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ABSTRACT: In this paper we consider 3D axis-symmetric (AS) object reconstruction from single 

cone-beam x-ray projection data. Traditional x-ray CT fails to capture fleeting state of material due to 

the long time for data acquisition at all angles. Therefore, AS object is devised to investigate the 

instant deformation of material under pulse change of environment because single projection data is 

enough to reconstruct its inner structure. Previous reconstruction methods are layer by layer, and 

ignore the longitudinal tilt of x-ray paths. We propose a regularization method using adaptive tight 

frame to reconstruct the 3D AS object structure simultaneously. Alternating direction method is 

adopted to solve the proposed model. More importantly, a numerical algorithm is developed to 

compute imaging matrix. Experiments on simulation data verify the effectiveness of our method.  

Keywords: Computed tomography; 3D axis-symmetric object; adaptive tight frame; primal-dual 

algorithm. 

1. Introduction 

X-ray CT (XCT) technique is widely used in various areas, such as medicine, industry detection 

and material science [8]. Generally speaking, projection data at all angles from 0 to π are necessary to 

reconstruct the attenuation map of object. Therefore, traditional XCT technique fails to capture the 

instant state of fleeting change of object, for example, the object state under powerful shocks caused 

by explosion. In this paper, we consider axial-symmetric object reconstruction using single cone-beam 

projection data, (see [5] for details). 

 Commonly used methods for the considered problem are the FDK technique [7], i.e. reconstruct 

the 3D attenuation map slice by slice, which ignores the longitudinal tilt of x-ray paths. For each slice 



reconstruction, one needs to solve the Abel transform [1, 10]. The reconstruction map by FDK method 

often suffers from strong artefacts for long objects. Regularization methods are adopted for the 

problem [2, 5]. In [2], total variation (TV) minimization is adopted to regularize the inversion of Abel 

transform. In [5], high order total variation regularization is used to reconstruct 3D cylindrical 

symmetric object from cone-beam projection data slice by slice. 

We propose a regularization model based on adaptive tight frame for 3D AS object 

reconstruction from single cone-beam projection data. Adaptive tight frame is widely used for various 

image processing problems such as image denoising [3], XCT image reconstruction [11, 12] and PET-

MRI [6] due to its high performance in preserving image details and edges. In this paper, we adopt 

adaptive tight frame regularization to reconstruct 3D AS map simultaneously.  

An efficient algorithm is proposed to compute the imaging matrix, i.e. the intersection lengths of 

all x-ray path with all 3D annular cylinders, for this problem, which makes our method practicable. As 

far as we know, this is the first work to investigate the 3D AS object reconstruction simultaneously 

and the computation method for intersection length of a line with annular cylinders. The imaging 

matrix plays a critical role for the simultaneous reconstruction method. Discretizing the reconstruction 

cylinder region, which contains the AS object, by annular cylinder element, we can approximate the 

problem as a linear system, and develop an efficient algorithm to compute the imaging matrix.  

Alternating direction method is used to solve the model. There are three variables to update in 

each loop. We have efficient algorithm for each sub-problem. Firstly, the adaptive frame is learnt from 

the current map estimate, and then we obtain the representation coefficient by hard thresholding 

operation, i.e. we have a regularization version of the current estimate map. Lastly, we update the 

attenuation map by solving a minimization problem with two quadratic terms.  

The rest of this paper is organized as follows. In section 2, the proposed model and algorithms 

are presented. Section 3 is devoted to the computation method for the imaging matrix. Numerical 

results on simulated data are illustrated in section 4. Conclusions and future work are discussed in 

section 5. 

2. The proposed method  
In this section, a brief introduction to adaptive tight frame is presented. Then the considered 

problem and the proposed method are described. 

