at

which students can learn abstraction, teachers may also be confused about how and when

to teach abstraction. Similarities between learning abstraction in math and computer

science provide a basis of comparison for CS education which lacks research (Colburn,

2000). Teague (2015) found in accordance with Piagetian theory, that novice college

programmers did not exhibit the ability to produce abstraction, and it logically follows

that K-12 students probably would not be able to produce abstraction. However, recent

research in elementary cognitive development in mathematics regarding abstraction

suggests that elementary students can learn declarative and procedural knowledge

(Braithwaite et al. 2016; Kazak, Wegerif, & Fujita, 2015; Novack et al., 2015; Rittle-

Johnson & Schneider, 2014; Szucs et al., 2014). Novack et al. (2016) observed that third-

grade students learned a procedure, like a computer algorithm, using an abstract gesture,

a kinesthetic movement, for a mathematical concept. The students were given a

mathematical grouping 4 + 3 + 6 and shown to use a V movement with their arm for 4+3,

so the V pattern + 6 = 6 + V pattern, the commutative property in mathematics. Novack

et al. (2015) replicated the work of previous researchers. Computer science instruction

research using tangible software maintains kindergarten and elementary children can

learn algorithmic concepts and procedures, even computational thinking (Bers, 2010;

Bers et al., 2014; Lee, 2010; Kaleliegoulu & Goulabar, 2014; Wang et al., 2014). Also,

national CS standards instruct teachers, even in elementary school to teach abstraction

(CSTA, 2019). According to the previously mentioned mathematical studies, beginning

56

levels of abstraction seem to be attainable in elementary grades. A qualitative

examination of elementary, middle school and high school teachers’ interpretations of the

definition and instruction of abstraction will inform inconsistencies in research regarding

the instruction of abstraction.

Abstraction skills in elementary students may develop through nonformal,

possibly conceptual pathways, versus formal, or procedural pathways earlier than

theorists, such as Vygotsky and Piaget have proposed (Braithwaite et al., 2016).

Researchers in the Netherlands concluded after evaluating the online math performance

of over 50,000 4th through 6th grade students (aged 8 – 12) that students who learned

through nonformal pathways, for instance by perceptual grouping of numbers or

opportunistic selection of numbers in an equation to solve, made more errors when taught

to follow formal procedures or syntactic parsing of numbers based on formal operations.

Abstraction in computer science similarly requires formal and nonformal cognitive

operation. Interviewing elementary computer science teachers as well as secondary CS

teachers will help to inform the research on formal and nonformal cognitive development

in abstraction across disciplines.

Additional research confirms that elementary conceptual and procedural

knowledge, such as abstraction, can be acquired relying on contextual interpersonal

instruction. Rittle-Johnson and Schneider (2014) concurred that conceptual and

procedural mathematical knowledge development in elementary school children is bi-

directional and iterative, matching the findings of Fuller et al. (2007) regarding students

demonstrating multiple pathways to learn computer science. Szucs et al. (2014)

57

established that nonformal cognitive processes of executive function, phonological

processing, verbal awareness, visual-spatial short-term working memory, and spatial

ability were more important than formal “number sense” for nine-year-old mathematical

cognitive development. Even, dialogic abstract language facilitates the performance of

concrete patterning tasks for preschoolers (Kazak, Wegerif, & Fujita, 2015). Language,

discourse, pair programming, and the development of memes facilitate computational

thinking in elementary students (Fessakis et al., 2013; Harlow & Leak, 2014). The

information from CS elementary teachers will augment the growing body of research

regarding the nature and extent of instruction guiding conceptual and procedural

cognitive development.

K-12 teachers have similar instructional goals for teaching abstraction but

different students, ages of students, learning environments, and curricula. Students have a

wide variety of computer science experiences in all grades. Computer science courses

may be taught as a sub-discipline of Science, Math, or Technology because many states

do not have curricular requirements for Computer Science. Additionally, computer

science teachers use many different computer software programs to teach coding. Most

states k-12 annual assessments do not test computer science competencies. The wide

array of variables in computer science education substantiates qualitative investigation. A

lack of quantitative data, content development, consistent curriculum, and teacher

preparation necessitate investigating the instruction of abstraction. No studies thus far,

have interviewed teachers nor sought to triangulate the teacher experience through two

teacher interviews and student artifacts. Therefore, this study examines the K- 12

58

teaching experience of abstraction in computer science for curriculum development,

instructional practices, and assessment preferences.

Summary and Conclusions

No completed studies found have specifically focused on the teaching experience

of instructing abstraction. Abstraction is primarily situated as a sub-skill of computational

thinking even though abstraction is a more complex concept that requires research for

both teaching and learning. The majority of research in the past five years has used

computational thinking as the theoretical framework (Wing, 2006, 2008). Research from

the instruction and learning of critical thinking and abstraction in Math, Science, and

STEM courses at the secondary and university level implies that instruction for

abstraction would benefit from collaboration, scaffolding, interpersonal learning,

question taxonomies, critical thinking rubrics, and real-world applications, such as the

Internet. Research from elementary and secondary computational thinking and computer

science education suggests that abstraction might be taught successfully using tangible

software, constructionist inquiry-based collaborative learning, and gaming software.

Recent studies in teaching elementary math indicate that elementary students can learn

abstraction, contrary to Piagetian theory. Including elementary teachers in this study adds

a layer of complexity, but ultimately facilitate greater pedagogical awareness of effective

CS abstraction instruction. The lack of specific research regarding abstraction, the need

for computer science teachers, and the lack of research regarding their professional

development and pedagogical orientation validate the need for the proposed study. In

59

Chapter 3, I delineate the specific methodology for this qualitative examination of the

instruction of abstraction in K-12 computer science education.

60

 Chapter 3: Research Method

 Abstraction is a concept and a process in computer science education that is

worthy of investigation especially because computer science programming is being

introduced more often in preschool and elementary school. Computer science educators

need research to guide pedagogy. As shown in the previous chapter, the instruction of

abstraction in K-12 computer science merits study. The purpose of this descriptive

qualitative inquiry is to examine teachers’ experiences determining curriculum,

delivering instruction, and designing assessments regarding the topic of abstraction in

computer science. In this chapter, I describe this basic descriptive qualitative study

highlighting the interviews K-12 computer science teachers. Although including

elementary teachers in this study adds more complexity, the inclusion of elementary

teachers as participants enriches and informs curriculum development, instruction, and

assessment for K-12 computer science education. Not only do the perceptions of

secondary teachers inform the instruction of abstraction, but the perceptions of

elementary teachers also help inform future variables for studying grade-level appropriate

instruction of abstraction. Future quantitative studies could look at correlations between

the use of variables and iteration in programming by grade level if variables and iteration

(programming skills) are indicated as strong factors in this qualitative examination of

abstraction. In this section, I outline the research design, participant sampling,

recruitment, data collection, and data analysis strategies.

61

Research Design and Rationale

The primary objectives of this qualitative descriptive study are to generate ideas,

suggestions, and practical instructional strategies on the subject of abstraction for CS

teachers. The field of computer science education, and especially abstraction in CS, lacks

research. Qualitative examination of this research subject can provide variables for

further quantitative study as well as contextual analysis. The examination of instructional

pedagogy for teaching abstraction in computer coding is guided by the research

questions:

Research Question 1: What types of instruction do K-12 teachers find most

effective for teaching abstraction in computer coding?

Research Question 2: How do teachers determine objectives and competencies for

teaching abstraction in computer coding?

Research Question 3: How do teachers assess student abstraction skills in

computer coding?

This study was not designed to generate theory regarding learning abstraction or teaching

abstraction. Instead, the study was designed to provide educators, researchers, and

curriculum developers’ practical knowledge about the teacher experience. Practical

guidance and suggestions for K-12 CS instructors will ultimately also benefit students.

Qualitative inquiry is an effective research strategy for initial investigation in

subjects with many variables (Creswell, 2007). Specific variables for future quantitative

research were uncovered in this study. Moreover, this study provided insight into a

variety of computer science education topics requiring more research, such as

62

determining grade-level appropriate objectives, instructional best practices, curriculum

and standards, assessments, age-appropriate instruction, and professional development.

According to Stake (2010), qualitative research subjectively provides insight into subjects

that are complex. Teaching is an inherently complex human to human interaction.

Because the field of computer science education is new and little research exists

regarding the instruction of abstraction by grade level, qualitative research will provide a

more complete understanding of the educational experience, the human experience of

teaching.

In this basic qualitative descriptive study, I employed an

interpretive/constructivist perspective to glean practical information that will aid current

teaching pedagogy. Because the purpose of this inquiry is to examine teachers’

experiences determining curriculum, delivering instruction, and designing assessments

regarding the topic of abstraction in computer science, the most common form of

qualitative research design, basic qualitative, was appropriate (Merriam & Tisdell, 2016).

I interviewed 12 teachers (grades K-12) twice and write researcher memos after each

interview thus triangulating the data (Yin, 2014). The first interviews yielded data

regarding all three research questions. The second interviews also addressed all three

research questions and provide more in-depth data.

Due to the specific nature of inquiry related to the instruction of abstraction, the

more general aspect of a multiple case study was inappropriate. Yin (2014) recommended

multiple case studies for the investigation of how a situation arises when context binds

cases. Stake (2006) suggested using a multiple case study format when cases are closely

63

linked together. With the research questions posed for this study, case study research

would uncover more data than recommended when the boundaries of the experience are

not clear, and diary studies are useful for examining the intrapersonal experience. Case

study qualitative research is thus unsuitable for the nature of this study.

Phenomenology, or the “meaning, structure, and essence” of teachers’ experience,

might have been an appropriate qualitative approach for this research study; however, the

primary locus of abstraction exists in the student mind requiring student interviews, and

interviewing teachers would not provide access to the students’ internal experience nor

yield critical data from teachers (Merriam & Tisdell, 2016; Patton, 2002, p. 104;).

Ethnographical qualitative studies investigate individual people or cultures (Stake, 2010).

In this study, I examined the teaching experience of CS K-12 educators who were not in

the same classrooms, same buildings, nor even the same geographical locations.

Therefore, an ethnography was also not an appropriate qualitative approach. I sought

practical information for teachers, not deep personal information required by other types

of qualitative inquiry. Because in this study I searched for commonalities, differences,

and variables for future study, no theory was generated (Charmaz, 2014; Patton, 2002).

Hence, the research did not employ a phenomenological nor a grounded theory approach.

Role of the Researcher

I was an outside investigator in this research project. I conducted interviews with

teachers and analyzing the interview experience with researcher memos. As the sole

researcher, I designed the experiment, recruited the participants, interviewed participants,

and analyzed the data. My only professional relationship to teachers was as the former

64

Computer Science Content Specialist for the state department of education supporting

computer science teachers in Colorado. I did not have this relationship with teachers from

other states. I did not have any direct relationships with the teachers’ students.

Biases

My assumptions arose from my participation in Advanced Placement (AP)

computer science instructor training, teaching elementary students computer coding,

learning Scratch and AppInventor computer coding, and developing online and hands-on

computer coding classes for college and elementary students. I assumed that teachers had

some experience with computer coding or worked professionally with computer software

or hardware. Teachers who are new to computer science might not have much

understanding of the definition of abstraction, and if they do, they only understand

abstraction as a procedural or algorithmic skill. Computer science professionals who

transferred into teaching will understand abstraction and be able to teach it but may have

more trouble developing assessments. Teachers may use more direct instruction than is

necessary, according to constructivist theory, to teach abstraction in computer coding.

Many teachers rely on free online modules, such as Code.org, to teach their students

rather than teaching students themselves. Some teachers are learning computer science

along with their students. Teachers may lack comprehensive understanding of brain

development in relation to computer science and instructional best practices to foster age-

appropriate learning. National standards and instructional material are becoming more

available, but teachers do not have research that helps them develop consistent, effective

65

instruction and accurate assessments of learning (CSTA, 2019). Some students will out-

perform their teachers in their understanding and execution of abstraction.

Methodology

In this section, I describe and provide a rationale for the selection of participants,

instrumentation, data collection procedures. After describing procedures for recruiting

and obtaining consent, I outline the procedures for data collection. Sufficient evidence of

procedures and details provide subsequent researchers with enough information to

recreate this study. Furthermore, this section includes a comprehensive data analysis plan

and examines ethical practices, as well as issues of trustworthiness.

Participant Selection Logic

Twelve K-12 computer science teachers with two or more years of teaching

experience or prior private sector computer science experience, four from elementary,

middle school, and high school comprised a purposeful sample for this study. The

inclusion of multiple grade levels helped to provide information about curriculum and

grade level appropriateness of curriculum. I specifically asked teachers when I am

recruited participants if they had two or more years of teaching experience or prior

private sector computer science experience. Abstraction is an advanced concept in

computer programming, and it is possible that new computer science teachers will not

have heard of abstraction. Therefore, including new computer science teachers could

provide little useful data. Purposeful sampling allowed for specific information from

experienced teachers (Merriam & Tisdell, 2016, p. 96). K-12 computer science teachers

were recruited, with a preference for four elementary, four middle school, and four high

66

school teachers. However, convenience sampling superseded typical purposeful sampling

due to recruitment efforts which I describe in Chapter 4. The purpose of beginning this

qualitative examination of abstraction among all grade levels is that teachers from

kindergarten to college is to involve teachers and students with a wide range of coding

experience. Teachers in all grade levels often differentiate instruction. It was anticipated

that there may be commonalities regarding teaching abstraction that would help teachers

recognize student experience and deliver more effective differentiated instruction.

Participant Sampling

I used snowball sampling to find participants who are currently teaching computer

science and sought four elementary, four middle school, and four high school teachers. I

attempted to find 15 teachers in case some participants opt outed of the study. Although

saturation is reached in qualitative studies when participants begin to share the same

information repetitively, minimizing the number of participants yields data that

maximizes the chance of finding significant themes rather than superficial observations

(Cleary, Horsfall, & Hayter, 2014; Merriam & Tisdell, 2016). Qualitative researchers

benefit from smaller numbers of participants, and researchers can gain highly relevant

data from homogeneous participant groups (Cleary et al., 2014). Over the past several

years, I have compiled a list of CS teachers who have expressed interest in participating

in my research. I had access to email listservs nationally through the Computer Science

Teachers Association in my position with the Colorado Department of Education

Computer Science Content Specialist. Fusch and Ness (2015) suggested that qualitative

data saturation is reached when coding themes become repetitive. Qualitative data that is

67

rich, providing many themes, and thick, providing a great deal of material, is most likely

to reach qualitative saturation. Although saturation can be reached with as few as 6

qualitative participants or as many as 20, as a novice researcher, I decided to use the

middle number of 12 participants anticipating that the data becomes saturated.

I recruited teachers who had a background as professional computer scientists in

some capacity before becoming teachers, or teachers who have taught computer science

for at least two years. Although teaching experience is not necessarily correlated with

student proficiency, students tend to benefit from more experienced teachers (Madsen &

Geringer, 2014). Experienced CS teachers and former CS professionals were purposely

chosen as participants to increase the likelihood that they are familiar with abstraction, a

complex concept. Teachers who volunteer were asked to submit a resume. Because the

purpose of this study is to gather practical information about the most effective

instructional methods, new CS teachers or teachers who were not previously computer

science professionals will not be able to offer the best information. Therefore, I solicited

seasoned computer science professionals who are teachers and CS veteran teachers of

two years or more.

Instrumentation

The semistructured interview questions that were used for this research were

developed by the researcher and evaluated by three experts. Dr. Sylvia Gholston, Dr.

Stephanie Hartman, and Jane Waite, Ph.D. Candidate, evaluated the instrument which

was revised based on their suggestions. Waite, from the United Kingdom, is currently

also working on her dissertation in computer science education examining the instruction

68

abstraction in elementary schools. Waite has already interviewed 30 students, four

teachers, and conducted surveys with several hundred teachers. The instrument for this

study can be found in Table 1, Appendix A.

I interviewed 12 computer science and technology K-12 teachers using a semi-

structured format once during a one-month period. According to Rubin and Rubin (2005),

semi-structured interviews allow for focused data collection and questions that probe for

elaboration, clarification, evidence, sequence, and more. I used the questions in each

interview to guide the interview, provide consistency and focus, and allow me to pose

follow-up questions which can be found in Appendix C. In Appendix B, the interview

questions are aligned with this study’s research questions. Demographic questions

provided a context for the participants and do not align with research questions.

 Semistructured open-ended questions facilitated useful data (Fusch & Ness,

2015). By asking open-ended questions regarding determining objectives and outcomes,

delivering instruction, evaluating instruction, and developing assessments, I kept the

interviews focused on the experience of teaching abstraction. If teachers were unfamiliar

with abstraction, I asked them how they provided instruction for the theoretical constructs

of computational thinking and critical thinking. If the teachers were unfamiliar with

computational thinking and critical thinking, then I inquired about their instructional

approach to teaching computer science. Interview questions will be provided data for all

three research questions.

I conducted the second round of interview questions one month after the first

interviews providing a format for more deeply investigating research questions. In

69

follow-up interviews, research questions were also semi-structured but designed to

address prominent themes from initial interview data. Collecting semi-structured data

provided reliability and simultaneously ensured that the data collection process allowed

me to explore significant themes. The second interview facilitated data saturation which

occurs when participants begin offering similar answers or repeating information (Fusch

& Ness, 2015). The two interviews plus analytic memos comprised three sources of

research data.

The third aspect of qualitative data collection consisted of researcher memos.

Triangulating qualitative data is a way to elucidate multiple aspects of phenomena (Stake,

2010). Additionally, triangulating qualitative data increases reliability and trustworthiness

(Merriam & Tisdell, 2016). Researcher memos are used to develop themes related to

possible theory development (Saldana, 2013). In this study, I used researcher memos to

examine interview topics and questions posed by participants. Analytic memos assisted in

the development of variables, which could be used to study the effectiveness of

instructional practices quantitatively.

Procedures for Recruitment, Participation, and Data Collection

Teachers with two or more years of experience teaching computer science were

recruited from the Computer Science Teacher Association (CSTA), national teacher

contacts, and national computer science listservs. Because abstraction is an advanced

computer coding concept, interviewing teachers with two or more years of experience

was hoped to provide the best data. Teachers were contacted by email and sent the

consent form (Appendices A, B, and D).

70

Participation

 Once teachers emailed or called and indicate they were interested in

participating in the study, they were asked to submit the adult consent form. All

participants were offered one week to examine the consent form and return it.

Participants were informed they may opt out of the study at any time by simply

contacting the researcher. Ideally, all data collection occurred in one month. After each

interview, I wrote researcher memos, inputted the interview transcript and memo into

NVivo software, and examined the data for themes. After the second interviews, I

repeated the same procedure. Upon university acceptance of the completed dissertation,

the researcher emailed all participants the dissertation research.

Data Collection

I collected interview data (notes and audio files) for two months. Three strategies

that helped me organize the data were digital, analytic, and interpretive (Yin, 2014). I

collected all data digitally and operated an almost paperless data collection. Interviews

were conducted via Skype and recorded. Interview notes were typed during interviews or

directly after interviews from written notes. The teacher interviews conducted in person,

if any, were digitally recorded. All digital interview files were saved in NVivo. All

interview documents, researcher memos, and researcher memos were stored on NVivo

software which helped in identifying thematic coding.

The audio interviews and typed notes were stored on external hard drives.

Teacher interview documents and researcher memos were also digitally stored on the

external hard drives. Paper notes and analyses along with the hard drives used will be

71

kept in a locked cabinet in my home office for five years after the approval of this

dissertation. After teachers completed their interviews, I sent them a thank you letter

explaining the future expected completion of the study. Upon acceptance of the

dissertation, participants will be sent a summary of the final dissertation via email.

Data Analysis Plan

Interviews and analytic memos were managed and qualitatively coded using

NVivo software. I used a thematic coding approach to identify, analyze, and report

patterns in participant experiences (Gibbs, 2010; Vaismoradi, Turunen, & Bondas, 2013).

Thematic coding is flexible and appropriate for novice researchers yet potentially yields

rich descriptive qualitative data (Fereday & Muir-Cochrane, 2006). During the thematic

analysis of qualitative data, I utilized primarily inductive emic data analysis producing

descriptive themes (Vaismuradi, Turunen, & Bondas, 2013). After inductively

developing themes, I compared and contrasted the theory and literature from Chapters 1

and 2 with the identified themes facilitating richer understanding and data analysis, as

well as exploring directions for additional research (Cho & Lee, 2014). To this end, the

qualitative analysis mimicked qualitative content analysis in that themes were inductively

developed, and theory was used to deductively identify secondary themes.

