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Key Research Pointers 

Formal specification technology needs to provide CONSTRUCTIVE methods for specification 
development, analysis, and evolution. 
Formal specifications need to be fully integrated with other software products and processes 
all along the software lifecycle. 
Specification techniques should move from functional design to requirements engineering; 
higher-level, problem-oriented ontologies must therefore be supported instead of program- 
oriented ones. 
The scope of formal specification and analysis must be extended to cover non-functional 
requirements that play a prominent role in architectural design --such as performance, 
security, fault tolerance, accuracy, maintainability, etc. 
Tomorrow's technology will provide lightweight interfaces for multiparadigm specification 
and analysis. 
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ABSTRACT 

Formal specifications have been a focus of  software engi- 
neering research for many years and have been applied in a 
wide variety of  settings. Their industrial use is still limited 
but has been steadily growing. After recalling the essence, 
role, usage, and pitfalls of formal specification, the paper 
reviews the main specification paradigms to date and dis- 
cuss their evaluation criteria. It then provides a brief assess- 
ment of the current strengths and weaknesses of  today's 
formal specification technology. This provides a basis for 
formulating a number of requirements for formal specifica- 
tion to become a core software engineering activity in the 
future. 

I .  I N T R O D U C T I O N  

Formal specifications have'been considered since the good 
old days of Computing Science. In the late nineteen forties, 
Turing observed that reasoning about sequential programs 
was made simpler by annotating them with properties about 
program states at specific points [Ran73]. In the late sixties, 
Floyd, Hoare and Naur proposed axiomatic techniques for 
proving the consistency between sequential programs and 
such properties, called specifications [Fio67, Hoa69, 
Nau69]. Dijkstra showed how a formal calculus over such 
specifications could be used constructively to derive non- 
deterministic programs that meet them [Dij75]. Specific 
techniques were also proposed to formally express intended 
properties for special kinds of programs, notably, data- 
structured programs [Par72, Lis75] and concurrent pro- 
grams [Pnu77]. This was the starting point for a whole new 
area of  research aimed at specification-in-the-large [Par77, 
SRS79, Abr80, Hen80]. The interest in formal specifica- 
tions and their multiple uses in software engineering has 
been growing continually since that point [Win90, Cra93, 
Hin95, Cia96, Win99, SCP2K]. 

What are formal specifications? 

Formal specifications may refer to fairly different things in 
the software lifecycle; the wording is thus heavily over- 
loaded. An additional source of confusion stems from the 
fact that a single word is used for a product and the corre- 
sponding process. 

Generally speaking, a formal specification is the expression, 
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in some formal language and at some level of abstraction, Of 
a collection of properties some system should satisfy. 

This purposely general definition covers different notions 
dependent on what the word "system" really covers, what 
kind of properties are of interest, what level of  abstraction is 
considered, and what kind of formal language is used. 

Complex software applications are built using a series of 
development steps: (a) high-level goals are identified and 
refined until a set of  requirements on the software and 
assumptions on the environment can be made precise to sat- 
isfy such goals; C o) a software architecture, made of inter- 
connected software components, is designed to satisfy such 
requirements; and (c) the various components are imple- 
mented and integrated so as to satisfy the architectural 
descriptions. All along this development/satisfaction chain, 
knowledge about the application domain is often used to 
guide the elaboration and to support the validation with 
respect to upstream prescriptions. 

The "system" being specified may be a descriptive model of 
the domain of interest; a prescriptive model of  the software 
and its environment; a prescriptive model of the software 
alone; a model for the user interface; the software architec- 
ture; a model of some process to be followed; and so on. 
The "properties" under consideration may refer to high- 
level goals; functional requirements; non-functional 
requirements about timing, performance, accuracy, security, 
etc.; environmental assumptions; services provided by 
architectural components; protocols of  interaction among 
such components; and so on. 

Beyond such different realizations of  the general concept of 
specification, there is a common idea of specifications per- 
raining to the problem domain (as opposed to the solution 
domain). To make sure some solution solves a problem cor- 
rectly, one must first state that problem correctly. This 
dichotomy is however simplistic; a solution to a problem 
may in general be given as a set of  subproblems to be speci- 
fied and solved in turn [Swa82]. A specification must thus 
in general satisfy some higher-level specification and be 
satisfied by some lower-level specifications. 