2.1  Adaptive wavelet tight frame  

A wavelet tight frame is defined by a bank  
2
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
 where r r

ib  [3]. The analysis operator 

based on   
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
 is defined as follows:  

( ) : ( )m n r m n
iW b g v b g                                                                   (1) 



with i iv b g  , where g   is an input image. And the synthetic operator is denoted by ( )TW b . Hereafter, 

we omit the option  
2

1

r

i i
b


or b  for simplicity, and  denote the vector form of a two dimension array 

by lexicographic order. For a given image g , the associating adaptive wavelet tight frame is obtained 

by minimizing  

2 2

2 0
,

arg min , ( ) ( ) ,T

b v
v Wg v W b W b I                                                        (2) 

where I  is the identity operator in m n or ( )N N mn , and 0  is a parameter. This problem is 

solved by alternating direction method as follows: 

1. Update
21

02
: arg min .k k

v
v v v W g v     

2. Update filter bank  
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For the first step, 1kv   can be obtained by hard thresholding  

          
( , ) if ( , ) ,

( , )
0 ,

v i j v i j
v i j

otherwise


     


                                                         (4)     

for 21,2, , 1,2, ,i r j mn   . 

The solution for the second step is reviewed as follows (see [3] for details). For each , )v i j（ , 

21,2, , , 1,2, , ,i r j N   there is a patch of g , denoting by jg , such that ( , ) T
j iv i j g b  . Let

21 2( ; ; ; )T T T

r
V v v v    . Then we have         

  ,V BG                                                                            (5) 

where 21 1( ; ), ( , , )T T
Nr

B b b G g g      . The condition TW W I is guaranteed by 
2

1TB B E
r

  [3], where 

2 2r rE   is the identity matrix. Therefore, the update of b  can be reformulated as   

  21 1
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and we have that                
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where 1
L

k T
RV G U U    is the singular value decomposition of 1k TV G , and  i

  denotes the i th column 

of a matrix .    

2.2  Problem description  

We consider the following imaging system. X-ray source is at 0( ,0,0)x , the detector plane (array) 

is at 1x x , and the imaging object is enclosed in a three dimensional cylinder domain 



 2 2
0 0( , , ) | ,D x y z x y R z Z    (see figure 1). Assume the object is axial-symmetric with respect to 

z  axis. 

 

Figure 1: Imaging system 

Therefore, the attenuation map, denoted by f , is an AS function, i.e. there is a two-variable 

function ( , )u    such that  

2 2( , , ) ( , ).f x y z u x y z                                                                     (8)   

Discretizing the reconstruction domain D  as  

 2 2
1 +1( , , ) ,ij i i j jD x y z r x y r z z z      ,                                                   (9) 

where r i ri   , z j zj    , 1,2, , , , ,i m j n n    with 0 0,
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, and 0r  , 0z   are 

the step sizes.  

Suppose the detector array is index by , , 0,1, 1s p p    and , , 0,1, 1t q q   . Hereafter, we 

also denote the radial function f  and detector array as a vector by lexicographic order, and 

,( . )kl st ija resp a denotes intersection length between x-ray path index by ( . ( , ))k resp s t with the l -th 

( . ( , ))resp i j annular cylinder elements with 1,2, 4 ,k pq   1, 2 , , 2l m n  ( resp. 1,2,s p  , 

1, 2, , , 1, 2, , , 1, 2, , )t q i m j n     . 

Let ( )klA a , and 1 2( , , , )T
Mg g g g   with kg being the line integral along the k-th x-ray path 

determined by the corresponding detector and M = 4pq . In practice, g  is computed from the 

recorded x-ray energies before and after placing the object by using Beer’s law. According to the 

aforementioned notations, the algebraic model for the concerned problem can be formulated as  

                              Au g .                                                                 (10) 

The computation of A  will be discussed in section 3. The reconstruction will suffer strong artifacts 

because of photon noise and the ill-posedness of A . 

2.3 Data-driven model for AS object reconstruction  

In order to suppress the noise effect, we propose a data driven method for AS objection 

reconstruction as follows 

2 2
12 0,

min ( ) , ( ) ( ) ,T

u b
Au g W b u W b W b I                                              (11) 



where 1 0   is an user-specified regularization parameter. Our method is different from the one in 

[12], which needs a reference image to learn the filter bank b  previously. In our work, the adaptive 

tight frame is learnt in the image reconstruction procedure. Therefore, our method does not need any 

reference image. Introducing an auxiliary variable v Wu , we can relax (11) as  

2 2 2
22 2 0, ,

min , ,T

u b v
Au g Wu v v W W I                                             (12)                                                                                   

where 0   is a penalty parameter, and 2 2
2 1   . We use alternating direction method to solve (12), 

i.e. only one variable among ,b v  and u  is updated with others fixed. The update algorithms for b  and 

v  are reviewed in section 2.1. For the update of u , we should solve the minimizing problem 

221 1 1

2 2

1
arg min ( ) .

