
Formal Specification: a Roadmap
Axel van Lamsweerde

Key Research Pointers

Formal specification technology needs to provide CONSTRUCTIVE methods for specification
development, analysis, and evolution.
Formal specifications need to be fully integrated with other software products and processes
all along the software lifecycle.
Specification techniques should move from functional design to requirements engineering;
higher-level, problem-oriented ontologies must therefore be supported instead of program-
oriented ones.
The scope of formal specification and analysis must be extended to cover non-functional
requirements that play a prominent role in architectural design --such as performance,
security, fault tolerance, accuracy, maintainability, etc.
Tomorrow's technology will provide lightweight interfaces for multiparadigm specification
and analysis.

The Author

Axel van Lamsweerde is Full Professor of Computing Science at the University
of Louvain, Belgium. He received the M.S. degree in Mathematics from that
university, and the Ph.D. degree in Computing Science from the University of
Brussels. From 1970 to 1980, he was Research Associate with the Philips
Research Laboratory in Brussels where he worked on proof methods for parallel
programs and knowledge-based approaches to automatic programming. He
was then Professor of Software Engineering at the Universities of Namur and
Brussels until he joined UCL in 1990. He is co-founder of the CEDITI technology
transfer institute partially funded by the European Union. He has also been a
research fellow at the University of Oregon and the Computer Science Laboratory
of SRI International, Menlo Park, CA. van Lamsweerde's professional interests
are in technical approaches to requirements engineering and, more generally,
in lightweight formal methods for reasoning about software engineering
products and processes, van Lamsweerde is an ACM fellow. He was program
chair of the Third European Software Engineering Conference (ESEC'91),
program co-chair of the Seventh IEEE Workshop on Software Specification
and Design (IWSSD-7), and program co-chair of the ACM-IEEE Sixteenth
International Conference on Software Engineering (ICSE-16). He is member of
the Editorial Boards of the Automated Software Engineering Journal and the
Requirements Engineering Journal. Since 1995, he is Editor-in-Chief of the
ACM Transactions on Software Engineering and Methodology (TOSEM).

147

http://crossmark.crossref.org/dialog/?doi=10.1145%2F336512.336546&domain=pdf&date_stamp=2000-05-01

Formal Specification: a Roadmap

A x e l v a n L a m s w e e r d e

D6par t emen t d ' Ing6nie r ie In format iquc
Univcrsi t6 cathol iquc de Louva in

B-1348 Louva in - l a -Ncuvc (Be lg ium)
avl@info .uc l .ac .bc

ABSTRACT

Formal specifications have been a focus of software engi-
neering research for many years and have been applied in a
wide variety of settings. Their industrial use is still limited
but has been steadily growing. After recalling the essence,
role, usage, and pitfalls of formal specification, the paper
reviews the main specification paradigms to date and dis-
cuss their evaluation criteria. It then provides a brief assess-
ment of the current strengths and weaknesses of today's
formal specification technology. This provides a basis for
formulating a number of requirements for formal specifica-
tion to become a core software engineering activity in the
future.

I . I N T R O D U C T I O N

Formal specifications have'been considered since the good
old days of Computing Science. In the late nineteen forties,
Turing observed that reasoning about sequential programs
was made simpler by annotating them with properties about
program states at specific points [Ran73]. In the late sixties,
Floyd, Hoare and Naur proposed axiomatic techniques for
proving the consistency between sequential programs and
such properties, called specifications [Fio67, Hoa69,
Nau69]. Dijkstra showed how a formal calculus over such
specifications could be used constructively to derive non-
deterministic programs that meet them [Dij75]. Specific
techniques were also proposed to formally express intended
properties for special kinds of programs, notably, data-
structured programs [Par72, Lis75] and concurrent pro-
grams [Pnu77]. This was the starting point for a whole new
area of research aimed at specification-in-the-large [Par77,
SRS79, Abr80, Hen80]. The interest in formal specifica-
tions and their multiple uses in software engineering has
been growing continually since that point [Win90, Cra93,
Hin95, Cia96, Win99, SCP2K].

What are formal specifications?

Formal specifications may refer to fairly different things in
the software lifecycle; the wording is thus heavily over-
loaded. An additional source of confusion stems from the
fact that a single word is used for a product and the corre-
sponding process.

Generally speaking, a formal specification is the expression,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
Future of Sofware Engineering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

in some formal language and at some level of abstraction, Of
a collection of properties some system should satisfy.

This purposely general definition covers different notions
dependent on what the word "system" really covers, what
kind of properties are of interest, what level of abstraction is
considered, and what kind of formal language is used.

Complex software applications are built using a series of
development steps: (a) high-level goals are identified and
refined until a set of requirements on the software and
assumptions on the environment can be made precise to sat-
isfy such goals; C o) a software architecture, made of inter-
connected software components, is designed to satisfy such
requirements; and (c) the various components are imple-
mented and integrated so as to satisfy the architectural
descriptions. All along this development/satisfaction chain,
knowledge about the application domain is often used to
guide the elaboration and to support the validation with
respect to upstream prescriptions.

The "system" being specified may be a descriptive model of
the domain of interest; a prescriptive model of the software
and its environment; a prescriptive model of the software
alone; a model for the user interface; the software architec-
ture; a model of some process to be followed; and so on.
The "properties" under consideration may refer to high-
level goals; functional requirements; non-functional
requirements about timing, performance, accuracy, security,
etc.; environmental assumptions; services provided by
architectural components; protocols of interaction among
such components; and so on.

Beyond such different realizations of the general concept of
specification, there is a common idea of specifications per-
raining to the problem domain (as opposed to the solution
domain). To make sure some solution solves a problem cor-
rectly, one must first state that problem correctly. This
dichotomy is however simplistic; a solution to a problem
may in general be given as a set of subproblems to be speci-
fied and solved in turn [Swa82]. A specification must thus
in general satisfy some higher-level specification and be
satisfied by some lower-level specifications.

"Formal" is often confused with "precise" (the former
entails the latter but the reverse is of course not true). A
specification is formal if it is expressed in a language made
of three components: rules for determining the grammatical
well-formedness of sentences (the syntax); rules for inter-
preting sentences in a precise, meaningful way within the
domain considered (the semantics); and rules for inferring
useful information from the specification (the proof theory).

149

The latter component provides the basis for automated anal-
ysis of the specification.

The collection of properties being specified is often fairly
large; the language should thus allow the specification to be
organized into units linked through structuring relationships
- such as specialization, aggregation, instantiation, enrich-
ment, use, etc. Each unit in general has a declaration part,
where variables of interest are declared, and an assertion
part, where the intended properties on the declared variables
are formalized. Formal specification techniques essentially
differ from semi-formal ones (such as dataflow diagrams,
entity-relationship diagrams or state transition diagrams) in
that the latter do not formalize the assertion part.

What are good specifications?

Writing a "correct" specification is very difficult - probably
as difficult as writing a correct program. A specification
must be adequate, that is, it must adequately state the prob-
lem at hand. It must be internally consistent, that is, it must
have a meaningful semantic interpretation that makes true all
specified properties taken together. It must be unambiguous,
that is, it may not have multiple interpretations of interest
making it true. It must be complete with respect to higher-
level ones, that is, the collection of properties specified must
be sufficient to establish the latter [Yue87]. It must be satis-
fied by lower-level ones. It should be minimal, that is, it
should not state properties, that are irrelevant to the problem
or that are only relevant to a solution for that problem
[Mey85].