Because the researcher must consistently read and reread data in the thematic

coding process, I also submitted analytic researcher memos that aided in uncovering

significant themes and provided the reflection necessary to develop thematic codes

(Vaismoradi et al. , 2013). After descriptive themes from the data were developed

72

inductively, deductive analysis of the themes completed the thematic coding analysis

(Lewins & Silver, 2006).

Logic models and comparisons of theory and literature with inductive themes

comprised the second phase of the thematic coding analysis. I established a nonlinear

logic model as a strategy for interpreting and categorizing my data (Yin, 2014). Yin

(2014) suggested that logic models can be used to describe complex phenomenon, such

as instruction, that occur in several dimensions simultaneously. The comparison of theory

and literature to inductive themes was not used to generate theory, but rather provided a

richer descriptive understanding of teaching phenomena (Fereday & Muir-Cochrane,

2006). Deductive analyses of inductively generated qualitative themes provided contrast

aiding in the understanding and development of secondary themes (Cho & Lee, 2014).

NVivo software was used to facilitate the organization, coding, and analysis of

data (Lewins & Silver, 2006). I am most familiar with NVivo, and it was the easiest

software to learn and navigate quickly. Interviews were conducted on Skype, recorded

and saved into NVivo. TRINT transcription services transcribed interviews. NVivo

integrates audio files and enabled me to record and evaluate memos. Computer-assisted

qualitative data analysis software (CAQDAS) can help researchers organize, code,

analyze, and represent qualitative data (Miles, Hubberman, & Saldana, 2014). The type

of CAQDAS best suited for a study depends on the nature of the data recorded, the

technology requirements and expertise of the researcher, and the goals of presenting

research. Some programs, like Excel, provide both qualitative and quantitative functions.

I briefly compared twelve popular CAQDAS, such as Atlas.ti, QDA Miner, and several

73

free software options. I choose three, which might be beneficial in my case study research

including NVivo 10, HyperResearch, and Dedoose. CAQDAS programs are tools that

can aide only aide but not replace researchers in analyzing data (Yin, 2014). Despite

advice from Yin (2014), who recommends not using any software in case study research

because the data is generally too diverse, and regarding data storage, data analysis, and

data presentation NVivo was the best software for this research study because audio files,

transcriptions, and researcher memos were able to be evaluated for common themes,

primarily because a variety of different documents, pdf’s and audio files (interviews) that

can be entered and coded qualitatively.

Issues of Trustworthiness

In order to assess the credibility, transferability, dependability, and confirmability

of this research, I analyzed this research design by applying the validity matrix suggested

by Maxwell (2013). A validity matrix is a useful tool that helps ensure alignment of

research questions with research methodology. Using the validity matrix I aligned the

information that I needed to find with data to be collected. Next, I aligned the plan for

analyzing data. The information needed would arise from teachers’ experiences of the

instruction, curriculum, and assessment of abstraction. Data would come from teacher

interviews and researcher memos. Data would be analyzed using logic models, thematic

coding analysis, thematically coding data to the conceptual framework, and thematically

coding data to literature. In Table 2, I illustrate aligning the threats to validity using the

validity matrix with strategies and rationales designed to mitigate threats.

Table 2

74

Validity Matrix Mitigating Threats

Validity Threats Possible Strategies to

Mitigate Threats

Strategy rationale

Concern about anonymity.

Focus on abstraction might

overwhelm or intimidate

teachers.

Novice interviewing may

produce poor data.

Offer teachers fake names

and temporary email

addresses.

Let teachers know all of

their experience is

important.

Practice interviewing.

Develop nonthreatening

scripts.

Create safety and rapport.

(Miles, et al., 2014)

Must be vigilant writing

memos to ensure quality.

Program phone to with

memo writing reminders.

Keep myself and the

project organized.

Any threat to rapport or safety can compromise qualitative data (Maxwell, 2013).

Scripted introductions to interviews reassuring participants of their right to engage in any

degree and assure them of confidentiality are crucial for creating safety and rapport

(Miles et al., 2014). In the scripted introductions, teachers were informed of the means by

which their personal information will be safeguarded and protected digitally and

ethically. Assuring the confidentiality of responses should encourage teachers to provide

valid responses. Using open-ended nonjudgmental interview questions helped to create

safety and rapport with participants, yielding more credible and valid data. The use of

researcher memos after each interview provided a reflective tool allowing for the analysis

of descriptive themes and possible researcher bias. Communicating to participants that all

aspects of their responses and data they share will be ethically safe-guarded, promoted

standards for robust qualitative results.

75

Ethical Procedures

Participants were contacted by phone and by email. First participants were

contacted by email. If they did not respond to the email indicating a desire to participate

in the study or not, I called them if I have their phone number. When I called them, I

informed them about the study using the language in the adult consent form and asked

them if they would like to participate. If teachers indicated a desire to participate in the

research study, I asked them to email me the required forms. In the email, teachers were

informed about the study and the steps they were required to undertake including

submitting a signed adult consent form. Appendix D shows the email template teachers

received. Initially, prospective teacher participants were informed that they would be

asked to interview for two one-hour sessions (in person or via Zoom. I scheduled the

interviews after school hours and on weekends with teachers. The two interviews were

scheduled two to three weeks apart. The purpose of the second interview was to ask

follow-up questions from the first interview. Additionally, because teaching requires

some reflection, the second interview captured additional thoughts or observations about

abstraction that teachers noticed after the first interview.

Several steps safeguarded the confidentiality of participants’ data. First, teacher

participants were assured that their experience and information would be respected and

remain confidential both in writing via email and verbally in each interview. In order to

share the results of the study, quotations from the interviews may be necessary.

Participants were informed that if quotations from interviews are cited, their identity will

remain confidential. I used alphabetical letters as pseudonyms for teacher participants.

76

Descriptive data was collected from teacher participants, but their school and location

will remain confidential.

Adult consent forms, teacher interview documents and audio files, and researcher

memos were saved digitally and backed up on two external hard drives. I used access

codes on my computer and will keep the backup drive in a locked safe in my home office

to preserve confidentiality and maintain ethical standards. I made sure that interview

transcripts and consent forms transferred via email are encrypted and saved on secured

hard drives. All emails and duplicate files were deleted.

Transferability

Teachers are used to self-evaluation and often welcome professional development

opportunities (Cajkler et al., 2015). Considering that the answers participants provided

were confidential thus caused no threat personally or professionally, answers to interview

questions are most likely credible. Recruiting teachers from various locations across the

United States and who teach a variety of grade levels, aided in the transferability of

research conclusions.

Dependability

After exploring theoretical and conceptual frameworks in the previous chapter

from philosophers, psychologists, and CS educational experts, it was certainly be part of

my bias as a researcher developing themes to be influenced by theoretical and conceptual

frameworks. The complexity of the concept and skills required to produce abstraction, as

well as the newness of the subject, warrant a thorough examination, including theoretical

and conceptual frameworks (Stake, 2010). By comparing themes from participant

77

interviews with themes from my analytic memos, I observed my researcher biases. As

themes began to emerge, I compared outlier cases with thematic trends exposing my

biases. Thus, the thematic data analysis plan included an inductive emic exploration of

themes and a careful examination of etic researcher bias.

Confirmability

Confirmability in this study was primarily determined through the comparison of

researcher memos and both interview transcripts. Qualitative studies are by design

difficult to completely objectify; one way that researchers demonstrate their efforts to be

objective is to repeatedly review data (“Qualitative Validity”, n.d.). By evaluating data

after each interview is entered and documenting the process with researcher memos, the

qualitative methodology for this study demonstrated reflexivity with a memo audit trail

(Olivia, n.d.). The iterative focus on participant data using memos helped guard against

researcher bias.

Summary

 Based on the lack of research on the instruction of abstraction in computer

science, the complexity of the teaching experience, and the conceptual and procedural

nature of abstraction, a qualitative case study design was indicated for this research.

Triangulating teacher interviews and even researcher memos creates a reliable credible

qualitative study. I employed an interpretive/constructivist perspective to inform this

basic qualitative study designed to illuminate the understanding of effective K-12

curriculum, instruction, and assessment of abstraction. I used an emic qualitative coding

78

strategy to assist in discovering practical teaching pedagogy. Moreover, the study

informed teaching practices for critical thinking and mathematics. In the next chapter, I

share the results of the study including the demographics of participants, significant

themes related to the interviews and analytic memos.

79

Chapter 4: Results

In the data collection phase of this study, the advanced and conceptually

challenging nature of abstraction in computer science became readily apparent. The

purpose of this descriptive qualitative inquiry was to examine K-12 teachers’ experiences

determining, curriculum, delivering instruction, and designing assessments regarding the

topic of abstraction in computer science. The following specific research questions were

a subset of the main question: How do teachers decide what effective instruction for

teaching abstraction in computer coding is?

Research Question 1: What types of instruction do K-12 teachers find most

effective for teaching abstraction in computer coding?

Research Question 2: How do teachers determine objectives and competencies for

teaching abstraction in computer coding?

Research Question 3: How do teachers assess student abstraction skills in

computer coding?

The results detailed in this chapter from data including interview transcripts,

student artifacts, and researcher memos describes how teachers use a variety of

instructional approaches to instruct and assess the multifaceted topic of abstraction in

computer science.

Setting

I chose a purposive convenience sampling of teacher participants that also

involved some snowball (word of mouth) sampling. The teacher participants in this study

were complete strangers or teachers with whom I had limited professional contact. Many

80

of the teachers may have known of me or heard of me as the state department of

education Computer Science Content Specialist. Part-way through data collection, the

position with the state department position ended. I knew one teacher from our work

together on several projects and from our joint membership in the Computer Science

Teachers Association. Our relationship was only professional. No significant events in

the lives of participants or myself, the researcher, were noted as interfering with

interviews, data collection, or analysis. Interviews were conducted and recorded virtually

using Zoom for ease of convenience and recording audio. Teachers were in their homes,

away from school or in their classrooms outside of school hours. Interview rooms were

quiet, and teachers generally were engaged and interested in answering the interview

questions.

Demographics

The teachers in this study were primarily secondary AP Computer Science

teachers. For confidentiality, the teachers were referred to in all communication and

documentation by an alphabetical letter. The average number of years of experience

teaching computer science was 15.5 years. As seen in Table 3, the teachers’ primary

teaching disciplines were either math or science. Only one teacher had a bachelor’s

degree in Computer Information Systems with an emphasis on programming, teacher C.

Teacher C worked as a programmer and hardware technician before transferring into

elementary and then secondary computer science teaching. Teacher A also teaches AP

Physics. Teacher B has over 27 years of teaching experience in Business, AP Calculus

and all levels of mathematics, as well as computer science.

81

Table 3

Teacher Participant Demographics

 Grades

Taught

Courses

Taught

Experience Years

Teaching

Teaching

Discipline

A 9-12 AP CSA 4 years 20 years Physics

B 9-12 AP CSA, AP

CSP, Intro to

Web Design

7 years 29 years Math/Business

C 9-12 AP CSA, AP

CSP, Intro to

Web Design

11 years 13 years Computer

Science

D K-6 Technology/

Digital

Literacy

Coach

(Code.org

trainer)

5 years 6 years Math/Technology

E 6-8 STEM 1 year 14 years Instructional

Technology

F 9-12 Intro to

Programming,

Web Design,

Nand2Tetris

3 years 5 years Math

G 8-12 STEM,

APCSP

5 years 16 years Math/Physics

H 11-12 Intro to

Programming,

AP CSA

5 years 5 years Math

I 6-8 Science, after-

school STEM

5 years 16 years Science

J 11-12 Cybersecurity,

CTE

Computer

Science

13 years 13 years CTE Information

Technology

K 9-12 AP CSA 3 years 5 years Math

L 6-8 Cybersecurity,

Game Design,

Intermediate

CS (Python),

Advanced CS

(Java).

4 years 25 years English

82

Teacher D is an elementary district and state trainer for elementary Code.org workshops.

Three participants taught middle school courses. Five of the 12 participants were female,

7 were male. The teacher participants have a vast combined pool of experience teaching

and teaching computer science.

Data Collection

I interviewed each of the 12 teacher participants twice. Each interview lasted

between 30 to 60 minutes. Most interviews were conducted one to four weeks apart

although both interviews for three teachers occurred during the same week due to

scheduling constraints. After each interview, I recorded research memos. Interviews were

conducted virtually on Zoom for ease in scheduling and recording. I introduced myself

via video and then turned the video off after introductions, so interview questions were

answered only recording the audio communication. Teacher participants were at home or

at work outside of school teaching hours in a quiet room. I was also in my home office in

a quiet environment.

I collected 5 deidentified student artifacts that teachers chose showing examples

of abstraction in student coding for teachers A, C, and D. It took longer than I anticipated

(4 months) to get district level letters of cooperation from four school districts out of over

thirty that I requested. One school district turned the request down because I was not

offering a teacher stipend. Other school districts had prohibitive deadlines for submitting

research requests. Several school districts in major metropolitan areas in three states

failed to respond to emailed research requests. Even trying to recruit 30 to 50 teachers in

each of the four districts that did approve my research, yielded a very small number of

83

teacher volunteers. Teachers who did not want to participate responded that they were too

busy, had multiple jobs and family commitments. Other teacher participants shared that

the topic of abstraction was daunting and at the beginning of the school year they weren’t

sure if their students knew enough to produce abstraction in computer coding. After

consulting with my committee and other university officials, I submitted a request to

change my data collection requirements to two teacher interviews and researcher memos,

no student artifacts. This change was approved and allowed me to contact any teacher

which quickly resulted in obtaining the targeted number of 12 teacher participants. I was

unable to obtain the desired number of 4 elementary, 4 middle school, and 4 high school

teachers. In the end, the participants consisted of one elementary, 3 middle school, and 8

high school teachers.

The basis of questions from the first interview can be seen in Appendix A, and the

second interview questions in Appendix C. In both interviews, I applied follow-up

questions to the basic questions in order to ascertain as much detail from teachers’

experiences as possible. The first interview questions were developed using the research

questions. The second interview questions were developed thematically from the first

interview transcriptions and memos. Second interview questions also included participant

questions and concerns related to teaching abstraction in K-12 computer science.

I configured interviews to record on a cloud server using Zoom. After

downloading the recordings to my computer and deleting them on Zoom, I uploaded the

recordings to Trint transcription services. After transcribing the interviews using Trint, I

downloaded them to my computer again and deleted the interviews from Trint. Then I

84

uploaded the transcribed interviews into NVivo software as a receptacle and

organizational virtual location for thematic coding. Interview memos were also uploaded

into NVivo, as were student computer coding artifacts. Teachers emailed me the artifacts.

Once uploaded into NVivo, the emails with student artifacts were deleted on Zoom, Trint,

and the download file on my computer. I made every attempt to ensure the privacy and

confidentiality of collected data. I made two changes to my data collection plan in

Chapter 3 to make the data collection easier and minimal. Zoom was easier to use than

Skype because no log in information is required. Zoom also has the ability to record and

save large files in the cloud minimizing memory demands on my computer. I only

communicated by email and did not take phone numbers from participants, except with

one teacher with whom I texted after she contacted me via phone. The other procedures

including storing research data on an external hard drive were followed exactly as

described in Chapter 3.

Data Analysis

Process of Inductive Analysis

I interacted and evaluated each of the 24 interviews between 4 to 5 times. During

the interviews, I took notes on copies of the research questions used for the base

questions in the two interview rounds. The logic model (Figure 9) shows the progression

of data collection and analysis. I edited transcriptions and listened a second time to each

interview making additional notes. Then I entered analytic memos for each interview, a

process that yielded additional insights and themes.

85

Figure 9. Logic model of research activities

Then, analyzing data for word frequencies and sentence level themes, I employed NVivo

software coding parent and child theme. I coded all data iteratively including both

interview transcripts and analytic memos often relying on visual data representations like

the excerpt of a diagram seen in Figure 10. Parent themes and child themes are

commonly used terms to describe categories and subcategories of qualitative themes

(Merriam & Tisdell, 2016).

Initial parent themes arose from comparing research question categories (i.e.

curriculum, instruction, assessment, and the definition of abstraction) with word

frequencies in each interview. Specific parent themes corresponded strongly to the

research questions and base interview questions and included: abstraction knowledge,

instruction, assessment, curriculum, teacher experience, student experience. Each teacher

participant is referred to by a randomly assigned alphabetical letter to respect

86

confidentiality. Responses regarding teachers’ familiarity of abstraction ranged from

Teacher J stating and indicating she was not familiar at all, “On a scale of 1-10, I’m a 1.”

Figure 10. Exploring Parent and Child Themes using NVivo Software.

Whereas Teacher I explained, “I am very familiar with abstraction and teach it at the

beginning of my intro class and all the way through my AP CSA course.”

Teachers told many stories providing examples of their instruction of abstraction such as,

from teacher C using games like rock, paper, scissors that students would work to

program or teachers H and L using unplugged activities (instructional activities not using

computers) to help students learn the concepts related to abstraction. Teacher J utilized

student self-assessments but did not grade abstraction. However, Teacher L included

“elegant coding”, her term for abstraction, in rubrics she gave her students. Several

teachers, namely teachers I, K, and L, indicated that they found it difficult to get students

to independently demonstrate abstraction in computer coding projects.

87

Table 4: Parent and Child Themes

__

Parent Themes Child Themes

Abstraction

Knowledge

Ubiquitous, Transfer from other content areas, Metaphor,

Learning skill first then concept, End-user

Instruction Vocabulary, Unplugged activities, Thinking skills, Repetition-

spiraling curriculum, Programming languages, Objectives,

Logical problems, Learning by doing, Labs, Games, Frequency

of abstraction activities, Design process, Debugging,

Cooperative Learning, Contextualized learning, Challenges,

Block-based coding

Curriculum STEM, Standards, Simulator, Science, Robotics, Resources,

Programming languages, Math, Game Design, Cybersecurity,

Artificial Intelligence

Assessment Summative, Formative, Self-Reflection

Teacher Experience Years teaching, Teacher support, Courses, Abstraction

professional development, CS Teacher pathway, Grade-level

instruction, Self-efficacy, Support from district, Teacher support

Student Experience Examples, Background knowledge, Ability – student dependent

Teacher H explained that his students had beginning exposure to basic programming and

getting kids to demonstrate abstraction was sometimes,“….like trying to go fast with your

training wheels on.” The challenging nature of teaching students abstraction are more

fully reported in the results section of this chapter. A complete accounting of parent and

child themes are provided in Table 4.

Child themes arose from consistently thematically coding each interview and

every researcher memo, looking for word frequencies, thematic frequencies, and thematic

connections then revising parent and child themes accordingly. Connections between

88

parent and child themes can be seen in Figure 11. Child themes for abstraction

knowledge include: end-user, metaphor, transfer from other content areas, and

ubiquitous. Child themes for instruction include: pedagogy, block-based code,

challenges, cooperative learning, contextualized learning (grandchild themes – demo,

expo, competition, project-based learning, and real world service learning), debugging,

design process, dialogue (grandchild themes – group discussion, Socratic dialogue,

student led-inquiry), direct instruction (grandchild themes-online tutorials), frequency of

abstraction instruction, games, labs (grandchild theme - maker spaces), learning by doing

(grandchild themes – building background knowledge, student-led inquiry, too much

code), logical problems, objectives, programming languages, repetition-spiral, thinking

skills, unplugged activities (grandchild theme- engaging multiple senses). Child themes

for curriculum include: artificial intelligence, cybersecurity, game design, resources,

Math, Science, robotics, simulator, STEM, and unplugged activities. Child themes for

assessment include formative, summative, and self-reflection.

Child themes for abstraction knowledge include end-user, metaphor, transfer from

other content areas, and ubiquitous. Child themes for the student experience (as

interpreted by teacher participants) include ability – student dependent, background

knowledge, and examples of abstraction ability. Child themes for the teacher experience

include abstraction professional development, courses taught, CS teacher pathway, grade

level instruction, self-efficacy, teacher support (grandchild theme – support from district),

and years teaching.

