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Abstract 

Computer scientists have been working towards a common definition of abstraction; 

however, the instruction and assessment of abstraction remain categorically 

underresearched. Because abstraction is often cited as a component of computational 

thinking, abstraction has been summarily likened to a higher order thinking skill. A broad 

conceptual framework including philosophy, psychology, constructionism, and 

computational thinking was aligned with the descriptive qualitative design and guided the 

literature review and data analysis. This qualitative examination of how teachers 

determine curriculum, deliver instruction, and design assessments in K-12 computer 

science education provides insight into best practices and variables for future quantitative 

study. The instructional strategies, objectives, and assessments of twelve K-12 computer 

science teachers from 3 states were examined in this descriptive qualitative examination 

of instruction using thematic coding analysis. The majority of teachers had little to no 

professional development regarding teaching abstraction. All teachers in the study were 

unsure what student abstraction abilities should be according to grade level. Teachers’ 

understanding of abstraction ranged from very little knowledge to very knowledgeable. 

The majority of teachers did not actively assess abstraction. Teachers described 

successfully teaching abstraction through multiple instructional practices and spiraling 

curriculum. Practical descriptive insights illuminate additional variables to research the 

instruction of abstraction qualitatively and quantitatively, as well as provide anecdotal 

instructional successes.  
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Chapter 1: Introduction to the Study 

As computer science gains recognition and evolves as a discipline, the study of 

abstraction, the ability to representationally minimize extraneous detail, is important for 

student competency (Lau, 2018). Countries such as England, Scotland, Estonia, Finland, 

Australia, Israel, and Singapore require computer science (CS) courses in secondary 

school and in some countries CS education is required in middle school and even 

elementary school (Deruy, 2017). In the United States, Iowa, Arkansas, Nevada, Texas, 

and West Virginia require that computer science courses are offered and have adopted 

computer science standards (Code.org, 2017). Many other states, such as Colorado, are in 

the process of developing and adopting CS standards and have hired state level CS 

education support specialists (Code.org, 2017). The cities of Chicago and New York City 

require computer science credits for high school graduation (Code.org, 2017). Virginia 

has embedded computer science into content standards (Code.org, 2017). Educational 

trends, such as teaching drag and drop programming and computational thinking, are 

useful instructional strategies in computer science, and additional curriculum and 

instruction are necessary to assist students in gaining foundational knowledge required 

for professional success (Denning, Tedre, & Yongpradit, 2017). The field of computer 

science education is growing, and CS educational research will help teachers and students 

around the globe. 

Computer science is a deceiving name for a subject regarding using the computer 

as a tool to express human intelligence and creativity. (Norman, 2006). The use of the 
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word computer highlights the tool, not the essence of the activity of solving problems and 

using intelligence (Hazzan, Lapidot, & Ragonis, 2014; Norman, 2006). Just as telescopes 

are tools for astronomers, particle accelerators assist physicists, and Petri dishes aide 

biologists, the computer helps humans to solve complex problems (Norman, 2006). 

Because the field of computer science is new and not well understood, the tool has 

become associated with the essence of the subject (Norman, 2006). In 1986, Dr. Hal 

Abelson explained on video that computer science formalizes intuition about the 

processes of controlling complexity (Norman, 2006). In chess, the rules or procedures of 

the game can be taught in minutes; however, the concept of the game and the 

implications of the rules take much longer to master (Norman, 2006). CS has similar 

concepts and procedures as chess. 

Proficiency in computer science requires many thinking skills, such as 

sequencing, induction, deduction, problem-solving, and creativity (CS10K, 2016; College 

Board, 2016). The term computer science is used because creating programs involves 

aspects of the scientific method, as well as creativity and design principles (Hazzan et al., 

2014). Many lines of code must be abstracted into representative features to make coding 

efficient and elegant, thus controlling complexity (Colburn, 2015; Perrenet, 2010). 

Additionally, computer science requires knowledge of algorithms, organizing and sorting 

data, navigating the Internet, cybersecurity, as well as a basic understanding of computer 

hardware and software systems (Brookshear, 2012). Instructors of computer science are 

also encouraged to guide students ethically in creating technology that extends human 

respect and compassion (College Board, 2016).   
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Abstraction is an essential and simultaneously advanced concept consisting of 

several levels of procedure and conceptual awareness that computer programmers must 

develop (Armoni, 2013; Colburn, 2000; Hazzan, Lapidot, & Ragonis, 2015). The ability 

to use abstraction effectively is a teachable skill (Fuller et al., 2007). The knowledge of 

many concepts, skills, and procedures are important to become proficient with abstraction 

and with computers. Abstraction is an essential skill that programmers, engineers, and 

technicians must understand and execute to create efficient and functional computational 

solutions. 

Unfortunately, little research exists that offers computer science instructors in K-

12 educational guidance about the age at which students can begin to learn abstraction. 

Similarly, no research exists offering instructional guidance regarding teaching 

abstraction. Researching abstraction instruction is challenging because the concept of 

abstraction is complex and not easily defined (Armoni, 2013; Perrenet, 2010). Wing 

(2006) introduced the concept of computational thinking, of which, abstraction is a 

subskill. Wing’s concept of computational thinking has efficaciously integrated CS in 

math and science content and has also propagated computer science instruction. The 

majority of studies examining computational thinking have been conducted with 

university participants, not K-12 students (Czerkawski & Lyman III, 2015; Grover & 

Pea, 2013; Lim, Hosak, & Vogt, 2012; Lye & Koh, 2014). Because of the preponderance 

of postsecondary CS educational research, this study may help inform the instruction 

applied by K-12 computer science educators. Many of the K-12 studies involve the 

assessment of student responses to a variety of instructional software programs (Bers, 



4 

 

 

2010; Bers et al., 2014; Lee et al., 2014; Wang et al., 2014; Reuker et al., 2013). 

Computer scientists tend to construct software to teach students and then research the 

effectiveness of the new software on the learning experience. Instead of researching 

educational performance and variables, such research has focused on demonstrating the 

viability of software to instruct students. Although challenges exist in defining 

abstraction and researching the instruction of abstraction, I pursue a practical definition 

and understanding of abstraction, namely minimizing extraneous detail, and share best 

practices obtained from K-12 CS teachers in this qualitative examination.  

This study may also provide qualitative information about instructional best 

practices and professional development pathways for teaching computer science in K-12 

classrooms. Engineering is a subject with formalized operations that guides people to 

construct things constrained only by the tolerance of physics (Norman, 2006). According 

to Abelson, captured on video in 1986, computer science is only limited by human 

imagination (Norman, 2006). Computer science is not concrete but the product of human 

imagination. Based on the assumption that computers are an abstraction of human 

ingenuity, humans are needed to provide essential instruction in computer science 

(Colburn, 2000). Variables needed for the effective instruction of abstraction may be 

identified as a result of this qualitative examination. Several studies have qualitatively 

examined the acquisition of computer coding skills (Denner, Werner, & Ortiz, 2014; 

Fuller et al., 2007; Wang, Wang, & Liu, 2014) and computational thinking (Daily & 

Eugene, 2013; Lee, 2010; Lee et al., 2014; Pellas & Peroutseas, 2016). In this qualitative 

study, I examine how teachers acquire the knowledge, skills, and pedagogical theory that 
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they use to teach computer science. I also identify variables that future professional 

development can address and variables that can be quantitatively researched to evaluate 

the effectiveness of instruction. The qualitative examination of K-12 instruction of 

abstraction will provide insight into the nature of effective CS teaching for a variety of 

grade levels. Specifically, in Chapter 1, I provide information on the background, 

problems, purpose, significance, research questions, nature, definitions, assumptions, 

scope and limitations, and delimitations regarding this qualitative examination of the 

instruction of abstraction. 

Computer science education has the power to positively impact society, 

educational systems, classroom systems, and individual students. Training teachers in all 

content areas to teach computer science is a large but necessary undertaking if people are 

going to learn to use the computer as the multi-faceted tool it was designed to be, not just 

a printing or publishing device (Code.org, 2016; Computer Science Teachers Association 

[CSTA], 2015). Computer science education that allows secondary students to explore 

and create in collaboration with teachers, using portfolio-based assessment, supported by 

computer science businesses, will improve the workforce and the economy. At the mega 

level, humankind can benefit from the enhanced creativity and power over technology 

that students will learn (Kaufman et al., 2003). Economies will benefit from increased 

productivity, innovation, a more capable workforce, and increased employment resulting 

from entrepreneurial endeavors. Educators will be able to assist students in becoming 

scholar innovators. Students will learn to express their creativity to solve the world’s 
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problems. Computer science education can potentially change thinking on a personal, 

societal, and global level from victimization due to technology to evolution because of 

technology. Because abstraction is an essential thinking skill needed to code computers 

effectively, this study will facilitate effective instruction in computer science, which is 

ultimately the instruction of the technological equivalent of human creativity and 

communication. 

In this dissertation, I explain why abstraction is a multifaceted concept with many 

procedural possibilities. Given the pervasiveness of technology; the fact that technology 

is replacing jobs; the imminent need for Science, Technology, Engineering, and 

Mathematics (STEM) workers (mainly computer science workers); and the lack of 

computer science education research guiding K-12 curriculum, instruction, and 

assessment, abstraction in computer science is a worthy topic to examine. Furthermore, 

the study of the instruction of abstraction is essentially an interdisciplinary study that 

bridges psychology, education, mathematics, and computer science. Examining the 

experience of educators with the concepts and procedures related to abstraction in all 

grade levels will provide important information for teachers, students, parents, 

foundations, policy-makers, curriculum developers, software developers, and researchers 

in several disciplines. 

Background 

According to computer science experts, we are experiencing a digital information 

explosion and revolution (Fayer, Lacey, & Watson, 2017). Money, information, 

documents, voices, and images are transferred wirelessly from country to country and 
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from device to device, in seconds as digital bits that can last forever (Abelson, Ledeen, & 

Lewis, 2008). Just as fire can be used for heating and cooking or destruction, the way we 

use information can enlighten, corrupt, or enslave as evidenced by online doctoral 

education, hacking in the recent 2016 United States presidential election, and the 

governmental control of China’s Internet (Abelson et al., 2008). Technology has made 

privacy almost impossible, and laws have not kept up with technological changes 

(Abelson et al., 2008). There is an urgent need for all democratic citizens to use 

technology proficiently, intelligently, and ethically; otherwise, the majority of people will 

continue to be at the mercy of technological advances (Abelson et al. 2008). Teaching 

students to learn to use an advanced concept, such as abstraction effectively, will help 

them become empowered users and creators of technology (Fayer et al., 2017). As Fayer 

et al. (2017) assert, STEM employment is beginning to dominate the new positions being 

created. 

The economy will also benefit from an educational system that prepares students 

to use computers effectively. Employment for workers with STEM skills was double that 

of nonSTEM employment between 2009 and 2015, 10.5% to 5.2% for nonSTEM job 

growth (Fayer et al., 2017). Computer occupations made up 49% of all 8.6 million STEM 

jobs in 2015, and the need for software developers, systems analysts, network 

administrators, information and systems managers, computer programmers, computer 

sales and service representatives exceeds the need for mechanical and civil engineers 

(Fayer et al., 2017). In 2015, the average STEM job wage was $87,570 double the 

average wage for nonSTEM jobs, $48,320 (Fayer et al., 2017). The U.S. Bureau of Labor 
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and Statistics expects over a million openings for computer occupations from 2014 to 

2024 (Fayer et al., 2017). In the near future, education will need to better prepare students 

for computer occupations. In all disciplines, the professional with computer science 

expertise will have a great impact in their field. 

Education must prepare teachers to match the growing demand for STEM and 

computer science proficient employees. There is a dire need for computer science 

teachers. The ten fastest growing STEM jobs require a bachelor’s degree or higher 

(Fayer, Lacey, & Watson, 2017). Web developers, computer support technicians, and a 

variety of other occupations expected to grow by 2024 typically require an associate’s 

degree or less (Fayer et al., 2017). Private coding boot camps are supplying a demand for 

intensive higher education in computer science that community colleges and universities 

are failing to provide (Code Fellows, 2019; General Assembly, 2019). Apple, Microsoft, 

and Google offer free educational support and training to teachers and staff, and 

sometimes even free computers (Apple, 2019; Google, 2019; Microsoft, 2019). The 

National Science Foundation (NSF) offers millions of dollars in grants to support 

computer science teacher development (CS10K, 2017). Cuny (2017), a National Science 

Foundation program director, estimates there is a need for over 30,000 high school 

computer science teachers, a figure that doesn’t include the need for teachers in middle 

and elementary schools. The need for CS educators validates CS instructional research, 

such as this dissertation study. 

Nonprofit organizations, such as Code.org, are dedicated to promoting computer 

science, especially computer coding in K-12 education. However, a nonprofit free CS 
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education curriculum will not solve the lack of CS courses and teachers in education. 

Only eight states in the United States have K-12 computer science standards – 

Washington, Idaho, Missouri, Illinois, West Virginia, New Jersey, Connecticut, and 

Florida (Code.org, 2017). Thirty-three states plus the District of Columbia count 

computer science classes towards high school graduation requirements (Code.org, 2017). 

Most parents surveyed, 93%, want their children to learn computer science, but only 40% 

of schools offer CS courses (Code.org, 2017). The private sector, foundations, nonprofits, 

and parents are asking for increases in CS education. Policy-makers are beginning to take 

heed. 

Research on CS Abstraction 

The term abstraction in computer science education is being professionally 

defined and used, although specific research investigating teaching abstraction is limited 

(Armoni, 2013; Fuller et al., 2007; Grover & Pea, 2013; Perrenet, 2010). Studies have 

focused on the success of computer coding software for children and how children 

interact with the software (Fessakis, Gouli, & Mavroudi, 2013; Kazakoff & Bers, 2012; 

Lee, 2010; Wang et al., 2014). Other researchers included abstraction as a part of 

computational thinking (Armoni, 2013; Bers, Flannery, Lee, 2010; Sullivan, Kazakoff & 

Bers, 2013; Wang et al., 2014). Instructional theory regarding teaching abstraction in 

math may offer solutions to teaching abstraction in computer coding (White & 

Mitchelmore, 2010). Harlow and Leak (2014) observed elementary students exhibiting 

beginning abstraction skills in computer coding. However, no qualitative or quantitative 

studies found so far address the most effective age to introduce abstraction. I offer an 
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additional exploration of educational research regarding abstraction and similar topics in 

the literature review of this dissertation. 

Abstraction as a Skill and a Concept in Computer Science 

Abstraction is a skill used in many disciplines. In computer coding, abstraction is 

used to modularize and manage complex coding commands (Armoni, 2014; Colburn, 

2000). Abstraction skills require the use of induction and deduction. For example, 

software writers use induction when they have a lot of code that they want to simplify 

and deduction when they want to choose one coding solution from many possibilities. 

Minimizing detail while writing code is a classic use of inductive and deductive 

reasoning, Computer science educators have debated whether abstraction is an innate 

skill or a skill that can be taught (Armoni, 2014). Armoni reviewed the literature 

regarding definitions of abstraction, theory on levels of abstraction, research regarding 

abstraction as a precondition for relevant computer science work, research regarding 

abstraction as a result of computer science education, and theory on teaching abstraction.  

Levels of abstraction are categorized by size (large to small), meaning (how to what), and 

thinking (problem to solution). Armoni’s literature review is not extensive, but the 

research is current and the theory she cited came from respected academic sources. Given 

the lack of research on the subject of abstraction, Armoni provided a convincing 

foundation for her conceptual framework.  

The Perrenet, Kassenbrood, and Groote (PKG) hierarchy is a significant 

theoretical framework for abstraction (Armoni, 2014). According to the PKG hierarchy, 

abstraction takes place on the execution level with the algorithm and the machine (Figure 
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5). Next abstraction occurs at the program level. Then at the object level, people perceive 

a program or an algorithm as a thing rather than the complex processes they are. Finally, 

abstraction takes place on the problem level when people deductively pose a solution, 

then create code inductively abstracting the code to simplify making the code elegant. 

The PKG hierarchy is complex enough to address the critical cognitive building blocks 

needed for producing abstraction in computer science. The illustration in Figure 1, which 

is an open educational resource, demonstrates graphically how abstraction as a concept 

and skill progresses from the execution level, addressing the machine and algorithm, to 

the program level, such as Fortran, to the object level, a computer game (Angry Birds) for 

instance, to the problem level, a computer game that uses the computer’s graphic user 

interface to have fun and make money. 

 
Figure 1. Computer science is about abstraction. 
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CS teachers must teach students how to think and how to make the computer 

work in order to teach abstraction. Abstraction skills allow programmers to use induction 

when they have a lot of code and want to simplify it or when they want to choose one 

coding solution from many possibilities (Hazzan et al., 2014). Deduction is also a part of 

abstraction because programmers need to go back and forth in their minds from big 

picture to small detail iteratively to create elegant code. Bloom’s taxonomy, does not 

adequately provide course designers or instructors with the means to create and evaluate 

instruction (Fuller et al., 2007). For this reason, it is important to recognize the 

application of the PKG hierarchy provides a robust definition of abstraction and clear 

objectives for computer science instruction and assessment. The complexity of both the 

abstraction concept and the multiplicity of abstraction procedures may ultimately render 

the PKG Hierarchy too simplistic; however, the PKG hierarchy is concise for educational 

purposes. To evaluate teachers’ experiences and beliefs regarding the instruction of 

abstraction, I explore the PKG hierarchy, computational thinking, critical thinking, and 

other conceptual and theoretical frameworks. I do not develop theory; instead, I provide a 

descriptive, robust and informative synthesis of this study regarding the instruction of 

abstraction. 

Abstraction in Computer Science Means a Representation 

According to Waite (2016), abstractions in computer science are representations 

that minimize extraneous detail in computer code. Abstractions in computer science are 

representations, simplifications of larger, more complex code. For the beginning CS 

educator, it may be tempting to think that teaching students to think abstractly means to 
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think about things that are not concrete or to simply to use one’s imagination. Although 

the ability to imagine and process ideas is surely foundational for abstraction in computer 

science, CS abstraction is more complex. Beyond merely thinking and imagining, 

abstraction is a force that has propelled technology and computers into becoming one of 

the most necessary aspects of modern life (Abelson et al., 2008). Abstraction is a concept 

consistently applied in computer science allowing software and technology to become 

more efficient and easier to program (Colburn, 2000). In Figure 2, the cartoon shows a 

person expressing their imagination on the screen using the hardware and software at 

their fingertips. The more CS teachers understand the complexity of abstraction as both 

concept and skill, the more teachers will deliver effective instruction. 

 

Figure 2. Humorous example of abstraction. Retrieved from https://xkcd.com/676/open 

educational resource. 
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Rather than considering abstraction as a teachable skill, some educators might be 

tempted to allow students to naturally discover abstraction through contextual learning 

(trial and error) and to assume that abstraction is using thought to create. The “use-

modify-create” progression in learning is a typical instructional format in beginning CS 

courses (Grover & Pea, 2013, p. 40). Indeed, the push to learn to compute through 

gaming arises from this instructional orientation (Repenning et al., 2015). Learning by 

doing, or learning contextually, is a natural and important piece of learning human 

languages (Sanz, 2005). Direct instruction is also necessary for learning human languages 

(Sanz, 2005). Learning by doing is a tenant of constructionism, predominant CS 

instructional technique characterized by inquiry-based, collaborative, trial and error 

learning (Papert, 1980). Students vary in their need for direct and contextual instruction 

(Sanz, 2005). Although there is no researched correlation between learning human 

languages and learning computer languages, instructional parallels between the two 

subjects may assist CS instructors in teaching abstraction. According to Fuller et al. 

(2007), CS students vary in their learning preferences.  Clearer definitions of abstraction 

and research on the instruction of abstraction facilitate a better understanding of effective 

instruction, such as direct, contextual, or constructionism.  

Colburn (2000) noted that as programming has evolved, the very language of 

computer programming has become abstracted. According to Colburn, abstraction can be 

procedural or content oriented, similar to the PKG hierarchy. In the past, programmers 

considered it a badge of honor to be able to fix unruly programs consisting of binary code 

(Colburn, 2000). The evolution of Fortran, one of the first computer languages, from 
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binary code to text was the beginning of the abstraction of programming languages. 

Unlike math, which requires abstraction to eliminate content, CS uses abstraction to 

enlarge content (Colburn, 2000); for instance, programmers can define lists, arrays, 

functions, and variables allowing classrooms, shopping malls, and complex analyses to 

existing in virtual space. Modern programming allows humans to create more realistic 

representations of reality without using cumbersome computer commands. Abstraction is 

the declarative and procedural vehicle that has facilitated the ease and speed of 

computing (Colburn, 2000). An example of a highly abstracted computer coding 

language called SNAP is illustrated in Figure 3. SNAP is an example of “drag and drop” 

computer code that teaches introductory computer science students principles such as 

recursion and variables which when used correctly demonstrate abstraction. The multi-

colored blocks snap into place as they are moved with the mouse on the computer screen. 

Drag and drop code used in object-oriented programming is representative of much more 

detailed line code and helps CS students to kinesthetically interact with abstract concepts 

using the mouse.   

Problem Solving and Abstraction 

Problems must be analyzed and deconstructed to consider possible solutions. One 

must deductively determine the main aspect of the problem, then inductively evaluate 

possible remedies. Both abstraction and problem-solving use deduction and induction, 

but to different ends. Problem-solving is akin to debugging in computer science, which is 

identifying why a program is not working and fixing the program. can’t begin to offer 

students instruction on abstraction, another reason to conduct this qualitative study. 
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Numerical data, as represented in Figure 4, is the foundation of all words and graphical 

computer representation. 

 

Figure 3. Example of SNAP software, drag and drop code 

Abstraction is a symbolic categorization process that allows computer coders to 

create efficient and effective code. High school students in Greece reported on surveys 

that along with increased confidence in overall computer science skills after an 

introductory computer science course; their problem-solving skills also increased 

(Giannoukos et al., 2013). Abstraction may be taught successfully using problem-solving 
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instructional strategies. However, teachers who do not thoroughly understand abstraction, 

The direct link between the abstraction of numerical data and our visual experience of 

technology is another important reason that CS abstraction warrants research. 

Problem Statement 

There is a significant lack of educational research guiding computer science 

instruction in K-12 and higher education. Although computer science educators agree that 

abstraction is a necessary and crucial computer programming skill, they are unsure how 

to teach abstraction (Armoni, 2013; Brennan & Resnick, 2012; Perrenet, 2010). Even less 

educational research exists that addresses abstraction in computer science education. 

Both qualitative and quantitative studies of computational thinking provide insight into 

 
 

Figure 4. Levels of computer languages. 
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teaching abstraction, although computational thinking is a concept in development and 

includes a variety of critical thinking skills seemingly better assessed by qualitative 

research (Armoni, 2013; Brennan & Resnick, 2012; Lye & Koh, 2014; Perrenet, 2010). 

Researchers examined teaching computational thinking in elementary school; however, 

none specifically addressed the instruction for abstraction in computer coding (Bers, 

2010; Bers et al, 2013; Denner, Werner, & Ortiz, 2012; Lee, 2010; Lee et al., 2014; Lye 

& Koh, 2014; Wang, Wang, & Liu, 2014). Although researchers have concluded that 

certain types CS instruction like constructionism, use-modify-create, and object-oriented 

software assist in the development of computational thinking and computer coding skills, 

no specific research informing best practices for teaching CS abstraction exists. 

Therefore, this study focuses on K-12 computer science instruction for abstraction 

qualitatively examining the teaching experience. 

Purpose of this Study 

The purpose of this descriptive qualitative inquiry is to examine teachers’ 

experiences determining curriculum, delivering instruction, and designing assessments 

regarding the topic of abstraction in computer science. The instruction of abstraction is 

the primary phenomenon of this study. Teaching experience is defined as the 

constructivist experience of teachers using their background knowledge to create 

curriculum and teach objectives successfully (Connelly & Clandanin, 1988; Merriam & 

Tisdell, 2016; Pappert, 1993). 
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Research Questions 

This study is guided by one general research question: How do teachers decide 

what effective instruction for teaching abstraction in computer coding is?  Additionally, 

three primary research questions shape the nature of this study, 

Research Question 1: What types of instruction do K-12 teachers find most 

effective for teaching abstraction in computer coding? 

Research Question 2: How do teachers determine objectives and competencies for 

teaching abstraction in computer coding? 

Research Question 3: How do teachers assess student abstraction skills in 

computer coding? 

Additional questions regarding the teaching experience are expected to arise 

during the semistructured interview process (Patton, 2002; Yin, 2014). As I began to 

gather interview data, I began thematic coding analysis and inductively used “emic” or in 

vivo structures to code interview data (Maxwell, 2013; Patton, 2002). Miles, Huberman, 

and Saldana (2013), highly recommended coding, qualitative data analysis, concurrently 

with data collection. Precoding structures arising from theoretical constructs are called 

“etic” structures (Maxwell, 2013; Patton, 2002). Using a precoding method based on 

theoretical constructs indicates a primary deductive method of coding (Patton, 2002). The 

danger in using a precoding structure deductively is that researcher bias might cause the 

analysis to be skewed (Maxwell, 2013). For this reason, I needed to focus on creating 

illustrative descriptions of teaching experiences.  It is possible that all aspects of their 

lives and their experience as teachers may be valuable information. However, the 
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research focuses on curriculum development, instructional strategies, and assessment 

methods of abstraction in computer coding. The primary strategic advantage in creating a 

precoding structure from teacher interviews is that it helps maintain a focused study and 

not get overwhelmed by extraneous data.  

Conceptual Framework 

Piaget’s reflective abstraction and cognitive development theory (1950, 2014), 

Papert’s constructionism theory (1980), Wing’s computational thinking theory (2006), 

and Vygotsky’s (1986) zone of proximal learning were the primary theories used to 

conceptualize the literature related to the research questions. Learning is inextricably 

connected to instruction. Piaget’s (1950, 2014) theories on reflective abstraction and the 

development of cognition were used to understand the possibility of teaching abstraction 

to all grade levels as well as developing the categories of instructional approaches used to 

teach abstraction. Vygotsky’s (1986) zone of proximal learning was used to frame the 

relationship of the teacher and the student, evaluate collaborative learning, developing 

critical thinking, and developing advanced thinking skills like abstraction needed for 

successful computer programming. Papert’s (1980) constructionism and Wing’s (2006) 

computational thinking theories were used to understand current and enduring approaches 

to computer science instruction. Because abstraction involves both deductive and 

inductive thinking, the theories of Bloom (1956) and Marzano and Kendall (2007) 

informed research on critical thinking, problem-solving, and computational thinking. 

Additionally, theory from Fichte (as cited in Whistler, 2016) regarding abstraction and 

potentiation, Floridi’s (2011) theory that computers facilitate epistemological 
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development, and Gobbo and Benini’s inforg theory (2012) regarding the abstract 

essence of the human-computer relationship provide deeper understanding about the 

complex nature of the concept of abstraction that teachers must understand in order to 

teach.  A more detailed analysis can be found in Chapter 2.  

The development and nature of thinking bridges into psychology which is why 

Piaget’s (2001, 1980) and Vygotsky’s theories informed Research questions 1 and 2.  

Cognitive research demonstrates that 30% to 35% of adolescents reach the formal 

operation stage (defined by Piaget) in which the cognitive ability to abstract occurs - 

some adults never reach the formal operation stage (Armoni, 2012; Kramer, J., 2007). 

Recent literature challenges abstraction as a cognitive process developing later in the 

teenage years or as an adult (Braithwaite et al., 2016; Novack et al., 2015; Rittle-Johnson 

& Schneider, 2014). Piaget later recanted the ability of young children to learn 

abstraction calling the thinking process reflective abstraction. Nevertheless, Piaget’s 

stages of cognitive development and reflective abstraction provide a context for 

examining abstraction skills from elementary to post-secondary grades, as well as from 

low to high abstraction levels (Armoni, 2012; Kramer, J., 2007). Finally, Vygotsky’s 

(1986) zone of proximal learning theory informed Research Question 3 and may explain 

multiple pathways for children in learning and expressing abstraction.  

Papert’s (1980) constructionism and Wing’s (2006) computational thinking 

theories, which informed Research Questions 1, 2, and 3, illuminate the ways and 

primary content needed to shape thinking for learning computer science, as well as the 

ways students demonstrate computer science knowledge. Constructionism is a prevalent 
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theory in CS education and has resulted in student-led guided inquiry instructional 

strategies (Armoni, 2013: Bers et al., 2014; Denner, Werner, & Ortiz, 2012; Fessakis, 

Gouli, & Mavroudi, 2013; Harlow & Leak, 2014; Kazakoff & Bers, 2012; Lee, 2010; 

Papert, 1980; Wang, Wang, & Liu, 2014). Computational thinking has been used to guide 

curriculum and learning experiences resulting in thinking that uses computers to solve 

problems (Anton & Barany, 2013; Bers, 2010; Bers et al, 2014; Lee, 2010; Lee et al., 

2014; Lye & Koh, 2016; Pellas & Peroutseas, 2016; Bucher, 2016; Sanford & Naidu, 

2016; Zhong et al., 2016; Czerkawski & Lyman, 2015; Shell & Soh, 2013; Wing, 2006). 

Both constructionism and computational thinking can be used to inform assessment 

choices. Papert (1980) adapted constructivism in computer science calling the concept 

constructionism, meaning the construction of knowledge to create objects in the world. 

Acquiring mastery of computer coding concepts and procedures are both necessary 

aspects of learning abstraction (Zendler & Klaudt, 2012).  

Nature of the Study 

The basic qualitative descriptive inquiry is an effective research strategy for initial 

investigation in educational subjects with many variables (Merriam & Tisdell, 2016). 

