
Software Engineering Education: A Roadmap
Mary Shaw

Key Research Pointers

Identifying distinct roles in software development and providing appropriate education
for each.
Instilling an engineering attitude in educational programs.
Keeping education current in the face of rapid change.
Establishing credentials that accurately represent ability

The Author

Mary Shaw is the Alan J. Perlis Professor of Computer Science and member of the
Institute for Software Research, International and the Human Computer Interaction
Institute at Carnegie Mellon University. She has been a member of this faculty since
completing the Ph.D. degree at Carnegie-Mellon in 1972. From 1992 to 1999 she
served as the Associate Dean for Professional Education. In 1997-98 she was a Fellow
of the Center for Innovation in Learning. From 1984 to 1987 she served as Chief
Scientist of CMU's Software Engineering Institute. She had previously received a B.A
(cum laude) from Rice University and worked in systems programming and research at
the Research Analysis Corporation and Rice University. Her research interests in computer
science lie primarily in the areas of programming systems and software engineering,
particularly software architecture, programming languages, specifications, and
abstraction techniques. She has developed innovative curricula in Computer Science
from the introductory to the doctoral level and is exploring the application of software
engineering technologies to education. Dr. Shaw is an author or editor of seven books
and more than 120 papers and technical reports. In 1993 she received the Warnier
prize for contributions to software engineering. She is a Fellow of the Association for
Computing Machinery (ACM), the Institute for Electrical and Electronics Engineers
(IEEE) and the American Association for the Advancement of Science (AAAS).

371

http://crossmark.crossref.org/dialog/?doi=10.1145%2F336512.336592&domain=pdf&date_stamp=2000-05-01

Software Engineering Education: A Roadmap

Mary Shaw
Ins t i tu te for S o f t w a r e Resea rch , In te rna t iona l

Ca rneg i e M e l l o n U n i v e r s i t y

P i t t sburgh Pa 15213
+1 412 268 2589

m a r y . s h a w @ c s . c m u . e d u

ABSTRACT
Software's increasingly critical role in systems of widespread
significance presents new challenges for the education of software
engineers. Not only is our dependence on software increasing, but
the character of software production is itself changing - and with
it the demands on the software developers. Four challenges for
educators of software developers help identify aspirations for
software engineering education.

Keywords
Software engineering, education, software profession,
credentials

1 INTRODUCTION
As we enter the new millennium, software-intensive
systems have become essential parts of everyday activity
and of business in the global economy. The quality of this
software depends on an adequate supply of proficient and
up-to-date software developers.

Currently, software developers are educated in the
traditional ways. Unfortunately, this has not produced the
supply and quality of developers needed to satisfy the
growing demand. In addition, traditional education makes
scant provision for helping students keep their knowledge
current. Since the software field does not distinguish well
among different development roles, education for software
engineers is confounded with education for programmers
and other non-engineers.

Over the next decade, education for software developers
should prepare students differently for different roles,
infuse a stronger engineering attitude in curricula, help
students stay current in the face of rapid change, and
establish credentials that accurately reflect ability.

The essential challenges are world-wide problems.
Although I describe them in terms of specific examples

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. I'o copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a lee.
Future of Sofware Engineering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

from the United States, the overall implications are global.
Future-looking papers often make predictions. Such
predictions consider possible events, good or bad, and try
to select the most likely. Instead, I state a s p i r a t i o n s -

projections of desirable outcomes that might come to pass
with good luck, good judgment, and good taste.

2 CURRENT STATUS
Software developers are now educated in much the same
way as they have been for years, with the recent addition of
on-line training for computing skills. However, pressures
arising from the changing character of software and from
external pressures on educational institutions will require
changes in what we teach software developers and how we
teach it.

Current status of software education
Over the past three decades, software developers have been
educated in traditional ways: undergraduate and graduate
programs in colleges and universities, vocational courses
and in-house training, and personal initiative in learning
new techniques.