Why specify formally?

Problem specifications are essential for designing, validat-
ing, documenting, communicating, reengineering, and reus-
ing solutions. Formality helps in obtaining higher-quality
specifications within such processes; it also provides the
basis for their automated support.

The act of formalization in itself has been widely experi-
enced to raise many questions and detect serious problems in
original informal formulations. Besides, the semantics of the
formalism being used provides precise rules of interpretation
that allow many of the problems with natural language to be
overcome. A language with rich structuring facilities may
also produce better structured specifications.

As the major payoff, formal specifications may be manipu-
lated by automated tools for a wide variety of purposes:

• to derive premises or logical consequences of the specifi-
cation, for user confirmation, through deductive theorem
proving techniques [Owr95, Man96];

• to confirm that an operational specification satisfies more
abstract specifications, or to generate behavioral counter-
examples if not, through algorithmic model checking
techniques [Que82, Cla86, Ho191, Ho197, McM93, At193,
Man96, Hei98a, Cla99];

• to generate counterexamples to claims about a declarative
specification [Jac96];

• to generate concrete scenarios illustrating desired or
undesired features about the specification [Fic92, Hal95,
Hal98] or, conversely, to infer the specification inductively

from such scenarios [Lam98c];

• to produce animations of the specification in order to
check its adequacy [Hek88, Har90, Dub93, Doug94,
Heit96, Tho99];

• to check specific forms of specification consistency/com-
pleteness efficiently [Heim96, Heit96];

• to generate high-level exceptions and conflict precondi-
tions that may make the specification unsatisfiable
[Lam98b, Lam2K];

• to generate higher-level specifications such as invariants
or conditions for liveness [Lam79, Ben96, Par98, Jef98];

• to drive refinements of the specification and generate
proof obligations [Car90, Abr96, Dar96];

• to generate test cases and oracles from the specification
[Ber91, Ric92, Roo94, Wey94, Man95];

• to support formal reuse of components through specifica-
tion matching [Kat87, Reu91, Mas97, Zar97].

Formal specifications can also be generated from program
code as a basis for reverse engineering and software evolu-
tion [Gan96, Ern99].

Specify... for whom?

One of the problems with formal specifications is that they
may concern different classes of consumers having fairly
different background, abstractions and languages - clients,
domain experts, users, architects, programmers, and tools.
For example, the specification of a goal or requirement
should be checked by clients for adequacy; a domain
description should be produced or checked by domain
experts; an architectural component specification should be
seen in a detailed form by programmers assigned to that
component and in a more abstract form by programmers
assigned to other components using that component; a tool
should see a specification in some efficiently processable
form; and so on. One way to handle such clashes is to sup-
port multilingual specifications, at the price of raising con-
sistency problems (see below).

It is now well-accepted that a programming language should
be a language for the programmer, not for the machine. This
principle is still not widely accepted for specification lan-
guages; many of them still seem to be designed for program-
mers or for tools rather than for specifiers.

Specify... when?

As seen before, there are multiple stages in the software life-
cycle at which formal specifications may enter the picture,
e.g., when modeling the domain; when elaborating the goals,
requirements on the software, and assumptions about the
environment; when designing a functional model for the
software; when designing the software architecture; or when
modifying or reengineering the software.

The main focus to date has been on formal specifications
written during the design of a preliminary functional model
for the software [Win90]. We will therefore focus the discus-
sion of past achievements on this kind of specification
mainly. We will also take the viewpoint of specification
building since formal reasoning is covered in another chapter

150

of this volume.

2. F O R M A L I Z A T I O N : SCOPE AND P I T F A L L S

Although close to commonsense, there are a few important
principles and facts that are often overlooked by champions
of formalization.

• Specifications are never formal in the first place. To state
properties precisely and formally, one must first figure out
what these properties are. The latter must necessarily be
formulated in a language all parties can speak and under~
stand, that is, natural language.

• Formal specifications are meaningless without a precise,
informal definition of how to interpret them in the domain
considered. A formalization involves terms and predicates
which may have many different meanings. The specifica-
tion thus makes sense only if the meaning of each term/
predicate is stated precisely, by mapping function/predi-
cate names to functions/relations on domain objects. This
mapping must be precise but necessarily informal (to avoid
infinite regression). This fairly obvious principle is often
neglected [Zav97].

• Formal specification is not a mere translation process from
informal to formal. The specification of a large, complex
system requires relevant objects and phenomena to be
identified, interrelated, and characterized through proper-
ties of interest. Model construction and property descrip-
tion are thus tightly coupled components of any
specification-in-the-large process.

• Formal specifications are hard to develop and assess.This
stems from the diversity and subtlety of errors that can be
made (see Section 1) and from the multiplicity of model-
ing choices that can be made. As a consequence, formal
specifications are rarely correct in the first place. It has
been frequently noted, however, that even wrong specifica-
tions may help finding out problems in original formula-
tions.

• The rationale for specific modeling choices in a specifica-
tion is important for explanation and evolution [Sou93].
Unfortunately, such rationale is rarely documented.

• The by-products of a formal specification process are often
more important than the formal specification itself; they
include a better informal specification, obtained by feed-
back from formal expression, structuring and analysis; and
lower-level products that are more likely to satisfy them
thanks to such formalization/analysis.

• To be useful, a formal system must have a limited domain
of applicability. Specific types of systems require specific
types of techniques for natural expression and efficient
analysis. For example, the formal specification of a com-
piler must include a definition of the input grammar. A
BNF-style specification would be most appropriate for this
domain but clearly inappropriate for the domain of pro-
cess-control systems. There is thus no point in looking for
a universal specification technique.

3. S P E C I F I C A T I O N P A R A D I G M S

Formal specification techniques differ mainly by the particu-

lar specification paradigm they rely on. In the sequel, we
avoid the usual, somewhat confusing model-based vs. prop-
erty-based dichotomy; the reason is that for large systems
any property-based specification involves system modeling
and any model-based specification involves system proper-
ties.

History-based specification
The principle here is to specify a system by characterizing its
maximal set of admissible histories (or "behaviors") over
time. The properties of interest are specified by temporal
logic assertions about system objects; such assertions
involve operators referring to past, current and future states.
The assertions are interpreted over time structures. Time can
be linear [Pnu77] or branching [Eme86]. Time structures can
be discrete [Man92, Lamp94], dense [Gre86], or continuous
[Han91]. The properties may refer to time points [Man92,
I_~m94], time intervals [Mos97], or both [Gre86, Jab86,
Al189, Ghe91]. Most often it is necessary to specify proper-
ties over time bounds; real-time temporal logics are therefore
necessary [Koy92, Dub91, Mor92, Dar93, Mos97].

State-based specification
Instead of characterizing the admissible system histories,
one may characterize the admissible system states at some
arbitrary snapshot. The properties of interest are specified by
(a) invariants constraining the system objects at any snap-
shot, and (b) pre- and post-assertions constraining the appli-
cation of system operations at any snapshot. A pre-assertion
captures a weakest necessary condition on input states for
the operation to be applied; a post-assertion captures a stron-
gest effect condition on output states if the operation is
applied. The latter may be explicit or implicit dependent on
whether or not the assertion contains equations defining the
output constructively.