This study explores how teachers generate the knowledge of their instruction, curriculum, 

and assessments, and how they construct meaning regarding the teaching of abstraction in 

computer science via constructivism (Patton, 2002). In this study, 12 teachers were 

interviewed twice. Initially, the study required each teacher to submit five artifacts of 

student coding exhibiting abstraction or the progression towards abstraction. Although 

mitigating factors, which will be explained in Chapter 3, necessitated the change in data 
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collection to include two teacher interviews and analytic researcher memos after each 

interview. Because teachers have a variety of instructional goals for teaching abstraction, 

different students, ages of students, learning environments, and curricula, there are a 

plethora of variables that cannot be controlled. Computer science courses may be taught 

as a sub-discipline of Science, Math, or Technology because many states do not have 

curricular requirements for CS. Additionally, CS teachers use many different computer 

software programs to teach coding. The K-12 annual assessments in most states do not 

test computer science competencies. A lack of quantitative data, consistent curriculum, 

and teacher case variation necessitate investigating the instruction of abstraction using a 

basic qualitative format. 

Definition of Terms 

Abstraction is the use of a variety of algorithms that shorten, hide, and simplify 

computer code creates elegant and efficient computing. (Armoni, 2013). 

Computational thinking is applying computational solutions to computer coding 

or computational devices to solve problems (Wing, 2006).  

Critical thinking is the ability to process information in a variety of ways 

including synthesis, analysis, and metacognition (Faccione, 1996). 

Instruction is the activity and delivery of experiences designed to affect learning 

(Ambrose et al., 2010). 

Assessment is the activity and process of evaluating learning (Ambrose et al., 

2010). 
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Objectives are specific skills and tasks designed to produce a certain learning 

effect (Biggs & Collis, 2014). 

Standards and Competencies are broad learning goals, skills, and thinking 

abilities that guide specific course objectives (Biggs & Collis, 2014). 

Recursion is an iterative algorithmic process that simplifies and shortens 

computer code (Brookshear et al., 2012). 

Variables are representative symbols that simplify computer code and represent 

larger concepts (Brookshear et al., 2012). 

Event handlers are algorithmic processes that simplify computer code (Brennan & 

Resnick, 2012). 

Assumptions 

Assumptions are worldviews or beliefs that can bias a researcher’s observations 

and interpretations (Corbin & Strauss, 2015). There are three major categories of 

assumptions in this study regarding teacher honesty, the importance of abstraction, and 

abstraction as a thinking skill in student coding. It is assumed that teachers provided 

honest answers and comments in the interviews. This study also implies that in 

accordance with computer science education, abstraction is a necessary skill (Armoni, 

2013; Brennan & Resnick, 2012). The order of the importance of computer science 

thinking skills, such as sequencing, using persistence, and implementing conditionals to 

learn about computer science is unknown. Abstraction is not a necessary skill to begin 

learning computer science; however, abstraction is necessary to produce effective elegant 
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computer code (Armoni, 2013). As the field of computer science education evolves, the 

validity of assumptions is important to reflect upon and evaluate (Denning et al., 2016). 

Scope and Delimitations 

The purpose of this inquiry is to examine teachers’ experiences determining 

curriculum, delivering instruction, and designing assessments regarding the topic of 

abstraction in computer science. Identifying and describing teachers’ experiences with 

abstraction can provide useful information for other teachers, educational researchers, 

software developers, policy-makers, and additional professionals involved in CS 

education. Because teachers are the primary facilitators of education, investigating their 

experiences will inform future studies.  

This inquiry is bounded by specific aspects of the teaching experience, namely 

curriculum, instruction, and assessment, in order to identify useful teaching strategies and 

variables for future research. Additionally, using purposeful sampling and limiting the 

participants to four elementary, four middle school, and four secondary teachers, leads to 

fewer variables, but make the data richer.  

Transferability of the findings from this study may inform the instruction of 

abstraction across the United States. Recruiting teachers from a variety of states aides in 

the transferability of results. The knowledge gained from comparing and contrasting the 

experiences of teachers in a variety of grade levels may provide teachers with ideas about 

appropriate grade-level instruction. Insights from this study may also help policy-makers 

and educational researchers write grade-level appropriate standards. 
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Limitations 

Potential weaknesses in this research proposal can be attributed to the qualitative 

researcher and the small qualitative sample.  Human bias from my perceptions (as the 

researcher) of the literature review, the theoretical framework, precoding structures, and 

perceptions of validity, and naiveté regarding threats to validity limit this study.  Also, 

the small number of participants required for a thorough qualitative study naturally limit 

generalizability (Stake, 2006). Hopefully, this research will generate future quantitative 

research that will utilize greater population sizes and more objective variables. 

Significance 

Better computer science instruction results in more people in all professions 

having the technical knowledge to solve computational problems (Abelsen, Ledeen, & 

Lewis, 2008). An informed digitally literate citizenry may be able to be more creative 

with technology and make wise choices about technology for future generations. 

Metaliteracy, a concept proposed by Jacobsen & Mackey (2013), encourages the use of 

critical thinking and metacognition in the development of literacy needed to navigate 

digital text and sources. As technology continues to increase the scope of education, 

teachers need guidance, such as metaliteracy, about teaching technology, specifically 

how to offer effective computer science education with specific and appropriate cognitive 

objectives. Aligned curricula for computer science are in development, and there is a 

need to understand what type of instruction is most useful (CSTA, 2015; CS10K, 2015). 

Some predefined curricula from Code.org, Khan Academy, and others are taught at the 
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elementary, middle school, high school, and college levels because of a lack of 

educational resources and a lack of trained teachers.  

This study will inform the developing concept of computational thinking by 

providing insight about when and how students learn abstraction (a component of 

computational thinking).  Computational thinking is the dominant theory guiding 

computer science curricula and suggests a complimentary instructional approach to 

critical thinking. Abstraction is one component of computational thinking. This study will 

also help inform the development of computer science curricula.  

Summary 

The process of teaching like the process of computer science can be reduced to 

input and output.  If abstraction, an essential skill needed for computer programming is 

the output, what types of instruction at what ages provide the optimal output or evidence 

of learning? Computer science education is a developing field (Wagner, 2013). By 

examining the perspectives of teachers in the field, this study will help to identify factors 

of effective instruction of abstraction that can be quantitatively studied, as well as 

additional educational variables, such as grade-level appropriate instruction. The appeal 

of computational thinking is that it is a catchphrase for a necessary and straightforward 

idea that people need to use computers more practically in all disciplines. The reality of 

computational thinking is that it is a vast subject, and we have only begun to uncover the 

many ways of thinking that require development to use computers effectively. 

Examination of the instruction of abstraction will further our understanding as educators 

about teaching computer science effectively. In Chapter 2, I comprehensively explore the 
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existing gap in literature affirming a qualitative examination of abstraction in K-12 

instruction. 
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Chapter 2: Literature Review 

If all people learn to use computers as the tools they were meant to be, the notion 

of digital literacy will expand from simply navigating software, such as Microsoft Excel, 

and evaluating Internet sources to programming computers and designing technology that 

solves human problems (Abelson et al., 2008). Programming computers, as opposed to 

operating computers, facilitates human creativity and knowledge. For multiple reasons, 

such as the pervasiveness of abstraction in today’s technology, as well as the complexity 

of the subject the instruction of abstraction in computer science may be difficult for 

teachers to develop or broach. Abstraction is a necessary aspect of being a competent 

computer programmer, but because the subject of abstraction has been poorly defined and 

researched, the instruction of abstraction lacks guidance (Armoni, 2013). Perhaps 

because abstraction is embedded in multiple layers of technology explaining abstraction 

may appear overwhelming.  

Colburn (2000) mentioned computers are essentially abstractions of human 

thought, expanding content and capability. Because the subject of the instruction of 

abstraction leaves many questions, this study will help to illuminate current pedagogy 

and future research. The purpose of this descriptive qualitative inquiry is to examine 

teachers’ experiences determining curriculum, delivering instruction, and designing 

assessments regarding the topic of abstraction in computer science. There may be 

different pathways to learning abstraction, similar to the theoretical concept proposed by 

Fuller et al. (2007). In this literature review, I compare and contrast abstraction with 

computational thinking and critical thinking. I also show how there are implications for 
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teaching abstraction from research on the instruction of computational thinking and 

critical thinking. A discussion of philosophical and theoretical constructs regarding 

abstraction provides a context for the research of this complex topic. 

Literacy Search Strategy 

I primarily used the ERIC and Sage databases, as well as Google Scholar, to 

search keywords limiting the review to abstraction in computer science, instruction of 

abstraction in computer science, and dissertations and peer-reviewed articles published 

between 2013 and 2017. CT research usually indicates abstraction as a component of 

computational thinking. Critical thinking also contains aspects of abstraction, namely 

deduction and induction (Kong et al., 2014; Marzano & Kendall, 2007). Therefore, I used 

computational thinking and critical thinking studies for the bulk of this literature review.  

The following are the main keywords used to generate the literature review: computer 

science coding + children, computer science instruction + children + coding, computer 

science + language acquisition, computer science assessment + children, computer 

science principles + instruction + age, computer coding + age, computer coding + 

elementary, dissertations + computer science instruction, comparing coding with 

different ages, computer coding developmental age, and computer coding teaching 

vocabulary.  

I found 116 relevant peer-reviewed scholarly publications from thousands of 

studies were found using the keywords: instruction, computer science, abstraction, math, 

computational thinking, and critical thinking. Seven of the 116 relevant publications 
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offered only commentary, curricular or instructional suggestions, and literature review; 

the remaining publications were research studies.  

Thirteen studies addressed how students learn abstraction in computer science 

(Armoni, 2013; Carbonaro, Szafron, Cutumisu, & Schaeffer, 2010; Colburn & Shutte, 

2007; Cooper, Perez, Rainey, 2010; Csneroch & Math, 2015; Guzdial, 2011; Katai, Toth, 

& Adjani, 2014; Perrenet, 2010; Reuker et al., 2013; Saeli et al., 2012; Shirazi et al., 

2013; Wang, et al., 2014; Weintrop & Wilensky, 2014). Perrenet’s (2010) use of surveys 

and interviews provided data on college students’ understanding of the diverse level of 

abstraction. Fessakis, Gouli, and Mavroudi, (2013) and Harlow and Leak (2014) 

investigated how elementary students learn abstraction and computational thinking via 

video observation. Armoni (2013) surveyed high school students and found they were 

capable of basic levels of abstraction.  

After presenting at the 2017 Computer Science Teachers Association conference, 

colleagues from England alerted me to the presence of two dissertation studies on 

abstraction in computer science, one finished and one in progress. I conducted 

dissertation searches using the Walden University library and all of the keywords listed 

previously but did not find any dissertations on the instruction or learning experience of 

CS abstraction. Teague (2015) conducted a dissertation mixed method study of 

undergraduate Information Technology (IT) students and applied their mastery and 

experience of learning abstraction to Piaget’s learning theory. In one semester, novice 

programmers demonstrated proficiency with the sensorimotor and preoperational 

reasoning but did not achieve proficiency in concrete operational stage thinking. Teague 



32 

 

 

noted that the most mature Piagetian stage, formal operational reasoning, was not 

considered in depth in her study and concluded difficulty in the development of abstract 

thinking limited novice programmers from achieving programming skills. Waite, Curzon, 

Marsh, and Sentence (2016) recommended using visual instructional strategies, such as 

graphic organizers, concept maps, and storyboards for teaching abstraction to young 

learners. Waite is currently working on her dissertation in which she is studying the 

instruction of abstraction in elementary computer science education. Teague (2015) and 

Waite et al. (2016) illustrated that related research has focused on student learning and 

not the teaching experience of abstraction.  

Few researchers have investigated teaching in computer science, and their 

research has not examined teaching abstraction. Researchers in only one study addressed 

computer science teachers providing descriptive statistics from surveys to ascertain their 

pedagogical content knowledge (Saeli, Perrenet, Jochems, Zwaneveld, 2012). Many 

STEM teachers are not teaching computer science and consequently not teaching CS 

abstraction. None of 38 science teachers who won the Presidential Award for Excellence 

in Science Teaching surveyed included computer coding in their courses (Hakverdi-Can 

& Dana, 2012). Scant research does not provide helpful information about CS teachers. 

Instructors as students were the subjects of one study that indicated they were satisfied 

with an online AppInventor introductory course (Hsu & Ching, 2013). As the push for 

training CS teachers advances, CS educational research is being collected. 

Beginning in 2004, CS educational and computer science experts at the Exploring 

Computer Science (ECS) Project developed teacher professional development modules 
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designed for K-12 educators focused on expanding AP Computer Science teaching. 

Margolis et al. (2011) created the ECS Project after reporting on gross racial and gender 

inequities in computer science education. ECS teacher training has been successfully 

implemented in Los Angeles and Chicago public schools (Ryoo et al., 2014). ECS 

teacher training curriculum emphasizes including problem-solving and critical thinking, 

specifically teaching the analysis of abstraction. ECS researchers report that the top three 

CS instructor practices include connecting computing with equity and everyday issues, 

encouraging collaboration, and using guided inquiry to facilitate metacognition and 

computational thinking (Ryoo et al., 2014). ECS teachers asked more questions about 

knowledge acquisition and analysis, and fewer questions about application and 

evaluation. Abstraction is an important aspect of teaching CS computer science, and 

additional research into the understanding of teachers’ experiences will facilitate better 

teaching practices.  

Cooper, Perez, and Rainey (2010) recommended that the role of the teacher in the 

process of learning abstraction should be studied. It is essential to understand if the 

output, or student learning which most studies examine, is happening. Alternately, by 

addressing learning input, or instruction, researchers can guide teaching best practices. 

Precedent exists from this literature review for interviewing and surveying teachers to 

obtain information regarding their teaching experience of abstraction in computer 

science. Philosophical and theoretical viewpoints also inform current understanding of 

the instruction of abstraction. 
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Abstraction and Philosophy 

In order to understand the breadth of context for abstraction existing in computer 

science, I begin this literature review with an examination of theory and conceptual 

frameworks from philosophy, psychology, and computer science. According to Flick 

(2013), theory and conceptual frameworks can be used to illuminate participant 

perspectives (p. 48). Famous philosophers such as Kant, Hegel, and Fichte expounded on 

the nature of abstraction, existence, and thought. Philosophers have debated how reason 

evolves as an abstraction of thought allowing humans to transcend experience (Whistler, 

2016). According to Fichte (as cited in Whistler, 2016), abstraction of thought occurring 

from induction (observation to theory) and subsequently deduction (theory to 

confirmation of reason) is either potentiation or depotentiation. Abstracting can be used 

to pull out the essential nature of something and expose it, making it more potent, or 

abstraction can be used to delve deeper into the nature of something deconstructing it, 

depotentiating it, and to make it less “potent”. The conventional use of abstraction in 

computer science is like Fichte’s potentiation, whereby abstraction preserves the essential 

nature of the computer program (Gobbo & Benini, 2012). Instructors may find that 

assisting students in honing their metacognitive skills will assist the student in thinking 

about thinking (metacognition), leading to thinking about coding efficiently because 

coding essentially represents thought. Therefore, philosophy may be a useful subject 

assisting teachers and students in understanding abstraction in computer science. 

Teaching abstraction may benefit from discussions about the nature of the human-

computer relationship. Ben-Ari (2001) pointed out that most students do not have an 
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explicit model of the computer. A computer is not an animal that is a soft-tissue being 

like us and thinks like a human. A computer metaphorically has a different body than a 

human. However, a computer does have structure and function, very similar to language 

that has words, syntax, and grammar. In fact, computer programming “symbolically 

represents algorithms as numbers” basically hiding information, the very act of 

abstraction (Gobbo & Benini, 2012, p. 4). Abstraction can be found in both human 

thoughts and subsequently in computer programming. The computer requires 

programming code to function, thereby becoming an ontological extension of thought 

(Ben-Ari, 2001; Gobbo & Benini, 2012). Computers represent and express our thoughts, 

thereby seeming human. 

Abstraction becomes more complex because the inforg, or human-computer 

interaction, as an object produces more levels of organization and explanation, or levels 

of abstraction (Gobbo & Benini, 2012). Coding is a part of the human-computer 

interaction, e.g. choosing printing options on a printer and accessing cloud-based services 

(Gobbo & Benini, 2012). Computers have always been tools to extend the thinking 

process and knowledge. Computers also facilitate epistemological development or the 

development of knowledge (Floridi, 2011). As computers become easier for humans to 

program, Fichte’s 19th-century notion that abstraction produces reason indifferent to the 

self seems to have manifested in the form of the human-computer inforg. The level of 

abstraction may be as simple as an app on a phone or as complex as a robot that learns 

how to help older adults. Both computer examples require elegant and efficient computer 

code, and both are extensions of human creativity serving human needs. The complexity 
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of human and computer interactions makes the concepts and skills needed to understand, 

teach, and learn abstraction challenging. 

Abstraction and Psychology 

Piaget (1950, 2014) asserted that the development of abstract thinking, which he 

defined as the ability to realistically imagine a problem and a solution, occurs around age 

11. The instructional implications for abstraction would be that teachers focus on 

knowledge acquisition and algorithmic procedure, like memorizing math facts and 

computational procedures, until middle school when students have learned the coding 

process and can think of ways to apply and use both deductive and inductive reasoning. It 

might be too much to assume that elementary students could demonstrate the independent 

application of abstraction in computer coding. Elementary students might be able to 

model abstraction at the Perrenet, Kassenbrood, and Groot (PKG) execution level, or 

algorithm level, but not independently demonstrate abstraction (Perrenet, Groote, & 

Kassenbrood, 2005). More research is required to understand student learning and 

capacity for abstraction.  

Reflective abstraction, coined by Piaget (cited in Mudrikah, 2016), has been used 

to organize math instruction and provide insight into instructional best practices for 

teaching abstraction in computer science. Capetta and Zolman (2013) recommended 

using peer instruction, reflective thinking exercises, and instructor dialogue to stimulate 

reflective abstraction in calculus students. Open-ended questions and story problems 

were found to influence the development of abstraction among Thai 4th grade math 

students (Promraksa, Sangaroon, & Inprasitha, 2014). African high school students 
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exhibited more creativity in solving math problems when instructed with a learning 

process emphasizing doing, reflecting, thinking, and applying concrete experience, 

reflective observation, abstract visualization, and active experimentation (Chesimet, 

Githua, & Ng'emo, 2016). Cognitive disequilibrium, another Piagetian concept, could 

also be used to encourage abstraction given that cognitive disequilibrium initiated critical 

thinking in over 400 college students surveyed (Cole & Zhou, 2014). Collaborative, 

inquiry-based instruction emphasizing metacognition and critical thinking development 

appear to be effective instructional practices for teaching abstraction in math. 

Vygotsky and Teaching Critical Thinking through Interpersonal Learning 

When exposed to examples of inductive and deductive reasoning, children learn 

the concepts of abstraction, critical thinking, and computational thinking. Vygotsky’s 

(1986) interpretation of how thought develops through language is an important reminder 

to teach vocabulary and concepts similar to how children learn language - verbally, 

interpersonally, and repetitively. Vygotsky’s zone of proximal development helps to 

explain how children could be learning without being able to produce evidence of such 

learning. According to Vygotsky (1978), “the actual developmental level characterizes 

mental development retrospectively, while the zone of proximal development 

characterizes mental development prospectively” (pp. 88-87). Following Vygotskian 

theory, students learn more than they are capable of expressing and students learn best 

socially.  

Computer science and critical thinking research demonstrate the validity of the 

zone of proximal learning. Over 85 medical school faculty surveyed agreed that critical 
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thinking was an ability that could be learned and required interpersonal interaction, 

insinuating that abstraction would also require collaborative learning (Rowles et al., 

2013). Interpersonal or collaborative learning focusing on controversial topics has been 

shown to increase critical thinking in honors college students (Cargas, 2016). Another 

application of interpersonal learning involves mentors. Middle school computer science 

students in a New York City after-school robotics program learned how to build robots 

from adult mentors, persistence, STEM instruction, and critical thinking skills (Groome 

& Rodriguez, 2014). Even if children might be too young for direct instruction, indirect 

instruction via stories or demonstrations, even anthropomorphizing computers could be a 

way for them to absorb and model the vocabulary and conceptual means to think 

abstractly, critically, and computationally. 

Vygotsky’s inner speech, or “talking” to oneself, internal dialogue, begins around 

age 7 (Flavell et al., 1997). The development of inner speech, the beginning of 

metacognition, is necessary for abstraction, critical thinking, and computational thinking 

(Mahn, 2012). Elementary students may be able to begin to understand abstraction, which 

is one reason why this study includes elementary teachers. Huang et al. (2016) illustrated 

how math instruction for multiplication could be simplified and made more efficient for 

middle and high school students using collaborative learning and metacognition. CS 

educators recommend paired programming for teaching computer science (Porter et al., 

2013). Speech helps develop thought; research shows that computer science instruction 

highlighting collaborative learning and paired programming validates Vygotsky’s theory 

(Harlow & Leak, 2014; Mahn, 2012). In a large quantitative study of 525 high school 
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students, Asku and Korkulu (2015) provided evidence that critical thinking instruction is 

correlated with math competency and students must have a positive attitude to be 

successful in math. If the instruction that focuses on developing an inner dialogue, 

metacognition, and critical thinking facilitates math competency, similar instructional 

techniques could help students learn abstraction. 

Although collaborative social learning may not be entirely correlated with 

learning critical thinking, computational thinking, and ultimately abstraction, 

incorporating verbalizing thoughts might be helpful. Peer-led team learning (PLTL) and 

critical thinking gains were not correlated in a study conducted with undergraduate 

biology students; however, PLTL was an instructional strategy positively related to 

increased self-efficacy and social skills (Synder & Wyles, 2015). Additionally, critical 

thinking was not correlated with student social presence in Korean online courses, 

possibly indicating that actual voice or speech may indeed be a necessary critical thinking 

component (Costley, 2015). Undergraduate students who learned to detach and listen 

were effectively engaged in critical thinking and group decision-making (Dwyer et al., 

2014). Process-oriented guided inquiry learning (POGIL) is an instructional technique 

originating in 1994 designed for chemistry education (Hu, et al., 2016). POGIL protocol 

advises using small group collaborative learning where teachers act as facilitators asking 

questions to stimulate students to construct meaning, solve problems, and develop critical 

thinking. In surveys, 32 CS secondary and college educators indicated strong agreement 

with POGIL instruction improving student engagement, interpersonal skills, active 

learning, and CS learning outcomes. Actively engaging, verbalizing, with other students 
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or with the instructor, may be important instructional activities that facilitate learning 

abstraction. 

Situating Abstraction within Computational Thinking 

Brennan and Resnick (2012) proposed a framework of thinking that includes 

abstraction as a subskill. As stated previously, various levels of abstraction must be 

applied to make computers express thought through design. The specific levels of 

abstraction are subjective. Brennan and Resnick, professors at MIT, have offered a 

framework for computational thinking that includes computational concepts (sequences, 

loops, parallelism, events, conditionals, operators, and data), computational practices 

(being incremental and iterative, testing and debugging, reusing and remixing, and 

abstracting and modularizing), and computational perspectives (expressing, connecting, 

questioning). Brennan & Resnick’s framework for computational thinking, concepts – 

practices – and perceptions, is akin to the PKG hierarchy (Figure 5). Computational 

practices are similar to the execution and program levels of abstraction.  Object and 

problem levels require an understanding of computational concepts. Computational 

perspectives are also necessary for the object and problem levels of abstraction. Although 

Brennan & Resnick’s framework has not been used as much as Wing’s more simplified 

definition of computational thinking, the delineation of multiple ways of thinking needed 

for computational thinking provides further understanding of a working definition of 

abstraction. 

Computational thinking (Wing, 2006) has taken on multiple meanings, and is the 

most noted theoretical framework and rationale for many studies (Anton & Barany, 2013; 
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Bers, 2010; Bers et al., 2014; Czerkawski & Lyman, 2015; Lee, 2010; Lee et al., 2014; 

Lye & Koh, 2016; Pellas & Peroutseas, 2016; Bucher, 2016; Sanford & Naidu, 2016; 

Shell & Soh, 2013; Zhong et al., 2016). According to Wing (2006, 2008), head of the 

computer science department at Carnegie Mellon University, computational thinking 

requires abstraction and automation. 

 
Figure 5.  PKG Hierarchy 

 

Although computational thinking (CT) has become pervasive in computer science 

education, it is also a way of thinking necessary in the 21st century (Cooper, Perez, & 

Rainey, 2010). Computational thinking enshrines abstraction as one of its primary 

components (Grover & Pea, 2013). Cooper, Perez, and Rainey (2010) attribute the 

development of abstraction to the externalization of human knowledge interfacing with 

computers, a similar interpretation of Floridi’s (2008, 2011) works. According to Floridi 

(2008), human beings are turning into information organisms being increasingly 
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level
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dependent on computer information in an infosphere (p. 2). Computational thinking will 

help students determine the difference between computers and humans, especially with 

the advent of artificial intelligence (essentially an abstraction of human intelligence) and 

machine learning. Because abstraction is a necessary aspect of CT, this proposed study 

may provide valuable insight into the instruction of both computational thinking and 

abstraction. 

Comparison of Abstraction, Computational Thinking, and Critical Thinking 

        Academic articles begin with an abstract or a condensed summary of the broad body 

of knowledge. In a sense, a car, a microwave, and a computer are tools that we operate by 

understanding abstraction and not with knowledge of the complex mechanism and coding 

of the machines (Brookshear, 1997). Applying levels of abstraction enables people to 

program complex computer operations that would otherwise make computer 

programming overwhelming (Brookshear, 1997).  Similarly, student computer 

programmers can follow the procedures indicating abstraction, but may not fully 

understand the concept of abstraction enough to create technological innovation.  

According to Dale and Walker (2007), abstraction as a model allows 

programmers to remove extraneous detail and make the code more efficient. Computer 

science educators are in the process of defining abstraction (Armoni, 2013; Brennan & 

Resnick, 2012; Fuller et al. 2007). The thinking skills of induction and deduction are two 

common ideas in their definitions. Induction and deduction are also critical thinking skills 

defined by Marzano and Kendall (2007) as specifying and generalizing roughly 

equivalent in Bloom’s taxonomy as analysis, synthesis, and evaluation. By comparing 
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and contrasting the definitions of abstraction given by the computer science education 

scholars listed above as situated in the critical thinking taxonomies of Marzano and 

Kendall and Bloom, essential elements of learning abstraction are identified.  

Wing (2006), Brennan and Resnick (2012), Armoni (2013), and Fuller, et al. 

(2007) offer varying definitions of abstraction sometimes included in computational 

thinking. To further complicate the issue, Armoni offered a synthesis of important 

scholarly constructs of abstraction in which he avoids defining abstraction and instead 

utilizes the PGK hierarchy to support a framework for teaching abstraction. The PGK 

hierarchy describes four levels of abstraction. First, the execution level involves 

expressing abstraction thinking through the algorithms needed to run computers. The next 

level is the program level, which requires applying algorithms to a variety of programs, 

essentially making computers do similar things with different programs. The next level of 

abstract thinking involves perceiving an algorithm as an object allowing computer 

programmers to simplify code and make it elegant. Finally, abstraction on the problem 

level expresses the solution via computer. Armoni further simplified abstraction by 

adding that it is understanding of the process and problem in size from large to small (and 

vice versa) as well as in meaning from how to what (and vice versa).  

Abstraction is mentioned in the thorough synthesis of learning taxonomies by 

Fuller, et al. (2007), although the specific taxonomy they developed for computer science 

courses is based on Bloom’s taxonomy (because of its widespread prevalence in 

computer science education research) and indirectly addresses abstraction. On one side of 

the taxonomy are activities for producing (apply and create) and on the other side are 
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cognitive domain activities for interpreting (remember, understand, analyze, and 

evaluate). The taxonomy is based on the fact that reading computer code, understanding 

code, and writing code are two different processes, similar to reading and writing a 

language. Abstraction is one of the skills required for the production activities of 

applying and creating; abstraction is utilized in all the categories of interpretation. 

Therefore, this taxonomy does not explicitly recognize abstraction and does not 

adequately offer a means to evaluate student abstraction skills. Nevertheless, the 

taxonomy of learning computer science does suggest something novel regarding critical 

thinking and learning abstraction.  

Figure 6. The pathway of a student who attains only theoretical competency (Fuller, et al. 

2007).  

Fuller et al. (2007) posited that students use multiple pathways for producing and 

interpreting computer coding to attain higher order thinking. Many subjects are learned 

by interpreting and analyzing; however, computer coding also requires practicing and 

applying knowledge. Figure 6 illustrates how students learn computer coding by 

remembering (R), understanding (U), analyzing (An), and evaluating (E), purely through 
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cognitive channels. Figure 7 shows how other students learn computer coding through 

remembering (R), understanding (U), applying (Ap), and creating (C).   

 

Figure 7. The pathway of a student who attains only practical competencies (Fuller, et al., 

2007).  

English literature teaches students how to analyze and critique, but rarely are students 

required to write (create) a novel. In computer science students must produce software; 

therefore, the simplicity of Bloom’s taxonomy which focuses on conceptual 

understanding does not adequately support computer science course design or 

measurement of course objectives which also requires procedural understanding. Because 

Bloom’s taxonomy is used so readily, educators often assume that the higher levels of 

Bloom’s, i.e., analyzing, synthesis, and evaluation create a better learning experience. 

The beauty of the taxonomy for learning proposed by Fuller, et al. (2007) is that they 

recognize multiple pathways for developing critical thinking and achieving proficiency in 

computer science illustrated in Figure 8.  
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Figure 8. The goal “Create or Evaluate” can be attained through multiple pathways 

(Fuller, et al.).  

The other theoretical constructs for learning abstraction, computational thinking, and 

critical thinking, do not recognize students might have varying cognitive pathways for 

achieving CS proficiency (Armoni, 2013; Brennan & Resnick, 2012; Marzano & 

Kendall, 2007; Wing, 2006).  