Tomayko [14] identifies three periods in the history of
software engineering education: the era of single free-
standing courses (prior to 1978), the early graduate
programs (1978-88), and the rapid spread of graduate
programs influenced by the Software Engineering
Institute's efforts (since 1988).

The 1998 FASE survey of graduate software engineering
programs [5], although incomplete, identifies graduate
programs at 77 institutions worldwide. Most of these
institutions offer a masters program in some software-
related area; nine offer a PhD with software engineering
electives. Software engineering PhD programs are also
beginning to appear, for example at Carnegie Mellon
University [2]. These programs differ in content emphasis:
for example, some masters-level programs are principally
concerned with management of software activities, whereas
others are chiefly technical. They also differ in career
emphasis: PhD programs, by their nature, prepare graduates
for research and college teaching positions - though many
PhD graduates choose to work in industrial development
instead. Some of the masters programs are academic
programs, preparation for PhD programs. Many of the

373

masters programs are designed to prepare their graduates
for professional practice at a high level of technical or
management responsibility (and not for entry to a PhD
program).

Most universities now offer undergraduate degrees in
computer science, and most provide an extensive selection
of software-related courses. These programs typically allow
a student to study software design and implementation
topics, and they provide a common educational base for
entry-level programming positions. For a decade or more,
some members of the software education community have
advocated undergraduate software engineering degrees
separate from computer science. Such programs are
intended to provide a better base for a software
development career than would a traditional computer
science program; the prospects that this will be the case are
discussed below. Tomayko [14] notes that we are now
entering a new era with the introduction of these
undergraduate software engineering programs, but they are
not yet widespread.

Specific software development skills are taught outside the
university system, in vocational schools, in-house courses,
or short courses. They differ in length, in cost, and in the
degree to which skills are transferable to other tasks. Some
of these lead to vendor certifications of proficiency with
specific products.

Notwithstanding all these opportunities, we hear regular
complaints of severe shortfalls in the numbers of available
software developers.

Cur ren t forces on software development:
As software becomes ubiquitous, the relation between end
users and software development is undergoing fundamental
changes. Some of these changes have to do with the
evolving character of software; others result from
increasing pressure for recognized professional credentials

Evolving software development models
The prevailing model of software development, on which
most educational programs is based, involves a team of
professional software developers in a single institution
working under a well-defined process and product cycle to
produce software for a known client and deliver it on
known schedule. This closed-shop software development
model is increasingly at odds with actual practice.

Some of the discrepancies between the closed-shop model
and modern software include:

• System requirements emerge as the clients understand better
both the technology and the opportunities in their own
settings, and the clients are intimately involved in this
progressive development. This often requires software
development to be done concurrently with business re-
engineering.

• The systems must be designed and fielded under complex
economic and legal constraints that affect system design, and

they are often distributed hardware/software systems, not
pure software. Most educational programs underplay the
significance of these additional constraints.

• Software, especially low-level system software, is now being
developed by communities of cooperating volunteers [8]. In
open-source software, the code is published freely and
interested users critique it and propose changes. Quality
arises by an intense, highly parallel social process with rapid
feedback rather than by a carefully managed process.

• Software is often developed by creating coalitions of existing
resources that are not under control of the software developer
[12]. The resources include calculation, communication,
control, information, and services; they are often distributed,
dynamic, autonomous, and independently managed. They
may be modified or decommissioned without notice to users.
This open-shop development model is a major departure from
the usual closed-shop model, and the uncertainties associated
with externally-managed resources require correspondingly
more sophisticated analysis.

• Software development is increasingly disintermediated -
software is adapted, tailored, composed, or created by its end
users rather than by professional software developers. These
end users need to understand software development in their
own terms; they particularly need ways to decide how much
faith to have in their creations.

To respond to these forces, educational institutions must
prepare professional software developers to construct and
analyze systems that are heavily constrained by non-
technical considerations and that depend on independent
distributed resources. In addition, professional software
developers must learn to create resources that are
sufficiently trustworthy to be used and tailored by non-
professionals.