Languages such as Z [Abr80, Spi92, Pot96], VDM [Jon90]
or B [Abr96] relyon this paradigm. Object-oriented variants
have been proposed as well [Lan95].

Transition-based specification
Instead of characterizing admissible system histories or sys-
tem states, one may characterize the required transitions
from state to state. The properties of interest are specified by
a set of transition functions in the state machine transition;
the transition function for a system object gives, for each
input state and triggering event, the corresponding output
state. The occurrence of a triggering event is a sufficient con-
dition for the corresponding transition to take place (unlike a
precondition, it captures an obligation); necessary precondi-
tions may also be specified to guard the transition.

Languages such as Statecharts [Har87], PROMELA
[Ho191], STeP-SPL [Man92], RSML [Lev94] or SCR
[Par95, Heit96] rely on this paradigm.

Functional specification
The principle here is to specify a system as a structured col-
lection of mathematical functions. Two approaches may be
distinguished.

Algebraic specification. The functions are grouped by object
types that appear in their domain or codomain, thereby defin-

151

ing algebraic structures (or abstract data types). The proper-
ties of interest are then specified as conditional equations
that capture the effect of composing functions (typically,
compositions with type generators).

Languages such as OBJ [Fut85], ASL last86], PLUSS
[Gau92] or LARCH [Gut93] rely on this paradigm.

Higher-Order Functions. The functions are grouped into
logical theories. Such theories contain type definitions (pos-
sibly by means of logical predicates), variable declarations,
and axioms defining the various functions in the theory.
Functions may have other functions as arguments which sig-
nificantly increases the power of the language. Languages
such as HOL [Gor93] or PVS [Cro95, Owr95] rely on this
paradigm.

Operational specification
At the extreme opposite, a system may be characterized as a
structured collection of processes that can be executed by
some more or less abstract machine. Early languages such as
Paisley [Zav82], GIST [Ba182], Petri nets or process alge-
bras [Hoa85, Mi189] rely on this paradigm.

4. HOW GOOD IS MY FAVORED T E C H N I Q U E ?

Specification techniques may be evaluated and compared
against a number of criteria. Unsurprisingly, some of these
criteria are interdependent and even conflicting; the choice
of a reasonable compromise thus depends on the specifier's
priorities for the task and system at hand.

Expressive power and level of coding required. As noted
before, each paradigm above has some built-in semantic bias
in order to be useful. State-based and functional specifica-
tions focus on sequential behaviors while providing rich
structures for defining complex objects. They are thus better
targeted at transactional systems. Conversely, history-based,
transition-based specifications and operational specifications
focus on concurrent behaviors while providing only fairly
simple structures for defining the objects being manipulated.
They are thus better targeted at reactive systems. There are,
of course, hybrid approaches that attempt to recover from
this, e.g., [Fau92, Geo95].

Beyond such semantic bias, the formal language should
allow the properties of interest to be expressed without too
much hard coding. Specification is about defining problems,
not about programming solutions. Ideally, there should be a
simple, straightforward mapping between the natural lan-
guage formulation of a property and its formal counterpart.

This is, unfortunately, rarely the case. Unlike natural lan-
guage, formal languages impose limitations. For example, a
first-order language makes it impossible to refer to opera-
tions as predicate arguments so that coding tricks are
required to overcome the problem - such as the introduction
of auxiliary events that encode the application of operations.
Most languages are weak at supporting temporal referenc-
ing; explicit or implicit time references occur frequently in
natural formulations. For example, the built-in inability of
state-based specifications to refer to the past makes it neces-
sary to introduce auxiliary variables for encoding whether
such or such event of interest has occurred, with correspond-

ing update operations to be specified at each state modifica-
tion (as in imperative programming). History-based
specifications are the main exception to this problem. How-
ever they may also be problematic for specifying relative
orderings of events; e.g., [Dwy99] gives an example of a rel-
atively simple ordering property that requires six levels of
operator nesting in linear temporal logic! Algebraic specifi-
cations are among those which require the most coding
expertise; experience reveals that many novice specifiers
incorrectly write fairly simple operations such as deleting an
element from a set, because of the distance between their
intuition of what this operation is about and the required
delete/add commutativity axioms.

Due to language expressiveness problems, specification cod-
ing may require a lot of expertise; in the end it makes it ques-
tionable whether or not the specification correctly captures
the target properties of interest.

Constructibility, manageability and evolvability. The speci-
fication technique should provide facilities for building com-
plex specifications in a piecewise, incremental way. Local
changes in problem features should be reflected by local
changes in the specification. These requirements depend on
(a) language mechanisms for specification structuring and
compositional reasoning, and (b) the availability of a method
for incremental construction, analysis and modification.

Many languages support basic structuring mechanisms for
modularizing specifications - such as encapsulation, generic-
ity, inheritance, inclusion, enrichment, etc. State-based and
functional languages are probably the richest in that respect.

Some languages also support refinement relationships as a
basis for incremental specification development and analy-
sis, e.g., data reification [Jon90, Abr96], component compo-
sition/decomposition through logical connectors [Spi92,
Aba95], state composition/decomposition [Har87, Lev94],
or goal abstraction/refinement [Dar96].

Usability. It should be possible for reasonably well-trained
people to write high-quality specifications. This soft, higher-
level criterion of course depends on all previous ones plus a
few more. The language should have a simple theoretical
basis. This probably explains the popularity of languages
built on simple, well-understood mathematical notions such
as sets, relations and functions [Abr80, Spi92, Abr96,
Owr95]. The language should also exempt users from intri-
cacies such as, e.g., the need in state-based specifications to
specify that "nothing else changes" through additional frame
axioms [Bor95].

Communicability. Conversely, the technique should be
accessible for reasonably well-trained people to read high-
quality specifications and check them. This criterion depends
on the previous ones (notably, the closeness between the
specification and its corresponding natural language formu-
lation), and on the external format the specification may
take. It explains the popularity of techniques that support
tabular formats [Hen80, Lev94, Par95, Cro95, Heit96] and
diagrammatic notations [Har87, Lev94].

Powerful and efficient analysis. The effectiveness of a for-
mal specification technique depends on the degree of saris-

152

faction of the various objectives mentioned in Section 1. In
particular, there is no much sense writing formal specifica-
tions without being rewarded by feedback from automated
tools. The latter should ideally support a wide range of anal-
ysis in the space of possibilities listed in Section 1. With a
few notable exceptions (e.g., [Hei98b]) this has mostly been
wishful thinking so far. Favoring one kind of analysis or
another usually dictates the choice of one specification tech-
nique or another.

The more efficient the analysis is, the more coding effort is
usually required on the specifier's side. This is the case for
specification animation based on executing operational spec-
ifications or on term rewriting of algebraic specifications.
Model checkers illustrate this as well; the unconvinced
reader may look at what their input code for a complex
application may look like.

On another hand, the more powerful the analysis is, the more
expert intervention is usually required. Proof assistants are a
good illustration of this unsurprising fact [Cro95].

It should become clear from our brief review of evaluation
criteria that any multicriteria analysis will inevitably result in
favoring a multiparadigm framework in which complemen-
tary formalisms, methods and tools are integrated in a coher-
ent way so as to combine the best of each paradigm for
specific domains, tasks, and concerns. Very preliminary
attempts have started in this direction [Nis89, Dar93, Nus93,
Zav93, Zav96].