"Formal" is often confused with "precise" (the former 
entails the latter but the reverse is of course not true). A 
specification is formal if it is expressed in a language made 
of three components: rules for determining the grammatical 
well-formedness of sentences (the syntax); rules for inter- 
preting sentences in a precise, meaningful way within the 
domain considered (the semantics); and rules for inferring 
useful information from the specification (the proof theory). 
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The latter component provides the basis for automated anal- 
ysis of the specification. 

The collection of properties being specified is often fairly 
large; the language should thus allow the specification to be 
organized into units linked through structuring relationships 
- such as specialization, aggregation, instantiation, enrich- 
ment, use, etc. Each unit in general has a declaration part, 
where variables of interest are declared, and an assertion 
part, where the intended properties on the declared variables 
are formalized. Formal specification techniques essentially 
differ from semi-formal ones (such as dataflow diagrams, 
entity-relationship diagrams or state transition diagrams) in 
that the latter do not formalize the assertion part. 

What are good specifications? 

Writing a "correct" specification is very difficult - probably 
as difficult as writing a correct program. A specification 
must be adequate, that is, it must adequately state the prob- 
lem at hand. It must be internally consistent, that is, it must 
have a meaningful semantic interpretation that makes true all 
specified properties taken together. It must be unambiguous, 
that is, it may not have multiple interpretations of interest 
making it true. It must be complete with respect to higher- 
level ones, that is, the collection of properties specified must 
be sufficient to establish the latter [Yue87]. It must be satis- 
fied by lower-level ones. It should be minimal, that is, it 
should not state properties, that are irrelevant to the problem 
or that are only relevant to a solution for that problem 
[Mey85]. 

Why specify formally? 

Problem specifications are essential for designing, validat- 
ing, documenting, communicating, reengineering, and reus- 
ing solutions. Formality helps in obtaining higher-quality 
specifications within such processes; it also provides the 
basis for their automated support. 

The act of formalization in itself has been widely experi- 
enced to raise many questions and detect serious problems in 
original informal formulations. Besides, the semantics of the 
formalism being used provides precise rules of interpretation 
that allow many of the problems with natural language to be 
overcome. A language with rich structuring facilities may 
also produce better structured specifications. 

As the major payoff, formal specifications may be manipu- 
lated by automated tools for a wide variety of purposes: 

• to derive premises or logical consequences of the specifi- 
cation, for user confirmation, through deductive theorem 
proving techniques [Owr95, Man96]; 

• to confirm that an operational specification satisfies more 
abstract specifications, or to generate behavioral counter- 
examples if not, through algorithmic model checking 
techniques [Que82, Cla86, Ho191, Ho197, McM93, At193, 
Man96, Hei98a, Cla99]; 

• to generate counterexamples to claims about a declarative 
specification [Jac96]; 

• to generate concrete scenarios illustrating desired or 
undesired features about the specification [Fic92, Hal95, 
Hal98] or, conversely, to infer the specification inductively 

from such scenarios [Lam98c]; 

• to produce animations of the specification in order to 
check its adequacy [Hek88, Har90, Dub93, Doug94, 
Heit96, Tho99]; 

• to check specific forms of specification consistency/com- 
pleteness efficiently [Heim96, Heit96]; 

• to generate high-level exceptions and conflict precondi- 
tions that may make the specification unsatisfiable 
[Lam98b, Lam2K]; 

• to generate higher-level specifications such as invariants 
or conditions for liveness [Lam79, Ben96, Par98, Jef98]; 

• to drive refinements of the specification and generate 
proof obligations [Car90, Abr96, Dar96]; 

• to generate test cases and oracles from the specification 
[Ber91, Ric92, Roo94, Wey94, Man95]; 

• to support formal reuse of components through specifica- 
tion matching [Kat87, Reu91, Mas97, Zar97]. 

Formal specifications can also be generated from program 
code as a basis for reverse engineering and software evolu- 
tion [Gan96, Ern99]. 

Specify... for whom? 

One of the problems with formal specifications is that they 
may concern different classes of consumers having fairly 
different background, abstractions and languages - clients, 
domain experts, users, architects, programmers, and tools. 
For example, the specification of a goal or requirement 
should be checked by clients for adequacy; a domain 
description should be produced or checked by domain 
experts; an architectural component specification should be 
seen in a detailed form by programmers assigned to that 
component and in a more abstract form by programmers 
assigned to other components using that component; a tool 
should see a specification in some efficiently processable 
form; and so on. One way to handle such clashes is to sup- 
port multilingual specifications, at the price of raising con- 
sistency problems (see below). 