Critical thinking defined by philosophy usually emphasizes the “nature or quality 

of thought”; whereas, critical thinking defined by psychology stresses cognitive processes 

(Atabaki et al., 2014). In a complex taxonomy of learning including the cognitive, 

affective, psychomotor, and self-system domains, Marzano and Kendall (2007) identified 

abstraction as the process of generalizing and specifying akin to Bloom’s analyzing, 

synthesizing, and evaluating. Stating that inferences can be both inductive and deductive, 

Marzano and Kendall (2007) have defined generalizing as retroduction, a process more 

like induction but requiring both induction and deduction during the process.  

Additionally, generalizing involves pattern recognition, the ability to focus on specifics, 
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identifying connections that explain patterns (Marzano & Kendall, 2007). Focusing on 

the words induction and deduction may help inform the instruction of abstraction.  

The theoretical constructs suggested by Armoni (2013), Wing (2006), and 

Bloom’s taxonomy (Fuller et al., 2007) as well as the producing/interpreting taxonomy 

(Fuller et al., 2007), concentrate solely on the cognitive domain of learning although 

Fuller et al. (2007) admit that the affective domain is a critical part of computer science 

education because students are expected to create professional soft skills for evaluating 

ethical behavior, evaluating the ethical implementation of technology, and facilitating 

clients. Brennan and Resnick (2012) and Marzano and Kendall’s (2007) theoretical 

constructs include the affective domain. Marzano and Kendall’s new taxonomy of 

learning also includes the self-system maintaining that personal beliefs and metacognition 

are the most important aspect of achieving critical thinking.  

Turkish researchers found a positive correlation between self-confidence in 

reasoning ability and critical thinking after testing 400 K-12 teachers, providing 

testimony to the probable positive relationship between the self-system and development 

of critical thinking (Emir, 2015). Affective and emotional domains associated with the 

self-system also influenced critical thinking acquisition in Russian, advanced English 

Language, Science, and Social Studies courses (Vanicheva, Kah, & Ponidelko 2016). 

Kwan and Wong (2014) found in studying over 900, ninth grade, Hong Kong, humanities 

students that critical thinking resulted from the interaction between cognitive learning 

strategies and student motivational beliefs. No clear correlations between learning styles 

and critical thinking were found in college nursing students; however, researchers 
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recommended more studies (Andreu et al., 2015). Ultimately, the affective domain and 

self-system theoretical constructs may be more valuable for the instruction in all 

disciplines; whereas, the cognitive domain theoretical constructs may be more relevant 

for assessment.  

Regarding structure, the taxonomies of Armoni (2013), Fuller et al. (2007), and 

Marzano and Kendall (2007) are most convincing because each synthesizes the work of 

multiple theories, definitions, and learning taxonomies. Marzano and Kendall elaborated 

on their new taxonomy for learning in a book. Wing (2006), a highly respected professor 

of computer science and head of her department at Carnegie Mellon, offered her 

definition of computational thinking in an opinion editorial piece, which minimizes her 

definition’s robustness. Brennan and Resnick (2012) do not provide a literature review 

for their expanded definition of computational thinking, instead simply offer anecdotal 

qualitative evidence from student interviews and artifacts. To gain a thorough sense of 

the complex nature of learning abstraction, the viewpoints of researchers regarding 

critical thinking, computational thinking, and abstraction are all relevant, some more 

illuminating and credible than others.  

Abstraction is a skill used in many disciplines and is a skill used in computer 

coding to modularize and manage complex coding commands. Abstraction skills allow 

computer coders to use induction, for example, when they have a lot of code and want to 

simplify it or when they want to choose one coding solution from many possibilities. 

According to Faccione & Gittens (2016) deduction is ideological reasoning or top-down 

thinking. Deduction is also a part of abstraction because students debug their programs 
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and examine their computer programs’ goals compared to the actual program function 

and execution. Induction or bottom-up empirical reasoning is needed when wading 

through the code to find pieces of code from other software languages or published 

programs that could be used to accomplish the goal of the program. Bloom’s taxonomy, 

although simple and seemingly abstract itself, does not adequately provide course 

designers or instructors with the means to create and evaluate instruction (Fuller, et al., 

2007). For this reason, it is important to recognize the salient qualities of Armoni (2013), 

Brennan and Resnick (2012), Fuller et al. (2007), and Marzano and Kendall (2007). By 

focusing on production, interpretation, the affective domain, the self-system, as well as 

the cognitive domain, computer science educators can create more effective learning 

opportunities and provide students with better feedback through assessment.  

 Constructionist Instruction 

Additional theoretical constructionist frameworks provide more context for the 

instruction of abstraction in computer science. After defining the specific cognitive 

learning objectives in CS education, abstraction, and computational thinking, educational 

policymakers and researchers can consider common theoretical CS frameworks to 

evaluate the instruction of abstraction. Papert (1980), a strong proponent of 

computational thinking, was an advocate of elementary children learning through 

creating and directing computers. Both math and reading can be simultaneously taught 

using computers, which is why now reading, writing, arithmetic, and algorithms are being 

touted as the four R’s (Czerkawski & Lyman III, 2015). 
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Primarily, researchers use constructionism from Papert (1980) to describe the 

natural tendency students and instructors engage in when learning and teaching coding 

(Armoni, 2013: Bers et al., 2014; Denner et al., 2012; Fessakis et al., 2013; Harlow & 

Leak, 2014; Kazakoff & Bers, 2012; Lee, 2010; Wang et al., 2014). Computational 

thinking is becoming a theoretical framework. Computer science education researchers 

also utilize (Bers, 2010; Lee et al., 2014; Lye & Koh, 2014). Vakil (2014) added Freirean 

pedagogy to constructionism in his qualitative research teaching AppInventor in a middle 

school after-school program for disadvantaged urban students. Vakil’s approach 

illustrates how current and known pedagogy can be combined with CS educational 

frameworks.  

As CS educators become more familiar with existing pedagogy, such as POGIL, 

and teachers learn to understand constructionism and computational thinking, more 

overlapping instructional theory will undoubtedly emerge. Kivunja (2014) proposed 

changing educational pedagogy based on Vygotsky and social constructivism to embrace 

social connectivism, critical thinking, and digital literacy necessary for 21st-century 

workforce success. Computer science education that includes explicit abstraction 

instruction will ultimately facilitate both the acquisition of critical thinking skills and 

advanced computer science skills. 

Instructional Implications for Abstraction 

 Addressing the pervasive need for CS curricula and resources, CS researchers 

developed and tested software as a means of legitimate instruction. Tangible software, 

software that requires the manipulation of objects to create code, has been shown to 
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increase sequential thinking and even computational thinking, even in kindergartners 

(Bers, 2010; Kazakoff & Bers, 2012; Wang et al., 2014; Zhong et al., 2016). Gaming 

software is another type of instructional software, and studies have shown promise in 

providing software that stimulates computational thinking (Carbonaro et al., 2010; Lee et 

al., 2014). Additional studies utilizing gaming and robotic software also suggest that such 

instructional methodology is effective in engaging students, teaching problem-solving, 

and introducing them to computational thinking (Denner et al., 2012; Grout & Houlden, 

2013; Kaleliegoulu & Goulabar, 2014; Pellas & Peroutseas, 2016; Reppening, 2016).  

Although many of these studies were conducted in after school or summer camp 

programs, gaming software instruction was correlated with improved motivation, 

engagement, and computational thinking, especially with female and minority K-12 

students,  (Daily & Eugene, 2013; Denner et al., 2012; Grout & Holden, 2013; Pryzbylla 

& Romeike, 2014; Sanchez et al., 2011; Vakil, 2014;). Middle school and high school 

girls who identified confidence and interest in problem-solving also had a correlated 

interest in all STEM courses; girls with interest in creativity and design had a correlated 

interest in computer science and engineering (Cooper & Haeverlo, 2015). Gaming and 

robotics software appear useful in making computer science fun, attractive to learn, and 

improving student retention.  

Additionally, several studies on CS instruction and computational thinking imply 

best practices for teaching abstraction. Many standard instructional practices, such as 

utilizing Universal Design for Learning (UDL) are recommended for teaching computer 

science and increasing computational thinking (Israel et al., 2015). Tung, Lin, and Lin 
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(2013) shared a curriculum module for introductory CS students using scaffolding and an 

algorithm plagiarism detector (providing instant technological feedback), which students 

found helpful when surveyed. Applying universal design for learning and global 

immersion therapy, Israel et al. (2015) found that elementary, middle school and college 

students could be successful in learning computer science. Recognizing that computer 

science requires visual intelligence, using visualization and encouraging students to draw 

or writing code using human language, called pseudo code, has been shown to facilitate 

visualization capabilities (Baloukas, 2009; Shane & Sherman, 2014; Arnoux & Finkel, 

2010; Fouh, Akbar, & Shafer, 2012; Ozurt, 2015). Csernoch et al. (2015) indicated that 

using dance, music, and theater to teach introductory computer science to college 

students improved test scores, grades, and retention.  

Another instructional tactic deemed helpful in generating computational thinking 

was the immersion into microworlds, such as Unity or Second Life (Jenkins, 2015; 

Reuker et al., 2013). Interestingly, using kinesthetic instruction and sketching, improved 

the acquisition of two-dimensional spatial design and computational thinking (Youssef & 

Berry, 2012). Chang (2014) noted that the visual programming software, Alice, is better 

suited to alleviate stress and improve confidence with low-performing introductory 

computer science students than Scratch, insinuating that some instructional software is 

better for learning object-oriented programming, a programming paradigm designating 

objects as classes of data in fields with specific procedures (Uysal, 2016). According to 

Uysal (2016), novice programmers had difficulty learning Java, an object-oriented 

programming language, due to cognitive load theory. Object-oriented programming may 
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not be necessary for learning abstraction although more research would help to prove this 

point. (Gobbo & Benini, 2012).  Instructional best practices, such as scaffolding, 

providing instant feedback, applying universal design for education, engaging multiple 

intelligences, providing visual and spatial intelligence training, and encouraging 

creativity and imagination may also be useful to foster abstraction abilities. 

Use of the Internet, rubrics for critical thinking, and instructor training are also 

indicated from critical thinking research at the college and university level. In higher 

education, computer science students who utilized common aspects of the Internet such 

as GoogleMaps, apps, and other web services, were more engaged and had better grades 

(Lim, Hosak, & Vogt, 2012). When college engineering instructors use critical thinking 

rubrics, they teach more critical thinking (Ralston & Bays, 2015).  Also, providing 

instructional development seminars regarding the use of critical thinking rubrics in 

college engineering courses was correlated with improved student cognition and affective 

engagement (Adair & Jaeger, 2016; Haynes et al., 2016). Unfortunately, African college 

instructors often do not use cooperative learning to assist in the development of critical 

thinking because they are not trained to do so (Malatji, 2016). Questioning taxonomies 

focused on evaluative thinking and metacognition are additional teaching practices that 

can facilitate the instruction of abstraction (Buckley et al., 2015; Festo, 2016; Lihui et al., 

2015). Connecting with the Internet, using rubrics for abstraction, and supporting K-12 

CS instructors with professional development in using abstraction rubrics might facilitate 

better instruction of abstraction in computer science. 
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Moreover, research indicates that collaborative learning environments, 

interdisciplinary instruction, and ipsative portfolio-based assessment provide effective 

learning experiences for computational thinking. As stated previously, abstraction is an 

important element of computational thinking (Wing, 2006). In a qualitative study of 

third-grade elementary students, Harlow and Leak (2014) determined that memes were 

propagated during constructionist CS instruction when teachers offered suggestions or 

guidance. When a student found a solution, he or she communicated the solution with 

other students allowing them to share in learning, thus propagating a meme. Writing, 

Science, and English as a Foreign Language are subjects successfully paired with CS 

instruction facilitating computational thinking (Alsamani & Daif-Allah, 2015; Chang, 

2014; Kafai & Burke, 2015; Merricks & Henderson, 2013). Assessment using portfolios, 

similar to writing, is recommended although surveys and quizzes are being developed to 

assess execution skills and programming knowledge (Sanford & Naidu, 2016; Zhong et 

al., 2016). Critical thinking assessments benefit from utilizing standards from multiple 

disciplines (Liu, Frankel, & Roohr, 2014). Abstraction assessments can similarly be 

informed from a variety of disciplines, such as critical thinking, Science, and Math.  It 

appears that although there are not many studies on the instruction of abstraction, 

guidelines like using collaborative constructionist learning environments that allow 

students to gain CS skills and knowledge in a variety of ways will assist the attainment of 

computational thinking and subsequently in abstraction. 
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Literature Justifying the Inclusion of Elementary Teachers 

Because contradictory evidence in recent literature exists regarding the age at 

which students can learn abstraction, teachers may also be confused about how and when 

to teach abstraction. Similarities between learning abstraction in math and computer 

science provide a basis of comparison for CS education which lacks research (Colburn, 

2000). Teague (2015) found in accordance with Piagetian theory, that novice college 

programmers did not exhibit the ability to produce abstraction, and it logically follows 

that K-12 students probably would not be able to produce abstraction. However, recent 

research in elementary cognitive development in mathematics regarding abstraction 

suggests that elementary students can learn declarative and procedural knowledge 

(Braithwaite et al. 2016; Kazak, Wegerif, & Fujita, 2015; Novack et al., 2015; Rittle-

Johnson & Schneider, 2014; Szucs et al., 2014). Novack et al. (2016) observed that third-

grade students learned a procedure, like a computer algorithm, using an abstract gesture, 

a kinesthetic movement, for a mathematical concept. The students were given a 

mathematical grouping 4 + 3 + 6 and shown to use a V movement with their arm for 4+3, 

so the V pattern + 6 = 6 + V pattern, the commutative property in mathematics. Novack 

et al. (2015) replicated the work of previous researchers. Computer science instruction 

research using tangible software maintains kindergarten and elementary children can 

learn algorithmic concepts and procedures, even computational thinking (Bers, 2010; 

Bers et al., 2014; Lee, 2010; Kaleliegoulu & Goulabar, 2014; Wang et al., 2014). Also, 

national CS standards instruct teachers, even in elementary school to teach abstraction 

(CSTA, 2019). According to the previously mentioned mathematical studies, beginning 
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levels of abstraction seem to be attainable in elementary grades. A qualitative 

examination of elementary, middle school and high school teachers’ interpretations of the 

definition and instruction of abstraction will inform inconsistencies in research regarding 

the instruction of abstraction. 

Abstraction skills in elementary students may develop through nonformal, 

possibly conceptual pathways, versus formal, or procedural pathways earlier than 

theorists, such as Vygotsky and Piaget have proposed (Braithwaite et al., 2016). 

Researchers in the Netherlands concluded after evaluating the online math performance 

of over 50,000 4th through 6th grade students (aged 8 – 12) that students who learned 

through nonformal pathways, for instance by perceptual grouping of numbers or 

opportunistic selection of numbers in an equation to solve, made more errors when taught 

to follow formal procedures or syntactic parsing of numbers based on formal operations. 

Abstraction in computer science similarly requires formal and nonformal cognitive 

operation. Interviewing elementary computer science teachers as well as secondary CS 

teachers will help to inform the research on formal and nonformal cognitive development 

in abstraction across disciplines. 

Additional research confirms that elementary conceptual and procedural 

knowledge, such as abstraction, can be acquired relying on contextual interpersonal 

instruction. Rittle-Johnson and Schneider (2014) concurred that conceptual and 

procedural mathematical knowledge development in elementary school children is bi-

directional and iterative, matching the findings of Fuller et al. (2007) regarding students 

demonstrating multiple pathways to learn computer science. Szucs et al. (2014) 
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established that nonformal cognitive processes of executive function, phonological 

processing, verbal awareness, visual-spatial short-term working memory, and spatial 

ability were more important than formal “number sense” for nine-year-old mathematical 

cognitive development. Even, dialogic abstract language facilitates the performance of 

concrete patterning tasks for preschoolers (Kazak, Wegerif, & Fujita, 2015). Language, 

discourse, pair programming, and the development of memes facilitate computational 

thinking in elementary students (Fessakis et al., 2013; Harlow & Leak, 2014). The 

information from CS elementary teachers will augment the growing body of research 

regarding the nature and extent of instruction guiding conceptual and procedural 

cognitive development. 

K-12 teachers have similar instructional goals for teaching abstraction but 

different students, ages of students, learning environments, and curricula. Students have a 

wide variety of computer science experiences in all grades. Computer science courses 

may be taught as a sub-discipline of Science, Math, or Technology because many states 

do not have curricular requirements for Computer Science. Additionally, computer 

science teachers use many different computer software programs to teach coding. Most 

states k-12 annual assessments do not test computer science competencies. The wide 

array of variables in computer science education substantiates qualitative investigation. A 

lack of quantitative data, content development, consistent curriculum, and teacher 

preparation necessitate investigating the instruction of abstraction. No studies thus far, 

have interviewed teachers nor sought to triangulate the teacher experience through two 

teacher interviews and student artifacts. Therefore, this study examines the K- 12 
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teaching experience of abstraction in computer science for curriculum development, 

instructional practices, and assessment preferences. 

Summary and Conclusions 

No completed studies found have specifically focused on the teaching experience 

of instructing abstraction. Abstraction is primarily situated as a sub-skill of computational 

thinking even though abstraction is a more complex concept that requires research for 

both teaching and learning. The majority of research in the past five years has used 

computational thinking as the theoretical framework (Wing, 2006, 2008). Research from 

the instruction and learning of critical thinking and abstraction in Math, Science, and 

STEM courses at the secondary and university level implies that instruction for 

abstraction would benefit from collaboration, scaffolding, interpersonal learning, 

question taxonomies, critical thinking rubrics, and real-world applications, such as the 

Internet. Research from elementary and secondary computational thinking and computer 

science education suggests that abstraction might be taught successfully using tangible 

software, constructionist inquiry-based collaborative learning, and gaming software. 

Recent studies in teaching elementary math indicate that elementary students can learn 

abstraction, contrary to Piagetian theory. Including elementary teachers in this study adds 

a layer of complexity, but ultimately facilitate greater pedagogical awareness of effective 

CS abstraction instruction. The lack of specific research regarding abstraction, the need 

for computer science teachers, and the lack of research regarding their professional 

development and pedagogical orientation validate the need for the proposed study. In 
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Chapter 3, I delineate the specific methodology for this qualitative examination of the 

instruction of abstraction in K-12 computer science education. 
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 Chapter 3: Research Method 

 Abstraction is a concept and a process in computer science education that is 

worthy of investigation especially because computer science programming is being 

introduced more often in preschool and elementary school. Computer science educators 

need research to guide pedagogy. As shown in the previous chapter, the instruction of 

abstraction in K-12 computer science merits study. The purpose of this descriptive 

qualitative inquiry is to examine teachers’ experiences determining curriculum, 

delivering instruction, and designing assessments regarding the topic of abstraction in 

computer science. In this chapter, I describe this basic descriptive qualitative study 

highlighting the interviews K-12 computer science teachers. Although including 

elementary teachers in this study adds more complexity, the inclusion of elementary 

teachers as participants enriches and informs curriculum development, instruction, and 

assessment for K-12 computer science education. Not only do the perceptions of 

secondary teachers inform the instruction of abstraction, but the perceptions of 

elementary teachers also help inform future variables for studying grade-level appropriate 

instruction of abstraction. Future quantitative studies could look at correlations between 

the use of variables and iteration in programming by grade level if variables and iteration 

(programming skills) are indicated as strong factors in this qualitative examination of 

abstraction. In this section, I outline the research design, participant sampling, 

recruitment, data collection, and data analysis strategies. 
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Research Design and Rationale 

The primary objectives of this qualitative descriptive study are to generate ideas, 

suggestions, and practical instructional strategies on the subject of abstraction for CS 

teachers. The field of computer science education, and especially abstraction in CS, lacks 

research. Qualitative examination of this research subject can provide variables for 

further quantitative study as well as contextual analysis. The examination of instructional 

pedagogy for teaching abstraction in computer coding is guided by the research 

questions:  

Research Question 1: What types of instruction do K-12 teachers find most 

effective for teaching abstraction in computer coding? 

Research Question 2: How do teachers determine objectives and competencies for 

teaching abstraction in computer coding? 

Research Question 3: How do teachers assess student abstraction skills in 

computer coding? 

This study was not designed to generate theory regarding learning abstraction or teaching 

abstraction. Instead, the study was designed to provide educators, researchers, and 

curriculum developers’ practical knowledge about the teacher experience. Practical 

guidance and suggestions for K-12 CS instructors will ultimately also benefit students. 

Qualitative inquiry is an effective research strategy for initial investigation in 

subjects with many variables (Creswell, 2007). Specific variables for future quantitative 

research were uncovered in this study. Moreover, this study provided insight into a 

variety of computer science education topics requiring more research, such as 
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determining grade-level appropriate objectives, instructional best practices, curriculum 

and standards, assessments, age-appropriate instruction, and professional development.  

According to Stake (2010), qualitative research subjectively provides insight into subjects 

that are complex. Teaching is an inherently complex human to human interaction. 

Because the field of computer science education is new and little research exists 

regarding the instruction of abstraction by grade level, qualitative research will provide a 

more complete understanding of the educational experience, the human experience of 

teaching.   

In this basic qualitative descriptive study, I employed an 

interpretive/constructivist perspective to glean practical information that will aid current 

teaching pedagogy. Because the purpose of this inquiry is to examine teachers’ 

experiences determining curriculum, delivering instruction, and designing assessments 

regarding the topic of abstraction in computer science, the most common form of 

qualitative research design, basic qualitative, was appropriate (Merriam & Tisdell, 2016). 

I interviewed 12 teachers (grades K-12) twice and write researcher memos after each 

interview thus triangulating the data (Yin, 2014).  The first interviews yielded data 

regarding all three research questions. The second interviews also addressed all three 

research questions and provide more in-depth data.  

Due to the specific nature of inquiry related to the instruction of abstraction, the 

more general aspect of a multiple case study was inappropriate. Yin (2014) recommended 

multiple case studies for the investigation of how a situation arises when context binds 

cases. Stake (2006) suggested using a multiple case study format when cases are closely 
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linked together. With the research questions posed for this study, case study research 

would uncover more data than recommended when the boundaries of the experience are 

not clear, and diary studies are useful for examining the intrapersonal experience. Case 

study qualitative research is thus unsuitable for the nature of this study. 

Phenomenology, or the “meaning, structure, and essence” of teachers’ experience, 

might have been an appropriate qualitative approach for this research study; however, the 

primary locus of abstraction exists in the student mind requiring student interviews, and 

interviewing teachers would not provide access to the students’ internal experience nor 

yield critical data from teachers (Merriam & Tisdell, 2016; Patton, 2002, p. 104;). 

Ethnographical qualitative studies investigate individual people or cultures (Stake, 2010). 

In this study, I examined the teaching experience of CS K-12 educators who were not in 

the same classrooms, same buildings, nor even the same geographical locations. 

Therefore, an ethnography was also not an appropriate qualitative approach. I sought 

practical information for teachers, not deep personal information required by other types 

of qualitative inquiry. Because in this study I searched for commonalities, differences, 

and variables for future study, no theory was generated (Charmaz, 2014; Patton, 2002). 

Hence, the research did not employ a phenomenological nor a grounded theory approach. 

Role of the Researcher 

I was an outside investigator in this research project. I conducted interviews with 

teachers and analyzing the interview experience with researcher memos. As the sole 

researcher, I designed the experiment, recruited the participants, interviewed participants, 

and analyzed the data. My only professional relationship to teachers was as the former 
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Computer Science Content Specialist for the state department of education supporting 

computer science teachers in Colorado. I did not have this relationship with teachers from 

other states. I did not have any direct relationships with the teachers’ students. 

Biases 

My assumptions arose from my participation in Advanced Placement (AP) 

computer science instructor training, teaching elementary students computer coding, 

learning Scratch and AppInventor computer coding, and developing online and hands-on 

computer coding classes for college and elementary students. I assumed that teachers had 

some experience with computer coding or worked professionally with computer software 

or hardware. Teachers who are new to computer science might not have much 

understanding of the definition of abstraction, and if they do, they only understand 

abstraction as a procedural or algorithmic skill. Computer science professionals who 

transferred into teaching will understand abstraction and be able to teach it but may have 

more trouble developing assessments. Teachers may use more direct instruction than is 

necessary, according to constructivist theory, to teach abstraction in computer coding.  

Many teachers rely on free online modules, such as Code.org, to teach their students 

rather than teaching students themselves. Some teachers are learning computer science 

along with their students. Teachers may lack comprehensive understanding of brain 

development in relation to computer science and instructional best practices to foster age-

appropriate learning. National standards and instructional material are becoming more 

available, but teachers do not have research that helps them develop consistent, effective 
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instruction and accurate assessments of learning (CSTA, 2019). Some students will out-

perform their teachers in their understanding and execution of abstraction.  

Methodology 

In this section, I describe and provide a rationale for the selection of participants, 

instrumentation, data collection procedures. After describing procedures for recruiting 

and obtaining consent, I outline the procedures for data collection. Sufficient evidence of 

procedures and details provide subsequent researchers with enough information to 

recreate this study. Furthermore, this section includes a comprehensive data analysis plan 

and examines ethical practices, as well as issues of trustworthiness. 

Participant Selection Logic 

Twelve K-12 computer science teachers with two or more years of teaching 

experience or prior private sector computer science experience, four from elementary, 

middle school, and high school comprised a purposeful sample for this study. The 

inclusion of multiple grade levels helped to provide information about curriculum and 

grade level appropriateness of curriculum. I specifically asked teachers when I am 

recruited participants if they had two or more years of teaching experience or prior 

private sector computer science experience. Abstraction is an advanced concept in 

computer programming, and it is possible that new computer science teachers will not 

have heard of abstraction. Therefore, including new computer science teachers could 

provide little useful data. Purposeful sampling allowed for specific information from 

experienced teachers (Merriam & Tisdell, 2016, p. 96). K-12 computer science teachers 

were recruited, with a preference for four elementary, four middle school, and four high 
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school teachers. However, convenience sampling superseded typical purposeful sampling 

due to recruitment efforts which I describe in Chapter 4. The purpose of beginning this 

qualitative examination of abstraction among all grade levels is that teachers from 

kindergarten to college is to involve teachers and students with a wide range of coding 

experience. Teachers in all grade levels often differentiate instruction. It was anticipated 

that there may be commonalities regarding teaching abstraction that would help teachers 

recognize student experience and deliver more effective differentiated instruction.  

Participant Sampling 

I used snowball sampling to find participants who are currently teaching computer 

science and sought four elementary, four middle school, and four high school teachers. I 

attempted to find 15 teachers in case some participants opt outed of the study. Although 

saturation is reached in qualitative studies when participants begin to share the same 

information repetitively, minimizing the number of participants yields data that 

maximizes the chance of finding significant themes rather than superficial observations 

(Cleary, Horsfall, & Hayter, 2014; Merriam & Tisdell, 2016). Qualitative researchers 

benefit from smaller numbers of participants, and researchers can gain highly relevant 

data from homogeneous participant groups (Cleary et al., 2014). Over the past several 

years, I have compiled a list of CS teachers who have expressed interest in participating 

in my research. I had access to email listservs nationally through the Computer Science 

Teachers Association in my position with the Colorado Department of Education 

Computer Science Content Specialist. Fusch and Ness (2015) suggested that qualitative 

data saturation is reached when coding themes become repetitive. Qualitative data that is 
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rich, providing many themes, and thick, providing a great deal of material, is most likely 

to reach qualitative saturation. Although saturation can be reached with as few as 6 

qualitative participants or as many as 20, as a novice researcher, I decided to use the 

middle number of 12 participants anticipating that the data becomes saturated.  

I recruited teachers who had a background as professional computer scientists in 

some capacity before becoming teachers, or teachers who have taught computer science 

for at least two years. Although teaching experience is not necessarily correlated with 

student proficiency, students tend to benefit from more experienced teachers (Madsen & 

Geringer, 2014). Experienced CS teachers and former CS professionals were purposely 

chosen as participants to increase the likelihood that they are familiar with abstraction, a 

complex concept. Teachers who volunteer were asked to submit a resume. Because the 

purpose of this study is to gather practical information about the most effective 

instructional methods, new CS teachers or teachers who were not previously computer 

science professionals will not be able to offer the best information. Therefore, I solicited 

seasoned computer science professionals who are teachers and CS veteran teachers of 

two years or more. 

Instrumentation 

The semistructured interview questions that were used for this research were 

developed by the researcher and evaluated by three experts. Dr. Sylvia Gholston, Dr. 

Stephanie Hartman, and Jane Waite, Ph.D. Candidate, evaluated the instrument which 

was revised based on their suggestions. Waite, from the United Kingdom, is currently 

also working on her dissertation in computer science education examining the instruction 
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abstraction in elementary schools. Waite has already interviewed 30 students, four 

teachers, and conducted surveys with several hundred teachers. The instrument for this 

study can be found in Table 1, Appendix A.  

I interviewed 12 computer science and technology K-12 teachers using a semi-

structured format once during a one-month period. According to Rubin and Rubin (2005), 

semi-structured interviews allow for focused data collection and questions that probe for 

elaboration, clarification, evidence, sequence, and more.  I used the questions in each 

interview to guide the interview, provide consistency and focus, and allow me to pose 

follow-up questions which can be found in Appendix C. In Appendix B, the interview 

questions are aligned with this study’s research questions. Demographic questions 

provided a context for the participants and do not align with research questions. 

 Semistructured open-ended questions facilitated useful data (Fusch & Ness, 

2015). By asking open-ended questions regarding determining objectives and outcomes, 

delivering instruction, evaluating instruction, and developing assessments, I kept the 

interviews focused on the experience of teaching abstraction. If teachers were unfamiliar 

with abstraction, I asked them how they provided instruction for the theoretical constructs 

of computational thinking and critical thinking. If the teachers were unfamiliar with 

computational thinking and critical thinking, then I inquired about their instructional 

approach to teaching computer science. Interview questions will be provided data for all 

three research questions. 