89

Discrepant Cases

As a descriptive study, all participants help inform the research questions in this

study. However, it should be noted that only one elementary teacher and three middle

school teachers were interviewed. Because there was only one elementary case, I don’t

have sufficient data on which to comment regarding abstraction in elementary.

Additionally, due to the approved changes in methodology and the lack of student de-

identified computer coding artifacts, I did not analyze the samples of student coding that

were submitted.

Evidence of Trustworthiness

Credibility, Transferability, and Generalizability

All teachers in the study are currently employed and teaching CS, STEM,

robotics, or some aspect of CS requiring computer programming. The participating

teachers were curious and interested in the topic of abstraction. They genuinely wanted to

learn more, and even long-time CS teachers were unsure of their performance and desired

feedback. Due to the sincere nature of responses, the data is credible. However, the

majority of teachers came from a western state, with the exceptions of one teacher from

the Midwest and one teacher from the East Coast. The diverse grade levels teachers

address provide a degree of transferability, as much as can be afforded in a qualitative

study. Moreover, the educators from three states began to repeat answers indicating

saturation. All 12 teachers asked for a definition of abstraction at the beginning of the

first interview. I responded that because the study was designed to assess their

experience, I would like to first find out their definition.

90

Figure 11. Project map depicting relationships between parent and child themes.

Sometimes, I shared the following basic definition of abstraction. “Some people define

abstraction as managing complexity or hiding detail making computer code

representative and more efficient.” After sharing the basic definition of abstraction all

teachers replied that they did teach students to make their code “elegant”, “streamlined”,

and “efficient”.

 The high school teachers who taught AP CS and advanced CS courses shared a

similar concern in that they had some students who easily demonstrated abstraction and

understood it but they struggled to find ways to help the “bottom of the pack” understand

91

abstraction. Teachers also mentioned it was difficult to get students ready for the AP

exam on time when students at the “bottom of the pack” seemed to need more time in

order to learn abstraction. Such similarities and other themes which are explored in the

results section of this chapter indicate transferability of data.

 It is hard to gain generalizability with a qualitative sample, but some aspects of

the results might apply to teachers in many states. One teacher from a state that has had

an earlier push for CS than the primary western state from which most of this study’s

participants came from shared that he took the CS class that he now teaches in high

school. He went to the same high school where he now teaches, and his mentor, as a CS

teacher, is his old high school CS teacher. This teacher participant understood abstraction

easily, discussed abstraction easily, and had a strong sense of how and when his students

demonstrated abstraction in their computer code. He was also attending a Master’s

program in CS. In his fifth year of teaching the same curriculum and courses, he

mentioned that he could incorporate more depth and abstraction into his courses now

because he was more familiar with the progression and material. The amount of

experience as both a CS student in high school and higher education logically seems like

it would correlate with teaching knowledge of abstraction and self-efficacy.

In contrast, two middle school teachers who had much less formal training in CS

and experience teaching CS courses were the least able to describe abstraction activities

and student abstraction examples of any teachers. Three teachers were in the middle of

teaching advanced year-long CS courses that they had not previously taught. These

teachers all honestly shared that they were in the planning stages of learning material,

92

setting objectives, designing future lesson plans, designing assessments, and were not

able to fully describe concretely examples of lesson plans and assessments that

incorporated abstraction because they hadn’t finished teaching the entire course. Again,

generalizability with common variables such as experience with content and experience

teaching the curriculum logically correlate with knowledge of abstraction and teacher

self-efficacy. Additional common themes are elucidated in the results section of this

chapter.

Dependability

As a teacher not currently practicing in K-12, I am more of an etic participant,

although as a teacher immersed in CS education, I can easily relate to the experience of

the teacher participants as an emic participant, a teacher. Also, as someone who is

learning to program in multiple computer languages, I am approaching the subject from

more of an emic educator lens with less content knowledge allowing me to be more

objective in relation to the concept of abstraction and less objective about the art of

teaching. As the study progressed I found that during the interviews I was making

inferences about the degree to which teachers understood abstraction. Making such a

judgement was clearly an etic bias preventing me from objectively describing the

experience of the teacher participants. When I realized from studying my analytic

research memos that I was making judgements about the degree to which teachers

“understood” abstraction, I iteratively examined interview transcripts and researcher

memos to see what new themes arose. Thus, throughout the study I was carefully

monitoring any biases and iteratively examining the data.

93

Confirmability

Multiple researcher memos and interviews per participant provided reflexivity in

the data analysis. As previously mentioned, I interacted with each interview data multiple

times over the course of 4 months. I participated in the interviews, edited the

transcriptions of each interview making notes as I listened, wrote analytic memos, and

then thematically coded each interview multiple times. This exhaustive approach to

analyzing data demonstrates my efforts to ensure confirmability of the results.

Results

Teacher participants’ understanding of abstraction, designation of course

objectives, instructional activities, and assessments varied with experience both with CS

content and teaching CS courses. Experience was the overarching theme related with the

other salient themes in this study. In the following section I describe teachers’ knowledge

of abstraction, curriculum, and demographic aspects related to research question two. I

begin with results related to research question 2 because teaching begins with identifying

terms, concepts, and objectives to instruct and then assess. Next, I share findings

regarding teachers experience instructing abstraction and teachers’ observations of

student abstraction ability, related to research question one. Then I describe teachers’

experience assessing abstraction related to research question three. Finally, I provide

additional insights from teachers regarding professional development and suggestions

from participants.

94

Research Question 1: What types of instruction do K-12 teachers find most

effective for teaching abstraction in computer coding?

Teachers found many types of instruction effective for teaching abstraction in K-

12. Teachers focused on sharing their knowledge of abstraction as a ubiquitous concept

through metaphors, direct instruction, focusing on the end-user, and making transfer

references from abstraction in other content areas such as Math or English. Teachers

mentioned the following parent and child themes as effective modes of instruction:

teaching vocabulary through context; unplugged activities; logical problems; learning by

doing; design process; contextualized project-based learning; repetition of abstraction and

spiraling curriculum; labs; debugging; cooperative learning; giving students challenges;

and using a variety of programming languages including block-based programming.

Teachers found that student ability made it sometimes unnecessary to teach abstraction to

“savant” students, but students “at the bottom of the pack” who struggled to learn

abstraction were difficult to teach. For some teachers, all of the strategies that work for

many students don’t work for some students who struggle with abstraction. This complex

interplay between student, subject, and teacher illustrates the difficulty in conducting

educational research. Are students who struggle with abstraction the discrepant cases

under research question one or are the teacher’s instructional strategies? The following

stories and quotes from teachers interviewed will help illuminate results relating to

research question one.

95

Abstraction Knowledge

Because teachers’ definitions and understanding of abstraction influenced the way

teachers chose curriculum, taught abstraction, and assessed abstraction, teacher

knowledge of abstraction is relevant to all three research questions. Teachers’ knowledge

of abstraction ranged from concrete understanding based on traditional computing to a

focus on the end-user’s experience to a vague understanding of the concept. One teacher

who had a B.S. in Computer Information Systems, explained, “…when I was in college I

had a friend who we would take each other’s code and we would look at it and we could

see who could actually make the shortest most functional program to accomplish the

task.” And another teacher explained, “So actually, in programming for kids for anybody

you know to make any efficient program there needs to be abstraction.” Another teacher

described abstraction as, “Then when you were programming you had you would do data

hiding or data representations…” The idea of hiding data was repeated from another

teacher,

And I think you know the thing that I’ve tried to stress the most to my students

and I believe I touched on this last week is just abstraction being something that

hides the nonimportant details the extraneous kind of fluff but packages it all into

some sort of black box.

A teacher who had some experience programming science simulations in college made

the distinction between procedural and data abstractions. “So, when we go over like the

level of abstraction we talk about you know in the program language that I’m working on

I work primarily on procedural and data abstractions.” Other teachers had a less concrete

96

ready definition of abstraction but more a sense of the concept. One teacher who had

taught AP CSA and Java for several years explained,

It’s in my mind the way I think of abstraction is it’s a sense that no variable

actually can mean something else. You know you might pass in a parameter that’s

some variable that eventually will have some actual meaning. But when the kids

are writing their code it’s just this word. This letter this idea that’s out there that’s

not actually implemented yet.

and she further elaborated,

I know it is one of the most important principles as far as like object-oriented

programming goes and I understand how it is related to encapsulation,

inheritance, polymorphism and you know what I’m saying but yes abstraction,

I’m like ok, not exactly, is that what you mean?

Another teacher explained and possibly was conflating abstraction as a programming

skill and the related ability to think about nonconcrete concepts,

I feel like it’s a pretty natural part of what we do. You know this whole sense that

they write something that will eventually be like get some sort of actual meaning.

That’s sort of abstract that sort of thing. I feel like it is just central to everything

we do.

Another teacher resourcefully looked up the definition of abstraction on Google when I

let her know I was first interested in her ideas of the topic before I shared a common

definition and explained, “I mean because as I’m looking at right now I’m looking at you

know the definition that it’s used to reduce complexity and allow efficient design and

implementation of complex systems.” One teacher honestly was not sure of the definition

and explained, “I think I don’t know actually because I’m not really sure from a pure CS

perspective what that actually means. So, I guess not really. You know I have a sense of

what it is.”

97

After initial questions and after I shared the basic definition of abstraction

mentioned earlier, we discovered some teachers used words like elegant or architecture to

describe abstraction. A former English teacher explained that although she had never

heard the term abstraction or studied it, she focused on teaching her students to write

elegant simple code, citing the rationale of Occam’s Razor, the simplest answer being the

best answer. One teacher who spent 20 years in IT before becoming a vocational CS

instructor explained,

I would be more inclined to use the word architect but the ideas are the same. I’m

thinking about how these pieces parts go together to create what is that the user

wants, so I get a lot of opportunities to do that in a PBL [sic: project-based

learning] framework.

And further,

So, it’s this idea of trying to get kids to reverse engineer and to think about the

pieces parts that go into a holistic system. But the outcome we want is that the kid

understands that there are multiple parts that go into making a computer complete

including software.

Linking the idea of the end-user’s experience to abstraction connected the design

process and the definition abstraction. Incorporating the lens of the end-user on

abstraction in computer coding also introduced the idea of defining the concept from

multiple perspectives. The previous teacher with 20 years of IT experience explained,

So, I’ll describe it in the way that I would to a kid. I call the end user Ma or Pa

Kettle. And so, I'm always saying Ma Kettle comes to me. And she's in the

marketing department or sales or engineering or whatever and they need a certain

app. And so, they're able to describe the end goal but they don't have any idea

about the technology or technologies. In the back office they are going to make

that happen. So, in my mind abstraction is taking those requests you have to go

through a process of discovering all of the requirements that are needed.

Requirements gathering once I have the requirements. Abstraction means that I'm

98

figuring out how things are going to be put together to create a useful app. If that

makes sense.

Another teacher explained in the second interview new discoveries about the definition of

abstraction, “I looked up the definition on the Internet and now it seems like it is more

about the product and what the user experiences.”

Teachers also described their knowledge of abstraction in relation to skills,

concepts, and thinking abilities. A STEM middle school teacher indicated the necessity of

problem-solving thinking skills, “Like how can we leverage technology to be able to

problem solve easier and faster more efficiently and that kind of thing.”

A high school teacher who had also taught elementary school shared the importance of

teaching pattern recognition, “So, you start to teach people abstraction by helping them

with pattern recognition.” When asked if abstraction was a skill or a concept, 6 teachers

said it was both a skill and a concept. One teacher explained, “Both, more of a concept,

kids could do the skill but understanding the concept is harder.” Another teacher

explained how students learned some aspects of coding that allowed them to do the

abstraction skill but then tried to use the same approach without success in other

problems because they didn’t understand the concept of abstraction. “So, there's not

understanding the situational need for that particular solution. And there again it's like

going to the tool box and the only tool you have is a hammer so everything looks like a

nail.” Four teachers immediately said abstraction was a concept that transforms into a

skill. Interestingly, the two oldest teachers, both in their 60’s, who were also very focused

on teaching multiple computer programs and courses said abstraction was a skill that

99

according to one teacher, “It begins as a concept but doesn’t do any good until it is

applied. It is almost an art.”

 Figure 12: Word frequencies with knowledge of abstraction

Treating abstraction as a skill or a concept or both influenced teachers’ instructional

approaches. Figure 12 shows the frequency of words related to discussions about

teachers’ knowledge of abstraction. As a bridge to the results section on instruction,

several teachers shared metaphors they used with their students to explain the concept of

abstraction. Previously, the metaphor including “Ma and Pa Kettle” as the end-users

alluded to the product and process nature of abstraction. The product was whatever app

the user needed. The process included requirements gathering from the user,

decomposition of the problem, and then “abstracting out” or inductively proposing a

solution from hardware, systems, and software, resulting in the design process of creating

100

a solution. Although, the entire process described in the previous sentence would be

defined by some as CS, the teacher in this study defined the same process as abstraction.

This same teacher used the metaphor of football to explain abstraction.

I think a lot of kids understand football and football is a very very complex game

with lots of different mathematics going on it plays and plans and how we get to

the end zone. And so, kids really any kid that is into football doesn't have a hard

time holding down all of the data that they need to figure out how to run that ball

and get it into the end zone. If we ask a kid how an app got onto their phone, they

have no clue apart from they went to the app store and searched for it and got it.

So, these are two extremes in you know abstraction.

Another teacher described how he used the metaphor of liberal arts and technical higher

education.

I sort of I use that [sic: metacognition] as a way to sort of have the students realize

that they already think about abstraction a lot in everyday life and that makes

sense. One of the things I do is tie in to the higher education system and how you

know some schools and colleges do a liberal arts model and some colleges do the

sort of specialization model or the more technical model. We talk about it and I

sort of take those models to an extreme and say how you know neither of you if

you take the breadth first model to an extreme that it's not useful that you take the

depth first models to an extreme that it's not useful either. And so, abstraction is

sort of a way of meeting in the middle in some ways.

Another teacher shared how he uses an activity and a metaphor to teach abstraction. He

combines the classic games of Pictionary and telephone by having students at one end of

a circle write down the instructions for drawing a polygon. The next student draws the

image they think the instructions describe and the task continues around the circle

alternating with a picture and written directions. The teacher explained connecting the

activity to abstraction in CS,

It's kind of like telephone but with alternating instructions and diagram. We really

talked about how when you were giving instruction, what was the instruction you

needed and what was the instruction that that was lacking that caused the sort of

101

loss of concept. Basically, how much is enough and how much isn't enough. We

talked about Google Quickdraw and how now from an AI standpoint how it could

quickly like if you said. sailboat how much do you need to draw for somebody to

understand the idea of sailboat. Well, not much it turns out you know. So. We are

so are we talking about abstraction a lot that way.

Another teacher simply stated that abstraction was, “It’s going from messy to pretty.”

 Teachers all shared a common belief that abstraction was important for students to

learn. According to one teacher, “I think it is really important. I don’t know how you

could really do CS without having a good grasp of it.”

Another teacher explained, “It's critical to everything pretty much everything that you do

in programming for sure. And in understanding other areas in CS, nonprogramming areas

of CS, too.”

Instructional strategies for teaching abstraction

As noted by the math teacher in the previous section, CS is a new content area for

students. Students undoubtedly have used and seen computers and computational devices

but learning how the computational devices work and then learning to solve problems

with computational solutions, the essence of computational thinking, is a new avenue of

study for students in almost any grade. Teachers noted that they needed to carefully build

learner background knowledge of abstraction in CS through direct instruction,

scaffolding, contextualized instruction, and activating background knowledge.

Specifically, teachers mentioned utilizing collaborative learning, the design process,

block-based coding, object-oriented programming, various forms of dialogue, and

learning challenges to teach abstraction.

102

When asked about utilizing direct or contextualized instruction, a long-time

business and math teacher who has taught AP CSA and Java replied,

I’m going to model it and now we’re going to do it together. That direct approach

to instruction, honestly I’ve only ever really done it….with lots of practice lots of

example problems and talking about what different things would mean.

Another teacher described her approach to direct instruction, “So, it’s you know five to

10 minutes of direct instruction for an initial lesson to then apply that.”

Demonstrating and modeling were mentioned as being an important aspect of teaching

abstraction. One teacher explained, “And a lot of them picked up on it right away and

some of them sort of understood it after I was showing them a bit.”

Prescribed curriculum has scaffolded instruction built in. One teacher shared, “There’s

great, you know, curriculum step by step stuff that you can do.” Another teacher noted

that the online course he was teaching required students to complete basic foundational

hardware simulation activities before moving on, “But I keep coming back to this but I

think that one of the cool things about the Nand2Tetris course is that they have to get

their chip to work.”

Teachers described that students might acquire skills related to abstraction at

home or in school but not understand the concepts and be able to apply the skills in a

variety of applications. A middle school STEM teacher explained, “They need that full

practice time and I think they need a safe practice time to be able to figure it out and do

that trial.” Prescribed online curriculum was described as helpful, but not necessarily

active learning. An AP CSA teacher explained, “I haven’t used Code.org enough to think

103

this is a fair assessment but passive learning I feel is more out of online delivery systems

that have students even if they’re typing answers and trying things clicking around.”

He concluded by saying that online tutorials were good for drills and training. A middle

school teacher who set up tutorials for her students using Agent Sheets to help her

differentiate student learning because some students were “sitting there bored” when they

easily finished work, shared that students didn’t really understand what they were doing

until they talked about their work.

 As a segue to explaining significant themes regarding the contextual instruction of

abstraction, a math teacher noted that teaching abstraction was very similar to how he

taught math, “You sort of teach the process and try to ground that process in some

conceptual understanding.” The same teacher mentioned that it was important to let

students fail and experience writing lengthy code to develop value for finding easier ways

to achieve coding solutions. Additionally, this teacher shared how he showed the PBS

Crash Course videos on CS as a contextual instructional activity,

These videos talk about some idea in computer science and then they sort of cut

away to this goofy graphic of an elevator and they do like this ten five or ten

second montage of the elevator going up a new level of abstraction.

It is notable that the Code.org curriculum also utilizes videos as unplugged

demonstrations. Experiencing programming abstraction was a way that teachers could

then later explain the concept to students. An AP CSP teacher who used the AppInventor

curriculum shared how he taught students to program a pseudo random number generator

and then program coin flipping. “All we’ll do is flip coins and flip a whole bunch of coins

104

and then we’ll see is the app does the app have a good pseudo random number

generator.”

Incorporating traditional games into programming was a way that several teachers

shared how they incorporated elements of direct instruction, building student background

knowledge, and contextualized learning abstraction. One teacher described how she

regularly had students play common games like rock-paper-scissors to learn 2D arrays or

Yahtzee and then had student program the games. She had students program the dice in

Java and then program the rules for the Yahtzee game demonstrating the object and

procedures required to produce abstraction in object-oriented programming. Other

teachers mentioned having students play Connect Four and then programming that game

or hangman or evil hangman. To create evil hangman, the teacher explained he had the

students program a random word generator making the hangman game more complicated.

Additional contextualized topics teachers shared included creating mazes for

robots to navigate and creating online banking programs. Contextualized learning was a

way that teachers could spiral curriculum and expand the concept of abstraction in new

situations allowing students to make new connections to the concept. As one teacher

explained, “Or if it happens inadvertently in context like as they’re solving a problem

kind of in a bigger context.”

 Teachers used group discussions and Socratic dialogue to help students

understand abstraction. One teacher described her instruction of Scratch, “And I

explained to them that was so much more work than using a broadcasting tool.”

105

Another teacher shared how he explained to his students that using the modulator

function in AppInventor produced abstraction. An instructor shared how he used Java

libraries to explain abstraction. Student-led inquiry was another pathway to teaching

abstraction. The AP CSP teacher described a student who recognized an easier way to

program an app that the block-based AppInventor programming language did not

accommodate. Another teacher explained,

One just kind of fun discussion we had towards the end of the semester was if you

have ten problems left on a multiple-choice test and you’re not sure you know you

can’t eliminate any of these answers, is it better to choose a letter like C and mark

it all the way down? And so that was something that you know we talked about

the mean, the probability that we thought maybe the variance would shift and it

was a little 5 to 10-minute discussion that came up.

The teacher shared how students involved in this discussion about ten remaining

questions on a multiple-choice test went home unbidden and programmed in Java all the

probabilities in this multiple-choice scenario as a way of studying the entire course

material for the final.