It is now well-accepted that a programming language should 
be a language for the programmer, not for the machine. This 
principle is still not widely accepted for specification lan- 
guages; many of them still seem to be designed for program- 
mers or for tools rather than for specifiers. 

Specify... when? 

As seen before, there are multiple stages in the software life- 
cycle at which formal specifications may enter the picture, 
e.g., when modeling the domain; when elaborating the goals, 
requirements on the software, and assumptions about the 
environment; when designing a functional model for the 
software; when designing the software architecture; or when 
modifying or reengineering the software. 

The main focus to date has been on formal specifications 
written during the design of a preliminary functional model 
for the software [Win90]. We will therefore focus the discus- 
sion of past achievements on this kind of specification 
mainly. We will also take the viewpoint of specification 
building since formal reasoning is covered in another chapter 
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of this volume. 

2. F O R M A L I Z A T I O N :  SCOPE AND P I T F A L L S  

Although close to commonsense, there are a few important 
principles and facts that are often overlooked by champions 
of formalization. 

• Specifications are never formal in the first place. To state 
properties precisely and formally, one must first figure out 
what these properties are. The latter must necessarily be 
formulated in a language all parties can speak and under~ 
stand, that is, natural language. 

• Formal specifications are meaningless without a precise, 
informal definition of how to interpret them in the domain 
considered. A formalization involves terms and predicates 
which may have many different meanings. The specifica- 
tion thus makes sense only if the meaning of each term/ 
predicate is stated precisely, by mapping function/predi- 
cate names to functions/relations on domain objects. This 
mapping must be precise but necessarily informal (to avoid 
infinite regression). This fairly obvious principle is often 
neglected [Zav97]. 

• Formal specification is not a mere translation process from 
informal to formal. The specification of a large, complex 
system requires relevant objects and phenomena to be 
identified, interrelated, and characterized through proper- 
ties of interest. Model construction and property descrip- 
tion are thus tightly coupled components of any 
specification-in-the-large process. 

• Formal specifications are hard to develop and assess.This 
stems from the diversity and subtlety of errors that can be 
made (see Section 1) and from the multiplicity of model- 
ing choices that can be made. As a consequence, formal 
specifications are rarely correct in the first place. It has 
been frequently noted, however, that even wrong specifica- 
tions may help finding out problems in original formula- 
tions. 

• The rationale for specific modeling choices in a specifica- 
tion is important for explanation and evolution [Sou93]. 
Unfortunately, such rationale is rarely documented. 

• The by-products of a formal specification process are often 
more important than the formal specification itself; they 
include a better informal specification, obtained by feed- 
back from formal expression, structuring and analysis; and 
lower-level products that are more likely to satisfy them 
thanks to such formalization/analysis. 

• To be useful, a formal system must have a limited domain 
of applicability. Specific types of systems require specific 
types of techniques for natural expression and efficient 
analysis. For example, the formal specification of a com- 
piler must include a definition of the input grammar. A 
BNF-style specification would be most appropriate for this 
domain but clearly inappropriate for the domain of pro- 
cess-control systems. There is thus no point in looking for 
a universal specification technique. 

3. S P E C I F I C A T I O N  P A R A D I G M S  

Formal specification techniques differ mainly by the particu- 

lar specification paradigm they rely on. In the sequel, we 
avoid the usual, somewhat confusing model-based vs. prop- 
erty-based dichotomy; the reason is that for large systems 
any property-based specification involves system modeling 
and any model-based specification involves system proper- 
ties. 

History-based specification 
The principle here is to specify a system by characterizing its 
maximal set of admissible histories (or "behaviors") over 
time. The properties of interest are specified by temporal 
logic assertions about system objects; such assertions 
involve operators referring to past, current and future states. 
The assertions are interpreted over time structures. Time can 
be linear [Pnu77] or branching [Eme86]. Time structures can 
be discrete [Man92, Lamp94], dense [Gre86], or continuous 
[Han91]. The properties may refer to time points [Man92, 
I_~m94], time intervals [Mos97], or both [Gre86, Jab86, 
Al189, Ghe91]. Most often it is necessary to specify proper- 
ties over time bounds; real-time temporal logics are therefore 
necessary [Koy92, Dub91, Mor92, Dar93, Mos97]. 