2
k k k

u
u Au g W b u v                                                 (13)                                                             

This problem is equivalent to solve [3] 

22 1 1

2 2

1
arg min ( ) .

2
T k k

u
Au g W b v u                                                      (14)                                                 

Here we use primal-dual method [4] to solve it, which is presented in Algorithm 1. Details are not 

given here due to page limit. One can obtain this algorithm using the technique in [4] and [9]. 

Algorithm   1.  Algorithm for problem (14) 
Let

2
, 1 , 1 , 1,L A L L      and set the maximum iteration Nଵ. 

(2) Initialize 0 0 0 00, 0,u u u    and 0l  . 
(3) While 1l N  

(4)   1 ( ( )) (1 )l l lAu g        ; 

(5)    1 1 1 1(2 ( ) ) (2 1)l T k k l T lu W b v u A          ; 

(6)    1 1 1( )l l l lu u u u     ; 
(7)    1l l  ; 
(8) End (While). 
(9) Output 1Nu  as 1ku  . 

 

According to the discussions above, we can summarize the algorithm for (12) as Algorithm 2. 

3. Computation for imaging matrix  
According to the assumption, all x-ray paths associating with detector array and x-ray source can 

be denoted as ( , )L    

0 cos cos ,

cos sin ,

sin ,

x x t

y t

z t

 
 


 
 
 

                                                                    (15) 



where  is the angle between the path and OXY plane, α is the angle between the projection of path on 

OXY plane and x-axis. Because of the symmetries of the imaging system and measure object, we need 

to compute the intersection length between the x-ray path with and the annular elements , 0   , and 

others can be obtained by symmetric property. 

Algorithm 2 Algorithm for problem (12) 

(1)  Set maximum iteration number 2N , tolerance  . 

(2)  Initialize 0u  by TV regularization method and 0k  . 
(3)  While 2k N  

(4)      Learnt filter bank 1kb   by the method in section 2.1; 
(5)      Update 1kv   by hard thresholding (4); 
(6)      Update 1ku   by Algorithm 1;  
(7)       1k k  ; 
(8)  End (While) 
                

For a given x-ray path ( , )L   , the intersections with all annular cylinders are computed in two 

steps. Firstly, the intersection points of the line and all cylinders with radius 

 2 2( , , ) | ,x y z x y i r z     are  

 0 cos cos , cos sin , sinis is isx t t t     ,                                         (16) 

where ( ), ( ) 1, , , 0,1i N N N s    . The intersection lengths of this ray with the annular cylinders 

 2 2
1 1( , , ) | ,ij i i j jD x y z r x y r z z z        

are computed easily. Firstly, if ( )i N  , the intersection length must be zero. We can update the 

imaging matrix A  by Algorithm 3 for any given two intersection points with the annular cylinder. 

Here we initialize A  as zero matrix because it is possible that the intersection length consists of two 

sections when   is small enough.  

 

Algorithm 3 Update A  for given two intersection points between k-th x-ray path and i-th 
annular cylinder 

 (1) Input two intersection heights 1 2 1 2, ( )h h h h . 

 (2)  Let 1 2,p h z q h z          . 

 (3) If p q  

 (4)    , , 2 1+ sin
i ik p k pa a h h   . 

 (5) Else 
 (6)    , , 1( 1) sin

i ik p k pa a p z h      ; 

 (7)    , , 2 sin
i ik q k qa a h q z    ; 

 (8)    , , sin ,
i ik t k ta a z p t q     ; 

 (9) End (If).   
 

 



In Algorithm 3, pi  (resp. ,q ti i ) are the annular index determined by p  and i .  According to 

Algorithm 3, we can compute the imaging matrix row by row as Algorithm 4. Here A୩ denotes the k-

row of A in Algorithm 4.  