The two middle school STEM teachers stressed that teaching abstraction was

embedded in teaching building, creating, and the design process. One teacher explained

she used the Lego EV3 robot kits which allow students to create a variety of robots,

Now this whole programming idea of the EV3s, creating robots, that will help

answer this question that involves science, technology, engineering, and math. So,

they’re kind of putting all their knowledge together which essentially was my goal

in the end that it’s not separate that all of this comes together and they can see

how it comes together.

The other STEM teacher explained,

…if they start just with coding on a screen then I’m basically a glorified

programming teacher versus a teacher where I’m hitting it from how can we build

106

something to solve a problem versus let’s just learn how to code to solve a

problem.

The experience and focus on teaching abstraction via the design process punctuates the

complex nature of teaching abstraction with both hardware and software.

 Programming languages, both text-based (also called line code) and block-based

were described as vehicles for learning abstraction. An experienced CS teacher of 13

years stated that using block-based, drag and drop, coding was easier for students to grasp

the concept of abstraction. She explained,

I felt like at least when I taught CSP a couple of years ago the fact that you know

when you’re using something within the abstraction, when kids built a block and

then they used blocks that they had already built in a new block that they were

building they could kind of see that more than just in the line code.

Another teacher concurred explaining the difficulties of line code,

Everything was right but the syntax and it just drives you crazy because you don’t

have a colon in the right spot or a semi-colon or you know you use parentheses

when you’re supposed to use brackets. And I really think that introduces a level of

frustration that doesn’t necessarily need to be there especially when you’re trying

to develop some sort of basic ideas. So, I’m really coming around to the drag and

drop world.

All the high school introductory CS teachers used some type of drag and drop

programming language such as Snap, Alice, or AppInventor. However, two AP CSA

teachers noted that their Java students didn’t start to develop and truly understand

abstraction until they started writing longer more complete programs in the second

semester of their year-long courses. One teacher explained,

I think when we talk about abstractions and specifically kind of what they are and

programming is when the students start to see a little bit of the bigger picture and

feel as if they’re actually writing a program that can do something as opposed to

just working on the nuts and bolts of syntax and the language and everything.

107

Providing repetition of both the concept and skills related to abstraction were

suggestions teachers made for new CS instructors learning about abstraction. The

introduction of the concept of abstraction is a requirement in AP CS Principles, a course

designed as an introductory high school survey course for CS (College Board, n.d.,

2019). Providing instruction in block-based coding to introduce the concept of abstraction

and then repeat learning abstraction with line-based coding was mentioned by high

school teachers in three states. One teacher explained, “Yeah, I think it’s definitely not a

bad thing to introduce the word early and then keep coming back to it and spiral around

again and again.” Another teacher who had a dual bachelor’s degree in CS and math

education shared that he couldn’t remember hearing about the word abstraction in college

although he was definitely taught to hide data and make his code efficient. He shared

again stressing repetition that the vocabulary word abstraction didn’t necessarily have to

be taught immediately but could be explained later on in the CS learning progression.

 Collaborative learning was a classroom management tool all teachers described

allowing them to engage students, manage student learning differentiation, and facilitate

learning. One teacher explained how she used the “cup system”. Instead of students

raising their hand for help, they had a set of four cups on their computer. If they put a red

cup on their computer, the teacher knew they needed help. If students put a yellow cup on

their computer, they were busy working independently. If students put a green cup on

their computer, they understood and were finished with the task. A purple cup on the

108

computer meant the student understood the task, finished, and was available to tutor other

students.

 A middle school teacher described how she explained to students that coding was

difficult and that some students were going to get it easily but others had to work hard to

get the material, which didn’t mean they couldn’t learn but that they had to work harder.

The teacher gave students a finite set of time on projects. On the last day of the project,

she would have students list on the board who had finished and who needed help. The

teacher would ask students who finished to help the students who had not finished and

shared that the students really liked this part of the project progression. If both students

working together could not solve the project, the students would put a check mark on the

board indicating that they needed the teacher’s assistance.

 Pair programming was also mentioned as a collaborative instructional technique

employed to teach abstraction. One high school teacher shared that he used the pair

programming designation for one student as the navigator (not actually typing but

suggesting) and the other student as the driver (the student actually typing). Another

teacher described how using pair programming allowed him to team students who

understood abstraction or could use it somewhat with students who needed more

assistance.

 Alluding to the advanced nature of learning and demonstrating abstraction, all of

the high school teachers and one middle school teacher, who focused on programming,

mentioned being unsure how to help students who did not understand abstraction attain

proficiency. One teacher who was working on his Master’s in CS explained,

109

But it’s that next higher level of conceptual thinking that I’m struggling to teach

them, which is why if I didn’t give them direct prompts would they be able to see

exactly where abstraction fits into the program and how it can help them and what

they should do as opposed to me feeding them step by step instructions.

Teacher Perceptions of Student Ability

Teachers’ experience of student ability influences the instruction of abstraction.

Consistently, teachers mentioned being challenged by students who easily understood

programming and students who struggled. Teachers with some experience at the

elementary level noted aspects of abstraction are taught in the elementary grades.

However, the majority of teachers felt that abstraction could be learned in middle school.

One teacher, who instructed juniors and seniors, said he recognized some students had a

proclivity towards programming and abstraction whereas others did not. All other

teachers shared they felt any student could learn abstraction. Teachers also shared

specific examples of students demonstrating abstraction.

Descriptions of how students understood abstraction varied. One teacher

explained, “Some kids think about it naturally; a word will represent something later.

Kids who look at something more concretely have a harder time.”

Most teachers ascribed to the idea that the ability to learn and demonstrate abstraction

was student-dependent not based on grade level. One teacher explained, “So, I think it is

a matter of more where they are intellectually than a specific grade.”

Another teacher explained, “I don’t want to say it’s an innate ability but I get these

students who are much better at reasoning and students who really struggle with that.”

110

Another teacher explained about students’ ability to learn abstraction, “And I think

students who are really strong with their logical step by step reasoning end up being

much better able to.”

 Thinking skills related to abstraction are taught in math in elementary school. A

teacher who taught elementary school noted, “In first grade they have to be able to

recognize different patterns and things. Even in Kinder [sic: kindergarten] they start

looking at patterns and doing pattern recognition.” She described learning sequence

through learning addition in first grade and learning abstraction via a process for

simplifying addition by learning multiplication in third grade. Another teacher agreed

students in elementary grades might be able to learn aspects of abstraction and explained,

“But I think there are parts and skills taught in lower level grades.”

A middle school teacher thought the concrete nature of elementary student

thinking might facilitate student knowledge of computer coding skills and remarked,

“They just want to make the duck walk…or in the case of the dance party they just

wanted to see their little you know three cats with cute pants dance instead of two cats or

whatever.” Other teachers noted that learning algebra, as previously mentioned in the

results, facilitated learning abstraction. Regarding the mastery of abstraction and grade

level, one teacher concluded, “I think them truly understanding what it is doesn’t come

until higher level grades.”

Teachers provided examples of students failing to demonstrate abstraction as well

as applying abstraction. In an introductory course, talking about a student’s inability to

create effective representations via naming a teacher explained in his discussion with one

111

student who protested naming a function correctly, “And I said, oh well forgive me. I

didn’t see “list picker 2” as the leading location button. Whereas, everyone else had

named it delete button or something like that.” A high school Java instructor shared an

example of students failing to apply abstraction,

And a lot of students set the values in the fields explicitly with each constructor

rather than calling other constructors from or rather them calling the constructor

from the square constructor and then calling the square constructor from the new

args [sic: arguments].

Other teachers mentioned that it was hard sometimes to figure out what questions to ask

students who didn’t understand, and even if the teacher did ask a question, sometimes

students still wouldn’t know how to answer.

 Describing how her students employed AI features in constructing chat bots as a

group, a teacher shared an example of successful abstraction, “…if it is interacting with

somebody it has some answers and if it sees the word mother, or brother, or sister or

whatever it is, it will then ask a question, ‘will you tell me about your family.’”

Another teacher shared how one student successfully applied abstraction,

They were just trying to organize their work better but what I think they

effectively did and in any large program you’re gonna have lots of files but what

they effectively did without me prompting them to was to sort of take this thing

and get it to work and then just push the files away into this file import that works

but not have to worry about what’s in the file.

Teachers hypothesized that abstraction is difficult for students because they

lack the experience, background knowledge, the inability to see patterns, and the inability

to organize information. Math teachers noted that unlike math where students had years

of practice, CS was almost always a completely new subject for students. Regarding

112

including real world experiences and activating background knowledge one teacher

explained,

I feel like the more hands on and the more sort of real you can make it with

manipulatives the better any teaching is. I feel like it’s just sort of good teaching

to give them as many physical models of these ideas as well as actual models.

Another teacher mentioned how the robotics curriculum she used included games

students knew, such as hot potato. However, teachers mentioned that it was difficult to

get students to solve problems with minimal direct instruction in their courses. Another

teacher shared, “Yeah, you have to understand the ideas in order to understand the

hierarchy of ideas.” A veteran 13-year CS teacher shared another possible reason that

students struggled with abstraction, “When you start with those basic patterns, one of the

biggest things that I have found is that kids struggle with pattern recognition, kind of like

they struggle with number sense in the quantity and place value.”

The teacher with the most experience in this study, over 25 years in education, shared

that educators used to focus on teaching the acquisition of knowledge. She said she

learned in school by copying outlines from teachers as they wrote on the board. She

replicated writing outlines to learn in college when she studied textbooks. She further

explained that students today probably learn by outlining and organizing information less

than in the past because education has changed,

You know the interesting thing is, I think the reason I got that is that when I was

taught way back when before Noah came over on the Ark… back then we didn't

have the Internet, so it was all about learning information. Today it's more about

finding information and analyzing it.

 A CTE teacher who was focused on helping his students get ready for

employment provided certification trainings for CompTIA encouraging students who had

113

more of an interest in hardware to focus on learning about information systems rather

than programming. He also shared that business analysts and systems analysts have to

know a great deal about all aspects of CS and especially abstraction to connect client

goals with their team’s design process. He shared that although not all students might be

interested or talented with computer programming, knowing some degree about computer

programming and abstraction would serve them as a future employee.

Research Question 2: How do teachers determine objectives and competencies

for teaching abstraction in computer coding?

Three teachers interviewed did consciously plan and determine objectives for

teaching abstraction in yearly curriculum, daily projects, and rubrics used in assessment.

Most of the teachers inadvertently or unconsciously addressed abstraction relying often

on their curriculum to address the topic. The three teachers who consciously planned to

include abstraction, the discrepant cases, were either required to teach abstraction to

prepare their students for the AP CSP test, or they had already learned about abstraction

in their college coursework and professional development. These three discrepant cases

underscore the variable of experience learning about abstraction both as a college student

and in teacher professional development. The following stories and quotes will illustrate

the variety of teacher experiences directly or indirectly determining course objectives and

competencies for abstraction in CS.

Curriculum

Teachers use curriculum and objectives to determine instructional activities and

assessments. Because the majority of discussions in the interviews that addressed

114

curriculum and objectives for abstraction were contextualized around instruction, the

following examples from teachers will also illustrate results for the instruction of

abstraction. Teacher participants in this study utilized online tutorial programs, such as

Code.org, AppInventor, Project Lead the Way, Nand2Tetris, and teacher created tutorials

to provide direct instruction and differentiate instruction. Middle school teachers relied

on Agent Sheets and Scratch focusing on game development, as well as robotics. High

school teachers used Snap and even Logo and TI basic calculator programming as drag

and drop or block-based coding curricular resources and HTML, Python, and Java as

text-based coding languages. Intersections between Math, Science, and CS also provided

opportunities to teach abstraction. Teachers discussed ways to make curriculum

engaging, accessible, and interesting as much as possible.

The idea of artificial intelligence, AI, was used to both describe teaching

abstraction and engage students. An AP CSA teacher used the idea of chat bots in a

lesson and explained how she engaged her students regarding features of cell phones that

are attuned to their voices, “So how many of you have Alexa at home and isn’t it kind of

creepy to know that something is listening to you all the time?”

And further,

Well I think it's fascinating because I'm wanting them to think beyond just

expecting, you know oh gosh somebody really smart did this. And so therefore all

this must be right. And my approach to that. Is more. Well let's think about where

this came from. Look at the people that you know created Watson. And then

there's this funny video that I just show a clip of. And it's two chat bots interacting

with each other. They said wow it's really quite humorous the way they respond

back and forth to each other and then they start talking about God and so one of

the chat bots says Do you believe in God. And the other chat bot says yes and the

other chat bot says Oh well then you're a Christian. And that chat bot responds

115

with. No, I'm not a Christian. I specifically chose that example because I just

wanted them thinking about morality and ethics.

Presumably, the teacher meant instructing about morality and ethics of chat bots and AI.

 Two teachers mentioned standards which guide the creating of course curriculum

and objectives. One teacher mentioned that he had more flexibility in his course

curriculum because he was not teaching in a state that had adopted Common Core

standards. Another middle school teacher shared implementing multiple standards

including the International Society for Technology in Education (ISTE), “So, our district

has priority standards and innovation standards as well as ISTE standards.”

Both the ISTE standards and the Computer Science Teachers Association (CSTA)

mention abstraction in their definition of computational thinking (CSTA, 2019; ISTE,

2019).

 The AP teachers in this study used Project Lead the Way, Stacey Armstrong’s A+

CSA, AppInventor, and self-developed curriculum for AP Computer Science Principles

(AP CSP) and AP Computer Science A (AP CSA). The AP CSP test requires an

abstraction task, so all of the AP CSP instructors described introductory abstraction

lessons in which the topic was introduced, practiced and then later revisited throughout

the course. AP CSA instructors agreed that abstraction was the nature of Java and object-

oriented programming. Even though the AP CSA instructors did not all use abstraction

specifically as a vocabulary term, they taught the skill of abstraction, required abstraction

in their coding assignments, and directly or indirectly assessed abstraction.

116

 Several teachers described game design using Agent Sheets, Scratch, Snap, or

AppInventor as a way to engage kids and teach them abstraction. One teacher mentioned

she included challenges encouraging abstraction skills,

I have them speed it up when it reaches a certain score or throw up

congratulations you won something like that and then from there it’s up to them to

sort of puzzle it out how to do it either independently or through pair

programming.

She also described how she taught students to make a procedural abstraction in the game

Frogger called “anticheat”,

So, the question is how do you what's the most elegant way to prevent the frog

from cheating. And the first solution the kids come up with is to say to write a

rule for every instance where the frog can cheat and there are like six of them or

seven of them. Right. And the idea is can we, can we get that down to one rule?

And eventually we'll talk it through. And a kid will figure it out. Here's the way to

do it. You put you put an agent underneath all of those and if you say if the frog is

somewhere above them the game resets with one rule.

 App development (for mobile phones or tablets) was an additional curriculum

option that both high school and one middle school teacher used. AppInventor and

Google Android Studio were used at the high school level and Swift was used at the

middle school level. One teacher used AppInventor as the primary curriculum for the AP

CSP class he taught.

 Middle school teachers offered instruction with a variety of robotics including

Lego, Sphero, Ozobots, and Edison robots. Both teachers were designated STEM

instructors and combined engineering, science, and math along with programming

instruction. Neither of these teachers had specific examples of teaching abstraction in

computer coding. One teacher explained that teaching robotics brings technology,

117

engineering, and math together, “So, in my mind that’s the most useful way to teach

abstraction is actually building something that they can say oh I imagined that.”

STEM teachers also used 3D printers and Tinker CAD to teach computer programming,

the design process and inadvertently abstraction. An advanced high school CS teacher

shared how he taught students to build circuits as a way to help them understand the

levels of abstraction in hardware and software,

For example, I have them build an adder circuit and have them build a half adder

and a full adder and then they use them both the half adder and the all full adder to

create a larger four bit and then an eight-bit adder.

See Figure 13 for a description of a full adder circuit used in the arithmetic logic unit

(ALU) within the central process unit of a computer.

Teachers also employed cross-curricular connections between Science and Math to

engage students and help them learn abstraction. A middle school Science teacher and

after-school STEM advisor, offered programming as a choice in each of her middle

Fig. 13 Full adder circuit.

118

school science modules. This teacher just learned to use Rasberry Pi’s and was excited to

offer a unit next year where her students will use the Rasberry Pi’s to build sensors and

measure biological and weather information. She explained several examples of how

students used computer coding, not specifically coding with abstraction, to demonstrate

their science knowledge,

One kid was working on a Scratch animation that shows an ocean scene where he

shows physical and chemical changes. It’s really cool. He drew an ocean scene

and then this creature comes out of the ocean and eats the plastic bottle that’s on

the beach and the plastic bottle shrinks and then it zooms into the stomach.

Because this teacher grades on student reflections and student understanding, she is more

concerned about students’ Science knowledge than working computer code. Referring to

models in computer programming, she explained,

Stuff that works is always important but at the same time like if I’m having for

instance in my astronomy unit I have them build models. It could be a working

model or it could not be a working model.

Science field trips and connections with community members who understand and

demonstrate computer coding are another way she has made connections with Science

and abstraction. She explained, “We have an astronomy club here and they support

STEM. We went on a trip and learned about the technology and coding behind these

amazing telescopes which they remotely run.” A physics teacher who also taught AP

CSA, explained that he used test tubes and test tube racks in an unplugged activity

(instructional activity not using computers) to demonstrate arrays, a possible way of

hiding data or demonstrating abstraction. Another Science and AP CSPrinciples teacher

connected Math and Science having students input body mass index variables for weight

and height in JavaScript notation.

119

 Seven out of the 12 teacher participants had taught Math or were currently

teaching Math. Four of the teachers in this study also had taught or were currently

teaching AP Calculus. Math was one curricular aspect of teaching abstraction that was

mentioned in most of the interviews.

One teacher described a success teaching abstraction with a student creating an

independent project in Snap to demonstrate an International Baccalaureate (IB) math

concept,

And I said well she's using block code. The syntax isn't a problem if she can

figure it out mathematically and logically she can do it. Like, it's all about the

problem solving. With block coding, it's not about the syntax. And she ended up

writing a program that graphed different types of functions from math and the

abstraction that she used in it was absolutely amazing. In fact, she had one of the

highest scores that had ever been given at the high school with an AI in math both

from that IB teacher and on the final score from IB.

One teacher used the idea of a square root on a calculator as a metaphor for abstraction,

“When you do math, that square root is going to give us the square root. We don’t know

how it does it. We just know that it is going to give us the square root.” Another teacher

asked her students to handwrite code line by line “kind of like you do when you teach

long division.” Several teachers used the logic and math problems on the Project Euler

website. One teacher explained she would have students write computer code to

demonstrate their solution to the Project Euler problems, “I make them do it handwritten.

Then I’ll let them code it and actually check to see if the answer in their program output

is the correct one in Project Euler.”

 Another math metaphor for abstraction came from a teacher who described how

rote knowledge of quadratic equations were an abstraction allowing students to complete

120

complex calculus problems,

So, when a student’s doing a calculus problem, they can actually think about the

larger context of that calculus problem and not worry about the smaller algebraic

steps in the mix even though those algebraic steps…they don’t have to put a lot of

mental energy toward them.

The math and CS teachers compared the similarities and challenges of teaching algebra

and functions in both math and CS. According to one teacher, many students struggle

with understanding the basic principle of representation for the value X in algebra,

If I had a dollar for every time a student asked me what X was, I would be a

millionaire. X is a holder. X is something that holds all numbers. More, X is

something that you operate on and place an operating number.

Because this teacher also knows that the terms function in math and function in CS mean

slightly different things, he uses teaching functions in math to introduce the idea of

naming functions as abstractions in CS. He shared how he explains this to his students

and extends the concept of functions from math to CS,

We're going to write lots and lots of functions so we're going to be super lazy and

call them just all of the function. Then in another context you will know instead of

using C of T, I might use cost and time as the inputs and so show them how the

functions are not. Not necessarily show them but sort of route to the way that

functions in mathematics are related to the things that they'll learn, the structure

they’ll learn in programming, later on. So, I think that's one of the ways that with

an eighth-grade class I really build the idea of abstraction and functions into math

as a foreshadow for what I'm going to do computer science.