State-based specification 
Instead of characterizing the admissible system histories, 
one may characterize the admissible system states at some 
arbitrary snapshot. The properties of interest are specified by 
(a) invariants constraining the system objects at any snap- 
shot, and (b) pre- and post-assertions constraining the appli- 
cation of system operations at any snapshot. A pre-assertion 
captures a weakest necessary condition on input states for 
the operation to be applied; a post-assertion captures a stron- 
gest effect condition on output states if the operation is 
applied. The latter may be explicit or implicit dependent on 
whether or not the assertion contains equations defining the 
output constructively. 

Languages such as Z [Abr80, Spi92, Pot96], VDM [Jon90] 
or B [Abr96] relyon this paradigm. Object-oriented variants 
have been proposed as well [Lan95]. 

Transition-based specification 
Instead of characterizing admissible system histories or sys- 
tem states, one may characterize the required transitions 
from state to state. The properties of interest are specified by 
a set of transition functions in the state machine transition; 
the transition function for a system object gives, for each 
input state and triggering event, the corresponding output 
state. The occurrence of a triggering event is a sufficient con- 
dition for the corresponding transition to take place (unlike a 
precondition, it captures an obligation); necessary precondi- 
tions may also be specified to guard the transition. 

Languages such as Statecharts [Har87], PROMELA 
[Ho191], STeP-SPL [Man92], RSML [Lev94] or SCR 
[Par95, Heit96] rely on this paradigm. 

Functional specification 
The principle here is to specify a system as a structured col- 
lection of mathematical functions. Two approaches may be 
distinguished. 

Algebraic specification. The functions are grouped by object 
types that appear in their domain or codomain, thereby defin- 
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ing algebraic structures (or abstract data types). The proper- 
ties of interest are then specified as conditional equations 
that capture the effect of composing functions (typically, 
compositions with type generators). 

Languages such as OBJ [Fut85], ASL last86], PLUSS 
[Gau92] or LARCH [Gut93] rely on this paradigm. 

Higher-Order Functions. The functions are grouped into 
logical theories. Such theories contain type definitions (pos- 
sibly by means of logical predicates), variable declarations, 
and axioms defining the various functions in the theory. 
Functions may have other functions as arguments which sig- 
nificantly increases the power of the language. Languages 
such as HOL [Gor93] or PVS [Cro95, Owr95] rely on this 
paradigm. 

Operational specification 
At the extreme opposite, a system may be characterized as a 
structured collection of processes that can be executed by 
some more or less abstract machine. Early languages such as 
Paisley [Zav82], GIST [Ba182], Petri nets or process alge- 
bras [Hoa85, Mi189] rely on this paradigm. 

4. HOW GOOD IS MY FAVORED T E C H N I Q U E ?  

Specification techniques may be evaluated and compared 
against a number of criteria. Unsurprisingly, some of these 
criteria are interdependent and even conflicting; the choice 
of a reasonable compromise thus depends on the specifier's 
priorities for the task and system at hand. 

Expressive power and level of coding required. As noted 
before, each paradigm above has some built-in semantic bias 
in order to be useful. State-based and functional specifica- 
tions focus on sequential behaviors while providing rich 
structures for defining complex objects. They are thus better 
targeted at transactional systems. Conversely, history-based, 
transition-based specifications and operational specifications 
focus on concurrent behaviors while providing only fairly 
simple structures for defining the objects being manipulated. 
They are thus better targeted at reactive systems. There are, 
of course, hybrid approaches that attempt to recover from 
this, e.g., [Fau92, Geo95]. 

Beyond such semantic bias, the formal language should 
allow the properties of interest to be expressed without too 
much hard coding. Specification is about defining problems, 
not about programming solutions. Ideally, there should be a 
simple, straightforward mapping between the natural lan- 
guage formulation of a property and its formal counterpart. 