5. TODAY'S G O O D NEWS

The number of success stories in using formal specifications
for real systems is steadily growing from year to year. They
range from to the reengineering of existing systems (e.g.,
[Hen80, Crai93]) to the development of new systems (e.g.,
[Hal96, Beh99]). In the latter case, there was some reported
evidence that the development, while resulting in products of
much higher quality, did not incur higher costs but rather the
contrary. Although many of the stories are in the domain of
transportation systems, there are other domains such as
information systems, telecommunication systems, power
plant control, protocols and security. Good accounts can be
found in [Cra93, Hin95, Cla96, SCP2K].

A recent, fairly impressive example is worth pointing out
[Beh99]. The Paris metro system has recently opened a new
line (line 14, Tolbiac-Madeleine). The traffic on this line is
entirely controlled by software. Driverless trains and conven-
tional trains are both supported. The safety-critical compo-
nents of the software (located on board, along the track, and
on ground) were formally developed by Matra Transport
using the B abstract machine method [Abr96]. The develop-
ment includes abstract models of those components, refine-
ments to concrete models, and automated translation to ADA
code. According to [Beh99], there are about 100,000 lines of
B specification, covering the abstract and the concrete
model, and 87,000 lines of ADA code. The refinement was
entirely validated by formal proofs. The B tool automatically
proved 28,000 lemmas and 65% of the rules added to dis-
charge proofs. Many errors were found thereby, and fixed in
the concurrent development. In addition, a conventional test-

ing process was deployed and not a single error was found.

The success of this formal development might be explained
by the unusual combination of success factors. The B speci-
fication language has a simple mathematical basis that
allows engineers to use it after a reasonably short period of
training; the specification technique is multi-level and makes
it possible to smoothly move from an abstract model up to
code in a provably correct way; methodological support was
provided in the form of guidelines and heuristics to guide the
development and validation processes; a development/vali-
dation process model was first designed explicitly and inte-
grated in the company's process model to accommodate
conventional practices such as testing (the lack of such inte-
gration has been recognized to be a serious obstacle to the
adoption of formal methods [Cra95]); last but not least, the
process was supported by powerful tools.

The maturity of specification tool technology is also steadily
growing from year to year. Tools become more effective in
analyzing formal specifications and deriving useful informa-
tion; their performance on large specifications keeps increas-
ing; they become more usable. Specification animators and
model checkers are particularly successful in those respects.
Moreover there is a promising tendency towards integrating
multiple tools so as to offer a wide spectrum of analysis at
various costs - from fully automatic, dedicated checks to
interactive assistance in difficult proofs. The SCR toolset is a
good illustration of this recent trend [Hei98b].

6. TODAY'S BAD NEWS

In spite of such good news, today's formal specification
techniques suffer a number of weaknesses. Some of these
explain why in their present form they are inadequate for the
upstream critical phase of requirements specification and
analysis.

• L i m i t e d scope. The vast majority of techniques are limited
to the specification of functional properties, that is, proper-
ties about what the target system is expected to do. Non-
functional properties are in general left outside any kind of
formal treatment. The main exception are techniques
allowing timing properties to be formalized and reasoned
about.

• P o o r separa t ion o f concerns . Most techniques provide no
support for making a clear separation between (a) intended
properties of the system considered, (b) assumptions about
the environment of this system, and (c) properties of the
application domain. One cannot therefore make the essen-
tial distinction between descriptive and prescriptive prop-
erties (called "indicative" and "optative" in [Zav97]); they
are all mixed together in the specification.

• L o w - l e v e l on to logies . T h e concepts in terms of which
problems have to be structured and formalized are pro-
gramming concepts - most often, data and operations. It is
time to raise the level of abstraction and conceptual rich-
ness found in informal requirements documents - such as,
e.g., goals and their refinements, agents and their responsi-
bilities, alternatives, and so forth [Fea87, Fie92, Dar93,
My198, My199].

153

• Isolation. With a few exceptions mentioned before, formal
specification techniques are isolated from other software
products and processes both vertically and horizontally.
Vertical isolation: specification techniques generally pay
no attention to what upstream products in the software
lifecycle the formal specification is coming from (viz.
goals, requirements, assumptions) nor what downstream
products the formal specification is leading to (viz. archi-
tectural components). Horizontal isolation: the techniques
generally do not pay attention to what companion products
the formal specification should be linked to (e.g., the cor-
responding informal specification, a documentation of
choices, validation data, project management information,
etc.).

• Poor guidance. The main emphasis in the formal specifi-
cation literature has been on suitable sets of notations and
on a posteriori analysis of specifications written using
such notations. Constructive methods for building correct
specifications for complex systems in a safe, systematic,
incremental way are by and large non-existent. Instead of
inventing more and more languages, one should put more
effort in devising and validating methods for elaboration
and modification of good specifications (in the sense
recalled in Section 1).

• Cost. Many formal specification techniques require high
expertise in formal systems in general (and mathematical
logic in particular), in analysis techniques, and in the
white-box use of tools. Due to the scarcity of such exper-
tise their use in industrial projects is nowadays still highly
limited in spite of the promised benefits.

• Poor tool feedback . Many analysis tools are effective at
pointing out problems, but in general they do a poor job of
(a) suggesting causes at the root of such problems, and (b)
proposing recovery actions.

7. BACK TO T H E FUTURE

The discussion above provides the material for paving the
road ahead. Tomorrow's technology should meet the follow-
ing requirements and challenges for formal specification to
become an essential vehicle for the engineering or reengi-
neering of higher-quality software.

• Constructiveness. The almost exclusive focus on a poste-
riori analysis of possibly poor specifications should in part
be shifted towards a more constructive approach in which
specifications are built incrementally from higher-level
ones in a way that guarantees high quality by construction.
One could then really speak of a method, typically made
of a collection of model building strategies, style selection
rules, specification derivation rules, guidelines, and heu-
ristics; some might be domain-independent, some others
might be domain-specific. Such a method should provide
active guidance in the specifier's decision making process.
It might be supported by automated specification assis-
tants that would provide advice at decision points and
record the process followed, for documentation and possi-
ble replay in case of later evolution.

• Suppor t f o r comparative analysis. Experience in teaching
formal specification reveals that different specifiers with
the same background may end up with fairly different
specifications for the same initial problem formulation.
The same is true for programs, but in the latter case there is
at least an ultimate moment of truth - the program is run-
ning satisfactorily or not. Beyond the specification quali-
ties recalled in Section 1, we need precise criteria and
measures for assessing specifications and comparing their
relative merits.

• Integration. Tomorrow's technology should care for the
vertical and horizontal integration of formal specifications
within the software lifecycle - from high-level goals to
functional design to architectural components; and from
informal formulation to formal specification t o related
products.

• H i g h e r level o f abstraction. Specification techniques
should move from functional design to requirements engi-
neering where the impact of errors is even more crucial.
We therefore need languages, methods and tools that sup-
port richer, problem-oriented ontologies upstream to the
program-oriented ones currently supported. Preliminary
attempts in this direction include [My192, Dar96] for goal-
oriented refinement, [My192, Lam98b] for goal-level con-
flict analysis, and [Lam2K] for goal-level exception han-
dling.