I conducted the second round of interview questions one month after the first 

interviews providing a format for more deeply investigating research questions. In 
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follow-up interviews, research questions were also semi-structured but designed to 

address prominent themes from initial interview data. Collecting semi-structured data 

provided reliability and simultaneously ensured that the data collection process allowed 

me to explore significant themes. The second interview facilitated data saturation which 

occurs when participants begin offering similar answers or repeating information (Fusch 

& Ness, 2015). The two interviews plus analytic memos comprised three sources of 

research data. 

The third aspect of qualitative data collection consisted of researcher memos. 

Triangulating qualitative data is a way to elucidate multiple aspects of phenomena (Stake, 

2010). Additionally, triangulating qualitative data increases reliability and trustworthiness 

(Merriam & Tisdell, 2016). Researcher memos are used to develop themes related to 

possible theory development (Saldana, 2013). In this study, I used researcher memos to 

examine interview topics and questions posed by participants. Analytic memos assisted in 

the development of variables, which could be used to study the effectiveness of 

instructional practices quantitatively.  

Procedures for Recruitment, Participation, and Data Collection 

Teachers with two or more years of experience teaching computer science were 

recruited from the Computer Science Teacher Association (CSTA), national teacher 

contacts, and national computer science listservs. Because abstraction is an advanced 

computer coding concept, interviewing teachers with two or more years of experience 

was hoped to provide the best data. Teachers were contacted by email and sent the 

consent form (Appendices A, B, and D).  
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Participation 

   Once teachers emailed or called and indicate they were interested in 

participating in the study, they were asked to submit the adult consent form. All 

participants were offered one week to examine the consent form and return it. 

Participants were informed they may opt out of the study at any time by simply 

contacting the researcher. Ideally, all data collection occurred in one month. After each 

interview, I wrote researcher memos, inputted the interview transcript and memo into 

NVivo software, and examined the data for themes. After the second interviews, I 

repeated the same procedure.  Upon university acceptance of the completed dissertation, 

the researcher emailed all participants the dissertation research.  

Data Collection 

I collected interview data (notes and audio files) for two months. Three strategies 

that helped me organize the data were digital, analytic, and interpretive (Yin, 2014). I 

collected all data digitally and operated an almost paperless data collection. Interviews 

were conducted via Skype and recorded. Interview notes were typed during interviews or 

directly after interviews from written notes. The teacher interviews conducted in person, 

if any, were digitally recorded. All digital interview files were saved in NVivo. All 

interview documents, researcher memos, and researcher memos were stored on NVivo 

software which helped in identifying thematic coding. 

The audio interviews and typed notes were stored on external hard drives. 

Teacher interview documents and researcher memos were also digitally stored on the 

external hard drives. Paper notes and analyses along with the hard drives used will be 
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kept in a locked cabinet in my home office for five years after the approval of this 

dissertation. After teachers completed their interviews, I sent them a thank you letter 

explaining the future expected completion of the study. Upon acceptance of the 

dissertation, participants will be sent a summary of the final dissertation via email.  

Data Analysis Plan 

Interviews and analytic memos were managed and qualitatively coded using 

NVivo software. I used a thematic coding approach to identify, analyze, and report 

patterns in participant experiences (Gibbs, 2010; Vaismoradi, Turunen, & Bondas, 2013). 

Thematic coding is flexible and appropriate for novice researchers yet potentially yields 

rich descriptive qualitative data (Fereday & Muir-Cochrane, 2006). During the thematic 

analysis of qualitative data, I utilized primarily inductive emic data analysis producing 

descriptive themes (Vaismuradi, Turunen, & Bondas, 2013). After inductively 

developing themes, I compared and contrasted the theory and literature from Chapters 1 

and 2 with the identified themes facilitating richer understanding and data analysis, as 

well as exploring directions for additional research (Cho & Lee, 2014).  To this end, the 

qualitative analysis mimicked qualitative content analysis in that themes were inductively 

developed, and theory was used to deductively identify secondary themes. 

Because the researcher must consistently read and reread data in the thematic 

coding process, I also submitted analytic researcher memos that aided in uncovering 

significant themes and provided the reflection necessary to develop thematic codes 

(Vaismoradi et al. , 2013). After descriptive themes from the data were developed 
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inductively, deductive analysis of the themes completed the thematic coding analysis 

(Lewins & Silver, 2006).  

Logic models and comparisons of theory and literature with inductive themes 

comprised the second phase of the thematic coding analysis. I established a nonlinear 

logic model as a strategy for interpreting and categorizing my data (Yin, 2014). Yin 

(2014) suggested that logic models can be used to describe complex phenomenon, such 

as instruction, that occur in several dimensions simultaneously. The comparison of theory 

and literature to inductive themes was not used to generate theory, but rather provided a 

richer descriptive understanding of teaching phenomena (Fereday & Muir-Cochrane, 

2006). Deductive analyses of inductively generated qualitative themes provided contrast 

aiding in the understanding and development of secondary themes (Cho & Lee, 2014). 

NVivo software was used to facilitate the organization, coding, and analysis of 

data (Lewins & Silver, 2006). I am most familiar with NVivo, and it was the easiest 

software to learn and navigate quickly. Interviews were conducted on Skype, recorded 

and saved into NVivo. TRINT transcription services transcribed interviews. NVivo 

integrates audio files and enabled me to record and evaluate memos. Computer-assisted 

qualitative data analysis software (CAQDAS) can help researchers organize, code, 

analyze, and represent qualitative data (Miles, Hubberman, & Saldana, 2014). The type 

of CAQDAS best suited for a study depends on the nature of the data recorded, the 

technology requirements and expertise of the researcher, and the goals of presenting 

research. Some programs, like Excel, provide both qualitative and quantitative functions. 

I briefly compared twelve popular CAQDAS, such as Atlas.ti, QDA Miner, and several 



73 

 

 

free software options. I choose three, which might be beneficial in my case study research 

including NVivo 10, HyperResearch, and Dedoose. CAQDAS programs are tools that 

can aide only aide but not replace researchers in analyzing data (Yin, 2014). Despite 

advice from Yin (2014), who recommends not using any software in case study research 

because the data is generally too diverse, and regarding data storage, data analysis, and 

data presentation NVivo was the best software for this research study because audio files, 

transcriptions, and researcher memos were able to be evaluated for common themes, 

primarily because a variety of different documents, pdf’s and audio files (interviews) that 

can be entered and coded qualitatively. 

Issues of Trustworthiness 

In order to assess the credibility, transferability, dependability, and confirmability 

of this research, I analyzed this research design by applying the validity matrix suggested 

by Maxwell (2013). A validity matrix is a useful tool that helps ensure alignment of 

research questions with research methodology. Using the validity matrix I aligned the 

information that I needed to find with data to be collected. Next, I aligned the plan for 

analyzing data. The information needed would arise from teachers’ experiences of the 

instruction, curriculum, and assessment of abstraction. Data would come from teacher 

interviews and researcher memos. Data would be analyzed using logic models, thematic 

coding analysis, thematically coding data to the conceptual framework, and thematically 

coding data to literature. In Table 2, I illustrate aligning the threats to validity using the 

validity matrix with strategies and rationales designed to mitigate threats. 

Table 2 
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Validity Matrix Mitigating Threats  

Validity Threats Possible Strategies to 

Mitigate Threats 

Strategy rationale 

Concern about anonymity. 

Focus on abstraction might 

overwhelm or intimidate 

teachers. 

Novice interviewing may 

produce poor data. 

Offer teachers fake names 

and temporary email 

addresses. 

Let teachers know all of 

their experience is 

important. 

Practice interviewing. 

Develop nonthreatening 

scripts. 

Create safety and rapport. 

(Miles, et al., 2014) 

Must be vigilant writing 

memos to ensure quality. 

Program phone to with 

memo writing reminders. 

Keep myself and the 

project organized. 

 

Any threat to rapport or safety can compromise qualitative data (Maxwell, 2013). 

Scripted introductions to interviews reassuring participants of their right to engage in any 

degree and assure them of confidentiality are crucial for creating safety and rapport 

(Miles et al., 2014). In the scripted introductions, teachers were informed of the means by 

which their personal information will be safeguarded and protected digitally and 

ethically. Assuring the confidentiality of responses should encourage teachers to provide 

valid responses. Using open-ended nonjudgmental interview questions helped to create 

safety and rapport with participants, yielding more credible and valid data. The use of 

researcher memos after each interview provided a reflective tool allowing for the analysis 

of descriptive themes and possible researcher bias. Communicating to participants that all 

aspects of their responses and data they share will be ethically safe-guarded, promoted 

standards for robust qualitative results. 

 



75 

 

 

Ethical Procedures 

Participants were contacted by phone and by email. First participants were 

contacted by email. If they did not respond to the email indicating a desire to participate 

in the study or not, I called them if I have their phone number. When I called them, I 

informed them about the study using the language in the adult consent form and asked 

them if they would like to participate. If teachers indicated a desire to participate in the 

research study, I asked them to email me the required forms. In the email, teachers were 

informed about the study and the steps they were required to undertake including 

submitting a signed adult consent form. Appendix D shows the email template teachers 

received. Initially, prospective teacher participants were informed that they would be 

asked to interview for two one-hour sessions (in person or via Zoom. I scheduled the 

interviews after school hours and on weekends with teachers. The two interviews were 

scheduled two to three weeks apart. The purpose of the second interview was to ask 

follow-up questions from the first interview. Additionally, because teaching requires 

some reflection, the second interview captured additional thoughts or observations about 

abstraction that teachers noticed after the first interview. 

Several steps safeguarded the confidentiality of participants’ data. First, teacher 

participants were assured that their experience and information would be respected and 

remain confidential both in writing via email and verbally in each interview. In order to 

share the results of the study, quotations from the interviews may be necessary. 

Participants were informed that if quotations from interviews are cited, their identity will 

remain confidential. I used alphabetical letters as pseudonyms for teacher participants. 
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Descriptive data was collected from teacher participants, but their school and location 

will remain confidential. 

Adult consent forms, teacher interview documents and audio files, and researcher 

memos were saved digitally and backed up on two external hard drives. I used access 

codes on my computer and will keep the backup drive in a locked safe in my home office 

to preserve confidentiality and maintain ethical standards. I made sure that interview 

transcripts and consent forms transferred via email are encrypted and saved on secured 

hard drives. All emails and duplicate files were deleted.  

Transferability 

Teachers are used to self-evaluation and often welcome professional development 

opportunities (Cajkler et al., 2015). Considering that the answers participants provided 

were confidential thus caused no threat personally or professionally, answers to interview 

questions are most likely credible. Recruiting teachers from various locations across the 

United States and who teach a variety of grade levels, aided in the transferability of 

research conclusions. 

Dependability 

After exploring theoretical and conceptual frameworks in the previous chapter 

from philosophers, psychologists, and CS educational experts, it was certainly be part of 

my bias as a researcher developing themes to be influenced by theoretical and conceptual 

frameworks. The complexity of the concept and skills required to produce abstraction, as 

well as the newness of the subject, warrant a thorough examination, including theoretical 

and conceptual frameworks (Stake, 2010).  By comparing themes from participant 
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interviews with themes from my analytic memos, I observed my researcher biases. As 

themes began to emerge, I compared outlier cases with thematic trends exposing my 

biases. Thus, the thematic data analysis plan included an inductive emic exploration of 

themes and a careful examination of etic researcher bias. 

Confirmability 

Confirmability in this study was primarily determined through the comparison of 

researcher memos and both interview transcripts. Qualitative studies are by design 

difficult to completely objectify; one way that researchers demonstrate their efforts to be 

objective is to repeatedly review data (“Qualitative Validity”, n.d.). By evaluating data 

after each interview is entered and documenting the process with researcher memos, the 

qualitative methodology for this study demonstrated reflexivity with a memo audit trail 

(Olivia, n.d.). The iterative focus on participant data using memos helped guard against 

researcher bias. 

Summary 

 Based on the lack of research on the instruction of abstraction in computer 

science, the complexity of the teaching experience, and the conceptual and procedural 

nature of abstraction, a qualitative case study design was indicated for this research. 

Triangulating teacher interviews and even researcher memos creates a reliable credible 

qualitative study. I employed an interpretive/constructivist perspective to inform this 

basic qualitative study designed to illuminate the understanding of effective K-12 

curriculum, instruction, and assessment of abstraction. I used an emic qualitative coding 
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strategy to assist in discovering practical teaching pedagogy. Moreover, the study 

informed teaching practices for critical thinking and mathematics. In the next chapter, I 

share the results of the study including the demographics of participants, significant 

themes related to the interviews and analytic memos. 
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Chapter 4: Results 

In the data collection phase of this study, the advanced and conceptually 

challenging nature of abstraction in computer science became readily apparent. The 

purpose of this descriptive qualitative inquiry was to examine K-12 teachers’ experiences 

determining, curriculum, delivering instruction, and designing assessments regarding the 

topic of abstraction in computer science. The following specific research questions were 

a subset of the main question: How do teachers decide what effective instruction for 

teaching abstraction in computer coding is? 

Research Question 1: What types of instruction do K-12 teachers find most 

effective for teaching abstraction in computer coding? 

Research Question 2: How do teachers determine objectives and competencies for 

teaching abstraction in computer coding? 

Research Question 3: How do teachers assess student abstraction skills in 

computer coding? 

The results detailed in this chapter from data including interview transcripts, 

student artifacts, and researcher memos describes how teachers use a variety of 

instructional approaches to instruct and assess the multifaceted topic of abstraction in 

computer science.  

Setting 

I chose a purposive convenience sampling of teacher participants that also 

involved some snowball (word of mouth) sampling. The teacher participants in this study 

were complete strangers or teachers with whom I had limited professional contact. Many 
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of the teachers may have known of me or heard of me as the state department of 

education Computer Science Content Specialist. Part-way through data collection, the 

position with the state department position ended. I knew one teacher from our work 

together on several projects and from our joint membership in the Computer Science 

Teachers Association. Our relationship was only professional. No significant events in 

the lives of participants or myself, the researcher, were noted as interfering with 

interviews, data collection, or analysis. Interviews were conducted and recorded virtually 

using Zoom for ease of convenience and recording audio. Teachers were in their homes, 

away from school or in their classrooms outside of school hours. Interview rooms were 

quiet, and teachers generally were engaged and interested in answering the interview 

questions. 

Demographics 

The teachers in this study were primarily secondary AP Computer Science 

teachers. For confidentiality, the teachers were referred to in all communication and 

documentation by an alphabetical letter. The average number of years of experience 

teaching computer science was 15.5 years. As seen in Table 3, the teachers’ primary 

teaching disciplines were either math or science. Only one teacher had a bachelor’s 

degree in Computer Information Systems with an emphasis on programming, teacher C. 

Teacher C worked as a programmer and hardware technician before transferring into 

elementary and then secondary computer science teaching. Teacher A also teaches AP 

Physics. Teacher B has over 27 years of teaching experience in Business, AP Calculus 

and all levels of mathematics, as well as computer science.  
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Table 3  

Teacher Participant Demographics 

 Grades 

Taught 

Courses 

Taught 

Experience Years 

Teaching 

Teaching 

Discipline 

A 9-12 AP CSA 4 years 20 years Physics 

B 9-12 AP CSA, AP 

CSP, Intro to 

Web Design 

7 years 29 years Math/Business 

C 9-12 AP CSA, AP 

CSP, Intro to 

Web Design 

11 years 13 years Computer 

Science 

D K-6 Technology/ 

Digital 

Literacy 

Coach 

(Code.org 

trainer) 

5 years 6 years Math/Technology 

 

E 6-8 STEM  1 year  14 years  Instructional 

Technology 

F 9-12 Intro to 

Programming, 

Web Design, 

Nand2Tetris 

3 years 5 years Math 

G 8-12 STEM, 

APCSP 

5 years 16 years Math/Physics 

H 11-12 Intro to 

Programming, 

AP CSA 

5 years 5 years Math 

I 6-8 Science, after-

school STEM 

5 years 16 years Science 

J 11-12 Cybersecurity, 

CTE 

Computer 

Science 

13 years 13 years CTE Information 

Technology 

K 9-12 AP CSA 3 years 5 years Math 

L 6-8 Cybersecurity, 

Game Design, 

Intermediate 

CS (Python), 

Advanced CS 

(Java). 

4 years 25 years English 
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Teacher D is an elementary district and state trainer for elementary Code.org workshops. 

Three participants taught middle school courses. Five of the 12 participants were female, 

7 were male. The teacher participants have a vast combined pool of experience teaching 

and teaching computer science.  

Data Collection 

I interviewed each of the 12 teacher participants twice. Each interview lasted 

between 30 to 60 minutes. Most interviews were conducted one to four weeks apart 

although both interviews for three teachers occurred during the same week due to 

scheduling constraints. After each interview, I recorded research memos. Interviews were 

conducted virtually on Zoom for ease in scheduling and recording. I introduced myself 

via video and then turned the video off after introductions, so interview questions were 

answered only recording the audio communication. Teacher participants were at home or 

at work outside of school teaching hours in a quiet room. I was also in my home office in 

a quiet environment. 

I collected 5 deidentified student artifacts that teachers chose showing examples 

of abstraction in student coding for teachers A, C, and D. It took longer than I anticipated 

(4 months) to get district level letters of cooperation from four school districts out of over 

thirty that I requested. One school district turned the request down because I was not 

offering a teacher stipend. Other school districts had prohibitive deadlines for submitting 

research requests. Several school districts in major metropolitan areas in three states 

failed to respond to emailed research requests. Even trying to recruit 30 to 50 teachers in 

each of the four districts that did approve my research, yielded a very small number of 
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teacher volunteers. Teachers who did not want to participate responded that they were too 

busy, had multiple jobs and family commitments. Other teacher participants shared that 

the topic of abstraction was daunting and at the beginning of the school year they weren’t 

sure if their students knew enough to produce abstraction in computer coding. After 

consulting with my committee and other university officials, I submitted a request to 

change my data collection requirements to two teacher interviews and researcher memos, 

no student artifacts. This change was approved and allowed me to contact any teacher 

which quickly resulted in obtaining the targeted number of 12 teacher participants. I was 

unable to obtain the desired number of 4 elementary, 4 middle school, and 4 high school 

teachers. In the end, the participants consisted of one elementary, 3 middle school, and 8 

high school teachers. 

The basis of questions from the first interview can be seen in Appendix A, and the 

second interview questions in Appendix C. In both interviews, I applied follow-up 

questions to the basic questions in order to ascertain as much detail from teachers’ 

experiences as possible. The first interview questions were developed using the research 

questions. The second interview questions were developed thematically from the first 

interview transcriptions and memos. Second interview questions also included participant 

questions and concerns related to teaching abstraction in K-12 computer science.  

I configured interviews to record on a cloud server using Zoom. After 

downloading the recordings to my computer and deleting them on Zoom, I uploaded the 

recordings to Trint transcription services. After transcribing the interviews using Trint, I 

downloaded them to my computer again and deleted the interviews from Trint. Then I 
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uploaded the transcribed interviews into NVivo software as a receptacle and 

organizational virtual location for thematic coding. Interview memos were also uploaded 

into NVivo, as were student computer coding artifacts. Teachers emailed me the artifacts. 

Once uploaded into NVivo, the emails with student artifacts were deleted on Zoom, Trint, 

and the download file on my computer. I made every attempt to ensure the privacy and 

confidentiality of collected data. I made two changes to my data collection plan in 

Chapter 3 to make the data collection easier and minimal. Zoom was easier to use than 

Skype because no log in information is required. Zoom also has the ability to record and 

save large files in the cloud minimizing memory demands on my computer. I only 

communicated by email and did not take phone numbers from participants, except with 

one teacher with whom I texted after she contacted me via phone. The other procedures 

including storing research data on an external hard drive were followed exactly as 

described in Chapter 3.  

Data Analysis  

Process of Inductive Analysis 

I interacted and evaluated each of the 24 interviews between 4 to 5 times. During 

the interviews, I took notes on copies of the research questions used for the base 

questions in the two interview rounds. The logic model (Figure 9) shows the progression 

of data collection and analysis. I edited transcriptions and listened a second time to each 

interview making additional notes. Then I entered analytic memos for each interview, a 

process that yielded additional insights and themes. 
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Figure 9. Logic model of research activities 

Then, analyzing data for word frequencies and sentence level themes, I employed NVivo 

software coding parent and child theme. I coded all data iteratively including both 

interview transcripts and analytic memos often relying on visual data representations like 

the excerpt of a diagram seen in Figure 10. Parent themes and child themes are 

commonly used terms to describe categories and subcategories of qualitative themes 

(Merriam & Tisdell, 2016).  

Initial parent themes arose from comparing research question categories (i.e. 

curriculum, instruction, assessment, and the definition of abstraction) with word 

frequencies in each interview. Specific parent themes corresponded strongly to the 

research questions and base interview questions and included: abstraction knowledge, 

instruction, assessment, curriculum, teacher experience, student experience. Each teacher 

participant is referred to by a randomly assigned alphabetical letter to respect 
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confidentiality. Responses regarding teachers’ familiarity of abstraction ranged from 

Teacher J stating and indicating she was not familiar at all, “On a scale of 1-10, I’m a 1.” 

 

Figure 10. Exploring Parent and Child Themes using NVivo Software. 

Whereas Teacher I explained, “I am very familiar with abstraction and teach it at the 

beginning of my intro class and all the way through my AP CSA course.” 

Teachers told many stories providing examples of their instruction of abstraction such as, 

from teacher C using games like rock, paper, scissors that students would work to 

program or teachers H and L using unplugged activities (instructional activities not using 

computers) to help students learn the concepts related to abstraction. Teacher J utilized 

student self-assessments but did not grade abstraction. However, Teacher L included 

“elegant coding”, her term for abstraction, in rubrics she gave her students. Several 

teachers, namely teachers I, K, and L, indicated that they found it difficult to get students 

to independently demonstrate abstraction in computer coding projects.  
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Table 4: Parent and Child Themes 

________________________________________________________________________ 

Parent Themes Child Themes 

Abstraction 

Knowledge 

Ubiquitous, Transfer from other content areas, Metaphor, 

Learning skill first then concept, End-user 

 

Instruction Vocabulary, Unplugged activities, Thinking skills, Repetition-

spiraling curriculum, Programming languages, Objectives, 

Logical problems, Learning by doing, Labs, Games, Frequency 

of abstraction activities, Design process, Debugging, 

Cooperative Learning, Contextualized learning, Challenges, 

Block-based coding 

 

Curriculum STEM, Standards, Simulator, Science, Robotics, Resources, 

Programming languages, Math, Game Design, Cybersecurity, 

Artificial Intelligence 

 

Assessment Summative, Formative, Self-Reflection 

 

Teacher Experience Years teaching, Teacher support, Courses, Abstraction 

professional development, CS Teacher pathway, Grade-level 

instruction, Self-efficacy, Support from district, Teacher support 

 

Student Experience Examples, Background knowledge, Ability – student dependent 

 

Teacher H explained that his students had beginning exposure to basic programming and 

getting kids to demonstrate abstraction was sometimes,“….like trying to go fast with your 

training wheels on.” The challenging nature of teaching students abstraction are more 

fully reported in the results section of this chapter. A complete accounting of parent and 

child themes are provided in Table 4. 

Child themes arose from consistently thematically coding each interview and 

every researcher memo, looking for word frequencies, thematic frequencies, and thematic 

connections then revising parent and child themes accordingly. Connections between 



88 

 

 

parent and child themes can be seen in Figure 11. Child themes for abstraction 

knowledge include: end-user, metaphor, transfer from other content areas, and 

ubiquitous. Child themes for instruction include: pedagogy, block-based code, 

challenges, cooperative learning, contextualized learning (grandchild themes – demo, 

expo, competition, project-based learning, and real world service learning), debugging, 

design process, dialogue (grandchild themes – group discussion, Socratic dialogue, 

student led-inquiry), direct instruction (grandchild themes-online tutorials), frequency of 

abstraction instruction, games, labs (grandchild theme - maker spaces), learning by doing 

(grandchild themes – building background knowledge, student-led inquiry, too much 

code), logical problems, objectives, programming languages, repetition-spiral, thinking 

skills, unplugged activities (grandchild theme- engaging multiple senses). Child themes 

for curriculum include: artificial intelligence, cybersecurity, game design, resources, 

Math, Science, robotics, simulator, STEM, and unplugged activities. Child themes for 

assessment include formative, summative, and self-reflection.  

Child themes for abstraction knowledge include end-user, metaphor, transfer from 

other content areas, and ubiquitous. Child themes for the student experience (as 

interpreted by teacher participants) include ability – student dependent, background 

knowledge, and examples of abstraction ability. Child themes for the teacher experience 

include abstraction professional development, courses taught, CS teacher pathway, grade 

level instruction, self-efficacy, teacher support (grandchild theme – support from district), 

and years teaching. 

 



89 

 

 

Discrepant Cases 

As a descriptive study, all participants help inform the research questions in this 

study. However, it should be noted that only one elementary teacher and three middle 

school teachers were interviewed. Because there was only one elementary case, I don’t 

have sufficient data on which to comment regarding abstraction in elementary. 

Additionally, due to the approved changes in methodology and the lack of student de-

identified computer coding artifacts, I did not analyze the samples of student coding that 

were submitted.  

Evidence of Trustworthiness 

Credibility, Transferability, and Generalizability 

All teachers in the study are currently employed and teaching CS, STEM, 

robotics, or some aspect of CS requiring computer programming. The participating 

teachers were curious and interested in the topic of abstraction. They genuinely wanted to 

learn more, and even long-time CS teachers were unsure of their performance and desired 

feedback. Due to the sincere nature of responses, the data is credible. However, the 

majority of teachers came from a western state, with the exceptions of one teacher from 

the Midwest and one teacher from the East Coast. The diverse grade levels teachers 

address provide a degree of transferability, as much as can be afforded in a qualitative 

study. Moreover, the educators from three states began to repeat answers indicating 

saturation. All 12 teachers asked for a definition of abstraction at the beginning of the 

first interview. I responded that because the study was designed to assess their 

experience, I would like to first find out their definition. 
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Figure 11. Project map depicting relationships between parent and child themes. 

Sometimes, I shared the following basic definition of abstraction. “Some people define 

abstraction as managing complexity or hiding detail making computer code 

representative and more efficient.” After sharing the basic definition of abstraction all 

teachers replied that they did teach students to make their code “elegant”, “streamlined”, 

and “efficient”. 

 The high school teachers who taught AP CS and advanced CS courses shared a 

similar concern in that they had some students who easily demonstrated abstraction and 

understood it but they struggled to find ways to help the “bottom of the pack” understand 
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abstraction. Teachers also mentioned it was difficult to get students ready for the AP 

exam on time when students at the “bottom of the pack” seemed to need more time in 

order to learn abstraction. Such similarities and other themes which are explored in the 

results section of this chapter indicate transferability of data. 

  It is hard to gain generalizability with a qualitative sample, but some aspects of 

the results might apply to teachers in many states. One teacher from a state that has had 

an earlier push for CS than the primary western state from which most of this study’s 

participants came from shared that he took the CS class that he now teaches in high 

school. He went to the same high school where he now teaches, and his mentor, as a CS 

teacher, is his old high school CS teacher. This teacher participant understood abstraction 

easily, discussed abstraction easily, and had a strong sense of how and when his students 

demonstrated abstraction in their computer code. He was also attending a Master’s 

program in CS. In his fifth year of teaching the same curriculum and courses, he 

mentioned that he could incorporate more depth and abstraction into his courses now 

because he was more familiar with the progression and material. The amount of 

experience as both a CS student in high school and higher education logically seems like 

it would correlate with teaching knowledge of abstraction and self-efficacy. 

In contrast, two middle school teachers who had much less formal training in CS 

and experience teaching CS courses were the least able to describe abstraction activities 

and student abstraction examples of any teachers. Three teachers were in the middle of 

teaching advanced year-long CS courses that they had not previously taught. These 

teachers all honestly shared that they were in the planning stages of learning material, 
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setting objectives, designing future lesson plans, designing assessments, and were not 

able to fully describe concretely examples of lesson plans and assessments that 

incorporated abstraction because they hadn’t finished teaching the entire course. Again, 

generalizability with common variables such as experience with content and experience 

teaching the curriculum logically correlate with knowledge of abstraction and teacher 

self-efficacy. Additional common themes are elucidated in the results section of this 

chapter. 

Dependability 

As a teacher not currently practicing in K-12, I am more of an etic participant, 

although as a teacher immersed in CS education, I can easily relate to the experience of 

the teacher participants as an emic participant, a teacher. Also, as someone who is 

learning to program in multiple computer languages, I am approaching the subject from 

more of an emic educator lens with less content knowledge allowing me to be more 

objective in relation to the concept of abstraction and less objective about the art of 

teaching. As the study progressed I found that during the interviews I was making 

inferences about the degree to which teachers understood abstraction. Making such a 

judgement was clearly an etic bias preventing me from objectively describing the 

experience of the teacher participants. When I realized from studying my analytic 

research memos that I was making judgements about the degree to which teachers 

“understood” abstraction, I iteratively examined interview transcripts and researcher 

memos to see what new themes arose. Thus, throughout the study I was carefully 

monitoring any biases and iteratively examining the data. 



93 

 

 

Confirmability 

Multiple researcher memos and interviews per participant provided reflexivity in 

the data analysis. As previously mentioned, I interacted with each interview data multiple 

times over the course of 4 months. I participated in the interviews, edited the 

transcriptions of each interview making notes as I listened, wrote analytic memos, and 

then thematically coded each interview multiple times. This exhaustive approach to 

analyzing data demonstrates my efforts to ensure confirmability of the results. 

Results 

Teacher participants’ understanding of abstraction, designation of course 

objectives, instructional activities, and assessments varied with experience both with CS 

content and teaching CS courses. Experience was the overarching theme related with the 

other salient themes in this study. In the following section I describe teachers’ knowledge 

of abstraction, curriculum, and demographic aspects related to research question two. I 

begin with results related to research question 2 because teaching begins with identifying 

terms, concepts, and objectives to instruct and then assess. Next, I share findings 

regarding teachers experience instructing abstraction and teachers’ observations of 

student abstraction ability, related to research question one. Then I describe teachers’ 

experience assessing abstraction related to research question three. Finally, I provide 

additional insights from teachers regarding professional development and suggestions 

from participants. 
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Research Question 1: What types of instruction do K-12 teachers find most 

effective for teaching abstraction in computer coding? 