 Four teachers mentioned they found that students who already knew algebra could

learn abstraction in CS fairly easily. Another teacher noted that in some ways math was

easier to teach but harder to see progress in than CS and abstraction because, “Math does

take a long time to acquire and lots and lots of necessary skills that they don’t necessarily

see the immediate results.” Another teacher remarked that students were more engaged in

121

CS classes because the curriculum was new and students chose his CS courses as an

elective. He found that he could challenge the salutatorian of his school who had over ten

years of Math, Science, English, and Social Studies, as opposed to over one year of CS

which she found challenging.

 Teachers mentioned helping students learn abstraction employing geometry. One

teacher had students build squares in Java, then triangles, then rectangles, and then put all

the shapes together in a program to build a house. Other teachers used squares and

polygons to demonstrate recursion and procedural abstraction. Additional elementary

math and CS cross-curricular connections were noted, “And when I taught third grade

mathematics and I was teaching multiplication we actually use the term array with the

kids and it’s a one by five.”

 One teacher who did not teach an AP CS class at his school because it was a

smaller school with many IB courses, was excited about a free online course designed for

introductory college CS called Nand2Tetris (free and online) that simulated computer

hardware and software design essentially teaching all levels of abstraction over the course

of a year. He explained,

You build up the hardware of a computer, and so you start with NAND gates and

you build all the elementary logic gates so and or XOR and then you use those to

build ALU and memory and then you build a CPU and then you basically build

from all of those pieces a general-purpose computer. It's all simulated online, well

in a hardware simulator. You download the hardware simulator on your computer

and then you can write little short lines of code that basically connect these

smaller chips together.

The second semester of the Nand2Tetris course takes students through learning to write

assembly code, binary code, and on to programming language.

122

 Teachers mentioned additional commercial, course, and community

curricular resources. Two AP teachers mentioned regularly contacting mentor AP

teachers. Facebook groups and local CSTA chapters were also mentioned as resources.

Teachers accessed materials and suggestions on Piazza, Beauty and Joy of Computing,

and the College Board AP listserv. Online resources such as W3 schools, CyberPatriots,

and the NASA Hunch Program were recommended as teaching sources for abstraction.

Stacey Armstrong’s A+ AP CSA curriculum was recommended along with certification

courses, such as CompTIA.

Research Question 3 – How do teachers assess student abstraction skills in

computer coding?

Teachers approaches were mixed regarding assessing abstraction using formative

and summative means. Many teachers placed emphasis on their classroom conversations

with students to determine student knowledge of abstraction (as well as to offer

instruction through dialogue). Teachers shared employing metacognitive tasks to assess

abstraction knowledge. Teachers interviewed in this study used several means to

determine student abstraction knowledge and skill including formative, summative, and

metacognitive assessments. There were no distinct discrepant cases.

Assessment

Assessment is the method teachers use to identify student ability and the success

of their instructional efforts. The previously mentioned teacher observations of student

ability arose from formative assessments, or observations, discussions, and informal

student assessment. As evidenced by the previous results, teachers relied on formative

123

assessment to understand student ability and the effect their instruction had on student

learning. Only three teachers mentioned providing tests or multiple-choice quizzes in the

classroom, formal summative assessments, aside from the formal assessment of

abstraction on the AP CSP test. Teachers did mention that abstraction was included,

although not always called abstraction, on their project rubrics.

Regarding the assessment of abstraction, one teacher explained, “Most of my tests and

quizzes are AP type questions from the College Board. I think it is a natural part of any

sort of programming assignment.” Another teacher who graded 20% on participation and

80% on projects shared how abstraction was included in her grading, “We’ll definitely

talk about it, and so it’s a part of their grade on tests or projects.” Teachers included the

topics of “managing complexity” and “elegant simple code” on their project rubrics. One

teacher said she could give students feedback on abstraction in their coding but felt less

confident creating assessments and relied on AP practice questions. Another teacher

shared, “AP CSP directly assesses abstraction. Students have to know what it is and how

to demonstrate it. Science assesses abstraction with modeling through chemistry labs that

show formulas for say gasses that are applied in a variety of combinations.”

 Assessment was the most difficult research question about which to get follow-up

information or examples from teachers. Another teacher shared that the online tutorial

course he was using required students to complete one module before moving on, which

was a form of summative assessment. He utilized questions first and later discussions to

aid students who were unable to complete modules. Regarding the challenge of teaching

abstraction, one teacher who started teaching through an alternative route and did not

124

have formal university courses in education shared, “I think it is an extremely difficult

thing to assess because in my current view of abstraction, it’s much more of a thought

process.”

Research Question Context – Teacher Experience

 The overarching theme of experience was shared as teachers described their

pathways to becoming CS teachers, degrees of self-efficacy teaching abstraction, their

lack of specific courses or professional development regarding abstraction, and their

requests for future professional development. Only two of the teachers in this study had

taught CS for more than 5 years. The majority of teachers with one to five years of

experience were teaching a combination of new courses and courses that they had been

teaching. Regarding the demanding nature of teaching technology and simultaneously

learning new course material, one middle school instructional technology teacher

remarked she was confident that teaching abstraction would get easier,

Figure 14. Teacher experience and parent themes

125

As I'm as I'm learning and figuring all this out it will be more comfortable to be

able to do that. I also believe though in a job like this and with technology it's

constant. You're learning, you're changing, you’re trying to figure it out, so trying

to make that or using that is just something that will be ongoing.

The relationship between the teacher experience, parent themes, and the student

experience is illustrated in Figure 14.

 Learning with students as opposed to be the expert was another common

experience teachers shared. One teacher explained,

I have had to come to terms with no longer being the expert in the room. And that

was a hard shift after. You know 20 plus years of being an English teacher and

being the know it all. And then all of a sudden kids ask me question I'll point to

somebody across the room I said you know that kid over there he's really good at

those. Let's get him over here for you. So, we're all learning together.

 Regarding self-efficacy, a teacher explained feeling challenged but enjoying the

experience of teaching a new content area that she did not know as well as she did math,

her main teaching area of expertise, “It’s been a challenge but it’s those moments I have

so many moments where I stop and just observe and think, this is the most amazing thing

that I’m doing.” Another teacher shared that teaching abstraction was difficult initially,

“First dealing with it was kind of uncomfortable before I really felt confident.” Another

teacher shared that he felt confident teaching most students but not as much with students

who struggled with abstraction. He explained, “I feel fairly comfortable with it. I guess I

have sort of a one-dimensional way of teaching. I don’t feel I have a good way to teach it

to my kids who struggle.” A physics teacher shared feeling confident about intuitively

teaching abstraction in the moment because he understood the concept of abstraction

better than directly teaching the computer coding skills of abstraction.

126

 Teachers’ pathways and educational background may be associated to their self-

efficacy teaching abstraction. Teachers H and K decided to teach CS in college and

obtained math and physics teaching licenses due to the lack of CS teaching licenses in

their states. Teachers C and J worked in IT before becoming teachers. Teachers H, K, C,

and J spoke easily about abstraction and described teaching abstraction more confidently

than the other participants. Four other teachers (A, F, G, and I), science and math

teachers, took one programming course in college or had a year or less of experience in

the software industry. Teachers A, F, G, and I struggled to explain abstraction succinctly

and described struggling with teaching students who didn’t understand abstraction.

Teacher E had a master’s degree in Instructional Technology, and teacher I is working on

a master’s degree in CS. Teachers E and I having had master’s level courses in CS or

related topics easily discussed abstraction and teaching abstraction, even when the term

was somewhat unfamiliar.

 Teachers’ described abstraction through the lens of their initial content area. A

former English teacher shared that teaching writing was similar to teaching abstraction in

CS. She was able to use a lot of her strategies as a writing teacher in terms of classroom

management, curriculum development, assessment, and engaging students to transfer into

CS education. The former English teacher explained,

We have one lesson where I just have the kids just gather around and say here's a

problem. We have to solve it together. And we keep talking it through and I'd say

OK you've got it down to three rules. Can we get it down to 1 - 1 line of code?

And in fact, it's interesting because I did the same thing as a writing teacher. And

it was one of my favorite things to do was to teach kids how to cut the fat out of

their writing.

127

A math teacher shared how teaching students concepts in math was similar to teaching

the concept of abstraction in CS. He postulated that the concept assisted in learning future

skills. The concept of abstraction even became an abstraction in the learning process

making learning easier and more efficient. Regarding teaching algebra and using the

concept as a learning abstraction to facilitate learning math skills, he explained,

“Inevitably the students then forget about or don't have to pay attention to that conceptual

understanding every time that they say factor a quadratic.”

 All teachers shared that abstraction was not addressed, or addressed very little if at

all, in the professional development trainings they attended related to CS. The teachers

who attended AP CSP professional development said that abstraction was covered, but

they still didn’t have a solid grasp on what abstraction was. One teacher shared that he

understood the entire curriculum scope and sequence of math from K-20. He explained,

“Sometimes my students asked me what’s after AP Calculus and I said well more

calculus.” However, he couldn’t say what the abstraction curriculum looked like before

his AP CSP class nor afterwards in college.

 Several teachers mentioned support from their district, their principals, their

communities, and students’ parents was helpful in learning effective CS teaching skills.

One teacher explained, “A dad of a student who came in was a programmer and he would

just sit in the class and help me like just help the kids troubleshoot and problem solve.”

Another teacher shared how financial support allowed her to expand her curriculum, “So

now a couple of years later just from some private donors we have a class that uses Lego

robotics.” A teacher explained how supportive principals influenced her effectiveness,

128

“So now I’m enjoying kind of having free rein to grow the program at my school and I

have a lot of support from my administration.”

Another teacher offered that support from both administrators and teachers in other

content areas was helpful, “So, I’m very lucky that both my admin team and my math

department chair supported me in this and we’ve kind of been adding one class per year

each of the last three years.” Two teachers shared how district level support from school

boards was crucial for their courses. One teacher shared that she regularly attended

school board meetings and was consulted on districtwide IT and CS curriculum

implementation. Another teacher explained, “It did take my school board a little bit to get

on board.” However, then she was able to take a lead role in training other teachers to

lead STEM after school programs in her district.

 Teachers’ suggestions for professional development ranged from very broad

general introductions on the topic to more collegial sharing teacher to teacher. One

teacher explained that any type of course on abstraction would be helpful, “I think just

understanding what it is to because I think a lot of teachers struggle with what it is.”

Another teacher observed, “I think there is a lot of room for professional learning.”

Another teacher suggested, “Just offering it in general with any sort of programming. I

think you know giving them the opportunity to learn you know concepts that aren’t

surface level and aligning a little bit of resources behind that.”

Another teacher requested, “Some good awesome lesson plans for that because it’s

something I don’t feel super confident in.” More specifically, teachers requested coding

and abstraction professional development relevant to their courses. One teacher

129

suggested, “I think it would be important to have some professional development around

abstraction/coding for STEM teachers.”

 Several teachers shared that a training where teachers were taught to experience

the syntax related to abstraction in several programming languages, from drag and drop

languages like Scratch to AP CSA languages like Java, would be helpful, especially

focusing on data structures, arrays, encapsulation, and object-oriented programming.

Another teacher suggested providing a wide array of learning activities because he liked

trying learning experiences that were completely different. A STEM teacher suggested

offering professional development for abstraction using a three-dimensional lab approach

focusing on engineering design and rubrics. All of the teachers were interested in some

type of professional development related to abstraction.

Summary

In conclusion, the 12 teachers interviewed in this study shared their experience of

teaching abstraction from primarily high school and some middle school CS courses.

Information from the one elementary teacher, the outlier case, was generally excluded

from the results due to the lack of information from other elementary teachers. I

employed rigorous repetition and careful analysis of all themes and data to ensure

dependability, confirmability and transferability.

In relation to RQ1 (What types of instruction do K-12 teachers find most effective

for teaching abstraction in computer coding?), teachers shared that a variety of dialogue

techniques, collaborative learning techniques, direct instruction, and contextualized

instruction including project-based learning were helpful. Teachers also mentioned that

130

utilizing preexisting curriculum such as AppInventor, Nand2Tetris, and Project Lead the

Way, or even self-made tutorials, provided teachers with a foundation from which they

could offer advanced instruction and guidance related to applying abstraction. Teachers

relied on AP test criteria and preexisting understanding of teaching students to use

elegant, simple, or efficient code in relation to RQ2 (How do teachers determine

objectives and competencies for teaching abstraction in computer coding?). Teachers

utilized primarily formative assessment through dialogue to assess abstraction (RQ3 –

How do teachers assess student abstraction skills in computer coding?). Although a few

teachers did employ summative assessments in the form of project rubrics, quizzes, and

tests. Some teachers chose to put more emphasis on assessing abstraction via student self-

reflections versus abstraction in computer coding.

 In relation to the general research question guiding this study (How do teachers

decide what effective instruction for teaching abstraction for computer coding is?), the

overarching theme was that the more experience teachers had with their course material,

with programming languages, with teaching CS, with CS courses, the more teachers

found ways to explain abstraction, instruct abstraction, and assess abstraction.

131

Chapter 5: Discussion, Conclusions, and Recommendations

The purpose of this descriptive qualitative inquiry is to illuminate the teaching

experience regarding abstraction in K-12 CS and examine effective ways to teach

abstraction. This study also provides variables, such as professional development,

experience with course content, and previous teaching content areas for future

quantitative research. Insights comparing how the results confirm, disconfirm, or extend

the theoretical framework and literature review are offered in this section to help

educators better understand the effective instruction of abstraction. Finally, avenues of

future inquiry indicated from this study are offered. In general, the results of this study

show that CS teachers do not have a common definition of abstraction. Abstraction in CS

is a multifaceted concept, attributed to both hardware and software, and used as a noun, a

verb, and an adjective. Teachers generally understood and taught the concept of

abstraction but were not as confident teaching all students abstraction and assessing

abstraction. Abstraction is a topic that is a ubiquitous concept requiring knowledge of

many aspects of CS. As teachers become more versed in abstraction, they will become

better CS instructors.

Interpretation of Findings

Defining Abstraction

As reported in Chapter 4, the majority of teachers interviewed in this study did

not have a succinct definition of abstraction. Four out of five AP CSA (the most

advanced level of AP CS taught in high school) teachers interviewed shared that they had

a sense of abstraction but did not actively teach it or assess abstraction. Two of these AP

132

CSA teachers had taught the course for four or more years. It is understandable that an

advanced topic such as abstraction may take a while to master for teachers new to a

content area, such as teaching Java (a complex programming language), the programming

language taught in AP CSA, due to the demanding nature of both CS and Java. Other

teachers used abstraction as a noun, verb, and adjective which indicates teachers had an

understanding of the multi-faceted nature of abstraction. The majority of teachers

requested specific professional development on the topic of abstraction with direct

applications and demonstrations in a variety of programming languages. Perhaps, the

conceptual framework of abstraction is too large and should be broken down into smaller

more meaningful concepts and skills for successful integration into K-12 CS education.

 Comparison with Theoretical Framework

 Overall, the results of this study confirmed the theories and frameworks

incorporated into the broad theoretical framework detailed in Chapter 2. The only

theories or frameworks that teachers mentioned by name were computational thinking

and Piaget by three out of 12 teachers interviewed. One teacher had specific professional

development related to the instruction of computational thinking, of which abstraction is

designated as a foundational principle (Wing, 2008, p. 3718). Therefore, according to the

results, the teachers interviewed in this study did not share consciously incorporating the

theories and frameworks described in Chapter 2. The results from teachers do indicate

some theories and frameworks might help teachers understand the instruction of

abstraction.

133

Philosophy, Abstraction, and the Teacher Experience

Ontological and epistemological interpretations of the relationship between

humans, computers, and abstraction seem interestingly similar to the experience teachers

had instructing abstraction as a skill and a concept. The majority of teachers related that

students who learned skills first were later able to demonstrate some foundational

algorithmic, syntactic, and procedural programming skills demonstrating an

understanding of abstraction as a concept. The implication for the instruction of

abstraction from Fichte (as cited in Whistler, 2016) was that teachers should employ

metacognition in order to develop deduction and induction thinking skills. It appears that

helping students build background knowledge and basic skills needed to produce

abstraction facilitates students activating background knowledge through metacognition

resulting in learning abstraction. If students lack essential background knowledge, they

have no ontological markers to use for analysis, evaluation, application, and creative

problem-solving. As teachers in this study noted, when they helped students build

background knowledge, students were then able to epistemologically apply their

background knowledge to demonstrate abstraction.

Student metacognition provided teachers with formative and summative

assessment information regarding ontological and epistemological background

knowledge. Teachers shared several ways they encouraged student metacognition

through dialogue and written self-reflection used as assessments, but teachers didn’t

focus on developing student awareness of expressing thoughts by programming

computers. It appears that Gobbo & Benini’s (2012) and Ben-Ari’s (2001) input on

134

extending human ontological identity through computing was not directly acknowledged

by teachers at all. Teachers did talk about enjoying watching students share joy in

programming successfully, implying that student self-efficacy more than the student

intrapersonal awareness of their relationship with a computer as an inforg may be more

important to teachers in teaching abstraction. Student motivation and self-efficacy may be

more important for learning abstraction than philosophical frameworks inviting

ontological and epistemological reflection.

 Ultimately, applying abstraction elegantly in computer coding requires learning

abstraction as a concept and a skill. The concept of abstraction could be equated with

ontologically understanding the computational solution, the exact nature of the solution.

The skill of abstraction could be equated with epistemologically understanding the

computational solution, how the solution could be executed. Declarative knowledge is

also aligned with ontology (Marzano & Kendall, 2007). Whereas, procedural knowledge

is more aligned with epistemology. One teacher mentioned teaching data abstractions and

procedural abstractions which are also respectively similar to ontological/declarative

knowledge and epistemological/procedural knowledge.

As computers help humans to solve problems and technology becomes more

complex with layers of abstraction, teachers and students may benefit from thinking

about teaching and assessing abstraction focusing on both the skills and the concept of

abstraction, building both declarative and procedural knowledge. Furthermore, if teachers

want to focus on teaching the concept of abstraction, they might focus on contextual

instruction because contextual instruction can help students build and activate

135

background knowledge making connections that facilitate the understanding of the

concept of abstraction. Teachers might focus more on direct instruction if they want to

help students understand the skill of abstraction. With either the concept or the skill of

abstraction, both direct and contextual experience were reported to be helpful from

teachers participating in this study. Possibly, alternating between concept and skill as

several teachers reported, returning to the concept of abstraction periodically as

programming skills are developed may be the most effective way to help students learn

abstraction.

 Inviting teachers to understand, discuss, and consider creating lessons around

potentiation, the inforg, epistemology, and ontology may actually be more helpful for

teachers than students allowing them to gain an understanding of abstraction from

multiple vantage points. All of the teachers in this study shared that they have little to no

experience discussing abstraction in professional development or even in college

computer courses. One teacher noted it is very different to be a CS student taking college

courses than a teacher of CS.

Psychology, abstraction, and the teacher experience

The majority of teachers concurred with Piaget (1950) in his assertion that the

development of abstraction thinking and imagining a problem and a solution occurs

around age 11. A few teachers suggested that aspects of abstraction could be taught to

elementary students. The lack of elementary teachers in this study precludes additional

implications related to the ability of elementary abstraction skills. All teachers agreed on

the point that abstraction ability was student-dependent, not related to grade-level.

136

Teachers speculated that math exposure and personal interest might help some students

exhibit better abstraction skills than others. In any case, it seems that teachers would

benefit from recognizing a range of abstraction skills that help teachers differentiate

instruction.

Vygotsky’s (1978) zone of proximal development theory provides a basis for

teaching students abstraction skills in computer programming in elementary school. As

with semantic language acquisition, exposing students to a multitude of algorithms and

elegant, simple, functional code, may provide students with essential background

knowledge required to construct efficient effective programs later on in middle and high

school (Chomsky, 2006; Vygotsky, 1986). Teaching students metacognitive skills,

induction, deduction, and logical thinking in the elementary grades might also help

teachers foster thinking skills necessary for developing proficient abstraction skills in

computer coding in middle and high school. The teachers in this study were not sure

exactly which thinking skills might be engaged in elementary, middle, and high school –

more reason to include a variety of psychological learning theories in professional

development for teaching abstraction in CS.

The majority of teachers stated that they utilized subjective formative assessments

to determine the extent of student abstraction abilities. According to the zone of proximal

development, students would understand abstraction better than they might be able to

express it verbally or apply abstraction in computer coding. It may be most effective to

assess abstraction utilizing primarily formative assessments and secondarily offer

summative assessments in quizzes, on tests, and in projects. Providing teachers with

137

experiences in professional development related to the zone of proximal learning and

speech facilitating thought applied to the instruction of abstraction may help teachers

develop more consciously focused instructional strategies.