• R i c h e r s t ruc tur ing mechan i sms . Most constructs avail-
able so far for modularizing large specifications have been
lifted from programming counterparts. Problem-oriented
constructs should be available as well such as, e.g., stake-
holder viewpoints [Nus93] or problem views [Jac95].

• Ex t ended scope. Specification techniques need to be
extended in order to cope with the various categories of
non-functional properties that are elicited during require-
ments engineering and play a prominent role during archi-
tectural design, e.g., properties about performance,
integrity, confidentiality, accuracy of information, avail-
ability, fault-tolerance, operational costs, maintainability,
and so forth. The qualitative reasoning techniques in
[My192] are a first step in this direction. Specific catego-
ries might require specific language features and analysis
techniques.

• Separat ion o f concerns. A s discussed before, formal
specification languages should enforce a strict separation
between descriptive and prescriptive properties, to be
exploited by analysis tools accordingly.

• L igh twe igh t techniques. The use of formal specifications
should not require deep expertise in formal systems. The
mathematical intricacies should be hidden; analysis tools
should be usable like compilers. The work on pattern-
based specification in [Dwy99] is a very promising step in
this direction. Patterns may also be used to reuse proofs
and generate specifications [Dar96, Lam2K].

• Mul t iparad igm specification. Complex systems have mul-
tiple facets. Since no single paradigm will ever serve all
purposes due to semantic biases, frameworks are needed in

154

which multiple paradigms can be combined in a semanti-
cally meaningful way so that the best features of each par-
adigm can be exploited. The various facets then need to be
linked through consistency rules [Nus93]. Multiparadigm
frameworks should be able to integrate various formal lan-
guages, semi-formal ones, and natural language, together
with corresponding analysis techniques and tools. Prelimi-
nary linguistic attempts in this direction combine semantic
nets, history-based specification, and state-based specifica-
tion [Dar93]; or state-based specification and transition-
based specification [Zav96]. While multilingual integra-
tion is fairly easy to achieve among semi-formal languages
it raises difficult semantic issues for formal languages.

• Multibutton analysis. A multiparadigm framework should
support different levels of optional analysis - from cheap,
surface-level analysis (such as traceability analysis, static
semantics checks and qualitative reasoning) to more
expensive, deep-level analysis (such as algorithmic verifi-
cation, deductive reasoning, or inductive reasoning from
examples). The more heavyweight buttons would be
pushed only when needed and where needed. A multibut-
ton environment would also allow end-users to use the typ-
ical facilities provided by standard CASE tools in a first
stage, and then gradually enter into the more complex
world of formal methods as they get more confidence.

• Multiformat specification. To enhance the communicabil-
ity of the same specification fragment among different
types of producers/consumers, the fragment should be
maintained under multiple concrete syntaxes - e.g., tabu-
lar, diagrammatic, and textual.

• Reasoning in spite o f errors, Many specification tech-
niques require that the specification be complete in some
sense before the analysis can start. It should be made pos-
sible to start analysis much earlier, on specification drafts
[Gau92], and incrementally. This would ensure early pay-
back and incremental gain for incremental effort - an
important objective already noted in [Cla96]. On another
hand, deductive techniques also assume that the specifica-
tion is consistent for useful information to be derivable.
Especially in the context of requirements engineering,
where useful information can be inferred from conflicting
viewpoints, formal systems and reasoning techniques are
needed for deriving such information in spite of temporary
inconsistencies [Hun98].

• Constructive feedback from tools. Instead of just pointing
out problems, future tools should assist in resolving them.

• Support for evolution. In general, requirements keep
evolving while some core architecture is expected to
remain stable. A more constructive approach should also
help managing the evolution of formal specifications under
such constraints.

• Support for reuse. Problems in the domain considered are
more likely to be similar than solutions. Specification
reuse should therefore be even more promising than code
reuse. Surprisingly enough, techniques for retrieving,
adapting, and consolidating reusable specifications have
received relatively little attention so far (see, e.g., [Zar97]

for some recent work in this direction). A constructive
approach to formal specification should also favor the
reuse of specifications that proved to be good and effective
for similar systems.

• Measurability o f progress. To be more convincing, the
benefits of using formal specifications in software engi-
neering should be measurable thanks to metrics similar to
those used for measuring increase in software productivity.

8. C O N C L U S I O N

Software is increasingly invading many aspects of our life.
We increasingly need high-quality software. Formal specifi-
cations offer a wide spectrum of possible paths towards that
goal. Therefore they are receiving increasing attention in the
academia and the industry. Still, there is a long way to go
before formal specifications can be used by the average soft-
ware engineer to provide reasonably fast and visible reward.
Among the many challenges raised, we believe that the crit-
ical success factors will be the provision of constructive
assistance in specification development, analysis, and evolu-
tion; the vertical and horizontal integration of formal speci-
fications within the software lifecycle; higher-level
abstractions for requirements specification and analysis; the
availability of formal techniques for non-functional aspects;
and lightweight interfaces for multiparadigrn specification
and analysis.

Acknowledgment.
Many thanks to Michel Sintzoff for fruitful input and dis-
cussions on some issues raised in this paper.

REFERENCES

[Aba95] M. Abadi and L. Lamport, "Conjoining Specifications",
ACM Transactions on Programming Languages and Systems
Vol. 17 No. 3, May 1995, 507-535.

[Abr80] J.R. Abrial, "The Specification Language Z: Syntax and
Semantics". Programming Research Group, Oxford Univ.,
1980.

[Abr96] J.R. Abrial, The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, 1996.

[Al189] J.E Allen and P.J. Hayes, "Moments and Points in an Inter-
val-Based Temporal Logic", Computational Intelligence, Vol.
5, 1989, 225-238.

[Ast86] Astesiano, E., Wirsing, M., "An introduction to ASL",
Proc. IFIP WG2.1 Conf. on Program Specifications and Trans-
formations, North-Holland, 1986.

[At193] J.M. Atlee, State-Based Model Checking of Event-Driven
System Requirements, IEEE Transactions on Software Engi-
neering Vol. 19 No. 1, January 1993, 24-40.

[Ba182] R.M. Balzer, N.M. Goldman, and D.S. Wile, "Operational
Specification as the Basis for Rapid Prototyping", ACM S1G-
SOFTSoftw. Eng. Notes Vol. 7 No. 5, Dec. 1982, 3-16.

[Beh99] E Behm, E Benoit, A. Faivre and J.M. Meynadier,
"Mtttor: A Successful Application of B in a Large Project",
Proc. FM-99 - World Conference on Formal Methods in the
Development of Computing Systems, LNCS 1708, Springer-
Verlag, 1999, 369-387.

155

[Ben96] S. Bensalem, Y. Lakhnech and H. Sa'~di, "Powerful Tech-
niques for the Automatic Generation of Invariants", Proc.
CAV'96 - 8th Intl Conference on Computer-Aided Verification,
LNCS 1102, Springer-Verlag, 1996, 323-335.

[Ber91] G. Bernot, M.C. Gaudel, ad B. Marre, "Software Testing
Based on Formal Specifications: A Theory and a Tool", Soft-
ware Engineering Journal, 1991.