This is, unfortunately, rarely the case. Unlike natural lan- 
guage, formal languages impose limitations. For example, a 
first-order language makes it impossible to refer to opera- 
tions as predicate arguments so that coding tricks are 
required to overcome the problem - such as the introduction 
of auxiliary events that encode the application of operations. 
Most languages are weak at supporting temporal referenc- 
ing; explicit or implicit time references occur frequently in 
natural formulations. For example, the built-in inability of 
state-based specifications to refer to the past makes it neces- 
sary to introduce auxiliary variables for encoding whether 
such or such event of interest has occurred, with correspond- 

ing update operations to be specified at each state modifica- 
tion (as in imperative programming). History-based 
specifications are the main exception to this problem. How- 
ever they may also be problematic for specifying relative 
orderings of events; e.g., [Dwy99] gives an example of a rel- 
atively simple ordering property that requires six levels of 
operator nesting in linear temporal logic! Algebraic specifi- 
cations are among those which require the most coding 
expertise; experience reveals that many novice specifiers 
incorrectly write fairly simple operations such as deleting an 
element from a set, because of the distance between their 
intuition of what this operation is about and the required 
delete/add commutativity axioms. 

Due to language expressiveness problems, specification cod- 
ing may require a lot of expertise; in the end it makes it ques- 
tionable whether or not the specification correctly captures 
the target properties of interest. 

Constructibility, manageability and evolvability. The speci- 
fication technique should provide facilities for building com- 
plex specifications in a piecewise, incremental way. Local 
changes in problem features should be reflected by local 
changes in the specification. These requirements depend on 
(a) language mechanisms for specification structuring and 
compositional reasoning, and (b) the availability of a method 
for incremental construction, analysis and modification. 

Many languages support basic structuring mechanisms for 
modularizing specifications - such as encapsulation, generic- 
ity, inheritance, inclusion, enrichment, etc. State-based and 
functional languages are probably the richest in that respect. 

Some languages also support refinement relationships as a 
basis for incremental specification development and analy- 
sis, e.g., data reification [Jon90, Abr96], component compo- 
sition/decomposition through logical connectors [Spi92, 
Aba95], state composition/decomposition [Har87, Lev94], 
or goal abstraction/refinement [Dar96]. 

Usability. It should be possible for reasonably well-trained 
people to write high-quality specifications. This soft, higher- 
level criterion of course depends on all previous ones plus a 
few more. The language should have a simple theoretical 
basis. This probably explains the popularity of languages 
built on simple, well-understood mathematical notions such 
as sets, relations and functions [Abr80, Spi92, Abr96, 
Owr95]. The language should also exempt users from intri- 
cacies such as, e.g., the need in state-based specifications to 
specify that "nothing else changes" through additional frame 
axioms [Bor95]. 

Communicability. Conversely, the technique should be 
accessible for reasonably well-trained people to read high- 
quality specifications and check them. This criterion depends 
on the previous ones (notably, the closeness between the 
specification and its corresponding natural language formu- 
lation), and on the external format the specification may 
take. It explains the popularity of techniques that support 
tabular formats [Hen80, Lev94, Par95, Cro95, Heit96] and 
diagrammatic notations [Har87, Lev94]. 

Powerful and efficient analysis. The effectiveness of a for- 
mal specification technique depends on the degree of saris- 
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faction of the various objectives mentioned in Section 1. In 
particular, there is no much sense writing formal specifica- 
tions without being rewarded by feedback from automated 
tools. The latter should ideally support a wide range of anal- 
ysis in the space of possibilities listed in Section 1. With a 
few notable exceptions (e.g., [Hei98b]) this has mostly been 
wishful thinking so far. Favoring one kind of analysis or 
another usually dictates the choice of one specification tech- 
nique or another. 

The more efficient the analysis is, the more coding effort is 
usually required on the specifier's side. This is the case for 
specification animation based on executing operational spec- 
ifications or on term rewriting of algebraic specifications. 
Model checkers illustrate this as well; the unconvinced 
reader may look at what their input code for a complex 
application may look like. 

On another hand, the more powerful the analysis is, the more 
expert intervention is usually required. Proof assistants are a 
good illustration of this unsurprising fact [Cro95]. 

It should become clear from our brief review of evaluation 
criteria that any multicriteria analysis will inevitably result in 
favoring a multiparadigm framework in which complemen- 
tary formalisms, methods and tools are integrated in a coher- 
ent way so as to combine the best of each paradigm for 
specific domains, tasks, and concerns. Very preliminary 
attempts have started in this direction [Nis89, Dar93, Nus93, 
Zav93, Zav96]. 