 All of the teachers that were interviewed employed collaborative learning which

aligns with Vygotsky’s (1986) theory that speech facilitates the development of thought.

POGIL, or process-oriented guided learning, was not mentioned as a collaborative

learning strategy but pair programming and group projects were cited by teachers in this

study. Collaborative learning provides students with opportunities to ask questions,

verbalize answers, and develop critical thinking and problem-solving skills. Teachers in

this study did not mention intentionally applying collaborative learning as an

instructional technique for teaching abstraction. However, collaborative learning that

focusses on activities and questions and assessments designed to help students learn

abstraction, may provide an excellent environment for teaching and differentiating

instruction for abstraction.

Constructionism, computational thinking, and teaching abstraction

Teachers interviewed shared that collaborative learning environments with

aspects of constructionism appear to support learning computational thinking and

abstraction. Collaborative learning is a necessary environment in constructionism

proposed by Papert (1980) as an optimal learning framework for CS education. Another

element of constructionism that teachers in this study utilized is student-led inquiry. One

teacher noted that the real learning occurs when students ask questions about their work

in class. Several other teachers shared how they used student conversations to teach

138

abstraction, either when students made suggestions demonstrating their understanding of

abstraction or asked questions requiring teachers to offer direct instruction on abstraction.

Pure constructionist learning necessitates an open-lab for exploration. No teacher offered

that an open-lab was a helpful or useful learning environment for teaching abstraction.

However, many teachers shared how students in their courses had a great deal of

independent time to explore, learn, develop, and complete projects. Aspects of

constructionist learning, such as collaboration and student-led inquiry, appear to be useful

in teaching abstraction, but an open-lab learning environment was not employed by any

of the teachers in this study.

 Teachers did not equate computational thinking and abstraction. Only one of the

teachers who had taken a course in computational thinking shared a how he incorporated

CT as an educational objective in his CS courses. Several other teachers explained that

creating a computational solution was the goal of their STEM or CS courses but did not

mention ways they aligned this educational objective with instruction and assessments.

The conceptual framework of computational thinking from Wing (2006) and Brennan

and Resnick (2012) may be useful for helping teachers identify broad objectives for

courses but do not appear to be useful in helping teachers identify learning outcomes

related to abstraction for lesson plans and corresponding assessments. Possibly, teachers

are overwhelmed with teaching the highly complex new content area of CS and

incorporating a broad framework such as computational thinking might be too much.

New CS teachers related they relied on prescribed curriculum and were learning the

content along with their students. Teachers with little or no content knowledge who rely

139

on specific objectives and outcomes may not have enough content knowledge to

effectively develop the curriculum needed to apply a conceptual framework such as

computational thinking. Abstraction, a subskill of computational thinking, is also very

complex. The results of this study indicate that teachers need more clarification

understanding computational thinking, the relationship between computational thinking

and abstraction, as well as related guidance creating objectives, curriculum, and

assessments. Possibly, teachers similarly need detailed objectives and outcomes by grade

level to effectively teach abstraction.

Levels of abstraction, programming languages, and the teaching experience

Two teachers mentioned teaching levels of abstraction, and one other teacher used

the word architecture to define levels of abstraction. However, the majority of teachers

were unaware of levels of abstraction such as the PKG hierarchy (Armoni, 2013). The

PKG hierarchy is a conceptual framework for understanding some of the multi-faceted

aspects of abstraction. Parallels can be found comparing the PKG hierarchy with the

programming languages teachers described utilizing and the metaphors for abstraction

that teachers shared (Figure 15). Teachers shared how they utilized unplugged activities,

dialogue, and discussions about what the end-user needs which relate to the problem level

of the PKG hierarchy. The focus at the problem level of the PKG hierarchy is on the

human experience of the computational solution. I equated unplugged activities at this

level because of the human to human element of problem-solving. At the object level of

the PKG hierarchy, the computational artifact, both hardware and software, is a grouped

and experienced as a thing provides a function. At the object level, the graphic user

140

interface (GUI), or what is seen on the computer screen is the level of abstraction that

equates with block-based coding and robotics. The metaphors teachers shared of driving

a car or solely liberal arts versus solely technical college educations, or even

understanding how football is played but not understanding app development, relate to

the object level where people experience the efficiency of the computational artifact.

The program level of the PKG hierarchy relates to software and the variety of

line-based languages, such as Java or Python that teachers reported using in the

classroom. The metaphors teachers discussed using for instructing abstraction relating to

the program level were two dimensional, the abstract class in Java, and data and

procedural abstractions.

Figure 15. Relationship between PKG hierarchy of abstraction with instructional

programming languages and conceptual metaphors

Different types of abstraction in computer coding like data and procedural abstractions,

could also be seen as a skill, but because these were mentioned conceptually by teachers

141

as subsets of abstraction I have related them as metaphors at the PKG hierarchy program

level. The execution level of the PKG hierarchy relates to the instruction of circuits and

binary code, the underpinning of modern computational devices. Three-dimensional

instruction using drones, apps, and Microbits or Rasberry Pi’s (small hand-held

functional computing devices) are metaphorical applications of the execution level of the

PKG hierarchy. It might aid teachers to understand connections between levels of

abstraction, hardware, software, human needs, computer languages, and instructional

explanations and applications. If teachers learned about conceptual frameworks related to

abstraction, such as the PKG hierarchy, they might be able to help students better

navigate and develop abstraction skills.

 Most teachers with less experience programming and teaching abstraction were

confused if algorithmic representations, such as variables, recursion, and classes were

abstractions (illustrated in Figure 16). The program level of the PKG hierarchy

undoubtedly could include many types of algorithmic abstractions in the universe of

programming languages. Teachers of all grade levels would benefit with expert guidance

from CS scholars about the exact relationship of representation and abstraction.

Critical thinking, abstraction, and the teacher experience

 No teachers interviewed discussed addressing specific thinking skills such as

deduction or induction. Several teachers shared the importance of teaching

generalization, pattern recognition, and logical thinking in teaching abstraction.

142

Figure 16. Algorithmic representations resulting in an abstract program

Thus, results from this study confirm the importance of teaching some aspects of critical

thinking to teach abstraction, namely pattern recognition (analysis), and generalization

(synthesis), and logical thinking (also possibly a combination of decomposition,

deduction, and induction). Marzano & Kendall (2007) described abstraction as the

process of retroduction requiring both induction and deduction. Perhaps it would be

useful for teachers to experience, discuss, then apply the critical thinking skills of

deduction and induction in relation to the other thinking skills like pattern recognition,

generalization, and logical thinking, in order to understand the array of thinking skills

needed for abstraction in computer coding.

 Results from teacher interviews do not confirm the multiple pathways to learning

CS described in the taxonomy proposed by Fuller et al. (2007) The taxonomy for learning

CS shows how through a variety of thinking pathways involving combinations of

producing and interpreting some students learn CS more conceptually and theoretically;

whereas, other students may learn by experimenting and figuring out code on their own.

Abstract program

Class

Recursion

Variable

143

None of the teachers shared any awareness of students learning abstraction via multiple

pathways. Several teachers did mention students who seemed as if they were “savants”

and picked up abstraction “on their own” with little teacher guidance indicating these

students were experimenting and figuring out code and abstraction on their own. It may

assist teachers in teaching abstraction to understand that students, as Fuller et al. (2007)

contend, have multiple pathways for learning CS. Except for one teacher, all interviewed

expressed the belief that every student could learn abstraction. Many teachers also

described feeling frustrated and unsure how to help students who were struggling to learn

abstraction. Possibly, if teachers began to monitor a variety of student preferences and

pathways for learning abstraction, it might be easier for teachers guide students who

struggle.

Comparison with Literature

The results of this study both confirm and disconfirm a variety of topics including

instruction via tangible software, universal design for learning, game-based instruction,

utilizing microworlds, STEM instruction, scaffolding, collaborative learning, using

rubrics and portfolios, and the ability of elementary students to demonstrate

computational thinking. It is important to note that due to the lack of specific research

regarding abstraction, the majority of research evaluated in the literature review analyzed

studies that investigated computational thinking because abstraction is deemed a subskill

of computational thinking (Wing, 2008). Aspects of previous educational research related

to abstraction could help teachers gain insight into teaching struggling students and

abstraction in general.

144

Teachers unequivocally recommended using manipulatives (if they had used them

before in the classroom), such as Microbits and Rasberry Pi’s to teach abstraction.

Tangible software has been attributed to elementary students learning computational

thinking (Bers, 2010; Kazakoff & Bers, 2012; Wang,Wang & Liu,2014; Zhong et al.,

2016). Most teachers interviewed mentioned that engaging multiple intelligences in the

learning process helped students. Perhaps if more teachers understand how helping

students understand the relationship between hardware and software, teachers will be able

teach students about levels of abstraction. Teaching how hardware works may also help

students to be able to create computational solutions that operate efficiently and

effectively. Teaching students about hardware may help students understand and apply

abstraction in computer coding.

Universal design for learning and scaffolding, especially utilizing pseudo code as

an instructional technique, have been recommended as instructional techniques for

increasing computational thinking (Israel, et al., 2015; Shane & Sherman, 2014). The

majority of teachers participating in this study explained that they used scaffolding and

aspects of universal design for learning including videos, tutorials, and pseudo code.

Additional training specifically focusing on examples applying utilizing universal design

for learning and scaffolding with abstraction in several grade levels might assist teachers

in providing more effective instruction.

Several teachers interviewed in this study shared how they included games and

game-based programming into beginning and even advanced CS classes. Game-based

curriculum has shown promise in stimulating computational thinking (Carbonaro et al.,

145

2010; Lee et al., 2014). Teachers described using games and gaming as a way to

contextualize skills needed to express abstraction in computer coding. Students activate

background knowledge when programming games they know, such as Connect Four or

hangman. Games also have objects and rules which make them helpful for teaching

object-oriented programming, data abstractions, and procedural abstractions.

None of the teachers in this study mentioned utilizing microworlds, such as Unity

or Second Life, to teach computer coding or abstraction. Immersion into microworlds has

been cited as a possible way to help students generate computational thinking (Jenkins,

2015; Reuker et al., 2013). Teachers might be interested in seeing and exploring lesson

plans focused on abstraction situated in microworlds. The students at “the bottom of the

pack”, as one teacher described, who struggle to understand abstraction might learn the

concept and skills in an imaginary microworld.

STEM curricula was used by two of the middle school teachers as a way to

include CS in the design process. STEM and robotics instruction have been used to

engage middle school girls in engineering and improve creativity and computational

thinking (Cooper & Haverlo, 2015). The interdisciplinary nature of STEM instruction

naturally accommodate project-based learning, contextualized instruction which helps

students activate and build background knowledge. Teaching the design process in STEM

courses helps students practice logical thinking, problem decomposition, deduction, and

induction – all useful thinking skills for learning abstraction. STEM curricula or modules

could be helpful in teaching and learning abstraction, especially in the elementary and

middle school grades.

146

Teachers interviewed in this study concurred with theories implicated by

Vygotsky (1986), Papert (1980) that collaborative learning is helpful in teaching

abstraction. Elementary, middle school, high school, and college students showed

improved computational thinking skills when instructors used collaborative learning

(Harlow & Leak,2014; Huang et al., 2016; Hu et al., 2016; Porter et al., 2013). Teachers

mentioned using collaborative learning techniques such as paired programming with one

student designated as a navigator and the other student designated as a driver. Teachers

also shared using small groups and agile project management techniques to help students

learn the array of tasks needed to create computational solutions. More examples of

collaborative learning activities addressing abstraction for a variety of grade levels could

assist teachers in providing more thoughtful instruction for abstraction in CS.

Although the majority of interview data from this study focused on the instruction

of abstraction, teachers had less information to share about how they assessed abstraction.

Rubrics and portfolios have been used to assess computational thinking (Sanford &

Naidu, 2016; Zhong et al., 2016). Although teachers interviewed in this study did not

have specific rubrics for abstraction in computer coding or in projects, several shared

they did require efficient or elegant code in their rubrics. None of the teachers used

portfolios to grade students. Several teachers used sample quizzes and AP test problems

that addressed abstraction. All the teachers mentioned interest in viewing or learning

about ways to assess abstraction.

A variety of research regarding elementary students’ ability to learn conceptual

and procedural knowledge via nonformal contextual interactions suggests that elementary

147

students can learn abstraction in CS (Braithwaite et al., 2016; Rittle-Johnson &

Schneider, 2014; Szucs et al., 2014). A few teachers interviewed in this study speculated

that elementary students could learn some aspects of abstraction. Unfortunately, the one

elementary teacher in this study was not very familiar with abstraction and could not

offer much input about elementary students’ abstraction skills. Teaching abstraction in

elementary CS is an entire topic that could use more research.

Limitations of the Study

This study was limited by time, the number of participants, the predominance of

secondary teachers, and the lack of student artifacts. Because abstraction is an advanced

skill that several teachers mentioned saving to teach until the second half of the school

year, I may have been able to recruit more participants who were actively teaching

abstraction if I had recruited in the spring rather than the fall. Teachers were interviewed

twice in one month. If teachers were interviewed four times, quarterly, or even monthly

over the course of an entire school year, the data might have been more representative

and more thorough. Twelve participants were recruited, the majority being high school

teachers. More middle school and elementary teacher participants might yield more

complex results. Finally, as stated in Chapter 4, it was taking too much time to get the

district-level approval needed to acquire deidentified student artifacts. Examination of

teacher assessment data and student computer coding artifacts would inform the

assessment of abstraction. However, the lack of student deidentified data (only from four

teachers) limited a deeper examination of the assessment of abstraction.

148

Recommendations for Future Research

This study solely focused on the teaching aspect, the input, of the educational

process. Additional studies about student the student experience learning abstraction in

CS, grade level abstraction abilities, and student curricular interests are needed to more

fully understand the output, or the learning aspect of the educational process. Additional

research investigating effective instructional approaches to teaching abstraction in the

elementary grades would inform an aligned and accurate curricular progression of

abstraction skills. More investigation into grade-level appropriate abstraction skills and

concepts would aide teachers in creating objectives and outcomes. Research that tests

refined abstraction rubrics and assessments would help teachers with needed resources. It

would also be interesting to offer a survey to a larger teacher population and inquire

about the variety of thinking skills (pattern recognition, decomposition, generalization,

induction, deduction, and logical thinking) and abstraction. Potential variables for future

quantitative study of the instruction of abstraction include programming languages, the

relationship between hardware and software, concepts, skills, direct instruction,

contextual instruction, teaching experience, student math experience, and STEM

curriculum.

A more thorough investigation of a succinct definition of abstraction that K-12

teachers can understand and apply in the classroom would be helpful. The Nand2Tetris

course seemed to provide a low-cost simulation for teaching levels of abstraction, which

might warrant future investigation. It would be interesting to see the effect of experience

applying abstraction for teachers with self-efficacy teaching abstraction. Curriculum to

149

teach abstraction including graphic organizers and scaffolded lesson plans would help

teachers of all grade levels. Teaching cybersecurity and levels of abstraction might

provide a context for learning abstraction that would be beneficial. Finally, developing

and researching project-based lesson plans or modules supporting AP curricula that

helped students to learn abstraction would also be helpful.

Implications for Computer Science Instruction

Positive Social Change

In the four years that I have been working on this dissertation, K-12 CS education

has garnered a great deal of national attention and funding. Thirty-seven states have

either adopted or are in the process of adopting K-12 CS standards that include

computational thinking (Code.org, 2018). Computer science professionals are in high

demand - the majority of STEM jobs in marketplace (National Academies of Sciences,

Engineering, and Medicine, 2018). Many states and countries are developing CS

legislation, policy, curriculum, graduation requirements, and teacher professional

development (Rees et al., 2016). In September 2017, President Trump signed a

memorandum on increasing access to high-quality STEM and CS education. In 2018, the

US Department of Education offered $195 million in grant funds for STEM/CS

education, the Support for Effective Educator Development (SEED), and the Education

Innovation and Research (EIR) grants. The Perkins Career and Technical Education for

the 21st Century Act was reauthorized in July 2018 providing dual coding for both

academic and CTE CS courses as well as increasing CS teacher pathways. Perhaps a

150

more compelling reason than economics for including computing in K-12 education is the

argument that computer scientists are the architects of our virtual world.

The more computer scientists understand all the levels and aspects of abstraction,

the more efficient and effective our virtual world will work. Computer code that utilizes

optimal abstraction uses less energy and is called green code (Hasan et al., 2016).

Teachers who study and teach abstraction will understand more of the complexity of CS

and become better CS teachers. As Colburn (2000) stated, computers are essentially

abstractions of human thought, expanding our content and capability. Teachers who

understand and teach that computers are our creations and expressions, will be able help

students make ethical decisions and create computational solutions to aide humanity.

Curricular Implications

One teacher interviewed pointed out that the newness of CS for both teachers and

students was a challenge and an asset. Obviously, a new content area can be confusing

and include a large amount of information to learn. New content areas can also be

exciting, especially for high school students who have had many years of Math, Science,

Social Studies, and English. Multiple studies showed that connecting CS with content

areas, such as Writing, Science, and English as a Foreign Language facilitates

computational thinking (Alsamani & Daif-Allah, 2015; Chang, 2014; Kafai & Burke,

2013; Merricks & Henderson, 2013). Perhaps, more of an effort needs to be made to

cross-walk CS standards with all content areas in all grade levels, truly adding CS as a

fourth foundational literacy. Providing all teachers with cross-curricular connections may

assist students in learning difficult topics like abstraction in CS. Promoting the inclusion

151

of CS in all content areas may also help girls and underrepresented minority student

populations in participating in computing.

Conclusion

Abstraction is a multi-faceted concept that the majority of the 12 teachers

interviewed in this study admittedly did not fully understand and did not feel comfortable

teaching. Current K-12 CS professional development appears to lack essential training for

teachers regarding computational thinking of which abstraction is a subskill. Overall,

teachers in this study reported addressing directly or indirectly the concept of abstraction.

The most experienced teachers shared that introducing the concept of abstraction,

building programming skills, and referring back to abstraction as students applied their

programming skills contextually facilitated knowledge and abstraction skills. Teachers

also reported that dialogue was an essential aspect in teaching abstraction. Overall, the

teachers interviewed shared that they would benefit from summative tests, quizzes, and

rubrics designed to assess abstraction. Better training and a better definition of

abstraction would make their instruction easier and more effective. The analysis of

teacher interviews in this study revealed several variables for future quantitative study

including programming languages, the relationship between hardware and software,

concepts, skills, direct instruction, contextual instruction, teaching experience, student

math experience, and STEM curricula. As research informs CS education, the study of

abstraction will help teachers and students manage the complexity of computing.

152

References

Abelson, H., Ledeen, K., & Lewis, H. R. (2008). Blown to bits: Your life, liberty, and

happiness after the digital explosion. Upper Saddle River, NJ: Addison-Wesley.

Adair, D., & Jaeger, M. (2016). Incorporating Critical Thinking into an Engineering

Undergraduate Learning Environment. International Journal of Higher

Education, 5(2), 23.

Alsamani, A. A. S., & Daif-Allah, A. S. (2015). Introducing Project-based Instruction in

the Saudi ESP Classroom: A Study in Qassim University. English Language

Teaching, 9(1), 51.

Andreou, C., Papastavrou, E., & Merkouris, A. (2014). Learning styles and critical

thinking relationship in baccalaureate nursing education: a systematic

review. Nurse education today, 34(3), 362-371.

Anton, G., & Barany, A. (2013). Power of play: Exploring computational thinking

through game design. Velvet Light Trap, 72(1), 74-75.

Apple (nd). (2019). Teacher resources. Retrieved from

https://www.apple.com/education/apple-teacher/

Armoni, M. (2013). On teaching abstraction in Computer Science to novices. Journal of

Computers in Mathematics and Science Teaching. (32) 265-284.

Arnoux, P., & Finkel, A. (2010). Using mental imagery processes for teaching and

research in mathematics and computer science. International Journal of

https://www.apple.com/education/apple-teacher/

153

Mathematical Education in Science & Technology, 41(2), 229–242.

https://doi.org/10.1080/00207390903372429

Aksu, G. & Koruklu, N. (2015). Determination the effects of vocational high school

students’ logical and critical thinking skills on mathematic success. Eurasian

Journal of Educational Research, 59, 181-206

http://dx.doi.org/10.14689/ejer.2015.59.11

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K.