[Bor95] A. Borgida, J. Mylopoulos and R. Reiter, "On the Frame
Problem in Procedure Specifications", IEEE Transactions on
Software Engineering, Vol. 21 No. 10, October 1995, 785-798.

[Car90] C. Morgan, Programming from Specifications. Prentice
Hall, 1990.

[Cla86] E.M.Clarke and E.A. Emerson, "Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Speci-
fications", ACM Trans. Program. Lang. Systems Vol. 8 No. 2,
1986, 244-263.

[Cla96] E.M. Clarke, J.M. Wing et al, "Formal Methods: State of
the Art and Future Directions", ACM Computing Surveys Vol.
28 No. 4, December 1996, 626-643.

[Cla99] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Check-
ing. MIT Press, 1999.

[Cra93] D.Craigen, S. Gerhart and T. Ralston, An International Sur-
vey of Industrial Applications of Formal Methods. US Dept.
Commerce, NIST, Computer Systems Lab., NISTGCR 93/626,
March 1993.

[Cra95] D. Cralgen, S. Gerhart and T. Ralston, "Formal Methods
Technology Transfer: Impediments and Innovation", in Appli-
cations of Formal Methods, M.G. Hinchey and J.P. Bowen
(eds.), Prentice Hall, 1995, 399-419.

[Cro95] J. Crow, S. Owre, J. Rushby, N. Shankar, M. Srivas, "A
Tutorial Introduction to PVS". Proc. WIFT'95 - Workshop on
Industrial-Strength Formal Specification Techniques, Boca
Raton, April 1995. http://www.csl.sri.com/sri-csl-fm.html.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal-
Directed Requirements Acquisition", Science of Computer Pro-
gramming, Vol. 20, 1993, 3-50.

[Dar96] R. Darimont and A. van Lamsweerde, "Formal Refinement
Patterns for Goal-Driven Requirements Elaboration", Proc.
FSE'4 - Fourth ACM SIGSOFT Syrup. on the Foundations of
Software Engineering, San Francisco, October 1996, 179-190.

[Dij75] E.W. Dijkstra, "Guarded commands, nondeterminacy and
the formal derivation of programs", Comm. ACM Vol. 18,
August 1975, 453-457.

[Doug94] J. Douglas and R.A. Kemmerer, "Aslantest: A Symbolic
Execution Tool for Testing ASLAN Formal Specifications",
Proc. ISTSTA '94 - Intl. Syrup. on Software Testing and Analy-
sis, ACM So~tw. Eng. Notes, 1994, 15-27.

[Dub91] Dubois, E., Hagelstein, J., Rifaut, A., "A Formal Language
for the Requirements Engineering of Computer Systems", in
Introducing a Logic Based Approach to Artificial Intelligence,
A. Thayse (Ed.), Vol. 3, Wiley, 1991, 357-433.

[Dub93] E. Dubois, Ph. Du Bois and M. Petit, "Object-Oriented
Requirements Analysis: An Agent Perspective", Proc.
ECOOP'93 - 7th European Conf. on Object-Oriented Program-
ming, Springer-Verlag LNCS 707, 1993, 458-481.

[Dwy99] M.B. Dwyer, G.S. Avrunin and J.C. Corbett, "Patterns in
Property Specifications for Finite-State Verification", Proc.

ICSE-99: 21th Intrnational Conference on Software Enginer-
ing, Los Angeles, 411-420.

[Eme86] E.A. Emerson and J.Y. Halperu, ""Sometime" and "not
Never" Revisited: on Branching versus Linear Time Temporal
Logic", Journal oftheACM Vol. 33 No. 1, 1986, 151-178.

[Eru99] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin,
"Dynamically Discovering Likely Program Invariants to Sup-
port Program Evolution", Proc. ICSE-99: 21th Intrnational
Conference on Software Enginering, Los Angeles, 213-224.

[Fau92] S. Faulk, J. Brackett, E Ward and J. Kirby, "The CORE
Method for Real-Time Requirements", IEEE Software, Septem-
ber 1992, 22-33.

[Fea87] M. Feather, "Language Support for the Specification and
Development of Composite Systems", ACM Trans. on Pro-
gramming Languages and Systems 9(2), Apr. 87, 198-234.

[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard,
"Reconciling System Requirements and Runtime Behaviour",
Proc. 1WSSD'98 - 9th International Workshop on Software
Specification andDesign, Isobe, IEEE CS Press, April 1998.

[Fic92] S. Fickas and R. Helm, "Knowledge Representation and
Reasoning in the Design of Composite Systems", IEEE Trans.
on Software Engineering, June 1992, 470-482.

[Fit67] R. Floyd, "Assigning Meanings to Programs", In. Mathe-
matical Aspects of Computer Science, Proc. Syrup. Appl.
Maths., Vol. 19, American Mathematical Society, 1967, 19-32.

[Fut85] K. Futatsugi, J. Goguen, J.-E Jounnaud, and J. Mesguer,
"Principles of OBJ", Proc. POPL'85 - ACM Symposium on
Principles of Programming Languages, 1985, 52-66.

[Gan96] G.C. Gannod and B.H. Cheng, "Strongest Postcondition
Semantics as the Formal Basis for Reverse Engineering", Jour-
nal of Automated Software Engineering Vol. 3, June 1996, 139-
164.

[Gau92] M.-C. Gandel, "Structuring and Modularizing Algebraic
Specifications: the PLUSS specification language, evolutions
and perspectives", Proc. STAS'92, LNCS 557, 1992, 3-18.

[Ghe91] C. Ghezzi and R.A. Kemmerer, "ASTRAL: An Assertion
Language for Specifying Real-Time Systems", Proc. ESEC'91
- 3rd European Softwre Engineering Conference, LNCS 550,
Springer-Vedag, 1991.

[Get95] C. George, A.E. Haxthansen, S. Hughes, R. Milne S.
Prehn and J.S. Pedersen, The RAISE Development Method.
Prentice Hall, 1995.

[Gor93] M. Gordon and T.E Melham, Introduction to HOL. Cam-
bridge University Press, 1993.

[Gre86] S.J. Greenspan, A. Borgida and J. Mylopoulos, "A
Requirements Modeling Language and its Logic", Information
Systems Vol. 11 No. 1, 1986, 9-23.

[Gri81] D. Gries, The Science of Programming. Springer-Verlag,
1981.

[Gut93] J.V. Guttag and J.J. Horning, LARCH: Languages and
Tools for Formal Specification, Springer-Verlag, 1993.

[Hal95] R.J. Hall, "Systematic Incremental Validation of Reactive
Systems via Sound Scenario Generalization", Automated Soft-
ware Engineering, Vol. 2, 1995, 131-166.

[Hal96] A.Hall, "Using Formal Methods to Develop an ATC Infor-
mation System", IEEE Software Vol. 12 No. 6, March 1996,
66-76.

156

[Hal98] R.J. Hall, "Explanation-Based Scenario Generation for
Reactive System Models", ASE'98, Hawaii, Oct. 1998.

[Han91] K.M. Hansen, A.E Ravn and H. Rischel, "Specifying and
Verifying Requirements of Real-Time Systems", Proc. ACM
SIGSOFT'91 Conference on Software for Critical Systems,
New Orleans, December 1991.

[Har87] D. Harel, "Statecbarts: A Visual Formalism for Complex
Systems", Science of Computer Programming Vol. 8, 1987,
231-274.