Teachers found many types of instruction effective for teaching abstraction in K-

12. Teachers focused on sharing their knowledge of abstraction as a ubiquitous concept 

through metaphors, direct instruction, focusing on the end-user, and making transfer 

references from abstraction in other content areas such as Math or English. Teachers 

mentioned the following parent and child themes as effective modes of instruction: 

teaching vocabulary through context; unplugged activities; logical problems; learning by 

doing; design process; contextualized project-based learning; repetition of abstraction and 

spiraling curriculum; labs; debugging; cooperative learning; giving students challenges; 

and using a variety of programming languages including block-based programming. 

Teachers found that student ability made it sometimes unnecessary to teach abstraction to 

“savant” students, but students “at the bottom of the pack” who struggled to learn 

abstraction were difficult to teach. For some teachers, all of the strategies that work for 

many students don’t work for some students who struggle with abstraction. This complex 

interplay between student, subject, and teacher illustrates the difficulty in conducting 

educational research. Are students who struggle with abstraction the discrepant cases 

under research question one or are the teacher’s instructional strategies? The following 

stories and quotes from teachers interviewed will help illuminate results relating to 

research question one. 
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Abstraction Knowledge 

Because teachers’ definitions and understanding of abstraction influenced the way 

teachers chose curriculum, taught abstraction, and assessed abstraction, teacher 

knowledge of abstraction is relevant to all three research questions. Teachers’ knowledge 

of abstraction ranged from concrete understanding based on traditional computing to a 

focus on the end-user’s experience to a vague understanding of the concept. One teacher 

who had a B.S. in Computer Information Systems, explained, “…when I was in college I 

had a friend who we would take each other’s code and we would look at it and we could 

see who could actually make the shortest most functional program to accomplish the 

task.” And another teacher explained, “So actually, in programming for kids for anybody 

you know to make any efficient program there needs to be abstraction.” Another teacher 

described abstraction as, “Then when you were programming you had you would do data 

hiding or data representations…” The idea of hiding data was repeated from another 

teacher, 

And I think you know the thing that I’ve tried to stress the most to my students 

and I believe I touched on this last week is just abstraction being something that 

hides the nonimportant details the extraneous kind of fluff but packages it all into 

some sort of black box. 

 

A teacher who had some experience programming science simulations in college made 

the distinction between procedural and data abstractions. “So, when we go over like the 

level of abstraction we talk about you know in the program language that I’m working on 

I work primarily on procedural and data abstractions.” Other teachers had a less concrete 
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ready definition of abstraction but more a sense of the concept. One teacher who had 

taught AP CSA and Java for several years explained, 

It’s in my mind the way I think of abstraction is it’s a sense that no variable 

actually can mean something else. You know you might pass in a parameter that’s 

some variable that eventually will have some actual meaning. But when the kids 

are writing their code it’s just this word. This letter this idea that’s out there that’s 

not actually implemented yet. 

 

and she further elaborated, 

I know it is one of the most important principles as far as like object-oriented 

programming goes and I understand how it is related to encapsulation, 

inheritance, polymorphism and you know what I’m saying but yes abstraction, 

I’m like ok, not exactly, is that what you mean? 

 

Another teacher explained and possibly was conflating abstraction as a programming 

skill and the related ability to think about nonconcrete concepts, 

I feel like it’s a pretty natural part of what we do. You know this whole sense that 

they write something that will eventually be like get some sort of actual meaning. 

That’s sort of abstract that sort of thing. I feel like it is just central to everything 

we do.  

 

Another teacher resourcefully looked up the definition of abstraction on Google when I 

let her know I was first interested in her ideas of the topic before I shared a common 

definition and explained, “I mean because as I’m looking at right now I’m looking at you 

know the definition that it’s used to reduce complexity and allow efficient design and 

implementation of complex systems.” One teacher honestly was not sure of the definition 

and explained, “I think I don’t know actually because I’m not really sure from a pure CS 

perspective what that actually means. So, I guess not really. You know I have a sense of 

what it is.” 
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After initial questions and after I shared the basic definition of abstraction 

mentioned earlier, we discovered some teachers used words like elegant or architecture to 

describe abstraction. A former English teacher explained that although she had never 

heard the term abstraction or studied it, she focused on teaching her students to write 

elegant simple code, citing the rationale of Occam’s Razor, the simplest answer being the 

best answer. One teacher who spent 20 years in IT before becoming a vocational CS 

instructor explained, 

I would be more inclined to use the word architect but the ideas are the same. I’m 

thinking about how these pieces parts go together to create what is that the user 

wants, so I get a lot of opportunities to do that in a PBL [sic: project-based 

learning] framework. 

 

And further, 

So, it’s this idea of trying to get kids to reverse engineer and to think about the 

pieces parts that go into a holistic system. But the outcome we want is that the kid 

understands that there are multiple parts that go into making a computer complete 

including software. 

 

Linking the idea of the end-user’s experience to abstraction connected the design 

process and the definition abstraction. Incorporating the lens of the end-user on 

abstraction in computer coding also introduced the idea of defining the concept from 

multiple perspectives. The previous teacher with 20 years of IT experience explained,  

So, I’ll describe it in the way that I would to a kid. I call the end user Ma or Pa 

Kettle. And so, I'm always saying Ma Kettle comes to me. And she's in the 

marketing department or sales or engineering or whatever and they need a certain 

app. And so, they're able to describe the end goal but they don't have any idea 

about the technology or technologies. In the back office they are going to make 

that happen. So, in my mind abstraction is taking those requests you have to go 

through a process of discovering all of the requirements that are needed. 

Requirements gathering once I have the requirements. Abstraction means that I'm 
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figuring out how things are going to be put together to create a useful app. If that 

makes sense. 

 

Another teacher explained in the second interview new discoveries about the definition of 

abstraction, “I looked up the definition on the Internet and now it seems like it is more 

about the product and what the user experiences.”  

Teachers also described their knowledge of abstraction in relation to skills, 

concepts, and thinking abilities. A STEM middle school teacher indicated the necessity of 

problem-solving thinking skills, “Like how can we leverage technology to be able to 

problem solve easier and faster more efficiently and that kind of thing.” 

A high school teacher who had also taught elementary school shared the importance of 

teaching pattern recognition, “So, you start to teach people abstraction by helping them 

with pattern recognition.” When asked if abstraction was a skill or a concept, 6 teachers 

said it was both a skill and a concept. One teacher explained, “Both, more of a concept, 

kids could do the skill but understanding the concept is harder.” Another teacher 

explained how students learned some aspects of coding that allowed them to do the 

abstraction skill but then tried to use the same approach without success in other 

problems because they didn’t understand the concept of abstraction. “So, there's not 

understanding the situational need for that particular solution. And there again it's like 

going to the tool box and the only tool you have is a hammer so everything looks like a 

nail.” Four teachers immediately said abstraction was a concept that transforms into a 

skill. Interestingly, the two oldest teachers, both in their 60’s, who were also very focused 

on teaching multiple computer programs and courses said abstraction was a skill that 
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according to one teacher, “It begins as a concept but doesn’t do any good until it is 

applied. It is almost an art.” 

 Figure 12: Word frequencies with knowledge of abstraction 

 

Treating abstraction as a skill or a concept or both influenced teachers’ instructional 

approaches. Figure 12 shows the frequency of words related to discussions about 

teachers’ knowledge of abstraction. As a bridge to the results section on instruction, 

several teachers shared metaphors they used with their students to explain the concept of 

abstraction. Previously, the metaphor including “Ma and Pa Kettle” as the end-users 

alluded to the product and process nature of abstraction. The product was whatever app 

the user needed. The process included requirements gathering from the user, 

decomposition of the problem, and then “abstracting out” or inductively proposing a 

solution from hardware, systems, and software, resulting in the design process of creating 
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a solution. Although, the entire process described in the previous sentence would be 

defined by some as CS, the teacher in this study defined the same process as abstraction.  

This same teacher used the metaphor of football to explain abstraction.  

I think a lot of kids understand football and football is a very very complex game 

with lots of different mathematics going on it plays and plans and how we get to 

the end zone. And so, kids really any kid that is into football doesn't have a hard 

time holding down all of the data that they need to figure out how to run that ball 

and get it into the end zone. If we ask a kid how an app got onto their phone, they 

have no clue apart from they went to the app store and searched for it and got it. 

So, these are two extremes in you know abstraction.  

 

Another teacher described how he used the metaphor of liberal arts and technical higher 

education. 

I sort of I use that [sic: metacognition] as a way to sort of have the students realize 

that they already think about abstraction a lot in everyday life and that makes 

sense. One of the things I do is tie in to the higher education system and how you 

know some schools and colleges do a liberal arts model and some colleges do the 

sort of specialization model or the more technical model. We talk about it and I 

sort of take those models to an extreme and say how you know neither of you if 

you take the breadth first model to an extreme that it's not useful that you take the 

depth first models to an extreme that it's not useful either. And so, abstraction is 

sort of a way of meeting in the middle in some ways.  

 

Another teacher shared how he uses an activity and a metaphor to teach abstraction. He 

combines the classic games of Pictionary and telephone by having students at one end of 

a circle write down the instructions for drawing a polygon. The next student draws the 

image they think the instructions describe and the task continues around the circle 

alternating with a picture and written directions. The teacher explained connecting the 

activity to abstraction in CS, 

It's kind of like telephone but with alternating instructions and diagram. We really 

talked about how when you were giving instruction, what was the instruction you 

needed and what was the instruction that that was lacking that caused the sort of 
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loss of concept. Basically, how much is enough and how much isn't enough. We 

talked about Google Quickdraw and how now from an AI standpoint how it could 

quickly like if you said. sailboat how much do you need to draw for somebody to 

understand the idea of sailboat. Well, not much it turns out you know. So. We are 

so are we talking about abstraction a lot that way. 

 

Another teacher simply stated that abstraction was, “It’s going from messy to pretty.” 

 Teachers all shared a common belief that abstraction was important for students to 

learn. According to one teacher, “I think it is really important. I don’t know how you 

could really do CS without having a good grasp of it.” 

Another teacher explained, “It's critical to everything pretty much everything that you do 

in programming for sure. And in understanding other areas in CS, nonprogramming areas 

of CS, too.”  

Instructional strategies for teaching abstraction 

As noted by the math teacher in the previous section, CS is a new content area for 

students. Students undoubtedly have used and seen computers and computational devices 

but learning how the computational devices work and then learning to solve problems 

with computational solutions, the essence of computational thinking, is a new avenue of 

study for students in almost any grade. Teachers noted that they needed to carefully build 

learner background knowledge of abstraction in CS through direct instruction, 

scaffolding, contextualized instruction, and activating background knowledge. 

Specifically, teachers mentioned utilizing collaborative learning, the design process, 

block-based coding, object-oriented programming, various forms of dialogue, and 

learning challenges to teach abstraction.  
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When asked about utilizing direct or contextualized instruction, a long-time 

business and math teacher who has taught AP CSA and Java replied, 

I’m going to model it and now we’re going to do it together. That direct approach 

to instruction, honestly I’ve only ever really done it….with lots of practice lots of 

example problems and talking about what different things would mean. 

 

Another teacher described her approach to direct instruction, “So, it’s you know five to 

10 minutes of direct instruction for an initial lesson to then apply that.” 

Demonstrating and modeling were mentioned as being an important aspect of teaching 

abstraction. One teacher explained, “And a lot of them picked up on it right away and 

some of them sort of understood it after I was showing them a bit.” 

Prescribed curriculum has scaffolded instruction built in. One teacher shared, “There’s 

great, you know, curriculum step by step stuff that you can do.” Another teacher noted 

that the online course he was teaching required students to complete basic foundational 

hardware simulation activities before moving on, “But I keep coming back to this but I 

think that one of the cool things about the Nand2Tetris course is that they have to get 

their chip to work.” 

Teachers described that students might acquire skills related to abstraction at 

home or in school but not understand the concepts and be able to apply the skills in a 

variety of applications. A middle school STEM teacher explained, “They need that full 

practice time and I think they need a safe practice time to be able to figure it out and do 

that trial.” Prescribed online curriculum was described as helpful, but not necessarily 

active learning. An AP CSA teacher explained, “I haven’t used Code.org enough to think 
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this is a fair assessment but passive learning I feel is more out of online delivery systems 

that have students even if they’re typing answers and trying things clicking around.” 

He concluded by saying that online tutorials were good for drills and training. A middle 

school teacher who set up tutorials for her students using Agent Sheets to help her 

differentiate student learning because some students were “sitting there bored” when they 

easily finished work, shared that students didn’t really understand what they were doing 

until they talked about their work. 

 As a segue to explaining significant themes regarding the contextual instruction of 

abstraction, a math teacher noted that teaching abstraction was very similar to how he 

taught math, “You sort of teach the process and try to ground that process in some 

conceptual understanding.” The same teacher mentioned that it was important to let 

students fail and experience writing lengthy code to develop value for finding easier ways 

to achieve coding solutions. Additionally, this teacher shared how he showed the PBS 

Crash Course videos on CS as a contextual instructional activity, 

These videos talk about some idea in computer science and then they sort of cut 

away to this goofy graphic of an elevator and they do like this ten five or ten 

second montage of the elevator going up a new level of abstraction. 

 

It is notable that the Code.org curriculum also utilizes videos as unplugged 

demonstrations. Experiencing programming abstraction was a way that teachers could 

then later explain the concept to students. An AP CSP teacher who used the AppInventor 

curriculum shared how he taught students to program a pseudo random number generator 

and then program coin flipping. “All we’ll do is flip coins and flip a whole bunch of coins 
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and then we’ll see is the app does the app have a good pseudo random number 

generator.” 

Incorporating traditional games into programming was a way that several teachers 

shared how they incorporated elements of direct instruction, building student background 

knowledge, and contextualized learning abstraction. One teacher described how she 

regularly had students play common games like rock-paper-scissors to learn 2D arrays or 

Yahtzee and then had student program the games. She had students program the dice in 

Java and then program the rules for the Yahtzee game demonstrating the object and 

procedures required to produce abstraction in object-oriented programming. Other 

teachers mentioned having students play Connect Four and then programming that game 

or hangman or evil hangman. To create evil hangman, the teacher explained he had the 

students program a random word generator making the hangman game more complicated. 

Additional contextualized topics teachers shared included creating mazes for 

robots to navigate and creating online banking programs. Contextualized learning was a 

way that teachers could spiral curriculum and expand the concept of abstraction in new 

situations allowing students to make new connections to the concept. As one teacher 

explained, “Or if it happens inadvertently in context like as they’re solving a problem 

kind of in a bigger context.” 

 Teachers used group discussions and Socratic dialogue to help students 

understand abstraction. One teacher described her instruction of Scratch, “And I 

explained to them that was so much more work than using a broadcasting tool.” 
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Another teacher shared how he explained to his students that using the modulator 

function in AppInventor produced abstraction. An instructor shared how he used Java 

libraries to explain abstraction. Student-led inquiry was another pathway to teaching 

abstraction. The AP CSP teacher described a student who recognized an easier way to 

program an app that the block-based AppInventor programming language did not 

accommodate. Another teacher explained, 

One just kind of fun discussion we had towards the end of the semester was if you 

have ten problems left on a multiple-choice test and you’re not sure you know you 

can’t eliminate any of these answers, is it better to choose a letter like C and mark 

it all the way down? And so that was something that you know we talked about 

the mean, the probability that we thought maybe the variance would shift and it 

was a little 5 to 10-minute discussion that came up. 

 

The teacher shared how students involved in this discussion about ten remaining 

questions on a multiple-choice test went home unbidden and programmed in Java all the 

probabilities in this multiple-choice scenario as a way of studying the entire course 

material for the final.  

The two middle school STEM teachers stressed that teaching abstraction was 

embedded in teaching building, creating, and the design process. One teacher explained 

she used the Lego EV3 robot kits which allow students to create a variety of robots, 

Now this whole programming idea of the EV3s, creating robots, that will help 

answer this question that involves science, technology, engineering, and math. So, 

they’re kind of putting all their knowledge together which essentially was my goal 

in the end that it’s not separate that all of this comes together and they can see 

how it comes together. 

 

The other STEM teacher explained, 

…if they start just with coding on a screen then I’m basically a glorified 

programming teacher versus a teacher where I’m hitting it from how can we build 
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something to solve a problem versus let’s just learn how to code to solve a 

problem. 

 

The experience and focus on teaching abstraction via the design process punctuates the 

complex nature of teaching abstraction with both hardware and software. 

 Programming languages, both text-based (also called line code) and block-based 

were described as vehicles for learning abstraction. An experienced CS teacher of 13 

years stated that using block-based, drag and drop, coding was easier for students to grasp 

the concept of abstraction. She explained, 

I felt like at least when I taught CSP a couple of years ago the fact that you know 

when you’re using something within the abstraction, when kids built a block and 

then they used blocks that they had already built in a new block that they were 

building they could kind of see that more than just in the line code. 

 

Another teacher concurred explaining the difficulties of line code, 

Everything was right but the syntax and it just drives you crazy because you don’t 

have a colon in the right spot or a semi-colon or you know you use parentheses 

when you’re supposed to use brackets. And I really think that introduces a level of 

frustration that doesn’t necessarily need to be there especially when you’re trying 

to develop some sort of basic ideas. So, I’m really coming around to the drag and 

drop world. 

 

All the high school introductory CS teachers used some type of drag and drop 

programming language such as Snap, Alice, or AppInventor. However, two AP CSA 

teachers noted that their Java students didn’t start to develop and truly understand 

abstraction until they started writing longer more complete programs in the second 

semester of their year-long courses. One teacher explained, 

I think when we talk about abstractions and specifically kind of what they are and 

programming is when the students start to see a little bit of the bigger picture and 

feel as if they’re actually writing a program that can do something as opposed to 

just working on the nuts and bolts of syntax and the language and everything. 
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Providing repetition of both the concept and skills related to abstraction were 

suggestions teachers made for new CS instructors learning about abstraction. The 

introduction of the concept of abstraction is a requirement in AP CS Principles, a course 

designed as an introductory high school survey course for CS (College Board, n.d., 

2019). Providing instruction in block-based coding to introduce the concept of abstraction 

and then repeat learning abstraction with line-based coding was mentioned by high 

school teachers in three states. One teacher explained, “Yeah, I think it’s definitely not a 

bad thing to introduce the word early and then keep coming back to it and spiral around 

again and again.” Another teacher who had a dual bachelor’s degree in CS and math 

education shared that he couldn’t remember hearing about the word abstraction in college 

although he was definitely taught to hide data and make his code efficient. He shared 

again stressing repetition that the vocabulary word abstraction didn’t necessarily have to 

be taught immediately but could be explained later on in the CS learning progression. 

 Collaborative learning was a classroom management tool all teachers described 

allowing them to engage students, manage student learning differentiation, and facilitate 

learning. One teacher explained how she used the “cup system”. Instead of students 

raising their hand for help, they had a set of four cups on their computer. If they put a red 

cup on their computer, the teacher knew they needed help. If students put a yellow cup on 

their computer, they were busy working independently. If students put a green cup on 

their computer, they understood and were finished with the task. A purple cup on the 
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computer meant the student understood the task, finished, and was available to tutor other 

students. 

 A middle school teacher described how she explained to students that coding was 

difficult and that some students were going to get it easily but others had to work hard to 

get the material, which didn’t mean they couldn’t learn but that they had to work harder. 

The teacher gave students a finite set of time on projects. On the last day of the project, 

she would have students list on the board who had finished and who needed help. The 

teacher would ask students who finished to help the students who had not finished and 

shared that the students really liked this part of the project progression. If both students 

working together could not solve the project, the students would put a check mark on the 

board indicating that they needed the teacher’s assistance.  

 Pair programming was also mentioned as a collaborative instructional technique 

employed to teach abstraction. One high school teacher shared that he used the pair 

programming designation for one student as the navigator (not actually typing but 

suggesting) and the other student as the driver (the student actually typing). Another 

teacher described how using pair programming allowed him to team students who 

understood abstraction or could use it somewhat with students who needed more 

assistance.  

 Alluding to the advanced nature of learning and demonstrating abstraction, all of 

the high school teachers and one middle school teacher, who focused on programming, 

mentioned being unsure how to help students who did not understand abstraction attain 

proficiency. One teacher who was working on his Master’s in CS explained, 
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But it’s that next higher level of conceptual thinking that I’m struggling to teach 

them, which is why if I didn’t give them direct prompts would they be able to see 

exactly where abstraction fits into the program and how it can help them and what 

they should do as opposed to me feeding them step by step instructions. 

 

Teacher Perceptions of Student Ability 

Teachers’ experience of student ability influences the instruction of abstraction. 

Consistently, teachers mentioned being challenged by students who easily understood 

programming and students who struggled. Teachers with some experience at the 

elementary level noted aspects of abstraction are taught in the elementary grades. 

However, the majority of teachers felt that abstraction could be learned in middle school. 

One teacher, who instructed juniors and seniors, said he recognized some students had a 

proclivity towards programming and abstraction whereas others did not. All other 

teachers shared they felt any student could learn abstraction. Teachers also shared 

specific examples of students demonstrating abstraction. 

Descriptions of how students understood abstraction varied. One teacher 

explained, “Some kids think about it naturally; a word will represent something later. 

Kids who look at something more concretely have a harder time.” 

Most teachers ascribed to the idea that the ability to learn and demonstrate abstraction 

was student-dependent not based on grade level. One teacher explained, “So, I think it is 

a matter of more where they are intellectually than a specific grade.” 

Another teacher explained, “I don’t want to say it’s an innate ability but I get these 

students who are much better at reasoning and students who really struggle with that.” 
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Another teacher explained about students’ ability to learn abstraction, “And I think 

students who are really strong with their logical step by step reasoning end up being 

much better able to.” 

 Thinking skills related to abstraction are taught in math in elementary school. A 

teacher who taught elementary school noted, “In first grade they have to be able to 

recognize different patterns and things. Even in Kinder [sic: kindergarten] they start 

looking at patterns and doing pattern recognition.” She described learning sequence 

through learning addition in first grade and learning abstraction via a process for 

simplifying addition by learning multiplication in third grade. Another teacher agreed 

students in elementary grades might be able to learn aspects of abstraction and explained, 

“But I think there are parts and skills taught in lower level grades.” 

A middle school teacher thought the concrete nature of elementary student 

thinking might facilitate student knowledge of computer coding skills and remarked, 

“They just want to make the duck walk…or in the case of the dance party they just 

wanted to see their little you know three cats with cute pants dance instead of two cats or 

whatever.” Other teachers noted that learning algebra, as previously mentioned in the 

results, facilitated learning abstraction. Regarding the mastery of abstraction and grade 

level, one teacher concluded, “I think them truly understanding what it is doesn’t come 

until higher level grades.” 

Teachers provided examples of students failing to demonstrate abstraction as well 

as applying abstraction. In an introductory course, talking about a student’s inability to 

create effective representations via naming a teacher explained in his discussion with one 
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student who protested naming a function correctly, “And I said, oh well forgive me. I 

didn’t see “list picker 2” as the leading location button. Whereas, everyone else had 

named it delete button or something like that.” A high school Java instructor shared an 

example of students failing to apply abstraction, 

And a lot of students set the values in the fields explicitly with each constructor 

rather than calling other constructors from or rather them calling the constructor 

from the square constructor and then calling the square constructor from the new 

args [sic: arguments]. 

 

Other teachers mentioned that it was hard sometimes to figure out what questions to ask 

students who didn’t understand, and even if the teacher did ask a question, sometimes 

students still wouldn’t know how to answer. 

 Describing how her students employed AI features in constructing chat bots as a 

group, a teacher shared an example of successful abstraction, “…if it is interacting with 

somebody it has some answers and if it sees the word mother, or brother, or sister or 

whatever it is, it will then ask a question, ‘will you tell me about your family.’” 

Another teacher shared how one student successfully applied abstraction, 

They were just trying to organize their work better but what I think they 

effectively did and in any large program you’re gonna have lots of files but what 

they effectively did without me prompting them to was to sort of take this thing 

and get it to work and then just push the files away into this file import that works 

but not have to worry about what’s in the file. 

 

Teachers hypothesized that abstraction is difficult for students because they  

lack the experience, background knowledge, the inability to see patterns, and the inability 

to organize information. Math teachers noted that unlike math where students had years 

of practice, CS was almost always a completely new subject for students. Regarding 
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including real world experiences and activating background knowledge one teacher 

explained, 

I feel like the more hands on and the more sort of real you can make it with 

manipulatives the better any teaching is. I feel like it’s just sort of good teaching 

to give them as many physical models of these ideas as well as actual models. 

 

Another teacher mentioned how the robotics curriculum she used included games 

students knew, such as hot potato. However, teachers mentioned that it was difficult to 

get students to solve problems with minimal direct instruction in their courses. Another 

teacher shared, “Yeah, you have to understand the ideas in order to understand the 

hierarchy of ideas.” A veteran 13-year CS teacher shared another possible reason that 

students struggled with abstraction, “When you start with those basic patterns, one of the 

biggest things that I have found is that kids struggle with pattern recognition, kind of like 

they struggle with number sense in the quantity and place value.” 

The teacher with the most experience in this study, over 25 years in education, shared 

that educators used to focus on teaching the acquisition of knowledge. She said she 

learned in school by copying outlines from teachers as they wrote on the board. She 

replicated writing outlines to learn in college when she studied textbooks. She further 

explained that students today probably learn by outlining and organizing information less 

than in the past because education has changed, 

You know the interesting thing is, I think the reason I got that is that when I was 

taught way back when before Noah came over on the Ark… back then we didn't 

have the Internet, so it was all about learning information. Today it's more about 

finding information and analyzing it.  

 A CTE teacher who was focused on helping his students get ready for 

employment provided certification trainings for CompTIA encouraging students who had 
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more of an interest in hardware to focus on learning about information systems rather 

than programming. He also shared that business analysts and systems analysts have to 

know a great deal about all aspects of CS and especially abstraction to connect client 

goals with their team’s design process. He shared that although not all students might be 

interested or talented with computer programming, knowing some degree about computer 

programming and abstraction would serve them as a future employee. 

Research Question 2: How do teachers determine objectives and competencies 

for teaching abstraction in computer coding? 

Three teachers interviewed did consciously plan and determine objectives for 

teaching abstraction in yearly curriculum, daily projects, and rubrics used in assessment. 

Most of the teachers inadvertently or unconsciously addressed abstraction relying often 

on their curriculum to address the topic. The three teachers who consciously planned to 

include abstraction, the discrepant cases, were either required to teach abstraction to 

prepare their students for the AP CSP test, or they had already learned about abstraction 

in their college coursework and professional development. These three discrepant cases 

underscore the variable of experience learning about abstraction both as a college student 

and in teacher professional development. The following stories and quotes will illustrate 

the variety of teacher experiences directly or indirectly determining course objectives and 

competencies for abstraction in CS. 

Curriculum 

Teachers use curriculum and objectives to determine instructional activities and 

assessments. Because the majority of discussions in the interviews that addressed 



114 

 

 

curriculum and objectives for abstraction were contextualized around instruction, the 

following examples from teachers will also illustrate results for the instruction of 

abstraction. Teacher participants in this study utilized online tutorial programs, such as 

Code.org, AppInventor, Project Lead the Way, Nand2Tetris, and teacher created tutorials 

to provide direct instruction and differentiate instruction. Middle school teachers relied 

on Agent Sheets and Scratch focusing on game development, as well as robotics. High 

school teachers used Snap and even Logo and TI basic calculator programming as drag 

and drop or block-based coding curricular resources and HTML, Python, and Java as 

text-based coding languages. Intersections between Math, Science, and CS also provided 

opportunities to teach abstraction. Teachers discussed ways to make curriculum 

engaging, accessible, and interesting as much as possible. 

The idea of artificial intelligence, AI, was used to both describe teaching 

abstraction and engage students. An AP CSA teacher used the idea of chat bots in a 

lesson and explained how she engaged her students regarding features of cell phones that 

are attuned to their voices, “So how many of you have Alexa at home and isn’t it kind of 

creepy to know that something is listening to you all the time?” 

And further, 

Well I think it's fascinating because I'm wanting them to think beyond just 

expecting, you know oh gosh somebody really smart did this. And so therefore all 

this must be right. And my approach to that. Is more. Well let's think about where 

this came from. Look at the people that you know created Watson. And then 

there's this funny video that I just show a clip of. And it's two chat bots interacting 

with each other. They said wow it's really quite humorous the way they respond 

back and forth to each other and then they start talking about God and so one of 

the chat bots says Do you believe in God. And the other chat bot says yes and the 

other chat bot says Oh well then you're a Christian. And that chat bot responds 
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with. No, I'm not a Christian. I specifically chose that example because I just 

wanted them thinking about morality and ethics.  

 

Presumably, the teacher meant instructing about morality and ethics of chat bots and AI. 

 Two teachers mentioned standards which guide the creating of course curriculum 

and objectives. One teacher mentioned that he had more flexibility in his course 

curriculum because he was not teaching in a state that had adopted Common Core 

standards. Another middle school teacher shared implementing multiple standards 

including the International Society for Technology in Education (ISTE), “So, our district 

has priority standards and innovation standards as well as ISTE standards.” 

Both the ISTE standards and the Computer Science Teachers Association (CSTA) 

mention abstraction in their definition of computational thinking (CSTA, 2019; ISTE, 

2019). 