5. TODAY'S  G O O D  NEWS 

The number of success stories in using formal specifications 
for real systems is steadily growing from year to year. They 
range from to the reengineering of existing systems (e.g., 
[Hen80, Crai93]) to the development of new systems (e.g., 
[Hal96, Beh99]). In the latter case, there was some reported 
evidence that the development, while resulting in products of 
much higher quality, did not incur higher costs but rather the 
contrary. Although many of the stories are in the domain of 
transportation systems, there are other domains such as 
information systems, telecommunication systems, power 
plant control, protocols and security. Good accounts can be 
found in [Cra93, Hin95, Cla96, SCP2K]. 

A recent, fairly impressive example is worth pointing out 
[Beh99]. The Paris metro system has recently opened a new 
line (line 14, Tolbiac-Madeleine). The traffic on this line is 
entirely controlled by software. Driverless trains and conven- 
tional trains are both supported. The safety-critical compo- 
nents of the software (located on board, along the track, and 
on ground) were formally developed by Matra Transport 
using the B abstract machine method [Abr96]. The develop- 
ment includes abstract models of those components, refine- 
ments to concrete models, and automated translation to ADA 
code. According to [Beh99], there are about 100,000 lines of 
B specification, covering the abstract and the concrete 
model, and 87,000 lines of ADA code. The refinement was 
entirely validated by formal proofs. The B tool automatically 
proved 28,000 lemmas and 65% of the rules added to dis- 
charge proofs. Many errors were found thereby, and fixed in 
the concurrent development. In addition, a conventional test- 

ing process was deployed and not a single error was found. 

The success of this formal development might be explained 
by the unusual combination of success factors. The B speci- 
fication language has a simple mathematical basis that 
allows engineers to use it after a reasonably short period of 
training; the specification technique is multi-level and makes 
it possible to smoothly move from an abstract model up to 
code in a provably correct way; methodological support was 
provided in the form of guidelines and heuristics to guide the 
development and validation processes; a development/vali- 
dation process model was first designed explicitly and inte- 
grated in the company's process model to accommodate 
conventional practices such as testing (the lack of such inte- 
gration has been recognized to be a serious obstacle to the 
adoption of formal methods [Cra95]); last but not least, the 
process was supported by powerful tools. 

The maturity of specification tool technology is also steadily 
growing from year to year. Tools become more effective in 
analyzing formal specifications and deriving useful informa- 
tion; their performance on large specifications keeps increas- 
ing; they become more usable. Specification animators and 
model checkers are particularly successful in those respects. 
Moreover there is a promising tendency towards integrating 
multiple tools so as to offer a wide spectrum of analysis at 
various costs - from fully automatic, dedicated checks to 
interactive assistance in difficult proofs. The SCR toolset is a 
good illustration of this recent trend [Hei98b]. 

6. TODAY'S BAD NEWS 

In spite of such good news, today's formal specification 
techniques suffer a number of weaknesses. Some of these 
explain why in their present form they are inadequate for the 
upstream critical phase of requirements specification and 
analysis. 

• L i m i t e d  scope.  The  vast majority of techniques are limited 
to the specification of functional properties, that is, proper- 
ties about what the target system is expected to do. Non- 
functional properties are in general left outside any kind of 
formal treatment. The main exception are techniques 
allowing timing properties to be formalized and reasoned 
about. 

• P o o r  separa t ion  o f  concerns .  Most techniques provide no 
support for making a clear separation between (a) intended 
properties of the system considered, (b) assumptions about 
the environment of this system, and (c) properties of the 
application domain. One cannot therefore make the essen- 
tial distinction between descriptive and prescriptive prop- 
erties (called "indicative" and "optative" in [Zav97]); they 
are all mixed together in the specification. 

• L o w - l e v e l  on to logies .  T h e  concepts in terms of which 
problems have to be structured and formalized are pro- 
gramming concepts - most often, data and operations. It is 
time to raise the level of abstraction and conceptual rich- 
ness found in informal requirements documents - such as, 
e.g., goals and their refinements, agents and their responsi- 
bilities, alternatives, and so forth [Fea87, Fie92, Dar93, 
My198, My199]. 
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• Isolation. With a few exceptions mentioned before, formal 
specification techniques are isolated from other software 
products and processes both vertically and horizontally. 
Vertical isolation: specification techniques generally pay 
no attention to what upstream products in the software 
lifecycle the formal specification is coming from (viz. 
goals, requirements, assumptions) nor what downstream 
products the formal specification is leading to (viz. archi- 
tectural components). Horizontal  isolation: the techniques 
generally do not pay attention to what companion products 
the formal specification should be linked to (e.g., the cor- 
responding informal specification, a documentation of 
choices, validation data, project management information, 
etc.). 