(2010). How learning works: Seven research-based principles for smart teaching.

John Wiley & Sons.

 Atabaki, A. M. S., Keshtiaray, N., & Yarmohammadian, M. H. (2015). Scrutiny of

Critical Thinking Concept. International Education Studies, 8(3), 93.

Baloukas, T. (2012). JAVENGA: JAva-based Visualization Environment for Network

and Graph Algorithms. Computer Applications in Engineering Education, 20(2),

255–268. https://doi.org/10.1002/cae.20392

Baxter, P., & Jack, S. (2008). Qualitative Case Study Methodology: Study Design and

Implementation for Novice Researchers. The Qualitative Report, 13(4), 544-559.

Retrieved from http://nsuworks.nova.edu/tqr/vol13/iss4/2

Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer

science in NZ schools. ACM Transactions on Computing Education

(TOCE), 14(2), 10.

http://dx.doi.org/10.1080/00207390903372429
http://dx.doi.org/10.1002/cae.20392
http://nsuworks.nova.edu/tqr/vol13/iss4/2

154

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of

Computers in Mathematics and Science Teaching, 20(1), 45-74.

Bers, M. U. (2010). The TangibleK Robotics Program: Applied Computational Thinking

for Young Children. Early Childhood Research & Practice, 12(2).

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational

thinking and tinkering: Exploration of an early childhood robotics curriculum.

Computers & Education, 72, 145–157. doi:10.1016/j.compedu.2013.10.020

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). Academic Press.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R.

(1956). Taxonomy of educational objectives, handbook I: The cognitive

domain (Vol. 19, p. 56). New York: David McKay Co Inc.

Braithwaite, D. W., Goldstone, R. L., van der Maas, H. L., & Landy, D. H. (2016).

Nonformal mechanisms in mathematical cognitive development: The case of

arithmetic. Cognition, 149, 40-55.

Brenan, K., Resnick, M. (AERA, 2012). New frameworks for evaluating and discussing

the development of computational thinking. White paper. MIT Medial Lab.

Brookshear, J. (2012). Computer science and overview. Boston, MA: Addison-Wesley.

Brown, E., & Jacobsen, M. (2017). Developing Technological Fluency in and through

Teacher Education: An Applied Research Project in Teachers' College.

In Teacher Education for Ethical Professional Practice in the 21st Century (pp.

1-24). IGI Global.

http://dx.doi.org/10.1016/j.compedu.2013.10.020

155

Bucher, T. (2016). ‘Machines don’t have instincts’: Articulating the computational in

journalism. new media & society, 1461444815624182.

Buckley, J., Archibald, T., Hargraves, M., & Trochim, W. M. (2015). Defining and

teaching evaluative thinking: Insights from research on critical thinking. American

Journal of Evaluation, 36(3), 375-388.

Cajkler, W., Wood, P., Norton, J., Pedder, D., & Xu, H. (2015). Teacher perspectives

about lesson study in secondary school departments: a collaborative vehicle for

professional learning and practice development. Research Papers in

Education, 30(2), 192-213.

Cappetta, R. W., & Zollman, A. (2013). Agents of Change in Promoting Reflective

Abstraction: A Quasi-Experimental, Study on Limits in College Calculus. Journal

of Research in Mathematics Education, 2(3), 343-357.

Carbonaro, M., Szafron, D., Cutumisu, M., & Schaeffer, J. (2010). Computer-Game

Construction: A Gender-Neutral Attractor to Computing Science. Computers &

Education, 55(3), 1098–1111.

Cargas, S. (2016). Honoring controversy: Using real-world problems to teach critical

thinking in honors courses. Honors in Practice, 12(123-137).

Chang, C.K. (2014). Effects of Using Alice and Scratch in an Introductory Programming

Course for Corrective Instruction. Journal of Educational Computing

Research, 51(2), 185–204. https://doi.org/10.2190/EC.51.2.c

Charmaz, K. (2014). Constructing grounded theory. Los Angeles, CA: Sage.

http://dx.doi.org/10.2190/EC.51.2.c

156

Chesimet, M. C., Githua, B. N., & Ng'eno, J. K. (2016). Effects of Experiential Learning

Approach on Students' Mathematical Creativity among Secondary School

Students of Kericho East Sub-County, Kenya. Journal of Education and

Practice, 7(23), 51-57.

Cho, J. Y., & Lee, E. (2014). Reducing Confusion about Grounded Theory and

Qualitative Content Analysis: Similarities and Differences. e Qualitative Report,

19(32), 1-20. Retrieved from http://nsuworks.nova.edu/tqr/vol19/iss32/2

Chomsky, N. (2006). Language and mind. Cambridge, UK: Cambridge University Press.

Cioffi-Revilla, C. (2014). Computation and Social Science. In Introduction to

Computational Social Science (pp. 23-66). London, UK: Springer.

Cleary, M., Horsfall, J., & Hayter, M. (2014). Data collection and sampling in qualitative

research: does size matter?. Journal of advanced nursing, 70(3), 473-475.

Code Fellows (nd). (2019). Code Fellows course information. Retrieved from

https://www.codefellows.org/

Code.org (nd). (2017). State computer science statistics. Retrieved from

https://code.org/statistics

Colburn, T. (2000). Philosophy and computer science. Armonk, NY: M.E. Sharpe.

Colburn, T. (2015). Philosophy and computer science. Abingdon, UK: Routledge.

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and

Machines, 17(2), 169-184.

https://code.org/statistics

157

Cole, D., & Zhou, J. (2014). Diversity and Collegiate Experiences Affecting Self-

Perceived Gains in Critical Thinking: Which Works, and Who Benefits? The

Journal of General Education, 63(1), 15-34.

College Board (nd). (2016). Computer science. Retrieved from

https://apcentral.collegeboard.org/courses/ap-computer-science-principles

Computer Science Teachers Association (nd). (2015). Science education research.

Retrieved from http://csta.acm.org/Research/sub/KeyResearch.html

Computer Science Teachers Association (2019, February). Standards. Retrieved from

https://www.csteachers.org/page/standards

Connelly, F. M., & Clandinin, D. J. (1988). Teachers as Curriculum Planners. Narratives

of Experience. New York, NY: Teachers College Press.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in Introductory

Computer Science. SIGSCE Bulletin (35) 191-195.

Cooper, R., & Heaverlo, C. (2013). Problem Solving And Creativity And Design: What

Influence Do They Have On Girls' Interest In STEM Subject Areas? American

Journal of Engineering Education, 4(1), 27.

Cooper, S., Pérez, L. C., & Rainey, D. (2010). Education K-12 Computational

Learning. Communications of the ACM, 53(11), 27–29.

https://doi.org/10.1145/1839676.1839686

Corbin, J, Strauss, A. (2015). The basics of qualitative research. Thousand Oaks, CA:

Sage Publications.

https://apcentral.collegeboard.org/courses/ap-computer-science-principles
http://csta.acm.org/Research/sub/KeyResearch.html
http://dx.doi.org/10.1145/1839676.1839686

158

Costley, J. (2016). The Effects of Instructor Control on Critical Thinking and Social

Presence: Variations within Three Online Asynchronous Learning

Environments. Journal of Educators Online, 13(1), 109-171.

Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods

approaches (2nd ed.). Thousand Oaks, CA: Sage Publications.

Creswell, J. (2007). Qualitative inquiry and research design. Thousand Oaks, CA: Sage

Publications.

CS10K (nd). (2015). CS10K initiative to train 10,000 computer science educators.

Retrieved from https://cs10kcommunity.org/

Csernoch, M., Biró, P., Máth, J., & Abari, K. (2015). Testing algorithmic skills in

traditional and nontraditional programming environments. Informatics in

Education, 14(2), 175.

Cuny, J., & Aspray, W. (2002). Recruitment and retention of women graduate students in

computer science and engineering: results of a workshop organized by the

computing research association. ACM SIGCSE Bulletin, 34(2), 168-174.

Cuny, J. (2017). Computer science for everyone: A groundswell of support [Infosys

blog]. Retrieved from http://www.infosys.org/infosys-foundation-

usa/media/blog/Pages/groundswell-support.aspx

Czerkawski, B. C., & Lyman III, E. W. (2015). Exploring issues about computational

thinking in higher education. TechTrends, 59(2), 57-65.

Dale, N., & Walker, H. M. (1996). Abstract data types—specifications, implementations,

https://cs10kcommunity.org/
http://www.infosys.org/infosys-foundation-usa/media/blog/Pages/groundswell-support.aspx
http://www.infosys.org/infosys-foundation-usa/media/blog/Pages/groundswell-support.aspx

159

and applications. Lexington: D.C. Heath and Company.

Daily, S. B., & Eugene, W. (2013). Preparing the Future STEM Workforce for Diverse

Environments. Urban Education, 48(5), 682–704.

https://doi.org/10.1177/0042085913490554

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school

girls: Can they be used to measure understanding of computer science concepts?

Computers & Education, 58(1), 240-249.

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). Misconceptions about computer

science. Communications of the ACM, 60(3), 31-33.

Deruy, E. (2017). In Finland kids learn computer science without computers. The Atlantic

Website. Retrieved from:

https://www.theatlantic.com/education/archive/2017/02/teaching-computer-

science-without-computers/517548/

Dubinsky, E. (2002). Reflective abstraction in advanced mathematical thinking.

In Advanced mathematical thinking (pp. 95-126). Springer Netherlands.]p0w2

Dwyer, C. P., Hogan, M. J., Harney, O. M., & O’Reilly, J. (2014). Using interactive

management to facilitate a student-centred conceptualisation of critical thinking: a

case study. Educational Technology Research and Development, 62(6), 687-709.

Emir, S. (2013). Contributions of Teachers' Thinking Styles to Critical Thinking

Dispositions (Istanbul-Fatih Sample). Educational Sciences: Theory and

Practice, 13(1), 337-347.

http://dx.doi.org/10.1177/0042085913490554

160

Ernst, J. V., & Clark, A. C. (2012). Fundamental computer science conceptual

understandings for high school students using original computer game design.

Journal of STEM Education: Innovations & Research, 13(5), 40–45.

Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes

of Educational Assessment and Instruction. Research Findings and

Recommendations.

Facione, P., & Gittens, C. A. (2015). Think critically. Upper Saddle River, NJ: Pearson.

Farrell, T. S. (2015). Reflective language teaching: From research to practice. New York

City, NY: Bloomsbury Publishing.

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM

Occupations-Past, Present, and Future. Retrieved from:

https://digitalcommons.ilr.cornell.edu/key_workplace/1923/

Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: A

hybrid approach of inductive and deductive coding and theme

development. International journal of qualitative methods, 5(1), 80-92.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old

kindergarten children in a computer programming environment: A case

study. Computers & Education, 63, 87-97.

 Festo, K. (2016). Question Classification Taxonomies as Guides to Formulating

Questions for Use in Chemistry Classrooms. European Journal of Science and

Mathematics Education, 4(3), 353-364.

https://digitalcommons.ilr.cornell.edu/key_workplace/1923/

161

Flavell, J. H., Green, F. L., Flavell, E. R., & Grossman, J. B. (1997). The development of

children's knowledge about inner speech. Child Development, 68(1), 39-47.

Flick, U. (2014). An introduction to qualitative research. New Dehli, India: Sage.

Floridi, L. (2008). Artificial intelligence's new frontier: Artificial companions and the

fourth revolution. Metaphilosophy, 39(4‐5), 651-655.

Floridi, L. (2011). The philosophy of information. Oxford, United Kingdom: Oxford

University Press.

Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The role of visualization in computer

science education. Computers in the Schools, 29(1-2), 95–117.

Fuller, U., Johnson, C., Ahoniemi, T. et al (2007). Developing a computer science

specific learning taxonomy. ITiCSE working group report on innovation and

technology in computer science education. doi: 10.1145/1345443.1345438

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative

research. The Qualitative Report, 20(9), 1408.

Fyfe, E. R., McNeil, N. M., & Rittle‐Johnson, B. (2015). Easy as ABCABC: Abstract

language facilitates performance on a concrete patterning task. Child

development, 86(3), 927-935.

General Assembly (n.d.) (2019). Courses. Retrieved from https://generalassemb.ly

Giannakos, M. N., Koilias, C., Vlamos, P., & Doukakis, S. (2013). Measuring Students’

Acceptance and Confidence in Algorithms and Programming: The Impact of

162

Engagement with CS on Greek Secondary Education. Informatics in Education-

An International Journal, (Vol12_2), 207-219.

Gibbs, G. R., (2010). Coding part 2: Thematic coding. [Web Video]. Retrieved

from http://www.youtube.com/watch?v=B_YXR9kp1_o

Gobbo, F., & Benini, M. (2014). The minimal levels of abstraction in the history of

modern computing. Philosophy & Technology, 27(3), 327-343.

Goode, J., Margolis, J., & Chapman, G. (2014, March). Curriculum is not enough: The

educational theory and research foundation of the exploring computer science

professional development model. In Proceedings of the 45th ACM technical

symposium on Computer science education (pp. 493-498). ACM.

Google for Education (n.d.). (2019). Teacher resources. Retrieved from

https://edu.google.com/computer-science/?modal_active=none

Grout, V., & Houlden, N. (2014). Taking Computer Science and Programming into

Schools: The Glyndŵr/BCS Turing Project. Procedia - Social and Behavioral

Sciences, 141, 680–685. https://doi.org/10.1016/j.sbspro.2014.05.119

Groome, M., & Rodríguez, L. M. (2014). How to Build a Robot: Collaborating to

Strengthen STEM Programming in a Citywide System. Afterschool Matters, 19,

1-9.

Guzdial, M. (2015). Learner-centered design of computing education: Research on

computing for everyone. Synthesis Lectures on Human-Centered

Informatics, 8(6), 1-165.

http://dx.doi.org/10.1016/j.sbspro.2014.05.119

163

Hakverdi-Can, M., & Thomas, M. D. (2012). Exemplary science teachers' use of

technology. TOJET: The Turkish Online Journal of Educational

Technology, 11(1).

Harlow, D. B., & Leak, A. E. (2014). Mapping students’ ideas to understand learning in a

collaborative programming environment. Computer Science Education, 24(2/3),

229–247. doi:10.1080/08993408.2014.963360

Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., & Hindle, A. (2016). Energy

profiles of java collections classes. In Proceedings of the 38th International

Conference on Software Engineering (pp. 225-236). ACM.

Hazzan, D. (1999). Reducing abstraction level when learning abstract algebra concepts.

Educational Studies in Mathematics (40) 71-90. Netherlands: Kluwer Academic

Publishers.

Hazzan, O., Lapidot, T., & Ragonis, N. (2015). Guide to teaching computer science: An

activity-based approach. London, UK: Springer.

Haynes, A., Lisic, E., Goltz, M., Stein, B., & Harris, K. (2016). Moving Beyond

Assessment to Improving Students’ Critical Thinking Skills: A Model for

Implementing Change. Journal of the Scholarship of Teaching and

Learning, 16(4), 44-61.

Hsu, Y. C., & Ching, Y. H. (2013). Mobile app design for teaching and learning:

Educators’ experiences in an online graduate course. The International Review of

Research in Open and Distributed Learning, 14(4).

http://dx.doi.org/10.1080/08993408.2014.963360

164

Hu, H. H., Kussmaul, C., Knaeble, B., Mayfield, C., & Yadav, A. (2016, July). Results

from a survey of faculty adoption of Process Oriented Guided Inquiry Learning

(POGIL) in Computer Science. In Proceedings of the 2016 ACM Conference on

Innovation and Technology in Computer Science Education(pp. 186-191). ACM.

Huang, H. F., Ricci, F. A., & Mnatsakanian, M. (2016). Mathematical teaching strategies:

Pathways to critical thinking and metacognition. International Journal of

Research in Education and Science, 2(1), 190-200.

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). Instructional strategy in the teaching of

computer programming: A need assessment analyses. Turkish Online Journal of

Educational Technology, 9(2), 125–131.

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–

12 Students with Disabilities to Learn Computational Thinking and Computer

Programming. TEACHING Exceptional Children, 48(1), 45-53.

ISTE. (2019, February). International Society for Technology in Education: computer

science standards. Retrieved from: https://www.iste.org/standards/for-computer-

science-educators

Jacobsen, T. E., & Mackey, T. P. (2013). Proposing a metaliteracy model to redefine

information literacy. Communications in information literacy, 7(2), 84-91.

Jenkins, C. (2015). Poem Generator: A Comparative Quantitative Evaluation of a

Microworlds-Based Learning Approach for Teaching English. International

Journal of Education and Development Using Information and Communication

Technology, 11(2), 153–167. Retrieved

165

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta

Kappan, 95(1), 61-65.

Kafai, Y. B., & Burke, Q. (2015). Computer programming goes back to

school. Education Week, 61–65. Retrieved

from http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digit

al+divide

Kalelioglu, F., & Gülbahar, Y. (2014). The Effects of Teaching Programming via Scratch

on Problem Solving Skills: A Discussion from Learners’ Perspective. Informatics

in Education, 13(1), 33–50. Retrieved

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site

Kaufman, R. (2017). Practical strategic leadership: Aligning human performance

development with organizational contribution. Performance Improvement, 56(2),

16-21.

Kazak, S., Wegerif, R., & Fujita, T. (2015). The importance of dialogic processes to

 conceptual development in mathematics. Educational Studies in

Mathematics, 90(2), 105-120.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten

classroom: The impact on sequencing skills. Journal of Educational Multimedia

and Hypermedia, 21(4), 371-391.

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site
http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digital+divide
http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digital+divide
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site

166

Kivunja, C. (2014). Do you want your students to be job-ready with 21st century skills?

Change pedagogies: a pedagogical paradigm shift from Vygotskyian social

constructivism to critical thinking, problem solving and Siemens’ digital

connectivism. International Journal of Higher Education, 3(3), p81.

Kong, L. N., Qin, B., Zhou, Y. Q., Mou, S. Y., & Gao, H. M. (2014). The effectiveness

of problem-based learning on development of nursing students’ critical thinking:

A systematic review and meta-analysis. International Journal of Nursing

Studies, 51(3), 458-469.

Kramer, J. (2007). Is abstraction the key to computer coding? Communications of the

Association for Computing Machinery (50).

Kwan, Y. W., & Wong, A. F. (2015). Effects of the constructivist learning environment

on students’ critical thinking ability: Cognitive and motivational variables as

mediators. International Journal of Educational Research, 70, 68-79.

Lan, Y.F., & Lin, P.C. (2011). Evaluation and improvement of student’s question-posing

ability in a web-based learning environment. Australasian Journal of Educational

Technology, 27(4), 581–599.

Lau, W. (2018). Teaching computing in secondary schools. New York, NY: Routledge.

Lee, Y. J. (2010). Developing computer programming concepts and skills via technology-

enriched language-art projects: A case study. Journal of Educational Multimedia

and Hypermedia, 19(3), 307-326.

167

Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade:

Computational thinking with games in school age children. International Journal

of Child-Computer Interaction, 2, 26–33. doi:10.1016/j.ijcci.2014.06.003

Lewins, A., & Silver, C. (2009). Choosing a CAQDAS package. Retrieved from:

http://eprints.ncrm.ac.uk/791/1/2009ChoosingaCAQDASPackage.pdf

Lihui, W. H., Qun, Z., Feng, L., & Qin Yuqing, W. (2015). Teacher Questioning in

College English Class: A Guide to Critical Thinking. Global Journal of Human-

Social Science Research, 15(11).

Liu, O. L., Frankel, L., & Roohr, K. C. (2014). Assessing Critical Thinking in Higher

Education: Current State and Directions for Next‐Generation Assessment. ETS

Research Report Series, 2014(1), 1-23.

Lim, B., Hosack, B., & Vogt, P. (2012). A framework for measuring student learning

gains and engagement in an introductory computing course: A preliminary report

of findings. Electronic Journal of e-Learning, 10(4), 428–440.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

Madsen, C. K., & Geringer, J. M. (2014). The Relationship between Teacher Preparation

and Long-Term Teaching Effectiveness. ISME Commission on Research, 229.