 The AP teachers in this study used Project Lead the Way, Stacey Armstrong’s A+ 

CSA, AppInventor, and self-developed curriculum for AP Computer Science Principles 

(AP CSP) and AP Computer Science A (AP CSA). The AP CSP test requires an 

abstraction task, so all of the AP CSP instructors described introductory abstraction 

lessons in which the topic was introduced, practiced and then later revisited throughout 

the course. AP CSA instructors agreed that abstraction was the nature of Java and object-

oriented programming. Even though the AP CSA instructors did not all use abstraction 

specifically as a vocabulary term, they taught the skill of abstraction, required abstraction 

in their coding assignments, and directly or indirectly assessed abstraction. 
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 Several teachers described game design using Agent Sheets, Scratch, Snap, or 

AppInventor as a way to engage kids and teach them abstraction. One teacher mentioned 

she included challenges encouraging abstraction skills, 

I have them speed it up when it reaches a certain score or throw up 

congratulations you won something like that and then from there it’s up to them to 

sort of puzzle it out how to do it either independently or through pair 

programming. 

 

She also described how she taught students to make a procedural abstraction in the game 

Frogger called “anticheat”, 

So, the question is how do you what's the most elegant way to prevent the frog 

from cheating. And the first solution the kids come up with is to say to write a 

rule for every instance where the frog can cheat and there are like six of them or 

seven of them. Right. And the idea is can we, can we get that down to one rule? 

And eventually we'll talk it through. And a kid will figure it out. Here's the way to 

do it. You put you put an agent underneath all of those and if you say if the frog is 

somewhere above them the game resets with one rule. 

  

 App development (for mobile phones or tablets) was an additional curriculum 

option that both high school and one middle school teacher used. AppInventor and 

Google Android Studio were used at the high school level and Swift was used at the 

middle school level. One teacher used AppInventor as the primary curriculum for the AP 

CSP class he taught. 

 Middle school teachers offered instruction with a variety of robotics including 

Lego, Sphero, Ozobots, and Edison robots. Both teachers were designated STEM 

instructors and combined engineering, science, and math along with programming 

instruction. Neither of these teachers had specific examples of teaching abstraction in 

computer coding. One teacher explained that teaching robotics brings technology, 
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engineering, and math together, “So, in my mind that’s the most useful way to teach 

abstraction is actually building something that they can say oh I imagined that.” 

STEM teachers also used 3D printers and Tinker CAD to teach computer programming, 

the design process and inadvertently abstraction. An advanced high school CS teacher 

shared how he taught students to build circuits as a way to help them understand the 

levels of abstraction in hardware and software, 

For example, I have them build an adder circuit and have them build a half adder 

and a full adder and then they use them both the half adder and the all full adder to 

create a larger four bit and then an eight-bit adder. 

 

See Figure 13 for a description of a full adder circuit used in the arithmetic logic unit 

(ALU) within the central process unit of a computer. 

Teachers also employed cross-curricular connections between Science and Math to 

engage students and help them learn abstraction. A middle school Science teacher and 

after-school STEM advisor, offered programming as a choice in each of her middle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Full adder circuit. 
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school science modules. This teacher just learned to use Rasberry Pi’s and was excited to 

offer a unit next year where her students will use the Rasberry Pi’s to build sensors and 

measure biological and weather information. She explained several examples of how 

students used computer coding, not specifically coding with abstraction, to demonstrate 

their science knowledge, 

One kid was working on a Scratch animation that shows an ocean scene where he 

shows physical and chemical changes. It’s really cool. He drew an ocean scene 

and then this creature comes out of the ocean and eats the plastic bottle that’s on 

the beach and the plastic bottle shrinks and then it zooms into the stomach. 

 

Because this teacher grades on student reflections and student understanding, she is more 

concerned about students’ Science knowledge than working computer code. Referring to 

models in computer programming, she explained, 

Stuff that works is always important but at the same time like if I’m having for 

instance in my astronomy unit I have them build models. It could be a working 

model or it could not be a working model. 

Science field trips and connections with community members who understand and 

demonstrate computer coding are another way she has made connections with Science 

and abstraction. She explained, “We have an astronomy club here and they support 

STEM. We went on a trip and learned about the technology and coding behind these 

amazing telescopes which they remotely run.” A physics teacher who also taught AP 

CSA, explained that he used test tubes and test tube racks in an unplugged activity 

(instructional activity not using computers) to demonstrate arrays, a possible way of 

hiding data or demonstrating abstraction. Another Science and AP CSPrinciples teacher 

connected Math and Science having students input body mass index variables for weight 

and height in JavaScript notation. 
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 Seven out of the 12 teacher participants had taught Math or were currently 

teaching Math. Four of the teachers in this study also had taught or were currently 

teaching AP Calculus. Math was one curricular aspect of teaching abstraction that was 

mentioned in most of the interviews. 

One teacher described a success teaching abstraction with a student creating an 

independent project in Snap to demonstrate an International Baccalaureate (IB) math 

concept,  

And I said well she's using block code. The syntax isn't a problem if she can 

figure it out mathematically and logically she can do it. Like, it's all about the 

problem solving. With block coding, it's not about the syntax. And she ended up 

writing a program that graphed different types of functions from math and the 

abstraction that she used in it was absolutely amazing. In fact, she had one of the 

highest scores that had ever been given at the high school with an AI in math both 

from that IB teacher and on the final score from IB. 

 

One teacher used the idea of a square root on a calculator as a metaphor for abstraction, 

“When you do math, that square root is going to give us the square root. We don’t know 

how it does it. We just know that it is going to give us the square root.” Another teacher 

asked her students to handwrite code line by line “kind of like you do when you teach 

long division.” Several teachers used the logic and math problems on the Project Euler 

website. One teacher explained she would have students write computer code to 

demonstrate their solution to the Project Euler problems, “I make them do it handwritten. 

Then I’ll let them code it and actually check to see if the answer in their program output 

is the correct one in Project Euler.” 

 Another math metaphor for abstraction came from a teacher who described how 

rote knowledge of quadratic equations were an abstraction allowing students to complete 
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complex calculus problems, 

So, when a student’s doing a calculus problem, they can actually think about the 

larger context of that calculus problem and not worry about the smaller algebraic 

steps in the mix even though those algebraic steps…they don’t have to put a lot of 

mental energy toward them. 

 

The math and CS teachers compared the similarities and challenges of teaching algebra 

and functions in both math and CS. According to one teacher, many students struggle 

with understanding the basic principle of representation for the value X in algebra,  

If I had a dollar for every time a student asked me what X was, I would be a 

millionaire. X is a holder. X is something that holds all numbers. More, X is 

something that you operate on and place an operating number. 

 

Because this teacher also knows that the terms function in math and function in CS mean 

slightly different things, he uses teaching functions in math to introduce the idea of 

naming functions as abstractions in CS. He shared how he explains this to his students 

and extends the concept of functions from math to CS, 

We're going to write lots and lots of functions so we're going to be super lazy and 

call them just all of the function. Then in another context you will know instead of 

using C of T, I might use cost and time as the inputs and so show them how the 

functions are not. Not necessarily show them but sort of route to the way that 

functions in mathematics are related to the things that they'll learn, the structure 

they’ll learn in programming, later on. So, I think that's one of the ways that with 

an eighth-grade class I really build the idea of abstraction and functions into math 

as a foreshadow for what I'm going to do computer science.  

 

 Four teachers mentioned they found that students who already knew algebra could 

learn abstraction in CS fairly easily. Another teacher noted that in some ways math was 

easier to teach but harder to see progress in than CS and abstraction because, “Math does 

take a long time to acquire and lots and lots of necessary skills that they don’t necessarily 

see the immediate results.” Another teacher remarked that students were more engaged in 
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CS classes because the curriculum was new and students chose his CS courses as an 

elective. He found that he could challenge the salutatorian of his school who had over ten 

years of Math, Science, English, and Social Studies, as opposed to over one year of CS 

which she found challenging. 

 Teachers mentioned helping students learn abstraction employing geometry. One 

teacher had students build squares in Java, then triangles, then rectangles, and then put all 

the shapes together in a program to build a house. Other teachers used squares and 

polygons to demonstrate recursion and procedural abstraction. Additional elementary 

math and CS cross-curricular connections were noted, “And when I taught third grade 

mathematics and I was teaching multiplication we actually use the term array with the 

kids and it’s a one by five.” 

 One teacher who did not teach an AP CS class at his school because it was a 

smaller school with many IB courses, was excited about a free online course designed for 

introductory college CS called Nand2Tetris (free and online) that simulated computer 

hardware and software design essentially teaching all levels of abstraction over the course 

of a year. He explained, 

You build up the hardware of a computer, and so you start with NAND gates and 

you build all the elementary logic gates so and or XOR and then you use those to 

build ALU and memory and then you build a CPU and then you basically build 

from all of those pieces a general-purpose computer. It's all simulated online, well 

in a hardware simulator. You download the hardware simulator on your computer 

and then you can write little short lines of code that basically connect these 

smaller chips together.  

 

The second semester of the Nand2Tetris course takes students through learning to write 

assembly code, binary code, and on to programming language. 
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 Teachers mentioned additional commercial, course, and community 

curricular resources. Two AP teachers mentioned regularly contacting mentor AP 

teachers. Facebook groups and local CSTA chapters were also mentioned as resources. 

Teachers accessed materials and suggestions on Piazza, Beauty and Joy of Computing, 

and the College Board AP listserv. Online resources such as W3 schools, CyberPatriots, 

and the NASA Hunch Program were recommended as teaching sources for abstraction. 

Stacey Armstrong’s A+ AP CSA curriculum was recommended along with certification 

courses, such as CompTIA. 

Research Question 3 – How do teachers assess student abstraction skills in 

computer coding? 

Teachers approaches were mixed regarding assessing abstraction using formative 

and summative means. Many teachers placed emphasis on their classroom conversations 

with students to determine student knowledge of abstraction (as well as to offer 

instruction through dialogue). Teachers shared employing metacognitive tasks to assess 

abstraction knowledge. Teachers interviewed in this study used several means to 

determine student abstraction knowledge and skill including formative, summative, and 

metacognitive assessments. There were no distinct discrepant cases. 

Assessment 

Assessment is the method teachers use to identify student ability and the success 

of their instructional efforts. The previously mentioned teacher observations of student 

ability arose from formative assessments, or observations, discussions, and informal 

student assessment. As evidenced by the previous results, teachers relied on formative 
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assessment to understand student ability and the effect their instruction had on student 

learning. Only three teachers mentioned providing tests or multiple-choice quizzes in the 

classroom, formal summative assessments, aside from the formal assessment of 

abstraction on the AP CSP test. Teachers did mention that abstraction was included, 

although not always called abstraction, on their project rubrics.  

Regarding the assessment of abstraction, one teacher explained, “Most of my tests and 

quizzes are AP type questions from the College Board. I think it is a natural part of any 

sort of programming assignment.” Another teacher who graded 20% on participation and 

80% on projects shared how abstraction was included in her grading, “We’ll definitely 

talk about it, and so it’s a part of their grade on tests or projects.” Teachers included the 

topics of “managing complexity” and “elegant simple code” on their project rubrics. One 

teacher said she could give students feedback on abstraction in their coding but felt less 

confident creating assessments and relied on AP practice questions. Another teacher 

shared, “AP CSP directly assesses abstraction. Students have to know what it is and how 

to demonstrate it. Science assesses abstraction with modeling through chemistry labs that 

show formulas for say gasses that are applied in a variety of combinations.” 

 Assessment was the most difficult research question about which to get follow-up 

information or examples from teachers. Another teacher shared that the online tutorial 

course he was using required students to complete one module before moving on, which 

was a form of summative assessment. He utilized questions first and later discussions to 

aid students who were unable to complete modules. Regarding the challenge of teaching 

abstraction, one teacher who started teaching through an alternative route and did not 
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have formal university courses in education shared, “I think it is an extremely difficult 

thing to assess because in my current view of abstraction, it’s much more of a thought 

process.” 

Research Question Context – Teacher Experience 

 The overarching theme of experience was shared as teachers described their 

pathways to becoming CS teachers, degrees of self-efficacy teaching abstraction, their 

lack of specific courses or professional development regarding abstraction, and their 

requests for future professional development. Only two of the teachers in this study had 

taught CS for more than 5 years. The majority of teachers with one to five years of 

experience were teaching a combination of new courses and courses that they had been 

teaching. Regarding the demanding nature of teaching technology and simultaneously 

learning new course material, one middle school instructional technology teacher 

remarked she was confident that teaching abstraction would get easier, 

 

 

 

 

 

 

 

 

Figure 14. Teacher experience and parent themes 
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As I'm as I'm learning and figuring all this out it will be more comfortable to be 

able to do that. I also believe though in a job like this and with technology it's 

constant. You're learning, you're changing, you’re trying to figure it out, so trying 

to make that or using that is just something that will be ongoing.  

The relationship between the teacher experience, parent themes, and the student 

experience is illustrated in Figure 14. 

 Learning with students as opposed to be the expert was another common 

experience teachers shared. One teacher explained, 

I have had to come to terms with no longer being the expert in the room. And that 

was a hard shift after. You know 20 plus years of being an English teacher and 

being the know it all. And then all of a sudden kids ask me question I'll point to 

somebody across the room I said you know that kid over there he's really good at 

those. Let's get him over here for you. So, we're all learning together.    

 

 Regarding self-efficacy, a teacher explained feeling challenged but enjoying the 

experience of teaching a new content area that she did not know as well as she did math, 

her main teaching area of expertise, “It’s been a challenge but it’s those moments I have 

so many moments where I stop and just observe and think, this is the most amazing thing 

that I’m doing.” Another teacher shared that teaching abstraction was difficult initially, 

“First dealing with it was kind of uncomfortable before I really felt confident.” Another 

teacher shared that he felt confident teaching most students but not as much with students 

who struggled with abstraction. He explained, “I feel fairly comfortable with it. I guess I 

have sort of a one-dimensional way of teaching. I don’t feel I have a good way to teach it 

to my kids who struggle.” A physics teacher shared feeling confident about intuitively 

teaching abstraction in the moment because he understood the concept of abstraction 

better than directly teaching the computer coding skills of abstraction. 
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 Teachers’ pathways and educational background may be associated to their self-

efficacy teaching abstraction. Teachers H and K decided to teach CS in college and 

obtained math and physics teaching licenses due to the lack of CS teaching licenses in 

their states. Teachers C and J worked in IT before becoming teachers. Teachers H, K, C, 

and J spoke easily about abstraction and described teaching abstraction more confidently 

than the other participants. Four other teachers (A, F, G, and I), science and math 

teachers, took one programming course in college or had a year or less of experience in 

the software industry. Teachers A, F, G, and I struggled to explain abstraction succinctly 

and described struggling with teaching students who didn’t understand abstraction. 

Teacher E had a master’s degree in Instructional Technology, and teacher I is working on 

a master’s degree in CS. Teachers E and I having had master’s level courses in CS or 

related topics easily discussed abstraction and teaching abstraction, even when the term 

was somewhat unfamiliar. 

 Teachers’ described abstraction through the lens of their initial content area. A 

former English teacher shared that teaching writing was similar to teaching abstraction in 

CS. She was able to use a lot of her strategies as a writing teacher in terms of classroom 

management, curriculum development, assessment, and engaging students to transfer into 

CS education. The former English teacher explained, 

We have one lesson where I just have the kids just gather around and say here's a 

problem. We have to solve it together. And we keep talking it through and I'd say 

OK you've got it down to three rules. Can we get it down to 1 - 1 line of code? 

And in fact, it's interesting because I did the same thing as a writing teacher. And 

it was one of my favorite things to do was to teach kids how to cut the fat out of 

their writing. 
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A math teacher shared how teaching students concepts in math was similar to teaching 

the concept of abstraction in CS. He postulated that the concept assisted in learning future 

skills. The concept of abstraction even became an abstraction in the learning process 

making learning easier and more efficient. Regarding teaching algebra and using the 

concept as a learning abstraction to facilitate learning math skills, he explained, 

“Inevitably the students then forget about or don't have to pay attention to that conceptual 

understanding every time that they say factor a quadratic.” 

 All teachers shared that abstraction was not addressed, or addressed very little if at 

all, in the professional development trainings they attended related to CS. The teachers 

who attended AP CSP professional development said that abstraction was covered, but 

they still didn’t have a solid grasp on what abstraction was. One teacher shared that he 

understood the entire curriculum scope and sequence of math from K-20. He explained, 

“Sometimes my students asked me what’s after AP Calculus and I said well more 

calculus.” However, he couldn’t say what the abstraction curriculum looked like before 

his AP CSP class nor afterwards in college. 

 Several teachers mentioned support from their district, their principals, their 

communities, and students’ parents was helpful in learning effective CS teaching skills. 

One teacher explained, “A dad of a student who came in was a programmer and he would 

just sit in the class and help me like just help the kids troubleshoot and problem solve.” 

Another teacher shared how financial support allowed her to expand her curriculum, “So 

now a couple of years later just from some private donors we have a class that uses Lego 

robotics.” A teacher explained how supportive principals influenced her effectiveness, 
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“So now I’m enjoying kind of having free rein to grow the program at my school and I 

have a lot of support from my administration.” 

Another teacher offered that support from both administrators and teachers in other 

content areas was helpful, “So, I’m very lucky that both my admin team and my math 

department chair supported me in this and we’ve kind of been adding one class per year 

each of the last three years.” Two teachers shared how district level support from school 

boards was crucial for their courses. One teacher shared that she regularly attended 

school board meetings and was consulted on districtwide IT and CS curriculum 

implementation. Another teacher explained, “It did take my school board a little bit to get 

on board.” However, then she was able to take a lead role in training other teachers to 

lead STEM after school programs in her district. 

 Teachers’ suggestions for professional development ranged from very broad 

general introductions on the topic to more collegial sharing teacher to teacher. One 

teacher explained that any type of course on abstraction would be helpful, “I think just 

understanding what it is to because I think a lot of teachers struggle with what it is.” 

Another teacher observed, “I think there is a lot of room for professional learning.” 

Another teacher suggested, “Just offering it in general with any sort of programming. I 

think you know giving them the opportunity to learn you know concepts that aren’t 

surface level and aligning a little bit of resources behind that.” 

Another teacher requested, “Some good awesome lesson plans for that because it’s 

something I don’t feel super confident in.” More specifically, teachers requested coding 

and abstraction professional development relevant to their courses. One teacher 
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suggested, “I think it would be important to have some professional development around 

abstraction/coding for STEM teachers.” 

 Several teachers shared that a training where teachers were taught to experience 

the syntax related to abstraction in several programming languages, from drag and drop 

languages like Scratch to AP CSA languages like Java, would be helpful, especially 

focusing on data structures, arrays, encapsulation, and object-oriented programming. 

Another teacher suggested providing a wide array of learning activities because he liked 

trying learning experiences that were completely different. A STEM teacher suggested 

offering professional development for abstraction using a three-dimensional lab approach 

focusing on engineering design and rubrics. All of the teachers were interested in some 

type of professional development related to abstraction. 

Summary 

In conclusion, the 12 teachers interviewed in this study shared their experience of 

teaching abstraction from primarily high school and some middle school CS courses. 

Information from the one elementary teacher, the outlier case, was generally excluded 

from the results due to the lack of information from other elementary teachers. I 

employed rigorous repetition and careful analysis of all themes and data to ensure 

dependability, confirmability and transferability.  

In relation to RQ1 (What types of instruction do K-12 teachers find most effective 

for teaching abstraction in computer coding?), teachers shared that a variety of dialogue 

techniques, collaborative learning techniques, direct instruction, and contextualized 

instruction including project-based learning were helpful. Teachers also mentioned that 
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utilizing preexisting curriculum such as AppInventor, Nand2Tetris, and Project Lead the 

Way, or even self-made tutorials, provided teachers with a foundation from which they 

could offer advanced instruction and guidance related to applying abstraction. Teachers 

relied on AP test criteria and preexisting understanding of teaching students to use 

elegant, simple, or efficient code in relation to RQ2 (How do teachers determine 

objectives and competencies for teaching abstraction in computer coding?). Teachers 

utilized primarily formative assessment through dialogue to assess abstraction (RQ3 – 

How do teachers assess student abstraction skills in computer coding?). Although a few 

teachers did employ summative assessments in the form of project rubrics, quizzes, and 

tests. Some teachers chose to put more emphasis on assessing abstraction via student self-

reflections versus abstraction in computer coding. 

 In relation to the general research question guiding this study (How do teachers 

decide what effective instruction for teaching abstraction for computer coding is?), the 

overarching theme was that the more experience teachers had with their course material, 

with programming languages, with teaching CS, with CS courses, the more teachers 

found ways to explain abstraction, instruct abstraction, and assess abstraction. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this descriptive qualitative inquiry is to illuminate the teaching 

experience regarding abstraction in K-12 CS and examine effective ways to teach 

abstraction. This study also provides variables, such as professional development, 

experience with course content, and previous teaching content areas for future 

quantitative research. Insights comparing how the results confirm, disconfirm, or extend 

the theoretical framework and literature review are offered in this section to help 

educators better understand the effective instruction of abstraction. Finally, avenues of 

future inquiry indicated from this study are offered. In general, the results of this study 

show that CS teachers do not have a common definition of abstraction. Abstraction in CS 

is a multifaceted concept, attributed to both hardware and software, and used as a noun, a 

verb, and an adjective. Teachers generally understood and taught the concept of 

abstraction but were not as confident teaching all students abstraction and assessing 

abstraction. Abstraction is a topic that is a ubiquitous concept requiring knowledge of 

many aspects of CS. As teachers become more versed in abstraction, they will become 

better CS instructors. 

Interpretation of Findings 

Defining Abstraction 

As reported in Chapter 4, the majority of teachers interviewed in this study did 

not have a succinct definition of abstraction. Four out of five AP CSA (the most 

advanced level of AP CS taught in high school) teachers interviewed shared that they had 

a sense of abstraction but did not actively teach it or assess abstraction. Two of these AP 
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CSA teachers had taught the course for four or more years. It is understandable that an 

advanced topic such as abstraction may take a while to master for teachers new to a 

content area, such as teaching Java (a complex programming language), the programming 

language taught in AP CSA, due to the demanding nature of both CS and Java. Other 

teachers used abstraction as a noun, verb, and adjective which indicates teachers had an 

understanding of the multi-faceted nature of abstraction. The majority of teachers 

requested specific professional development on the topic of abstraction with direct 

applications and demonstrations in a variety of programming languages. Perhaps, the 

conceptual framework of abstraction is too large and should be broken down into smaller 

more meaningful concepts and skills for successful integration into K-12 CS education. 

 Comparison with Theoretical Framework 

 Overall, the results of this study confirmed the theories and frameworks 

incorporated into the broad theoretical framework detailed in Chapter 2. The only 

theories or frameworks that teachers mentioned by name were computational thinking 

and Piaget by three out of 12 teachers interviewed. One teacher had specific professional 

development related to the instruction of computational thinking, of which abstraction is 

designated as a foundational principle (Wing, 2008, p. 3718). Therefore, according to the 

results, the teachers interviewed in this study did not share consciously incorporating the 

theories and frameworks described in Chapter 2. The results from teachers do indicate 

some theories and frameworks might help teachers understand the instruction of 

abstraction. 
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Philosophy, Abstraction, and the Teacher Experience       

Ontological and epistemological interpretations of the relationship between 

humans, computers, and abstraction seem interestingly similar to the experience teachers 

had instructing abstraction as a skill and a concept. The majority of teachers related that 

students who learned skills first were later able to demonstrate some foundational 

algorithmic, syntactic, and procedural programming skills demonstrating an 

understanding of abstraction as a concept. The implication for the instruction of 

abstraction from Fichte (as cited in Whistler, 2016) was that teachers should employ 

metacognition in order to develop deduction and induction thinking skills. It appears that 

helping students build background knowledge and basic skills needed to produce 

abstraction facilitates students activating background knowledge through metacognition 

resulting in learning abstraction. If students lack essential background knowledge, they 

have no ontological markers to use for analysis, evaluation, application, and creative 

problem-solving. As teachers in this study noted, when they helped students build 

background knowledge, students were then able to epistemologically apply their 

background knowledge to demonstrate abstraction. 

Student metacognition provided teachers with formative and summative 

assessment information regarding ontological and epistemological background 

knowledge. Teachers shared several ways they encouraged student metacognition 

through dialogue and written self-reflection used as assessments, but teachers didn’t 

focus on developing student awareness of expressing thoughts by programming 

computers. It appears that Gobbo & Benini’s (2012) and Ben-Ari’s (2001) input on 
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extending human ontological identity through computing was not directly acknowledged 

by teachers at all. Teachers did talk about enjoying watching students share joy in 

programming successfully, implying that student self-efficacy more than the student 

intrapersonal awareness of their relationship with a computer as an inforg may be more 

important to teachers in teaching abstraction. Student motivation and self-efficacy may be 

more important for learning abstraction than philosophical frameworks inviting 

ontological and epistemological reflection. 

 Ultimately, applying abstraction elegantly in computer coding requires learning 

abstraction as a concept and a skill. The concept of abstraction could be equated with 

ontologically understanding the computational solution, the exact nature of the solution. 

The skill of abstraction could be equated with epistemologically understanding the 

computational solution, how the solution could be executed. Declarative knowledge is 

also aligned with ontology (Marzano & Kendall, 2007). Whereas, procedural knowledge 

is more aligned with epistemology. One teacher mentioned teaching data abstractions and 

procedural abstractions which are also respectively similar to ontological/declarative 

knowledge and epistemological/procedural knowledge. 

As computers help humans to solve problems and technology becomes more 

complex with layers of abstraction, teachers and students may benefit from thinking 

about teaching and assessing abstraction focusing on both the skills and the concept of 

abstraction, building both declarative and procedural knowledge. Furthermore, if teachers 

want to focus on teaching the concept of abstraction, they might focus on contextual 

instruction because contextual instruction can help students build and activate 
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background knowledge making connections that facilitate the understanding of the 

concept of abstraction. Teachers might focus more on direct instruction if they want to 

help students understand the skill of abstraction. With either the concept or the skill of 

abstraction, both direct and contextual experience were reported to be helpful from 

teachers participating in this study. Possibly, alternating between concept and skill as 

several teachers reported, returning to the concept of abstraction periodically as 

programming skills are developed may be the most effective way to help students learn 

abstraction.  

 Inviting teachers to understand, discuss, and consider creating lessons around 

potentiation, the inforg, epistemology, and ontology may actually be more helpful for 

teachers than students allowing them to gain an understanding of abstraction from 

multiple vantage points. All of the teachers in this study shared that they have little to no 

experience discussing abstraction in professional development or even in college 

computer courses. One teacher noted it is very different to be a CS student taking college 

courses than a teacher of CS.  

Psychology, abstraction, and the teacher experience 

The majority of teachers concurred with Piaget (1950) in his assertion that the 

development of abstraction thinking and imagining a problem and a solution occurs 

around age 11. A few teachers suggested that aspects of abstraction could be taught to 

elementary students. The lack of elementary teachers in this study precludes additional 

implications related to the ability of elementary abstraction skills. All teachers agreed on 

the point that abstraction ability was student-dependent, not related to grade-level. 
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Teachers speculated that math exposure and personal interest might help some students 

exhibit better abstraction skills than others. In any case, it seems that teachers would 

benefit from recognizing a range of abstraction skills that help teachers differentiate 

instruction. 

Vygotsky’s (1978) zone of proximal development theory provides a basis for 

teaching students abstraction skills in computer programming in elementary school. As 

with semantic language acquisition, exposing students to a multitude of algorithms and 

elegant, simple, functional code, may provide students with essential background 

knowledge required to construct efficient effective programs later on in middle and high 

school (Chomsky, 2006; Vygotsky, 1986). Teaching students metacognitive skills, 

induction, deduction, and logical thinking in the elementary grades might also help 

teachers foster thinking skills necessary for developing proficient abstraction skills in 

computer coding in middle and high school. The teachers in this study were not sure 

exactly which thinking skills might be engaged in elementary, middle, and high school – 

more reason to include a variety of psychological learning theories in professional 

development for teaching abstraction in CS. 

The majority of teachers stated that they utilized subjective formative assessments 

to determine the extent of student abstraction abilities. According to the zone of proximal 

development, students would understand abstraction better than they might be able to 

express it verbally or apply abstraction in computer coding. It may be most effective to 

assess abstraction utilizing primarily formative assessments and secondarily offer 

summative assessments in quizzes, on tests, and in projects. Providing teachers with 
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experiences in professional development related to the zone of proximal learning and 

speech facilitating thought applied to the instruction of abstraction may help teachers 

develop more consciously focused instructional strategies. 

 All of the teachers that were interviewed employed collaborative learning which 

aligns with Vygotsky’s (1986) theory that speech facilitates the development of thought. 

POGIL, or process-oriented guided learning, was not mentioned as a collaborative 

learning strategy but pair programming and group projects were cited by teachers in this 

study. Collaborative learning provides students with opportunities to ask questions, 

verbalize answers, and develop critical thinking and problem-solving skills. Teachers in 

this study did not mention intentionally applying collaborative learning as an 

instructional technique for teaching abstraction. However, collaborative learning that 

focusses on activities and questions and assessments designed to help students learn 

abstraction, may provide an excellent environment for teaching and differentiating 

instruction for abstraction. 

Constructionism, computational thinking, and teaching abstraction 

Teachers interviewed shared that collaborative learning environments with 

aspects of constructionism appear to support learning computational thinking and 

abstraction. Collaborative learning is a necessary environment in constructionism 

proposed by Papert (1980) as an optimal learning framework for CS education. Another 

element of constructionism that teachers in this study utilized is student-led inquiry. One 

teacher noted that the real learning occurs when students ask questions about their work 

in class. Several other teachers shared how they used student conversations to teach 
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abstraction, either when students made suggestions demonstrating their understanding of 

abstraction or asked questions requiring teachers to offer direct instruction on abstraction. 

Pure constructionist learning necessitates an open-lab for exploration. No teacher offered 

that an open-lab was a helpful or useful learning environment for teaching abstraction. 