• Poor  guidance.  The  main emphasis in the formal specifi- 
cation literature has been on suitable sets of notations and 
on a posteriori analysis of specifications written using 
such notations. Constructive methods for building correct 
specifications for complex systems in a safe, systematic, 
incremental way are by and large non-existent. Instead of 
inventing more and more languages, one should put more 
effort in devising and validating methods for elaboration 
and modification of good specifications (in the sense 
recalled in Section 1). 

• Cost. Many formal specification techniques require high 
expertise in formal systems in general (and mathematical 
logic in particular), in analysis techniques, and in the 
white-box use of tools. Due to the scarcity of such exper- 
tise their use in industrial projects is nowadays still highly 
limited in spite of the promised benefits. 

• Poor  tool feedback .  Many analysis tools are effective at 
pointing out problems, but in general they do a poor job of 
(a) suggesting causes at the root of such problems, and (b) 
proposing recovery actions. 

7. BACK TO T H E  FUTURE 

The discussion above provides the material for paving the 
road ahead. Tomorrow's technology should meet the follow- 
ing requirements and challenges for formal specification to 
become an essential vehicle for the engineering or reengi- 
neering of higher-quality software. 

• Constructiveness.  The  almost exclusive focus on a poste- 
riori analysis of possibly poor specifications should in part 
be shifted towards a more constructive approach in which 
specifications are built incrementally from higher-level 
ones in a way that guarantees high quality by construction. 
One could then really speak of a method, typically made 
of a collection of model building strategies, style selection 
rules, specification derivation rules, guidelines, and heu- 
ristics; some might be domain-independent, some others 
might be domain-specific. Such a method should provide 
active guidance in the specifier's decision making process. 
It might be supported by automated specification assis- 
tants that would provide advice at decision points and 
record the process followed, for documentation and possi- 
ble replay in case of later evolution. 

• Suppor t  f o r  comparative analysis. Experience in teaching 
formal specification reveals that different specifiers with 
the same background may end up with fairly different 
specifications for the same initial problem formulation. 
The same is true for programs, but in the latter case there is 
at least an ultimate moment of truth - the program is run- 
ning satisfactorily or not. Beyond the specification quali- 
ties recalled in Section 1, we need precise criteria and 
measures for assessing specifications and comparing their 
relative merits. 

• Integration.  Tomorrow's technology should care for the 
vertical and horizontal integration of formal specifications 
within the software lifecycle - from high-level goals to 
functional design to architectural components; and from 
informal formulation to formal specification t o  related 
products. 

• H i g h e r  level o f  abstraction.  Specification techniques 
should move from functional design to requirements engi- 
neering where the impact of errors is even more crucial. 
We therefore need languages, methods and tools that sup- 
port richer, problem-oriented ontologies upstream to the 
program-oriented ones currently supported. Preliminary 
attempts in this direction include [My192, Dar96] for goal- 
oriented refinement, [My192, Lam98b] for goal-level con- 
flict analysis, and [Lam2K] for goal-level exception han- 
dling. 

• R i c h e r  s t ruc tur ing  mechan i sms .  Most constructs avail- 
able so far for modularizing large specifications have been 
lifted from programming counterparts. Problem-oriented 
constructs should be available as well such as, e.g., stake- 
holder viewpoints [Nus93] or problem views [Jac95]. 

• Ex t ended  scope. Specification techniques need to be 
extended in order to cope with the various categories of 
non-functional properties that are elicited during require- 
ments engineering and play a prominent role during archi- 
tectural design, e.g., properties about performance, 
integrity, confidentiality, accuracy of information, avail- 
ability, fault-tolerance, operational costs, maintainability, 
and so forth. The qualitative reasoning techniques in 
[My192] are a first step in this direction. Specific catego- 
ries might require specific language features and analysis 
techniques. 

• Separat ion o f  concerns.  A s  discussed before, formal 
specification languages should enforce a strict separation 
between descriptive and prescriptive properties, to be 
exploited by analysis tools accordingly. 