[Hat90] D.Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Tranring, and M. Trakhtenbrot, "STATEM-
ATE: A Working Environment for the Development of Com-
plex Reactive Systems", IEEE Transactions on Software
Engineering, Vol. 16 No. 4, April 1990, 403-414.

[Helm96] M.E Heimdahl and N.G. Leveson, "Completeness and
Consistency in Hierarchical State-Based Requirements", IEEE
Transactions on Software Engineering Vol. 22 No. 6, June
1996, 363-377.

[Heit96] C. Heitmeyer, R. Jeffords and B. Labaw, "Automated Con-
sistency Checking of Requirements Specificatons", ACM
Transactions on Software Engineering and Methodology Vol. 5
No. 3, July 1996, 231-261.

[Hei98a] C. Heitmeyer, J. Kirkby, B. Labaw, M. Archer and R.
Bharadwaj, "Using Abstraction and Model Checking to Detect
Safety Violations in Requirements Specifications", IEEE
Transactions on Software Engineering Vol. 24 No. 11, Novem-
ber 1998, 927-948.

[Hei98b] C. Heitmeyer, J. Kirkby, B. Labaw, and R. Bharadwaj,
"SCR*: A Toolset for specifying and Analyzing Software
Requirements", Proc. CAV'98 - lOth Annual Conference on
Comuter-Aided Verification, Vancouver, 1998, 526-531.

[Hek88] S. Hekmatpour and D. Ince, Software Prototyping, Formal
Methods, and VDM. Addison-Wesley, 1988.

[Hen80] K.L. Heninger, "Specifying Software Requirements for
Complex Systems: New Techniques and their Application",
IEEE Transactions on Software Engineering Vol. 6 No. 1, Janu-
ary 1980, 2-13.

[Hin95] M.G. Hinchey and J.P. Bowen (eds.), Applications of For-
mal Methods. Prentice Hall, 1995

[Hoa69] C.A.R. Hoare, "An Axiomatic Basis for Computer Pro-
gramming", Comm. ACM Vol. 12 No. 12 No. 10, Oct. 1969,
576-583.

[Hoa85] C.A.R.Hoare, Communicating Sequential Processes. Pren-
rice Hall, 1985.

[Ho191] G.Holzman, Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[Ho197] G. Holzman, "The Model Checker SPIN", IEEE Trans. on
Software Engineering Vol. 23 No. 5, May 1997, 279-295.

[Hun98] A. Hunter and B. Nuseibeh, "Managing Inconsistent Spec-
ifications: Reasoning, Analysis and Action", ACM Transactions
on Software Engineering and Methodology, Vol. 7 No. 4. Octo-
ber 1998, 335-367.

[Jac93] M. Jackson and P. Zave, "Domain Descriptions", Proc.
RE'93 - 1st IntL IEEE Symp. on Requirements Engineering,
Jan. 1993, 56-64.

[Jac95] D. Jackson, "Structuring Z Specifications with Views",
ACM Transactions on Software Engineering and Methodology

Vol. 4 No. 4, October 1995, 365-389.
[Jac96] D. Jackson and C.A. Damon, Elements of Style: Analyzing

a Software Design Feature with a Counterexample Detector,
IEEE Transactions on Software Engineering Vol. 22 No. 7, July
1996, 484-495.

[Jah86] E Jahanian and A.K. Mok, "Safety Analysis of Timing
Properties in Real-Time Systems", IEEE Transactions on Soft-
ware Engineering, Vol. 12, September 1986, 890-904.

[Jef98] R. Jeffords and C. Heitmeyer, "Automatic Generation of
State Invariants from Requirements Specifications", Proc. FSE-
6: 6th ACM SIGSOFT lntl Symposium on the Foundations of
Software Engineering, Lake Buena Vista, 1998, 56-69.

[Jon90] Jones, C.B., Systematic Software using VDM, 2nd ed.,
Prentice Hall, 1990.

[Jon93] A.J. Jones and M. Sergot, "On the Characterization of Law
and Computer Systems: the Normative System Perspective", in
J.Ch. Meyer and R.J. Wieringa (Eds.), Deontic Logic in Com-
puter Science - Normative System Specification, Wiley, 1993.

[Kat87] S. Katz, C.A. Richter, K.S. The, "PARIS: A System for
Reusing Partially Interpreted Schemas", Proc. ICSE-87: 9th
Intrnational Conference on Software Enginering, Monterey,
CA, March 1987, 377-385.

[Koy92] R. Koymans, Specifying message passing and time-critical
systems with temporal logic, LNCS 651, Springer-Verlag, 1992.

[Lain79] A.van Lamsweerde and M. Sintzoff, "Formal Derivation
of Strongly Correct Concurrent Programs", Acta Informatica
Vol. 12, 1979, 1-31.

[Lam98a] A. van l_amsweerde and E. Letier, "Integrating Obstacles
in Goal-Driven Requirements Engineering", Proc. ICSE-98:
20th Intrnational Conference on Software Enginering, Kyoto,
April 1998.

[Lam98b] A. van Lamsweerde, R. Darimont and E. Letier, "Manag-
ing Conflicts in Goal-Driven Requirements Engineering", IEEE
Trans. on Sofware. Engineering, Special Issue on Inconsistency
Management in Software Development, November 1998.

[Lam98c] A. van Lamsweerde and L. Willemet, "Inferring Declara-
tive Requirements Specifications from Operational Scenarios",
IEEE Trans. on Sofware. Engineering, Special Issue on Sce-
nario Management, December 1998, 1089-1114.

[Lam2K] A. van Lamsweerde and E. Letier, "Handling Obstacles
in Goal-Oriented Requirements Engineering", IEEE Transac-
tions on Software Engineering, Special Issue on Exception
Handling, 2000.

[Lamp94] L. Lamport, "The Temporal Logic of Actions", ACM
Transactions on Programming Languages and Systems Vol. 16
No. 3, May 1994, 872-923.

[Lan95] Lano, K., Formal Object-Oriented Development, Springer-
Verlag, 1995.

[Lev94] N.G. Leveson, M.P. Heimdahl and H. Hildtreth, "Require-
ments Specification for Process-Control Systems", IEEE Trans-
actions on Software Engineering Vol. 20 No. 9, September
1994, 684-706.

[Lis75] B.H. Liskov and S.N. Zilles, "Specification Techniques for
Data Abstractions", IEEE Transactions on Software Engineer-
ing Vol. 1. No. 1, March 1975, 7-18.

[MaM95] D. Mandrioli, S. Morasca, A. Morzenti, "Generating test
cases for real-time systems from logic specifications", ACM

157

Transactions on Computer Systems, Vo1.13 No.4, Nov. 1995,
pp.365-398.

[Man92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1992.

[Man96] Z. Manna and the STep Group, "STEP: Deductive-Algo-
rithmic Verification of Reactive and Real-Time Systems", Proc.
CAV'96 - 8th Intl. Conf. on Computer-Aided Verification,
LNCS 1102, Springer-Verlag, July 1996, 415-418.

[Mas97] P. Massonet and A. van Lamsweerde, "Analogical Reuse
of Requirements Frameworks", Proc. RE-97 - 3rd Int. Symp. on
Requirements Engineering, Annapolis, 1997, 26-37.