4.  Numerical experiments  

In this section, we will present experiments on simulation data to verify the effectiveness of the 

proposed method and algorithm for the considered problem, AS object reconstruction from single 

cone-beam projection. A cylinder phantom with radius 1 and height 2 is designed to test the proposed 

algorithm (see Figure 2 for the central longitudinal section). For the data acquisition, we set the x-ray 

source at (40,0,0) and the object center at origin, and the detector array in the plane 50x    with −2.51 

≤ z ≤ 2.51, −2.45 ≤y≤ 2.45. 

For the discretization, we set 0.005z r    , and the detector size is 0.005×0.005. The imaging 

matrix is computed by Algorithm 4, and then we generate the projection data byg =  Au + n, where n 

is data noise. In this paper, noise obeys Gaussian distribution with mean 0 and variance 0.03. In 

Algorithm 1, the parameters   and   equal to 0.2. The iteration numbers 1 25000, 3N N   in 

Algorithm 1 and Algorithm 2. The proposed method is compared with TV regularization method. 

Algorithm 4.  Imaging matrix computation 

(1) Initializing ,0 k mnA   . 

(2) For all x-ray line ( , )i jL   numbered by k . 

(3) Compute the  intersection  points 0it and 1it  of  line (0, )L   with the circle with radius 

, , 1, , ( )i r i N N N     . 

(4) Compute the heights of each intersection points sinis ish t   

(5)  For  ( ), 1i N N   and 0,1s  ; 
(6)     Update kA using algorithm 3 with 1 0 2 ( 1)0,i ih h h h   ; 

(7)     Update A୩ using algorithm 3 with 1 1 2 ( 1)1,i ih h h h   ; 

(8)  End (For). 
(9)  Update kA using algorithm 3 with 1 ( )0 2 ( )1,N Nh h h h   . 

 
 

Table 1: RMSEs of the images in Figure 3 
 

      λ                          TV                       ATF 
0.005                  0.0323                  0.0278 
0.01                    0.0313                  0.0303 
0.015                  0.0335                 0.0325 

 



 
Figure 2: Central longitudinal section image of the phantom. 

Besides visual quality, we also compare the relative means square error, which is defined as 

follows: 

2

1 1

1
( )

m n

ij ij
i j

RMSE u u
mn



 

  ,                                                                     (17) 

where u is the result of the reconstruction, u∗ is the original image. The central longitudinal sections 

of reconstructions with λ = 0.005,0.01,0.015  are illustrated in Figure 3. In order to show the 

performance of the proposed method, we also illustrate the section images at three different heights in 

Figure 4. These section images are obtained by rotating the associated profiles of each longitudinal 

images in Figure 3. The profiles of the reconstructions by the proposed method and TV at 0z   are 

plotted in Figure 5. The RMSEs for different reconstructions are tabulated in Table 1. 

It is obviously that the proposed method is superior to the TV regularization method in 

preserving image edges and suppressing artifacts and in terms of RMSE. As we can see that there are 

strong artifacts in the reconstructions by TV method, especially when the section is far from the 

central slice. However, the proposed method suppresses the artifacts effectively. On the other hand, 

the RMSE values in Table 1 also show the proposed method is better than TV method. 

5. Conclusion and future work  

There are two main contributions in this work. Firstly, this paper presented a data driven 

simultaneous method for 3D AS object reconstruction from single cone-beam data. Secondly, efficient 

algorithm for the imaging matrix computation is investigated. In the future, we will study on rapid 

convergence algorithm for the update of u, e.g. the acceleration of primal-dual algorithm based on the 

property of the imaging matrix.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Central longitudinal section. The reconstructions by TV and the proposed methods 
are shown in first and second rows, respectively. From left to right λ = 0.005, 0.01 and 0.015 
respectively. 
 

 
Figure 4: Images from up to bottom are the original, TV and ATF reconstructions of 100th, 
200th and 360th rows. The regularization parameter λ = 0.005, 0.01, 0.015 from left to right. 

 



 
Figure 5: Profile comparison: the reconstructions at 𝐳 = 𝟎 is plotted. For visual comparison, 0.1 
(resp. −0.1) is added to the reconstruction value by the proposed method (resp. TV). 
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