• L igh twe igh t  techniques.  The  use of formal specifications 
should not require deep expertise in formal systems. The 
mathematical intricacies should be hidden; analysis tools 
should be usable like compilers. The work on pattern- 
based specification in [Dwy99] is a very promising step in 
this direction. Patterns may also be used to reuse proofs 
and generate specifications [Dar96, Lam2K]. 

• Mul t iparad igm specification. Complex systems have mul- 
tiple facets. Since no single paradigm will ever serve all 
purposes due to semantic biases, frameworks are needed in 
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which multiple paradigms can be combined in a semanti- 
cally meaningful way so that the best features of each par- 
adigm can be exploited. The various facets then need to be 
linked through consistency rules [Nus93]. Multiparadigm 
frameworks should be able to integrate various formal lan- 
guages, semi-formal ones, and natural language, together 
with corresponding analysis techniques and tools. Prelimi- 
nary linguistic attempts in this direction combine semantic 
nets, history-based specification, and state-based specifica- 
tion [Dar93]; or state-based specification and transition- 
based specification [Zav96]. While multilingual integra- 
tion is fairly easy to achieve among semi-formal languages 
it raises difficult semantic issues for formal languages. 

• Multibutton analysis. A multiparadigm framework should 
support different levels of optional analysis - from cheap, 
surface-level analysis (such as traceability analysis, static 
semantics checks and qualitative reasoning) to more 
expensive, deep-level analysis (such as algorithmic verifi- 
cation, deductive reasoning, or inductive reasoning from 
examples). The more heavyweight buttons would be 
pushed only when needed and where needed. A multibut- 
ton environment would also allow end-users to use the typ- 
ical facilities provided by standard CASE tools in a first 
stage, and then gradually enter into the more complex 
world of formal methods as they get more confidence. 

• Multiformat specification. To enhance the communicabil- 
ity of the same specification fragment among different 
types of producers/consumers, the fragment should be 
maintained under multiple concrete syntaxes - e.g., tabu- 
lar, diagrammatic, and textual. 

• Reasoning in spite o f  errors, Many specification tech- 
niques require that the specification be complete in some 
sense before the analysis can start. It should be made pos- 
sible to start analysis much earlier, on specification drafts 
[Gau92], and incrementally. This would ensure early pay- 
back and incremental gain for incremental effort - an 
important objective already noted in [Cla96]. On another 
hand, deductive techniques also assume that the specifica- 
tion is consistent for useful information to be derivable. 
Especially in the context of requirements engineering, 
where useful information can be inferred from conflicting 
viewpoints, formal systems and reasoning techniques are 
needed for deriving such information in spite of temporary 
inconsistencies [Hun98]. 

• Constructive feedback from tools. Instead of just pointing 
out problems, future tools should assist in resolving them. 

• Support for  evolution. In general, requirements keep 
evolving while some core architecture is expected to 
remain stable. A more constructive approach should also 
help managing the evolution of formal specifications under 
such constraints. 

• Support for  reuse. Problems in the domain considered are 
more likely to be similar than solutions. Specification 
reuse should therefore be even more promising than code 
reuse. Surprisingly enough, techniques for retrieving, 
adapting, and consolidating reusable specifications have 
received relatively little attention so far (see, e.g., [Zar97] 

for some recent work in this direction). A constructive 
approach to formal specification should also favor the 
reuse of specifications that proved to be good and effective 
for similar systems. 

• Measurability o f  progress. To be more convincing, the 
benefits of using formal specifications in software engi- 
neering should be measurable thanks to metrics similar to 
those used for measuring increase in software productivity. 

8. C O N C L U S I O N  

Software is increasingly invading many aspects of our life. 
We increasingly need high-quality software. Formal specifi- 
cations offer a wide spectrum of possible paths towards that 
goal. Therefore they are receiving increasing attention in the 
academia and the industry. Still, there is a long way to go 
before formal specifications can be used by the average soft- 
ware engineer to provide reasonably fast and visible reward. 
Among the many challenges raised, we believe that the crit- 
ical success factors will be the provision of constructive 
assistance in specification development, analysis, and evolu- 
tion; the vertical and horizontal integration of formal speci- 
fications within the software lifecycle; higher-level 
abstractions for requirements specification and analysis; the 
availability of formal techniques for non-functional aspects; 
and lightweight interfaces for multiparadigrn specification 
and analysis. 
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