[McM93] K.L. McMillan, Symbolic Model Checking: An Approach
to the State Explosion Problem, Kluwer, 1993.

[Mey85] B. Meyer, "On Formalism in Specifications", IEEE Soft-
ware, Vol. 2 No. 1, January 1985, 6-26.

[Mi189] R.Milner, Communication and Concurrency. Prentice Hall,
1989.

[Mor92] A. Morzenti, D. Mandrioli, and C. Ghezzi, "A Model
Parametric Real-Time Logic", ACM Transactions on Program-
ming Languages and Systems, Vol. 14 No. 4, October 1992,
521-573.

[Mos97] L. Moser, Y. Ramakrishna, G. Kutty, P.M. Melliar-Smith
and L. Dillon, "A Graphical Environment for the Design of
Concurrent Real-Time Systems", ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 6 No. 1, January
1997, 31-79.

[My192] Mylopoulos, J., Chung, L., Nixon, B., "Representing and
Using Nonfunctional Requirements: A Process-Oriented
Approach", IEEE Trans. on Sofware. Engineering, Vol. 18 No.
6, June 1992, pp. 483-497.

[My198] J. Mylopoulos, "Information Modeling in the Time of the
Revolution", Invited Review, Information Systems Vol. 23 No.
3/4, 1998, 127-155.

[My199] J. Mylopoulos, L. Chung and E. Yu, "From Object-Ori-
ented to Goal-Oriented Requirements Analysis", Communica-
tions of the ACM, Vol. 42 No. 1, January 1999, 31-37.

[Nau69] P Naur, "Proofs of algorithms by General Snapshots", BIT
Vol. 6, 1969, 310-316.

[Nis89] C. Niskier, T. Maibaum and D. Schwabe, "A Pluralistic
Knowledge-Based Approach to Software Specification", Proc.
ESEC-89 - 2nd European Software Engineering Conference,
LNCS 387, September 1989, 411-423.

[Nus93] B. Nuseibeh, J. Kramer and A. Finkelstein, "A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specifications", IEEE Transactions on Software
Engineering, Vol. 20 No. 10, October 1994, 760-773.

[Owr95] S. Owre, J. Rushby, and N. Shankar, "Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of
PVS", IEEE Transactions on Software Engineering Vol. 21 No.
2, Feb. 95, 107-125.

[Par72] D.L.Parnas, "A Technique for Software Module Specifica-
tion With Examples", Comm. ACM Vol. 15, May 1972.

[Par77] D.L. Parnas, "The Use of Precise Specifications in the
Development of Software", Proc. IFIP'77 - Information Pro-
cessing 77, North Holland, 1977, 849-867.

[Par95] D.L. Parnas and J. Madey, "Functional Documents for
Computer Systems", Science of Computer Programming, Vol.

25, 1995, 41-61.
[Par98] D.Y. Park, J. Skakkebaek, and D.L. Dill, "Static Analysis to

Identify Invariants in RSML Specifications", Proc. FTRTFT'98
- Formal Techniques for Real Time or Fault Tolerance, 1998.

[Pnu77] A. Pnueli, "The Temporal Logics of Programs", Proc. 18th
IEEE Symp. on Foundations of Computer Science, 1977, 46-57.

[Pot96] B. Potter, J. Sinclair and D. Till, An Introduction to Formal
Specification and Z. Second edition, Prentice Hall, 1996.

[Que82] J. Queille and J. Sifakis, "Specification and Verification of
Concurrent Systems in CAESAR", Proc. 5th International
Symposium on Programming, LNCS 137, 1982.

[Ran73] B. Randell, The Origin of Digital Computers. Springer-
Verlag, 1973.

[Reu91] H.B. Reubenstein and R.C. Waters, "The Requirements
Apprentice: Automated Assistance for Requirements Acquisi-
tion", IEEE Transactions on Software Engineering, Vol. 17 No.
3, March 1991, 226-240.

[Ric92] D.J. Richardson, S. Leif Aha, T.O. O'Malley, "Specifica-
tion-based test oracles for reactive systems", International Con-
ference on Software Engineering, Melbourne, Australia, 11-15
May 1992. ACM, 1992, pp.105-118.

[Roo94] D. Roong-Ko, P.G. Frankl, "The ASTOOT approach to
testing object-oriented programs", ACM Transactions on Soft-
ware Engineering and Methodology, Vol.3, No.2, April 1994,
pp.101-130.

[SCP2K] Science of Computer Programming, Special Issue on For-
mal Methods in Industry, Vol. 36 No. 1, January 2000.

[Sou93] J. Souqui~res and N. Levy, "Description of Specification
Developments", Proc. RE'93 - First IEEE Symposium on
Requirements Engineering, San Diego, 1993, 216-223.

[Spi92] J.M. Spivey The Z Notation - A Reference Manual. Second
Edition, Prentice Hall, 1992.

[SRS79]Proceedings SRS - Specification of Reliable Software.
IEEE Catalog No. 79 CH1401-9C, 1979.

[Swa82] W. Swartout and R. Balzer, "On the Inevitable Intertwin-
ing of Specification and Implementation", Communications of
theACM, Vol. 25 No. 7, July 1982, 438-440.

[Tho99] J.M. Thompson, M.E. Heimdahl, and S.P. Miller, "Specifi-
cation-Based Prototyping for Embedded Systems", Proc.
ESEC/FSE'99, Toulouse, ACM SIGSOFT, LNCS 1687,
Springer-Verlag, 1999, 163-179.

[Wey94] E. Weyuker, T. Goradia, A. Singh, "Automatically gener-
ating test data from a Boolean specification", IEEE Transac-
tions on Software Engineering, Vol.20, No.5, May 1994,
pp.353-363.

[Win90] J.M. Wing, "A Specifier's Introduction to Formal Meth-
ods", IEEE Computer Vol. 23 No. 9, September 1990.

[Win99] J.M. Wing, J. Woodcock and J. Davies (eds.), FM-99 -
Worm Conference on Formal Methods in the Development of
Computing Systems, LNCS 1708 and 1709, Springer-Verlag,
1999.

[Yue87] K. Yue, "What Does It Mean to Say that a Specification is
Complete?", Proc. IWSSD-4, Fourth International Workshop
on Software Specification and Design, Monterey, 1987.

[Zar97] A.M. Zaremski and J. Wing "Specification Matching of
Software Components", ACM Transactions on Software Engi-
neering and Methodology, Vol. 6 No. 4, October 1997, 333-

158

369.

[Zav82] P. Zave, "An Operational Approach to Requirements
Specification for Embedded Systems", 1EEE Transactions on
Software Engineering, Vol. 8 No. 3, May 1982, 250-269.

[Zav93] E Zave and M. Jackson, "Conjunction as Composition",
ACM Transactions on Software Engineering and Methodol-
ogy, Vol. 2 No. 4, October 1993, 379-411.

[Zav96] P. Zave and M. Jackson, "Where Do Operations Come
From? A Multiparadigm Specification Technique", IEEE
Transactions on Software Engineering, Vol. 22 No. 7, July
1996, 508-528.

[Zav97] E Zave and M. Jackson, "Four Dark Corners of Require-
ments Engineering", ACM Transactions on Software Engi-
neering and Methodology, 1997, 1-30.

159