However, many teachers shared how students in their courses had a great deal of 

independent time to explore, learn, develop, and complete projects. Aspects of 

constructionist learning, such as collaboration and student-led inquiry, appear to be useful 

in teaching abstraction, but an open-lab learning environment was not employed by any 

of the teachers in this study. 

 Teachers did not equate computational thinking and abstraction. Only one of the 

teachers who had taken a course in computational thinking shared a how he incorporated 

CT as an educational objective in his CS courses. Several other teachers explained that 

creating a computational solution was the goal of their STEM or CS courses but did not 

mention ways they aligned this educational objective with instruction and assessments. 

The conceptual framework of computational thinking from Wing (2006) and Brennan 

and Resnick (2012) may be useful for helping teachers identify broad objectives for 

courses but do not appear to be useful in helping teachers identify learning outcomes 

related to abstraction for lesson plans and corresponding assessments. Possibly, teachers 

are overwhelmed with teaching the highly complex new content area of CS and 

incorporating a broad framework such as computational thinking might be too much. 

New CS teachers related they relied on prescribed curriculum and were learning the 

content along with their students. Teachers with little or no content knowledge who rely 
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on specific objectives and outcomes may not have enough content knowledge to 

effectively develop the curriculum needed to apply a conceptual framework such as 

computational thinking. Abstraction, a subskill of computational thinking, is also very 

complex. The results of this study indicate that teachers need more clarification 

understanding computational thinking, the relationship between computational thinking 

and abstraction, as well as related guidance creating objectives, curriculum, and 

assessments. Possibly, teachers similarly need detailed objectives and outcomes by grade 

level to effectively teach abstraction. 

Levels of abstraction, programming languages, and the teaching experience 

Two teachers mentioned teaching levels of abstraction, and one other teacher used 

the word architecture to define levels of abstraction. However, the majority of teachers 

were unaware of levels of abstraction such as the PKG hierarchy (Armoni, 2013). The 

PKG hierarchy is a conceptual framework for understanding some of the multi-faceted 

aspects of abstraction. Parallels can be found comparing the PKG hierarchy with the 

programming languages teachers described utilizing and the metaphors for abstraction 

that teachers shared (Figure 15). Teachers shared how they utilized unplugged activities, 

dialogue, and discussions about what the end-user needs which relate to the problem level 

of the PKG hierarchy. The focus at the problem level of the PKG hierarchy is on the 

human experience of the computational solution. I equated unplugged activities at this 

level because of the human to human element of problem-solving. At the object level of 

the PKG hierarchy, the computational artifact, both hardware and software, is a grouped 

and experienced as a thing provides a function. At the object level, the graphic user 
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interface (GUI), or what is seen on the computer screen is the level of abstraction that 

equates with block-based coding and robotics. The metaphors teachers shared of driving 

a car or solely liberal arts versus solely technical college educations, or even 

understanding how football is played but not understanding app development, relate to 

the object level where people experience the efficiency of the computational artifact.   

The program level of the PKG hierarchy relates to software and the variety of 

line-based languages, such as Java or Python that teachers reported using in the 

classroom. The metaphors teachers discussed using for instructing abstraction relating to 

the program level were two dimensional, the abstract class in Java, and data and 

procedural abstractions.  

 

Figure 15. Relationship between PKG hierarchy of abstraction with instructional 

programming languages and conceptual metaphors 

Different types of abstraction in computer coding like data and procedural abstractions, 

could also be seen as a skill, but because these were mentioned conceptually by teachers 
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as subsets of abstraction I have related them as metaphors at the PKG hierarchy program 

level. The execution level of the PKG hierarchy relates to the instruction of circuits and 

binary code, the underpinning of modern computational devices. Three-dimensional 

instruction using drones, apps, and Microbits or Rasberry Pi’s (small hand-held 

functional computing devices) are metaphorical applications of the execution level of the 

PKG hierarchy. It might aid teachers to understand connections between levels of 

abstraction, hardware, software, human needs, computer languages, and instructional 

explanations and applications. If teachers learned about conceptual frameworks related to 

abstraction, such as the PKG hierarchy, they might be able to help students better 

navigate and develop abstraction skills. 

 Most teachers with less experience programming and teaching abstraction were 

confused if algorithmic representations, such as variables, recursion, and classes were 

abstractions (illustrated in Figure 16). The program level of the PKG hierarchy 

undoubtedly could include many types of algorithmic abstractions in the universe of 

programming languages. Teachers of all grade levels would benefit with expert guidance 

from CS scholars about the exact relationship of representation and abstraction. 

Critical thinking, abstraction, and the teacher experience 

 No teachers interviewed discussed addressing specific thinking skills such as 

deduction or induction. Several teachers shared the importance of teaching 

generalization, pattern recognition, and logical thinking in teaching abstraction. 
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Figure 16. Algorithmic representations resulting in an abstract program 

Thus, results from this study confirm the importance of teaching some aspects of critical 

thinking to teach abstraction, namely pattern recognition (analysis), and generalization 

(synthesis), and logical thinking (also possibly a combination of decomposition, 

deduction, and induction). Marzano & Kendall (2007) described abstraction as the 

process of retroduction requiring both induction and deduction. Perhaps it would be 

useful for teachers to experience, discuss, then apply the critical thinking skills of 

deduction and induction in relation to the other thinking skills like pattern recognition, 

generalization, and logical thinking, in order to understand the array of thinking skills 

needed for abstraction in computer coding. 

 Results from teacher interviews do not confirm the multiple pathways to learning 

CS described in the taxonomy proposed by Fuller et al. (2007) The taxonomy for learning 

CS shows how through a variety of thinking pathways involving combinations of 

producing and interpreting some students learn CS more conceptually and theoretically; 

whereas, other students may learn by experimenting and figuring out code on their own. 

Abstract program

Class

Recursion

Variable
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None of the teachers shared any awareness of students learning abstraction via multiple 

pathways. Several teachers did mention students who seemed as if they were “savants” 

and picked up abstraction “on their own” with little teacher guidance indicating these 

students were experimenting and figuring out code and abstraction on their own. It may 

assist teachers in teaching abstraction to understand that students, as Fuller et al. (2007) 

contend, have multiple pathways for learning CS.  Except for one teacher, all interviewed 

expressed the belief that every student could learn abstraction. Many teachers also 

described feeling frustrated and unsure how to help students who were struggling to learn 

abstraction. Possibly, if teachers began to monitor a variety of student preferences and 

pathways for learning abstraction, it might be easier for teachers guide students who 

struggle. 

Comparison with Literature 

The results of this study both confirm and disconfirm a variety of topics including 

instruction via tangible software, universal design for learning, game-based instruction, 

utilizing microworlds, STEM instruction, scaffolding, collaborative learning, using 

rubrics and portfolios, and the ability of elementary students to demonstrate 

computational thinking. It is important to note that due to the lack of specific research 

regarding abstraction, the majority of research evaluated in the literature review analyzed 

studies that investigated computational thinking because abstraction is deemed a subskill 

of computational thinking (Wing, 2008). Aspects of previous educational research related 

to abstraction could help teachers gain insight into teaching struggling students and 

abstraction in general. 
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Teachers unequivocally recommended using manipulatives (if they had used them 

before in the classroom), such as Microbits and Rasberry Pi’s to teach abstraction. 

Tangible software has been attributed to elementary students learning computational 

thinking (Bers, 2010; Kazakoff & Bers, 2012; Wang,Wang & Liu,2014; Zhong et al., 

2016). Most teachers interviewed mentioned that engaging multiple intelligences in the 

learning process helped students. Perhaps if more teachers understand how helping 

students understand the relationship between hardware and software, teachers will be able 

teach students about levels of abstraction. Teaching how hardware works may also help 

students to be able to create computational solutions that operate efficiently and 

effectively. Teaching students about hardware may help students understand and apply 

abstraction in computer coding. 

Universal design for learning and scaffolding, especially utilizing pseudo code as 

an instructional technique, have been recommended as instructional techniques for 

increasing computational thinking (Israel, et al., 2015; Shane & Sherman, 2014). The 

majority of teachers participating in this study explained that they used scaffolding and 

aspects of universal design for learning including videos, tutorials, and pseudo code. 

Additional training specifically focusing on examples applying utilizing universal design 

for learning and scaffolding with abstraction in several grade levels might assist teachers 

in providing more effective instruction.  

Several teachers interviewed in this study shared how they included games and 

game-based programming into beginning and even advanced CS classes. Game-based 

curriculum has shown promise in stimulating computational thinking (Carbonaro et al., 
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2010; Lee et al., 2014). Teachers described using games and gaming as a way to 

contextualize skills needed to express abstraction in computer coding. Students activate 

background knowledge when programming games they know, such as Connect Four or 

hangman. Games also have objects and rules which make them helpful for teaching 

object-oriented programming, data abstractions, and procedural abstractions. 

None of the teachers in this study mentioned utilizing microworlds, such as Unity 

or Second Life, to teach computer coding or abstraction. Immersion into microworlds has 

been cited as a possible way to help students generate computational thinking (Jenkins, 

2015; Reuker et al., 2013). Teachers might be interested in seeing and exploring lesson 

plans focused on abstraction situated in microworlds. The students at “the bottom of the 

pack”, as one teacher described, who struggle to understand abstraction might learn the 

concept and skills in an imaginary microworld. 

STEM curricula was used by two of the middle school teachers as a way to 

include CS in the design process. STEM and robotics instruction have been used to 

engage middle school girls in engineering and improve creativity and computational 

thinking (Cooper & Haverlo, 2015). The interdisciplinary nature of STEM instruction 

naturally accommodate project-based learning, contextualized instruction which helps 

students activate and build background knowledge. Teaching the design process in STEM 

courses helps students practice logical thinking, problem decomposition, deduction, and 

induction – all useful thinking skills for learning abstraction. STEM curricula or modules 

could be helpful in teaching and learning abstraction, especially in the elementary and 

middle school grades. 
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Teachers interviewed in this study concurred with theories implicated by 

Vygotsky (1986), Papert (1980) that collaborative learning is helpful in teaching 

abstraction. Elementary, middle school, high school, and college students showed 

improved computational thinking skills when instructors used collaborative learning 

(Harlow & Leak,2014; Huang et al., 2016; Hu et al., 2016; Porter et al., 2013). Teachers 

mentioned using collaborative learning techniques such as paired programming with one 

student designated as a navigator and the other student designated as a driver. Teachers 

also shared using small groups and agile project management techniques to help students 

learn the array of tasks needed to create computational solutions. More examples of 

collaborative learning activities addressing abstraction for a variety of grade levels could 

assist teachers in providing more thoughtful instruction for abstraction in CS. 

Although the majority of interview data from this study focused on the instruction 

of abstraction, teachers had less information to share about how they assessed abstraction. 

Rubrics and portfolios have been used to assess computational thinking (Sanford & 

Naidu, 2016; Zhong et al., 2016). Although teachers interviewed in this study did not 

have specific rubrics for abstraction in computer coding or in projects, several shared 

they did require efficient or elegant code in their rubrics. None of the teachers used 

portfolios to grade students. Several teachers used sample quizzes and AP test problems 

that addressed abstraction. All the teachers mentioned interest in viewing or learning 

about ways to assess abstraction. 

A variety of research regarding elementary students’ ability to learn conceptual 

and procedural knowledge via nonformal contextual interactions suggests that elementary 
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students can learn abstraction in CS (Braithwaite et al., 2016; Rittle-Johnson & 

Schneider, 2014; Szucs et al., 2014). A few teachers interviewed in this study speculated 

that elementary students could learn some aspects of abstraction. Unfortunately, the one 

elementary teacher in this study was not very familiar with abstraction and could not 

offer much input about elementary students’ abstraction skills. Teaching abstraction in 

elementary CS is an entire topic that could use more research. 

Limitations of the Study 

This study was limited by time, the number of participants, the predominance of 

secondary teachers, and the lack of student artifacts. Because abstraction is an advanced 

skill that several teachers mentioned saving to teach until the second half of the school 

year, I may have been able to recruit more participants who were actively teaching 

abstraction if I had recruited in the spring rather than the fall. Teachers were interviewed 

twice in one month. If teachers were interviewed four times, quarterly, or even monthly 

over the course of an entire school year, the data might have been more representative 

and more thorough. Twelve participants were recruited, the majority being high school 

teachers. More middle school and elementary teacher participants might yield more 

complex results. Finally, as stated in Chapter 4, it was taking too much time to get the 

district-level approval needed to acquire deidentified student artifacts. Examination of 

teacher assessment data and student computer coding artifacts would inform the 

assessment of abstraction. However, the lack of student deidentified data (only from four 

teachers) limited a deeper examination of the assessment of abstraction. 
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Recommendations for Future Research 

This study solely focused on the teaching aspect, the input, of the educational 

process. Additional studies about student the student experience learning abstraction in 

CS, grade level abstraction abilities, and student curricular interests are needed to more 

fully understand the output, or the learning aspect of the educational process. Additional 

research investigating effective instructional approaches to teaching abstraction in the 

elementary grades would inform an aligned and accurate curricular progression of 

abstraction skills. More investigation into grade-level appropriate abstraction skills and 

concepts would aide teachers in creating objectives and outcomes. Research that tests 

refined abstraction rubrics and assessments would help teachers with needed resources. It 

would also be interesting to offer a survey to a larger teacher population and inquire 

about the variety of thinking skills (pattern recognition, decomposition, generalization, 

induction, deduction, and logical thinking) and abstraction. Potential variables for future 

quantitative study of the instruction of abstraction include programming languages, the 

relationship between hardware and software, concepts, skills, direct instruction, 

contextual instruction, teaching experience, student math experience, and STEM 

curriculum. 

A more thorough investigation of a succinct definition of abstraction that K-12 

teachers can understand and apply in the classroom would be helpful. The Nand2Tetris 

course seemed to provide a low-cost simulation for teaching levels of abstraction, which 

might warrant future investigation. It would be interesting to see the effect of experience 

applying abstraction for teachers with self-efficacy teaching abstraction. Curriculum to 
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teach abstraction including graphic organizers and scaffolded lesson plans would help 

teachers of all grade levels. Teaching cybersecurity and levels of abstraction might 

provide a context for learning abstraction that would be beneficial. Finally, developing 

and researching project-based lesson plans or modules supporting AP curricula that 

helped students to learn abstraction would also be helpful. 

Implications for Computer Science Instruction 

Positive Social Change 

In the four years that I have been working on this dissertation, K-12 CS education 

has garnered a great deal of national attention and funding. Thirty-seven states have 

either adopted or are in the process of adopting K-12 CS standards that include 

computational thinking (Code.org, 2018). Computer science professionals are in high 

demand - the majority of STEM jobs in marketplace (National Academies of Sciences, 

Engineering, and Medicine, 2018). Many states and countries are developing CS 

legislation, policy, curriculum, graduation requirements, and teacher professional 

development (Rees et al., 2016). In September 2017, President Trump signed a 

memorandum on increasing access to high-quality STEM and CS education. In 2018, the 

US Department of Education offered $195 million in grant funds for STEM/CS 

education, the Support for Effective Educator Development (SEED), and the Education 

Innovation and Research (EIR) grants. The Perkins Career and Technical Education for 

the 21st Century Act was reauthorized in July 2018 providing dual coding for both 

academic and CTE CS courses as well as increasing CS teacher pathways. Perhaps a 
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more compelling reason than economics for including computing in K-12 education is the 

argument that computer scientists are the architects of our virtual world. 

The more computer scientists understand all the levels and aspects of abstraction, 

the more efficient and effective our virtual world will work. Computer code that utilizes 

optimal abstraction uses less energy and is called green code (Hasan et al., 2016). 

Teachers who study and teach abstraction will understand more of the complexity of CS 

and become better CS teachers. As Colburn (2000) stated, computers are essentially 

abstractions of human thought, expanding our content and capability. Teachers who 

understand and teach that computers are our creations and expressions, will be able help 

students make ethical decisions and create computational solutions to aide humanity.  

Curricular Implications 

One teacher interviewed pointed out that the newness of CS for both teachers and 

students was a challenge and an asset. Obviously, a new content area can be confusing 

and include a large amount of information to learn. New content areas can also be 

exciting, especially for high school students who have had many years of Math, Science, 

Social Studies, and English. Multiple studies showed that connecting CS with content 

areas, such as Writing, Science, and English as a Foreign Language facilitates 

computational thinking (Alsamani & Daif-Allah, 2015; Chang, 2014; Kafai & Burke, 

2013; Merricks & Henderson, 2013). Perhaps, more of an effort needs to be made to 

cross-walk CS standards with all content areas in all grade levels, truly adding CS as a 

fourth foundational literacy. Providing all teachers with cross-curricular connections may 

assist students in learning difficult topics like abstraction in CS. Promoting the inclusion 
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of CS in all content areas may also help girls and underrepresented minority student 

populations in participating in computing. 

Conclusion 

Abstraction is a multi-faceted concept that the majority of the 12 teachers 

interviewed in this study admittedly did not fully understand and did not feel comfortable 

teaching. Current K-12 CS professional development appears to lack essential training for 

teachers regarding computational thinking of which abstraction is a subskill. Overall, 

teachers in this study reported addressing directly or indirectly the concept of abstraction. 

The most experienced teachers shared that introducing the concept of abstraction, 

building programming skills, and referring back to abstraction as students applied their 

programming skills contextually facilitated knowledge and abstraction skills. Teachers 

also reported that dialogue was an essential aspect in teaching abstraction. Overall, the 

teachers interviewed shared that they would benefit from summative tests, quizzes, and 

rubrics designed to assess abstraction. Better training and a better definition of 

abstraction would make their instruction easier and more effective. The analysis of 

teacher interviews in this study revealed several variables for future quantitative study 

including programming languages, the relationship between hardware and software, 

concepts, skills, direct instruction, contextual instruction, teaching experience, student 

math experience, and STEM curricula. As research informs CS education, the study of 

abstraction will help teachers and students manage the complexity of computing. 

  



152 

 

 

References  

Abelson, H., Ledeen, K., & Lewis, H. R. (2008). Blown to bits: Your life, liberty, and 

happiness after the digital explosion. Upper Saddle River, NJ: Addison-Wesley. 

Adair, D., & Jaeger, M. (2016). Incorporating Critical Thinking into an Engineering 

Undergraduate Learning Environment. International Journal of Higher 

Education, 5(2), 23. 

Alsamani, A. A. S., & Daif-Allah, A. S. (2015). Introducing Project-based Instruction in 

the Saudi ESP Classroom: A Study in Qassim University. English Language 

Teaching, 9(1), 51. 

Andreou, C., Papastavrou, E., & Merkouris, A. (2014). Learning styles and critical 

thinking relationship in baccalaureate nursing education: a systematic 

review. Nurse education today, 34(3), 362-371. 

Anton, G., & Barany, A. (2013). Power of play: Exploring computational thinking 

through game design.  Velvet Light Trap, 72(1), 74-75. 

Apple (nd). (2019). Teacher resources. Retrieved from 

https://www.apple.com/education/apple-teacher/ 

Armoni, M. (2013). On teaching abstraction in Computer Science to novices. Journal of 

Computers in Mathematics and Science Teaching. (32) 265-284. 

Arnoux, P., & Finkel, A. (2010). Using mental imagery processes for teaching and 

research in mathematics and computer science. International Journal of 

https://www.apple.com/education/apple-teacher/


153 

 

 

Mathematical Education in Science & Technology, 41(2), 229–242. 

https://doi.org/10.1080/00207390903372429 

Aksu, G. & Koruklu, N. (2015). Determination the effects of vocational high school 

students’ logical and critical thinking skills on mathematic success. Eurasian 

Journal of Educational Research, 59, 181-206 

http://dx.doi.org/10.14689/ejer.2015.59.11  

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. 

(2010). How learning works: Seven research-based principles for smart teaching. 

John Wiley & Sons. 

 Atabaki, A. M. S., Keshtiaray, N., & Yarmohammadian, M. H. (2015). Scrutiny of 

Critical Thinking Concept. International Education Studies, 8(3), 93. 

Baloukas, T. (2012). JAVENGA: JAva-based Visualization Environment for Network 

and Graph Algorithms. Computer Applications in Engineering Education, 20(2), 

255–268. https://doi.org/10.1002/cae.20392 

Baxter, P., & Jack, S. (2008). Qualitative Case Study Methodology: Study Design and 

Implementation for Novice Researchers. The Qualitative Report, 13(4), 544-559. 

Retrieved from http://nsuworks.nova.edu/tqr/vol13/iss4/2 

Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer 

science in NZ schools. ACM Transactions on Computing Education 

(TOCE), 14(2), 10. 

http://dx.doi.org/10.1080/00207390903372429
http://dx.doi.org/10.1002/cae.20392
http://nsuworks.nova.edu/tqr/vol13/iss4/2


154 

 

 

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of 

Computers in Mathematics and Science Teaching, 20(1), 45-74. 

Bers, M. U. (2010). The TangibleK Robotics Program: Applied Computational Thinking 

for Young Children. Early Childhood Research & Practice, 12(2). 

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational 

thinking and tinkering: Exploration of an early childhood robotics curriculum. 

Computers & Education, 72, 145–157. doi:10.1016/j.compedu.2013.10.020 

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO 

taxonomy (Structure of the Observed Learning Outcome). Academic Press. 

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. 

(1956). Taxonomy of educational objectives, handbook I: The cognitive 

domain (Vol. 19, p. 56). New York: David McKay Co Inc. 

Braithwaite, D. W., Goldstone, R. L., van der Maas, H. L., & Landy, D. H. (2016). 

Nonformal mechanisms in mathematical cognitive development: The case of 

arithmetic. Cognition, 149, 40-55. 

Brenan, K., Resnick, M. (AERA, 2012). New frameworks for evaluating and discussing 

the development of computational thinking. White paper. MIT Medial Lab. 

Brookshear, J. (2012). Computer science and overview. Boston, MA: Addison-Wesley. 

Brown, E., & Jacobsen, M. (2017). Developing Technological Fluency in and through 

Teacher Education: An Applied Research Project in Teachers' College. 

In Teacher Education for Ethical Professional Practice in the 21st Century (pp. 

1-24). IGI Global. 

http://dx.doi.org/10.1016/j.compedu.2013.10.020


155 

 

 

Bucher, T. (2016). ‘Machines don’t have instincts’: Articulating the computational in 

journalism. new media & society, 1461444815624182. 

Buckley, J., Archibald, T., Hargraves, M., & Trochim, W. M. (2015). Defining and 

teaching evaluative thinking: Insights from research on critical thinking. American 

Journal of Evaluation, 36(3), 375-388. 

Cajkler, W., Wood, P., Norton, J., Pedder, D., & Xu, H. (2015). Teacher perspectives 

about lesson study in secondary school departments: a collaborative vehicle for 

professional learning and practice development. Research Papers in 

Education, 30(2), 192-213. 

Cappetta, R. W., & Zollman, A. (2013). Agents of Change in Promoting Reflective 

Abstraction: A Quasi-Experimental, Study on Limits in College Calculus. Journal 

of Research in Mathematics Education, 2(3), 343-357. 

Carbonaro, M., Szafron, D., Cutumisu, M., & Schaeffer, J. (2010). Computer-Game 

Construction: A Gender-Neutral Attractor to Computing Science. Computers & 

Education, 55(3), 1098–1111. 

Cargas, S. (2016). Honoring controversy: Using real-world problems to teach critical 

thinking in honors courses. Honors in Practice, 12(123-137). 

Chang, C.K. (2014). Effects of Using Alice and Scratch in an Introductory Programming 

Course for Corrective Instruction. Journal of Educational Computing 

Research, 51(2), 185–204. https://doi.org/10.2190/EC.51.2.c 

Charmaz, K. (2014). Constructing grounded theory. Los Angeles, CA: Sage. 

http://dx.doi.org/10.2190/EC.51.2.c


156 

 

 

Chesimet, M. C., Githua, B. N., & Ng'eno, J. K. (2016). Effects of Experiential Learning 

Approach on Students' Mathematical Creativity among Secondary School 

Students of Kericho East Sub-County, Kenya. Journal of Education and 

Practice, 7(23), 51-57. 

Cho, J. Y., & Lee, E. (2014). Reducing Confusion about Grounded Theory and 

Qualitative Content Analysis: Similarities and Differences. e Qualitative Report, 

19(32), 1-20. Retrieved from http://nsuworks.nova.edu/tqr/vol19/iss32/2  

Chomsky, N. (2006). Language and mind. Cambridge, UK: Cambridge University Press. 

Cioffi-Revilla, C. (2014). Computation and Social Science. In Introduction to 

Computational Social Science (pp. 23-66). London, UK: Springer. 

Cleary, M., Horsfall, J., & Hayter, M. (2014). Data collection and sampling in qualitative 

research: does size matter?. Journal of advanced nursing, 70(3), 473-475. 

Code Fellows (nd). (2019). Code Fellows course information. Retrieved from 

https://www.codefellows.org/ 

Code.org (nd). (2017). State computer science statistics. Retrieved from 

https://code.org/statistics 

Colburn, T. (2000). Philosophy and computer science. Armonk, NY: M.E. Sharpe. 

Colburn, T. (2015). Philosophy and computer science. Abingdon, UK: Routledge.  

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and 

Machines, 17(2), 169-184. 

https://code.org/statistics


157 

 

 

Cole, D., & Zhou, J. (2014). Diversity and Collegiate Experiences Affecting Self-

Perceived Gains in Critical Thinking: Which Works, and Who Benefits? The 

Journal of General Education, 63(1), 15-34. 

College Board (nd). (2016). Computer science. Retrieved from 

https://apcentral.collegeboard.org/courses/ap-computer-science-principles 

Computer Science Teachers Association (nd). (2015). Science education research. 

Retrieved from http://csta.acm.org/Research/sub/KeyResearch.html 

Computer Science Teachers Association  (2019, February). Standards. Retrieved from 

https://www.csteachers.org/page/standards 

Connelly, F. M., & Clandinin, D. J. (1988). Teachers as Curriculum Planners. Narratives 

of Experience. New York, NY: Teachers College Press. 

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in Introductory 

Computer Science. SIGSCE Bulletin (35) 191-195. 

Cooper, R., & Heaverlo, C. (2013). Problem Solving And Creativity And Design: What 

Influence Do They Have On Girls' Interest In STEM Subject Areas? American 

Journal of Engineering Education, 4(1), 27. 

Cooper, S., Pérez, L. C., & Rainey, D. (2010). Education K-12 Computational 

Learning. Communications of the ACM, 53(11), 27–29. 

https://doi.org/10.1145/1839676.1839686 

Corbin, J, Strauss, A. (2015). The basics of qualitative research. Thousand Oaks, CA: 

Sage Publications. 

https://apcentral.collegeboard.org/courses/ap-computer-science-principles
http://csta.acm.org/Research/sub/KeyResearch.html
http://dx.doi.org/10.1145/1839676.1839686


158 

 

 

Costley, J. (2016). The Effects of Instructor Control on Critical Thinking and Social 

Presence: Variations within Three Online Asynchronous Learning 

Environments. Journal of Educators Online, 13(1), 109-171. 

Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods 

approaches (2nd ed.). Thousand Oaks, CA: Sage Publications. 

Creswell, J. (2007). Qualitative inquiry and research design. Thousand Oaks, CA: Sage 

Publications. 

CS10K (nd). (2015). CS10K initiative to train 10,000 computer science educators. 

Retrieved from https://cs10kcommunity.org/ 

Csernoch, M., Biró, P., Máth, J., & Abari, K. (2015). Testing algorithmic skills in 

traditional and nontraditional programming environments. Informatics in 

Education, 14(2), 175. 

Cuny, J., & Aspray, W. (2002). Recruitment and retention of women graduate students in 

computer science and engineering: results of a workshop organized by the 

computing research association. ACM SIGCSE Bulletin, 34(2), 168-174. 

Cuny, J. (2017). Computer science for everyone: A groundswell of support [Infosys 

blog]. Retrieved from http://www.infosys.org/infosys-foundation-

usa/media/blog/Pages/groundswell-support.aspx 

Czerkawski, B. C., & Lyman III, E. W. (2015). Exploring issues about computational 

thinking in higher education. TechTrends, 59(2), 57-65. 

Dale, N., & Walker, H. M. (1996). Abstract data types—specifications, implementations, 

https://cs10kcommunity.org/
http://www.infosys.org/infosys-foundation-usa/media/blog/Pages/groundswell-support.aspx
http://www.infosys.org/infosys-foundation-usa/media/blog/Pages/groundswell-support.aspx


159 

 

 

and applications. Lexington: D.C. Heath and Company. 

Daily, S. B., & Eugene, W. (2013). Preparing the Future STEM Workforce for Diverse 

Environments. Urban Education, 48(5), 682–704. 

https://doi.org/10.1177/0042085913490554 

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school 

girls: Can they be used to measure understanding of computer science concepts? 

Computers & Education, 58(1), 240-249. 

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). Misconceptions about computer 

science. Communications of the ACM, 60(3), 31-33. 

Deruy, E. (2017). In Finland kids learn computer science without computers. The Atlantic 

Website. Retrieved from: 

https://www.theatlantic.com/education/archive/2017/02/teaching-computer-

science-without-computers/517548/ 

Dubinsky, E. (2002). Reflective abstraction in advanced mathematical thinking. 

In Advanced mathematical thinking (pp. 95-126). Springer Netherlands.]p0w2 

Dwyer, C. P., Hogan, M. J., Harney, O. M., & O’Reilly, J. (2014). Using interactive 

management to facilitate a student-centred conceptualisation of critical thinking: a 

case study. Educational Technology Research and Development, 62(6), 687-709. 

Emir, S. (2013). Contributions of Teachers' Thinking Styles to Critical Thinking 

Dispositions (Istanbul-Fatih Sample). Educational Sciences: Theory and 

Practice, 13(1), 337-347. 

http://dx.doi.org/10.1177/0042085913490554


160 

 

 

Ernst, J. V., & Clark, A. C. (2012). Fundamental computer science conceptual 

understandings for high school students using original computer game design. 

Journal of STEM Education: Innovations & Research, 13(5), 40–45. 

Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes 

of Educational Assessment and Instruction. Research Findings and 

Recommendations. 

Facione, P., & Gittens, C. A. (2015). Think critically. Upper Saddle River, NJ: Pearson. 

 

Farrell, T. S. (2015). Reflective language teaching: From research to practice. New York 

City, NY: Bloomsbury Publishing. 

Fayer, S., Lacey, A., & Watson, A. (2017). BLS Spotlight on Statistics: STEM 

Occupations-Past, Present, and Future. Retrieved from: 

https://digitalcommons.ilr.cornell.edu/key_workplace/1923/ 

Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: A 

hybrid approach of inductive and deductive coding and theme 

development. International journal of qualitative methods, 5(1), 80-92. 

 

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old 

kindergarten children in a computer programming environment: A case 

study. Computers & Education, 63, 87-97. 

 Festo, K. (2016). Question Classification Taxonomies as Guides to Formulating 

Questions for Use in Chemistry Classrooms. European Journal of Science and 

Mathematics Education, 4(3), 353-364. 

https://digitalcommons.ilr.cornell.edu/key_workplace/1923/


161 

 

 

Flavell, J. H., Green, F. L., Flavell, E. R., & Grossman, J. B. (1997). The development of 

children's knowledge about inner speech. Child Development, 68(1), 39-47. 

Flick, U. (2014). An introduction to qualitative research. New Dehli, India: Sage. 

Floridi, L. (2008). Artificial intelligence's new frontier: Artificial companions and the 

fourth revolution. Metaphilosophy, 39(4‐5), 651-655. 

Floridi, L. (2011). The philosophy of information. Oxford, United Kingdom: Oxford 

University Press. 

Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The role of visualization in computer 

science education. Computers in the Schools, 29(1-2), 95–117. 

Fuller, U., Johnson, C., Ahoniemi, T. et al (2007). Developing a computer science 

specific learning taxonomy. ITiCSE working group report on innovation and 

technology in computer science education.  doi: 10.1145/1345443.1345438 

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative 

research. The Qualitative Report, 20(9), 1408. 

Fyfe, E. R., McNeil, N. M., & Rittle‐Johnson, B. (2015). Easy as ABCABC: Abstract 

language facilitates performance on a concrete patterning task. Child 

development, 86(3), 927-935. 

General Assembly (n.d.) (2019). Courses. Retrieved from https://generalassemb.ly 

 

Giannakos, M. N., Koilias, C., Vlamos, P., & Doukakis, S. (2013). Measuring Students’ 

Acceptance and Confidence in Algorithms and Programming: The Impact of 



162 

 

 

Engagement with CS on Greek Secondary Education. Informatics in Education-

An International Journal, (Vol12_2), 207-219. 

Gibbs, G. R., (2010). Coding part 2: Thematic coding. [Web Video]. Retrieved 

from http://www.youtube.com/watch?v=B_YXR9kp1_o 

Gobbo, F., & Benini, M. (2014). The minimal levels of abstraction in the history of 

modern computing. Philosophy & Technology, 27(3), 327-343. 

Goode, J., Margolis, J., & Chapman, G. (2014, March). Curriculum is not enough: The 

educational theory and research foundation of the exploring computer science 

professional development model. In Proceedings of the 45th ACM technical 

symposium on Computer science education (pp. 493-498). ACM. 

Google for Education (n.d.). (2019). Teacher resources. Retrieved from 

https://edu.google.com/computer-science/?modal_active=none 

Grout, V., & Houlden, N. (2014). Taking Computer Science and Programming into 

Schools: The Glyndŵr/BCS Turing Project. Procedia - Social and Behavioral 

Sciences, 141, 680–685. https://doi.org/10.1016/j.sbspro.2014.05.119 

Groome, M., & Rodríguez, L. M. (2014). How to Build a Robot: Collaborating to 

Strengthen STEM Programming in a Citywide System. Afterschool Matters, 19, 

1-9. 

Guzdial, M. (2015). Learner-centered design of computing education: Research on 

computing for everyone. Synthesis Lectures on Human-Centered 

Informatics, 8(6), 1-165. 

http://dx.doi.org/10.1016/j.sbspro.2014.05.119


163 

 

 

Hakverdi-Can, M., & Thomas, M. D. (2012). Exemplary science teachers' use of 

technology. TOJET: The Turkish Online Journal of Educational 

Technology, 11(1). 

Harlow, D. B., & Leak, A. E. (2014). Mapping students’ ideas to understand learning in a 

collaborative programming environment. Computer Science Education, 24(2/3), 

229–247. doi:10.1080/08993408.2014.963360 

Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., & Hindle, A. (2016). Energy 

profiles of java collections classes. In Proceedings of the 38th International 

Conference on Software Engineering (pp. 225-236). ACM. 

Hazzan, D. (1999). Reducing abstraction level when learning abstract algebra concepts. 

Educational Studies in Mathematics (40) 71-90. Netherlands: Kluwer Academic 

Publishers. 

Hazzan, O., Lapidot, T., & Ragonis, N. (2015). Guide to teaching computer science: An 

activity-based approach. London, UK: Springer. 

Haynes, A., Lisic, E., Goltz, M., Stein, B., & Harris, K. (2016). Moving Beyond 

Assessment to Improving Students’ Critical Thinking Skills: A Model for 

Implementing Change. Journal of the Scholarship of Teaching and 

Learning, 16(4), 44-61. 

Hsu, Y. C., & Ching, Y. H. (2013). Mobile app design for teaching and learning: 

Educators’ experiences in an online graduate course. The International Review of 

Research in Open and Distributed Learning, 14(4). 

http://dx.doi.org/10.1080/08993408.2014.963360


164 

 

 

Hu, H. H., Kussmaul, C., Knaeble, B., Mayfield, C., & Yadav, A. (2016, July). Results 

from a survey of faculty adoption of Process Oriented Guided Inquiry Learning 

(POGIL) in Computer Science. In Proceedings of the 2016 ACM Conference on 

Innovation and Technology in Computer Science Education(pp. 186-191). ACM. 

Huang, H. F., Ricci, F. A., & Mnatsakanian, M. (2016). Mathematical teaching strategies: 

Pathways to critical thinking and metacognition. International Journal of 

Research in Education and Science, 2(1), 190-200. 

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). Instructional strategy in the teaching of 

computer programming: A need assessment analyses. Turkish Online Journal of 

Educational Technology, 9(2), 125–131. 

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–

12 Students with Disabilities to Learn Computational Thinking and Computer 

Programming. TEACHING Exceptional Children, 48(1), 45-53. 

ISTE. (2019, February). International Society for Technology in Education: computer 

science standards. Retrieved from: https://www.iste.org/standards/for-computer-

science-educators 

Jacobsen, T. E., & Mackey, T. P. (2013). Proposing a metaliteracy model to redefine 

information literacy. Communications in information literacy, 7(2), 84-91. 

Jenkins, C. (2015). Poem Generator: A Comparative Quantitative Evaluation of a 

Microworlds-Based Learning Approach for Teaching English. International 

Journal of Education and Development Using Information and Communication 

Technology, 11(2), 153–167. Retrieved 



165 

 

 

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site 

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta 

Kappan, 95(1), 61-65. 

Kafai, Y. B., & Burke, Q. (2015). Computer programming goes back to 

school. Education Week, 61–65. Retrieved 

from http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digit

al+divide 

Kalelioglu, F., & Gülbahar, Y. (2014). The Effects of Teaching Programming via Scratch 

on Problem Solving Skills: A Discussion from Learners’ Perspective. Informatics 

in Education, 13(1), 33–50. Retrieved 

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site 

Kaufman, R. (2017). Practical strategic leadership: Aligning human performance 

development with organizational contribution. Performance Improvement, 56(2), 

16-21. 

Kazak, S., Wegerif, R., & Fujita, T. (2015). The importance of dialogic processes to 

  conceptual development in mathematics. Educational Studies in 

Mathematics, 90(2), 105-120. 

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten 

classroom: The impact on sequencing skills. Journal of Educational Multimedia 

and Hypermedia, 21(4), 371-391. 

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1074163&site=ehost-live&scope=site
http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digital+divide
http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html?qs=digital+divide
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1064285&site=ehost-live&scope=site


166 

 

 

Kivunja, C. (2014). Do you want your students to be job-ready with 21st century skills? 

Change pedagogies: a pedagogical paradigm shift from Vygotskyian social 

constructivism to critical thinking, problem solving and Siemens’ digital 

connectivism. International Journal of Higher Education, 3(3), p81. 

Kong, L. N., Qin, B., Zhou, Y. Q., Mou, S. Y., & Gao, H. M. (2014). The effectiveness 

of problem-based learning on development of nursing students’ critical thinking: 

A systematic review and meta-analysis. International Journal of Nursing 

Studies, 51(3), 458-469. 

Kramer, J. (2007). Is abstraction the key to computer coding? Communications of the 

Association for Computing Machinery (50).  

Kwan, Y. W., & Wong, A. F. (2015). Effects of the constructivist learning environment 

on students’ critical thinking ability: Cognitive and motivational variables as 

mediators. International Journal of Educational Research, 70, 68-79. 

Lan, Y.F., & Lin, P.C. (2011). Evaluation and improvement of student’s question-posing 

ability in a web-based learning environment. Australasian Journal of Educational 

Technology, 27(4), 581–599. 

Lau, W. (2018). Teaching computing in secondary schools. New York, NY: Routledge. 

Lee, Y. J. (2010). Developing computer programming concepts and skills via technology-

enriched language-art projects: A case study. Journal of Educational Multimedia 

and Hypermedia, 19(3), 307-326. 



167 

 

 

Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: 

Computational thinking with games in school age children. International Journal 

of Child-Computer Interaction, 2, 26–33. doi:10.1016/j.ijcci.2014.06.003 

Lewins, A., & Silver, C. (2009). Choosing a CAQDAS package. Retrieved from:  

 

http://eprints.ncrm.ac.uk/791/1/2009ChoosingaCAQDASPackage.pdf 

 

Lihui, W. H., Qun, Z., Feng, L., & Qin Yuqing, W. (2015). Teacher Questioning in 

College English Class: A Guide to Critical Thinking. Global Journal of Human-

Social Science Research, 15(11). 

Liu, O. L., Frankel, L., & Roohr, K. C. (2014). Assessing Critical Thinking in Higher 

Education: Current State and Directions for Next‐Generation Assessment. ETS 

Research Report Series, 2014(1), 1-23. 

Lim, B., Hosack, B., & Vogt, P. (2012). A framework for measuring student learning 

gains and engagement in an introductory computing course: A preliminary report 

of findings. Electronic Journal of e-Learning, 10(4), 428–440. 

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 

thinking through programming: What is next for K-12? Computers in Human 

Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012 

Madsen, C. K., & Geringer, J. M. (2014). The Relationship between Teacher Preparation 

and Long-Term Teaching Effectiveness. ISME Commission on Research, 229. 

Mahn, H. (2012). Vygotsky’s analysis of children’s meaning making 

processes. International Journal of Educational Psychology, 1(2), 100-126. 

http://dx.doi.org/10.1016/j.ijcci.2014.06.003
http://eprints.ncrm.ac.uk/791/1/2009ChoosingaCAQDASPackage.pdf
http://dx.doi.org/10.1016/j.chb.2014.09.012


168 

 

 

Malatji, K. S. (2016). Moving away from Rote Learning in the University Classroom: 

The Use of Cooperative Learning to Maximise Students’ Critical Thinking in a 

Rural University of South Africa. Journal of Communication, 7, 34-42. 

Martinez, M. C., Gomez, M. J., Moresi, M., & Benotti, L. (2016, July). Lessons learned 

on computer science teachers professional development. In Proceedings of the 

2016 ACM Conference on Innovation and Technology in Computer Science 

Education (pp. 77-82). ACM. 

Marzano, R. J., & Kendall, J. S. (Eds.). (2006). The new taxonomy of educational 

objectives. Thousand Oaks, CA: Corwin Press. 

Maxwell, J. A. (2013). Applied social research methods series: Vol. 41. Qualitative 

research design: An interactive approach, 3. 

 Mayes, R., & Koballa Jr, T. R. (2012). Exploring the science framework. The Science 

Teacher, 79(9), 27. 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science 

concepts with scratch. Computer Science Education, 23(3), 239-264. 

Merriam, S., & Tisdell, E. (2016). Qualitative research: A guide to design and 

implementation.  San Francisco, CA: Jossey-Bass. 

Merricks, J., & Henderson, J. (2014). From Vibration to Vocalization. Science and 

Children, 51(6), 44–49. Retrieved 

from http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site 

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1035542&site=ehost-live&scope=site


169 

 

 

Microsoft (n.d.). (2019). Teacher resources. Retrieved from 

https://www.microsoft.com/en-us/education/educators/2018/stem-computer-

science/default.aspx 

Miles, M. B., & Huberman, A. M., Saldana, J. (2014). Qualitative data analysis. 

Newbury Park, CA: Sage 

Morris, M. W., Leung, K., Ames, D., & Lickel, B. (1999). Views from inside and 

outside: Integrating emic and etic insights about culture and justice 

judgment. Academy of Management Review, 24(4), 781-796. 

Morse, J. M., Barrett, M., Mayan, M., Olson, K., & Spiers, J. (2002). Verification 

strategies for establishing reliability and validity in qualitative 

research. International journal of qualitative methods, 1(2), 13-22. 

Mudrikah, A. (2016). Problem-based learning associated by action-process-object-

schema (APOS) theory to enhance students’ high order mathematical thinking 

ability. International Journal of Research in Education and Science, 2(1), 125-

135.  

National Academies of Sciences, Engineering, and Medicine. (2018). Assessing and 

responding to the growth of computer science undergraduate enrollments. 

National Center for Education Statistics (ED). (2012). The nation’s report card: Science 

in action--hands-on and interactive computer tasks from the 2009 Science 

Assessment. NCES 2012-468. National Center for Education Statistics. 

Norman, L. [LarryNorman]. (2006, September 12). CSPI / What is “Computer Science?” 

[Video file]. Retrieved from https://www.youtube.com/watch?v=zQLUPjefuWA 

https://www.microsoft.com/en-us/education/educators/2018/stem-computer-science/default.aspx
https://www.microsoft.com/en-us/education/educators/2018/stem-computer-science/default.aspx


170 

 

 

Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From 

action to abstraction: Using the hands to learn math. Psychological Science, 25(4), 

903-910. 

Olivia (n.d.). What is confirmability in qualitative research and how do we establish it? 

[Web log comment]. Retrieved from http://www.statisticssolutions.com/what-is-

confirmability-in-qualitative-research-and-how-do-we-establish-it/ 

Özyurt, Ö. (2015). Examining the Critical Thinking Dispositions and the Problem 

Solving Skills of Computer Engineering Students. EURASIA Journal of 

Mathematics, Science & Technology Education, 11(2), 353–361.  

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: 

Harper Collins. 

Patton, M. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: 

Sage Publications. 

Pellas, N., & Peroutseas, E. (2016). Gaming in Second Life via Scratch4SL Engaging 

High School Students in Programming Courses. Journal of Educational 

Computing Research, 54(1), 108–143. 

https://doi.org/10.1177/0735633115612785 

Perrenet, J. (2010). Levels of thinking in computer science. Development in bachelor 

students’ conceptualization of algorithm. Education & Information Technologies 

(15) 87-107. doi: 10.1007/s10639-009-9098-8 

Perrenet, J.C., J.F. Groote & E. Kaasenbrood (2005). Exploring Students’ Understanding 

of the Concept of Algorithm: Levels of Abstraction; In: Proceedings of the 10th 

http://dx.doi.org/10.1177/0735633115612785


171 

 

 

annual SIGCSE-conference on Innovation and technology in computer science 

education, 64–68; Caparica, Portugal. © ACM 1-59593-024-8/05/0006. Retrieved 

from http://acm.org/10.1145/1070000/1067467 

Perrenet, J.C. & E. Kaasenbrood (2006). Levels of Abstraction in Students’ 

Understanding of the Concept of Algorithm: the Qualitative Perspective; In: 

Proceedings of the 11th annual SIGCSE-conference on Innovation and 

technology in computer science education, 270–275; Bologna, Italy. © ACM 1-

59593-055-8/06/0006. Retrieved from http://acm.org/10.1145/1150000/1140196 

Piaget, J. (1950). The psychology of intelligence. London, UK: Routledge. 

Piaget, J. (2014). Studies in reflecting abstraction. New York, NY: Psychology Press. 

Porter, L., Bailey Lee, C., & Simon, B. (2013, March). Halving fail rates using peer 

instruction: a study of four computer science courses. In Proceeding of the 44th 

ACM technical symposium on Computer science education (pp. 177-182). ACM. 

 Promraksa, S., Sangaroon, K., & Inprasitha, M. (2014). Characteristics of Computational 

Thinking about the Estimation of the Students in Mathematics Classroom 

Applying Lesson Study and Open Approach. Journal of Education and 

Learning, 3(3), 56. 

Przybylla, M., & Romeike, R. (2014). Physical Computing and Its Scope--Towards a 

Constructionist Computer Science Curriculum with Physical 

Computing. Informatics in Education, 13(2), 241–254.  

Qualitative Validity, (n.d.). In Web Center for Social Research Methods. Retrieved from 

https://socialresearchmethods.net/kb/qualval.php 



172 

 

 

Ralston, P. A., & Bays, C. L. (2015). Critical thinking development in undergraduate 

engineering students from freshman through senior year: a 3-cohort longitudinal 

study. American Journal of Engineering Education, 6(2), 85. 

Rees, A., García-Peñalvo, F. J., Jormanainen, I., Tuul, M., & Reimann, D. (2016). An 

overview of the most relevant literature on coding and computational thinking 

with emphasis on the relevant issues for teachers. 

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., … 

others. (2015). Scalable game design: A strategy to bring systemic computer 

science education to schools through game design and simulation creation. ACM 

Transactions on Computing Education (TOCE), 15(2), 11. Retrieved 

from http://dl.acm.org/citation.cfm?id=2700517 

Rittle-Johnson, B., & Schneider, M. (2014). Developing conceptual and procedural 

knowledge of mathematics. Oxford handbook of numerical cognition, 1102-1118. 

Rowles, J., Morgan, C. M., Burns, S., & Merchant, C. (2013). Faculty perceptions of 

critical thinking at a health sciences university. Journal of the Scholarship of 

Teaching and Learning, 13(4), 21-35. 

Rubin, H., Rubin, I. (2005). Qualitative interviewing: The art of hearing data. Thousand 

Oaks, CA: Sage Publications. 

Ruecker, S., Grotkowski, A., Gabriele, S., Roberts-Smith, J., Sinclair, S., Dobson, T., … 

Rodriguez, O. (2013). Abstraction and realism in the design of avatars for the 

simulated environment for theatre. Visual Communication, 12(4), 459–472.  

http://dl.acm.org/citation.cfm?id=2700517


173 

 

 

Ryoo, J.J., Margolis, J., Goode, J., Lee, C., Moreno Sandoval, C.D. (2014). ECS teacher 

practices research findings—In brief. Los Angeles, CA: Exploring Computer 

Science Project, University of California, Los Angeles Center X with University 

of Oregon, Eugene. Retrieved from http://www.exploringcs.org/ecs-teacher-

practices-research. 

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage. 

Sánchez, P., Zorrilla, M., Duque, R., & Nieto-Reyes, A. (2011). Are models easier to 

understand than code? An empirical study on comprehension of entity-

relationship (ER) models vs. structured query language (SQL) code. Computer 

Science Education, 21(4), 343–362. 

https://doi.org/10.1080/08993408.2011.630128 

Sanford, J. F., & Naidu, J. T. (2016). Computational Thinking Concepts for Grade 

School. Contemporary Issues in Education Research, 9(1), 23–32. 

Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2012). Programming: 

Teachers and pedagogical content knowledge in the Netherlands. 

Programavimas: Mokytojai Ir Pedagoginio Turinio Žinios Nyderlanduose., 11(1), 

81–114. 

Sanz, C. (2005). Mind and context in adult second language acquisition: Methods, 

theory, and practice. Georgetown University Press. 

Shannon, Claude E. ; Weaver, Warren & Burks, Arthur W. (1951). The Mathematical  

 

Theory of Communication (review). Philosophical Review 60 (3):398-400. 

http://www.exploringcs.org/ecs-teacher-practices-research
http://www.exploringcs.org/ecs-teacher-practices-research
http://dx.doi.org/10.1080/08993408.2011.630128


174 

 

 

Shehane, R., & Sherman, S. (2014). Visual Teaching Model for Introducing 

Programming Languages. Journal of Instructional Pedagogies, 14. 

Shirazi, A. S., von Mammen, S., & Jacob, C. (2013). Abstraction of agent interaction 

processes: Towards large-scale multi-agent models. Simulation, 89(4), 524-538. 

Simon, M. A., Kara, M., Placa, N., & Sandir, H. (2016). Categorizing and promoting 

reversibility of mathematical concepts. Educational Studies in 

Mathematics, 93(2), 137-153. 

Shell, D. F., & Soh, L.-K. (2013). Profiles of Motivated Self-Regulation in College 

Computer Science Courses: Differences in Major versus Required NonMajor 

Courses. Journal of Science Education and Technology, 22(6), 899–913. 

Retrieved 

from  http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.a

spx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site 

Snyder, J. J., & Wiles, J. R. (2015). Peer led team learning in introductory biology: 

Effects on peer leader critical thinking skills. PloS one, 10(1), e0115084. 

Sho-Huan Tung, Tsung-Te Lin, & Yen-Hung Lin. (2013). An Exercise Management 

System for Teaching Programming. Journal of Software (1796217X), 8(7), 1718–

1725. https://doi.org/10.4304/jsw.8.7.1718-1725 

Stake, B. (2006). Multiple case study analysis. New York, NY: Guilford Press. 

Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The wheels on the bot go round and 

round: Robotics curriculum in pre-kindergarten. Journal of Information 

Technology Education, 12, 203-219. 

http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site
http://ezp.waldenulibrary.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1038476&site=ehost-live&scope=site
http://dx.doi.org/10.4304/jsw.8.7.1718-1725


175 

 

 

Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive 

components of a mathematical processing network in 9‐year‐old 

children. Developmental Science, 17(4), 506-524. 

Teague, D. (2015). Neo-Piagetian Theory and the novice programmer (Doctoral 

dissertation, Queensland University of Technology). 

Tóth, L., Adorjani, A. K., & Katai Z. (2014). Multi-Sensory Informatics 

Education. Informatics in Education-An International Journal, (Vol13_2), 225-

240. 

 

Turner, R. (2013). The philosophy of computer science. 

Tung, S. H., Lin, T. T., & Lin, Y. H. (2013). An exercise management system for 

teaching programming. Journal of Software, 8(7), 1718-1725. 

Uysal, M. P. (2016). Evaluation of learning environments for object-oriented 

programming: measuring cognitive load with a novel measurement 

technique. Interactive Learning Environments, 24(7), 1590-1609. 

Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic 

analysis: Implications for conducting a qualitative descriptive study. Nursing & 

health sciences, 15(3), 398-405. 

Vakil, S. (2014). A critical pedagogy approach for engaging urban youth in mobile app 

development in an after-school program. Equity & Excellence in 

Education, 47(1), 31-45. 



176 

 

 

 Vanicheva, T., Kah, M., & Ponidelko, L. (2015). Critical thinking within the current 

framework of ESP curriculum in technical universities of Russia. Procedia-Social 

and Behavioral Sciences, 199, 657-665. 

Vygotsky, L. (1978). Mind in society: The development of higher psychological 

processes. Cambridge, MA: Harvard University Press. 

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press. 

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children 

to cultivate computational thinking. Thescientificworldjournal, 2014, 428080–

428080. doi:10.1155/2014/428080 

Waite, J., Curzon, P., Marsh, W. & Sentence, S. (2016, October). Abstraction and 

common classroom activities. In Proceedings of the 11th Workshop in Primary 

and Secondary Computing Education (pp. 112-113). ACM. 

Weintrop, D., & Wilensky, U. (2014). Situating programming abstractions in a 

constructionist video game. Informatics in Education, 13(2), 307. 

Whistler, D. (2016). Abstraction and utopia in early German idealism. LOGOS, (2), 5-27. 

 

White, P., Mitchelmore, M. (2010). Teaching for abstraction: A model. Mathematical 

Thinking and Learning (12) 205-226. 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

 

Wing, J. M. (2008). Computational thinking and thinking about 

computing. Philosophical transactions of the royal society of London A: 

mathematical, physical and engineering sciences, 366(1881), 3717-3725. 

http://dx.doi.org/10.1155/2014/428080


177 

 

 

Youssef, B. B., & Berry, B. (2012). Learning to think spatially in an undergraduate 

interdisciplinary computational design context: a case study. International 

Journal of Technology and Design Education, 22(4), 541-564. 

Yildiz, M. & Scharaldi, K. (2015). Introduction to Engineering and Computer Science in 

Teacher Education: Hour of Code Project. In D. Rutledge & D. Slykhuis 

(Eds.), Proceedings of Society for Information Technology & Teacher Education 

International Conference 2015 (pp. 857-865). Chesapeake, VA: Association for 

the Advancement of Computing in Education (AACE). Retrieved March 18, 2017 

from https://www.learntechlib.org/p/150102. 

Yin, R. K. (2015). Qualitative research from start to finish. Guilford Publications. 

 

Zendler, A., & Klaudt, D. (2012). Central Computer Science concepts to research-based 

teacher training in Computer Science: An experimental study. Journal of 

Educational Computing Research, 46(2), 153–172. 

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional 

integrated assessment for computational thinking. Journal of Educational 

Computing Research, 53(4), 562-590. 

   

https://www.editlib.org/p/150102


178 

 

 

Appendix A: First Interview Base Questions 

 

The following questions will be asked in all interviews along with follow-up questions 

specific to each interview.  

 

 

1. What grade(s) do you teach? 

 

2. How long have you been teaching? 

 

3. What types of computer science classes do you teach? 

 

4. How did you become a computer science teacher? 

 

5. How familiar are you with abstraction in computer science? 

 

6. To what degree do you include abstraction in your course objectives? 

 

7. How capable are your students of using abstraction in their computer coding? 

 

8. How do you know when your students are using abstraction? 

 

9. How comfortable are you teaching abstraction? 

 

10. How often do your instructional activities teach students about abstraction? 

 

11. To what degree do you include abstraction in your course objectives? 

 

12. What kind of professional development, if any, has informed your instruction of 

abstraction? 

 

13. How confident do you feel about creating and using assessments that measure 

abstraction? 

 

14. Would you describe abstraction as a skill or a concept, and why? 

 

15. How important do you think abstraction is as a skill in computer science? 
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Appendix B: Alignment of Research and Interview Questions 

Table 1 

Alignment of research questions with interview questions 

Interview Questions                                                                                   RQ1 RQ2 RQ3 

What grade(s) do you teach?               X         X 

 

How long have you been teaching?               X 

 

What types of computer science classes do you teach?           X         X 

 

How did you become a computer science teacher?              X 

 

How familiar are you with abstraction in computer science?          X          X         X 

 

To what degree do you include abstraction in your course objectives?           X 

 

How capable are your students of using abstraction in their computer  

coding?          X 

 

How do you know when your students are using abstraction?   X 

 

How comfortable are you teaching abstraction?              X 

 

How often do your instructional activities teach students about abstraction?            X  

 

To what degree do you include abstraction in your course objectives?               X 

 

What kind of professional development, if any, has informed your  

instruction of abstraction?       X  

                                        
How confident do you feel about creating and using assessments that  

measure abstraction?         X 

                                       
Would you describe abstraction as a skill or a concept, and why?             X          X 

 

How important do you think abstraction is as a skill in computer science?  X         X 
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Appendix C: Second Interview Base Questions 

 

What additional thoughts did you have regarding abstraction in K-5 computer 

science education? 

 

What are your favorite lesson plans for teaching abstraction? 

 

Do you have any additional thoughts on how you would define abstraction? 

 

How have your students talked about abstraction? 

 

What is easy about teaching abstraction? 

 

What is difficult or challenging about teaching abstraction? 

 

What are your successes with teaching abstraction? 

 

What kind of code tells you that your students are using abstraction skills? 

 

What programming languages do you think are best for teaching abstraction? 

 

What grade do you think abstraction is best introduced? 

 

Do you think any student could demonstrate abstraction? 

 

How would you define abstraction? 

 

What do you think beginning CS teachers should know about teaching 

abstraction? 

 

Do you think abstraction should be assessed in CS elementary courses? Why? Or 

why not? 

 

Is it better to teach abstraction with online tutorial curriculum, such as Code.org, 

or with manipulatives like Microbits and Raspberry pi’s? 

 

What type of professional development would you find helpful regarding teaching 

abstraction? 
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Appendix D: Email to Participants 

Dear                           , 

I would like to invite you to participate in my dissertation research study. I am 

seeking computer science teachers with two or more years of experience teaching K-12 

computer science, or prior experience as a computer science professional and K-12 

computer science teacher. The purpose of this descriptive qualitative inquiry is to 

examine teachers’ experiences determining curriculum, delivering instruction, and 

designing assessments regarding the topic of abstraction in computer science.  

Your participation will require: 

1) Two one-hour interviews in person or virtually. 

2) Five student artifacts that you determine show evidence of abstraction or show 

evidence of developing abstraction. You will need to de-identify each of the 

artifacts before you submit them as a pdf document. If your principal requires 

parental consent, I will ask you to email the student and their parents to obtain 

consent for their participation in the research study. Once I have obtained all 

necessary consent forms, I will email you to schedule interviews and ask you 

to submit digital copies of the artifacts to me. 

It is estimated that about 4 hours of your time is required for this research. The 

total time of the interviews and data collection will be one month. Your participation is 

voluntary and you can opt out of the study if you so desire. 
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Please see the attached research participation checklist. If you would like to 

participate in this research study, please email me your adult consent form with your 

principal’s signature of assent before or in one week. 

Warm regards, 

Christine Liebe 
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