Mahn, H. (2012). Vygotsky’s analysis of children’s meaning making

processes. International Journal of Educational Psychology, 1(2), 100-126.

http://dx.doi.org/10.1016/j.ijcci.2014.06.003
http://eprints.ncrm.ac.uk/791/1/2009ChoosingaCAQDASPackage.pdf
http://dx.doi.org/10.1016/j.chb.2014.09.012

168

Malatji, K. S. (2016). Moving away from Rote Learning in the University Classroom:

The Use of Cooperative Learning to Maximise Students’ Critical Thinking in a

Rural University of South Africa. Journal of Communication, 7, 34-42.

Martinez, M. C., Gomez, M. J., Moresi, M., & Benotti, L. (2016, July). Lessons learned

on computer science teachers professional development. In Proceedings of the

2016 ACM Conference on Innovation and Technology in Computer Science

Education (pp. 77-82). ACM.

Marzano, R. J., & Kendall, J. S. (Eds.). (2006). The new taxonomy of educational

objectives. Thousand Oaks, CA: Corwin Press.

Maxwell, J. A. (2013). Applied social research methods series: Vol. 41. Qualitative

research design: An interactive approach, 3.

 Mayes, R., & Koballa Jr, T. R. (2012). Exploring the science framework. The Science

Teacher, 79(9), 27.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science

concepts with scratch. Computer Science Education, 23(3), 239-264.

Merriam, S., & Tisdell, E. (2016). Qualitative research: A guide to design and

implementation. San Francisco, CA: Jossey-Bass.

Merricks, J., & Henderson, J. (2014). From Vibration to Vocalization. Science and

Children, 51(6), 44–49. Retrieved

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site

169

Microsoft (n.d.). (2019). Teacher resources. Retrieved from

https://www.microsoft.com/en-us/education/educators/2018/stem-computer-

science/default.aspx

Miles, M. B., & Huberman, A. M., Saldana, J. (2014). Qualitative data analysis.

Newbury Park, CA: Sage

Morris, M. W., Leung, K., Ames, D., & Lickel, B. (1999). Views from inside and

outside: Integrating emic and etic insights about culture and justice

judgment. Academy of Management Review, 24(4), 781-796.

Morse, J. M., Barrett, M., Mayan, M., Olson, K., & Spiers, J. (2002). Verification

strategies for establishing reliability and validity in qualitative

research. International journal of qualitative methods, 1(2), 13-22.

Mudrikah, A. (2016). Problem-based learning associated by action-process-object-

schema (APOS) theory to enhance students’ high order mathematical thinking

ability. International Journal of Research in Education and Science, 2(1), 125-

135.

National Academies of Sciences, Engineering, and Medicine. (2018). Assessing and

responding to the growth of computer science undergraduate enrollments.

National Center for Education Statistics (ED). (2012). The nation’s report card: Science

in action--hands-on and interactive computer tasks from the 2009 Science

Assessment. NCES 2012-468. National Center for Education Statistics.

Norman, L. [LarryNorman]. (2006, September 12). CSPI / What is “Computer Science?”

[Video file]. Retrieved from https://www.youtube.com/watch?v=zQLUPjefuWA

https://www.microsoft.com/en-us/education/educators/2018/stem-computer-science/default.aspx
https://www.microsoft.com/en-us/education/educators/2018/stem-computer-science/default.aspx

170

Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From

action to abstraction: Using the hands to learn math. Psychological Science, 25(4),

903-910.

Olivia (n.d.). What is confirmability in qualitative research and how do we establish it?

[Web log comment]. Retrieved from http://www.statisticssolutions.com/what-is-

confirmability-in-qualitative-research-and-how-do-we-establish-it/

Özyurt, Ö. (2015). Examining the Critical Thinking Dispositions and the Problem

Solving Skills of Computer Engineering Students. EURASIA Journal of

Mathematics, Science & Technology Education, 11(2), 353–361.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY:

Harper Collins.

Patton, M. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA:

Sage Publications.

Pellas, N., & Peroutseas, E. (2016). Gaming in Second Life via Scratch4SL Engaging

High School Students in Programming Courses. Journal of Educational

Computing Research, 54(1), 108–143.

https://doi.org/10.1177/0735633115612785

Perrenet, J. (2010). Levels of thinking in computer science. Development in bachelor

students’ conceptualization of algorithm. Education & Information Technologies

(15) 87-107. doi: 10.1007/s10639-009-9098-8

Perrenet, J.C., J.F. Groote & E. Kaasenbrood (2005). Exploring Students’ Understanding

of the Concept of Algorithm: Levels of Abstraction; In: Proceedings of the 10th

http://dx.doi.org/10.1177/0735633115612785

171

annual SIGCSE-conference on Innovation and technology in computer science

education, 64–68; Caparica, Portugal. © ACM 1-59593-024-8/05/0006. Retrieved

from http://acm.org/10.1145/1070000/1067467

Perrenet, J.C. & E. Kaasenbrood (2006). Levels of Abstraction in Students’

Understanding of the Concept of Algorithm: the Qualitative Perspective; In:

Proceedings of the 11th annual SIGCSE-conference on Innovation and

technology in computer science education, 270–275; Bologna, Italy. © ACM 1-

59593-055-8/06/0006. Retrieved from http://acm.org/10.1145/1150000/1140196

Piaget, J. (1950). The psychology of intelligence. London, UK: Routledge.

Piaget, J. (2014). Studies in reflecting abstraction. New York, NY: Psychology Press.

Porter, L., Bailey Lee, C., & Simon, B. (2013, March). Halving fail rates using peer

instruction: a study of four computer science courses. In Proceeding of the 44th

ACM technical symposium on Computer science education (pp. 177-182). ACM.

 Promraksa, S., Sangaroon, K., & Inprasitha, M. (2014). Characteristics of Computational

Thinking about the Estimation of the Students in Mathematics Classroom

Applying Lesson Study and Open Approach. Journal of Education and

Learning, 3(3), 56.

Przybylla, M., & Romeike, R. (2014). Physical Computing and Its Scope--Towards a

Constructionist Computer Science Curriculum with Physical

Computing. Informatics in Education, 13(2), 241–254.

Qualitative Validity, (n.d.). In Web Center for Social Research Methods. Retrieved from

https://socialresearchmethods.net/kb/qualval.php

172

Ralston, P. A., & Bays, C. L. (2015). Critical thinking development in undergraduate

engineering students from freshman through senior year: a 3-cohort longitudinal

study. American Journal of Engineering Education, 6(2), 85.

Rees, A., García-Peñalvo, F. J., Jormanainen, I., Tuul, M., & Reimann, D. (2016). An

overview of the most relevant literature on coding and computational thinking

with emphasis on the relevant issues for teachers.

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., …

others. (2015). Scalable game design: A strategy to bring systemic computer

science education to schools through game design and simulation creation. ACM

Transactions on Computing Education (TOCE), 15(2), 11. Retrieved

from http://dl.acm.org/citation.cfm?id=2700517

Rittle-Johnson, B., & Schneider, M. (2014). Developing conceptual and procedural

knowledge of mathematics. Oxford handbook of numerical cognition, 1102-1118.

Rowles, J., Morgan, C. M., Burns, S., & Merchant, C. (2013). Faculty perceptions of

critical thinking at a health sciences university. Journal of the Scholarship of

Teaching and Learning, 13(4), 21-35.

Rubin, H., Rubin, I. (2005). Qualitative interviewing: The art of hearing data. Thousand

Oaks, CA: Sage Publications.

Ruecker, S., Grotkowski, A., Gabriele, S., Roberts-Smith, J., Sinclair, S., Dobson, T., …

Rodriguez, O. (2013). Abstraction and realism in the design of avatars for the

simulated environment for theatre. Visual Communication, 12(4), 459–472.

http://dl.acm.org/citation.cfm?id=2700517

173

Ryoo, J.J., Margolis, J., Goode, J., Lee, C., Moreno Sandoval, C.D. (2014). ECS teacher

practices research findings—In brief. Los Angeles, CA: Exploring Computer

Science Project, University of California, Los Angeles Center X with University

of Oregon, Eugene. Retrieved from http://www.exploringcs.org/ecs-teacher-

practices-research.

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage.

Sánchez, P., Zorrilla, M., Duque, R., & Nieto-Reyes, A. (2011). Are models easier to

understand than code? An empirical study on comprehension of entity-

relationship (ER) models vs. structured query language (SQL) code. Computer

Science Education, 21(4), 343–362.

https://doi.org/10.1080/08993408.2011.630128

Sanford, J. F., & Naidu, J. T. (2016). Computational Thinking Concepts for Grade

School. Contemporary Issues in Education Research, 9(1), 23–32.

Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2012). Programming:

Teachers and pedagogical content knowledge in the Netherlands.

Programavimas: Mokytojai Ir Pedagoginio Turinio Žinios Nyderlanduose., 11(1),

81–114.

Sanz, C. (2005). Mind and context in adult second language acquisition: Methods,

theory, and practice. Georgetown University Press.

Shannon, Claude E. ; Weaver, Warren & Burks, Arthur W. (1951). The Mathematical

Theory of Communication (review). Philosophical Review 60 (3):398-400.

http://www.exploringcs.org/ecs-teacher-practices-research
http://www.exploringcs.org/ecs-teacher-practices-research
http://dx.doi.org/10.1080/08993408.2011.630128

174

Shehane, R., & Sherman, S. (2014). Visual Teaching Model for Introducing

Programming Languages. Journal of Instructional Pedagogies, 14.

Shirazi, A. S., von Mammen, S., & Jacob, C. (2013). Abstraction of agent interaction

processes: Towards large-scale multi-agent models. Simulation, 89(4), 524-538.

Simon, M. A., Kara, M., Placa, N., & Sandir, H. (2016). Categorizing and promoting

reversibility of mathematical concepts. Educational Studies in

Mathematics, 93(2), 137-153.

Shell, D. F., & Soh, L.-K. (2013). Profiles of Motivated Self-Regulation in College

Computer Science Courses: Differences in Major versus Required NonMajor

Courses. Journal of Science Education and Technology, 22(6), 899–913.

Retrieved

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.a

spx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site

Snyder, J. J., & Wiles, J. R. (2015). Peer led team learning in introductory biology:

Effects on peer leader critical thinking skills. PloS one, 10(1), e0115084.

Sho-Huan Tung, Tsung-Te Lin, & Yen-Hung Lin. (2013). An Exercise Management

System for Teaching Programming. Journal of Software (1796217X), 8(7), 1718–

1725. https://doi.org/10.4304/jsw.8.7.1718-1725

Stake, B. (2006). Multiple case study analysis. New York, NY: Guilford Press.

Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The wheels on the bot go round and

round: Robotics curriculum in pre-kindergarten. Journal of Information

Technology Education, 12, 203-219.

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site
http://dx.doi.org/10.4304/jsw.8.7.1718-1725

175

Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive

components of a mathematical processing network in 9‐year‐old

children. Developmental Science, 17(4), 506-524.

Teague, D. (2015). Neo-Piagetian Theory and the novice programmer (Doctoral

dissertation, Queensland University of Technology).

Tóth, L., Adorjani, A. K., & Katai Z. (2014). Multi-Sensory Informatics

Education. Informatics in Education-An International Journal, (Vol13_2), 225-

240.

Turner, R. (2013). The philosophy of computer science.

Tung, S. H., Lin, T. T., & Lin, Y. H. (2013). An exercise management system for

teaching programming. Journal of Software, 8(7), 1718-1725.

Uysal, M. P. (2016). Evaluation of learning environments for object-oriented

programming: measuring cognitive load with a novel measurement

technique. Interactive Learning Environments, 24(7), 1590-1609.

Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic

analysis: Implications for conducting a qualitative descriptive study. Nursing &

health sciences, 15(3), 398-405.

Vakil, S. (2014). A critical pedagogy approach for engaging urban youth in mobile app

development in an after-school program. Equity & Excellence in

Education, 47(1), 31-45.

176

 Vanicheva, T., Kah, M., & Ponidelko, L. (2015). Critical thinking within the current

framework of ESP curriculum in technical universities of Russia. Procedia-Social

and Behavioral Sciences, 199, 657-665.

Vygotsky, L. (1978). Mind in society: The development of higher psychological

processes. Cambridge, MA: Harvard University Press.

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press.

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children

to cultivate computational thinking. Thescientificworldjournal, 2014, 428080–

428080. doi:10.1155/2014/428080

Waite, J., Curzon, P., Marsh, W. & Sentence, S. (2016, October). Abstraction and

common classroom activities. In Proceedings of the 11th Workshop in Primary

and Secondary Computing Education (pp. 112-113). ACM.

Weintrop, D., & Wilensky, U. (2014). Situating programming abstractions in a

constructionist video game. Informatics in Education, 13(2), 307.

Whistler, D. (2016). Abstraction and utopia in early German idealism. LOGOS, (2), 5-27.

White, P., Mitchelmore, M. (2010). Teaching for abstraction: A model. Mathematical

Thinking and Learning (12) 205-226.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about

computing. Philosophical transactions of the royal society of London A:

mathematical, physical and engineering sciences, 366(1881), 3717-3725.

http://dx.doi.org/10.1155/2014/428080

177

Youssef, B. B., & Berry, B. (2012). Learning to think spatially in an undergraduate

interdisciplinary computational design context: a case study. International

Journal of Technology and Design Education, 22(4), 541-564.

Yildiz, M. & Scharaldi, K. (2015). Introduction to Engineering and Computer Science in

Teacher Education: Hour of Code Project. In D. Rutledge & D. Slykhuis

(Eds.), Proceedings of Society for Information Technology & Teacher Education

International Conference 2015 (pp. 857-865). Chesapeake, VA: Association for

the Advancement of Computing in Education (AACE). Retrieved March 18, 2017

from https://www.learntechlib.org/p/150102.

Yin, R. K. (2015). Qualitative research from start to finish. Guilford Publications.

Zendler, A., & Klaudt, D. (2012). Central Computer Science concepts to research-based

teacher training in Computer Science: An experimental study. Journal of

Educational Computing Research, 46(2), 153–172.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional

integrated assessment for computational thinking. Journal of Educational

Computing Research, 53(4), 562-590.

https://www.editlib.org/p/150102

178

Appendix A: First Interview Base Questions

The following questions will be asked in all interviews along with follow-up questions

specific to each interview.

1. What grade(s) do you teach?

2. How long have you been teaching?

3. What types of computer science classes do you teach?

4. How did you become a computer science teacher?

5. How familiar are you with abstraction in computer science?

6. To what degree do you include abstraction in your course objectives?

7. How capable are your students of using abstraction in their computer coding?

8. How do you know when your students are using abstraction?

9. How comfortable are you teaching abstraction?

10. How often do your instructional activities teach students about abstraction?

11. To what degree do you include abstraction in your course objectives?

12. What kind of professional development, if any, has informed your instruction of

abstraction?

13. How confident do you feel about creating and using assessments that measure

abstraction?

14. Would you describe abstraction as a skill or a concept, and why?

15. How important do you think abstraction is as a skill in computer science?

179

Appendix B: Alignment of Research and Interview Questions

Table 1

Alignment of research questions with interview questions

Interview Questions RQ1 RQ2 RQ3

What grade(s) do you teach? X X

How long have you been teaching? X

What types of computer science classes do you teach? X X

How did you become a computer science teacher? X

How familiar are you with abstraction in computer science? X X X

To what degree do you include abstraction in your course objectives? X

How capable are your students of using abstraction in their computer

coding? X

How do you know when your students are using abstraction? X

How comfortable are you teaching abstraction? X

How often do your instructional activities teach students about abstraction? X

To what degree do you include abstraction in your course objectives? X

What kind of professional development, if any, has informed your

instruction of abstraction? X

How confident do you feel about creating and using assessments that

measure abstraction? X

Would you describe abstraction as a skill or a concept, and why? X X

How important do you think abstraction is as a skill in computer science? X X

180

Appendix C: Second Interview Base Questions

What additional thoughts did you have regarding abstraction in K-5 computer

science education?

What are your favorite lesson plans for teaching abstraction?

Do you have any additional thoughts on how you would define abstraction?

How have your students talked about abstraction?

What is easy about teaching abstraction?

What is difficult or challenging about teaching abstraction?

What are your successes with teaching abstraction?

What kind of code tells you that your students are using abstraction skills?

What programming languages do you think are best for teaching abstraction?

What grade do you think abstraction is best introduced?

Do you think any student could demonstrate abstraction?

How would you define abstraction?

What do you think beginning CS teachers should know about teaching

abstraction?

Do you think abstraction should be assessed in CS elementary courses? Why? Or

why not?

Is it better to teach abstraction with online tutorial curriculum, such as Code.org,

or with manipulatives like Microbits and Raspberry pi’s?

What type of professional development would you find helpful regarding teaching

abstraction?

181

Appendix D: Email to Participants

Dear ,

I would like to invite you to participate in my dissertation research study. I am

seeking computer science teachers with two or more years of experience teaching K-12

computer science, or prior experience as a computer science professional and K-12

computer science teacher. The purpose of this descriptive qualitative inquiry is to

examine teachers’ experiences determining curriculum, delivering instruction, and

designing assessments regarding the topic of abstraction in computer science.

Your participation will require:

1) Two one-hour interviews in person or virtually.

2) Five student artifacts that you determine show evidence of abstraction or show

evidence of developing abstraction. You will need to de-identify each of the

artifacts before you submit them as a pdf document. If your principal requires

parental consent, I will ask you to email the student and their parents to obtain

consent for their participation in the research study. Once I have obtained all

necessary consent forms, I will email you to schedule interviews and ask you

to submit digital copies of the artifacts to me.

It is estimated that about 4 hours of your time is required for this research. The

total time of the interviews and data collection will be one month. Your participation is

voluntary and you can opt out of the study if you so desire.

182

Please see the attached research participation checklist. If you would like to

participate in this research study, please email me your adult consent form with your

principal’s signature of assent before or in one week.

Warm regards,

Christine Liebe

	Walden University
	ScholarWorks
	2019

	An Examination of Abstraction in K-12 Computer Science Education
	Christine Lynn Liebe

	List of Tables iv
	List of Figures v
	Chapter 1: Introduction to the Study 1
	Chapter 2: Literature Review 29
	Chapter 3: Research Method 60
	Chapter 4: Results 79
	Chapter 5: Discussion, Conclusions, and Recommendations 131
	References 152
	Appendix A: First Interview Base Questions 178
	Appendix B: Alignment of Research and Interview Questions 179
	Appendix C: Second Interview Base Questions 180
	Appendix D: Email to Participants 181
	List of Tables
	List of Figures
	Chapter 1: Introduction to the Study
	Background
	Abstraction as a Skill and a Concept in Computer Science
	Problem Statement
	Purpose of this Study
	Research Questions
	Conceptual Framework
	Nature of the Study
	Definition of Terms
	Assumptions
	Scope and Delimitations
	Limitations
	Significance
	Summary

	Chapter 2: Literature Review
	Literacy Search Strategy
	Abstraction and Philosophy
	Abstraction and Psychology
	Situating Abstraction within Computational Thinking
	Constructionist Instruction
	Instructional Implications for Abstraction
	Summary and Conclusions

	Chapter 3: Research Method
	Research Design and Rationale
	Role of the Researcher
	Methodology
	Data Analysis Plan
	Issues of Trustworthiness
	Summary

	Chapter 4: Results
	Evidence of Trustworthiness
	Results
	Research Question 1: What types of instruction do K-12 teachers find most effective for teaching abstraction in computer coding?
	Teachers found many types of instruction effective for teaching abstraction in K-12. Teachers focused on sharing their knowledge of abstraction as a ubiquitous concept through metaphors, direct instruction, focusing on the end-user, and making transfe...
	Research Question 2: How do teachers determine objectives and competencies for teaching abstraction in computer coding?
	Research Question 3 – How do teachers assess student abstraction skills in computer coding?

	Summary

	Chapter 5: Discussion, Conclusions, and Recommendations
	Interpretation of Findings
	Philosophy, Abstraction, and the Teacher Experience
	Psychology, abstraction, and the teacher experience
	Constructionism, computational thinking, and teaching abstraction
	Levels of abstraction, programming languages, and the teaching experience
	Critical thinking, abstraction, and the teacher experience

	Limitations of the Study
	Recommendations for Future Research
	Implications for Computer Science Instruction
	Conclusion

	References
	Appendix A: First Interview Base Questions
	Appendix B: Alignment of Research and Interview Questions
	Appendix C: Second Interview Base Questions
	Appendix D: Email to Participants