Professional credentials
Software is increasingly of public importance, both as an
essential element in engineered systems and as the principal
embodiment of capabilities whose failure is of nontrivial
consequence to the public at large or individual members of
the public. The public wants and deserves assurances about
the quality of both systems with embedded software and
systems that are principally embodied in software. We can
gain confidence in the quality of the product directly -
through product validation - or by having prior confidence
in either the people who produce the software or the
organization that manages its production. Many
technologies - most notably testing, design and code
reviews, and formal analysis - support product validation.
The Capability Maturity Model and ISO 9000 certification
address organizational quality. But credentials for
professionals are still in their infancy.

There is currently considerable pressure worldwide for
professionalization of software engineering. In the United
States, this currently takes the form of a debate over the
merits of professional licensing of software engineers. The
argument in favor of licensing is that we, like other
engineering disciplines, should set standards for the

374

practice, that there is substantial demand for a way an
employer or client can easily establish the competence of a
software developer, and that licensing would improve the
quality of practice. The argument against licensing at this
time is that professional licensing carries a commitment to
the public that we can achieve a level of practice that
provides certain safety and utility properties of the product,
but such a level of practice is not yet routinely achieved;
that a licensable practice of software engineering has not
been distinguished from other aspects of software
development, and that licensing has a narrow range of
applicability (to matters of pubic interest). A task force
chartered by the ACM and IEEE is attempting to define the
"body of knowledge" that a software engineer should
master [13]. Interestingly, there is little effort to distinguish
engineering responsibilities from other development tasks.'

In addition, a number of software vendors certify
proficiency in the use of specific products. The diversity
and specificity of these credentials are evident from some
examples: Certified Novell Engineer or Administrator,
IBM's Application Development Certifications in XML
and VisualAge, Microsoft Certified Systems Engineer or
Database Administrator, Oracle Certified Professional
tracks, Sun Certified Programmer or Developer for Java,
Sun Certified System or Network Administrator, the multi-
vendor Certified Internet Professional. These certifications
are often specific to a particular version of the application,
making them even more narrow.

Credentials that are less broad than professional licensing
but broader than product proficiency do exist; however,
they are not widely issued and recognized.

Current forces on educational institutions
Incentives for changing the way we educate software
developers arise not only from changes in the way software
is developed but also from institutional pressures.

Universities have long felt the tension between an internal
value system that emphasizes education in enduring
principles and the demands of employers who want focused
training in current technology. Different schools strike the
balance in different places, with general agreement that
neither extreme is appropriate. Several recent developments
intensify the tension, though.

First, the educational community itself is increasingly
moving from lecture-format courses to team projects,
problem-solving, direct involvement with actual
development, and other formats that require students to
exercise the ideas they are learning.

Second, the shortfall of software developers is so dire that
students themselves often face the choice between a well-
paid programming job and completing their degrees; this is
particularly severe in PhD programs, but it is also an issue
for undergraduates. The faculty may find it hard to
convince the students that choosing the programming job

now limits the students' career paths later - and they may
not even be correct.

Third, the institutional structure of universities is
increasingly challenged by for-profit schools (calling
themselves universities as well as vocational schools, now)
that emphasize immediately useful skills, by external critics
arguing for increased accountability and efficiency, and by
on-line training and education.

3 CHALLENGES AND ASPIRATIONS
This discussion lays the groundwork for identifying four
challenges for the software engineering education
community and selecting some specific aspirations as
targets of progress.

Engineering entails creating cost-effective solutions to
practical problems by applying scientific knowledge,
building things in the service of mankind [9]. Engineers
preferentially apply scientific and mathematical knowledge
when it's available and rely on less systematic knowledge
at other times. Engineers work under limitations of both
time and knowledge. They are responsible for reconciling
conflicting constraints, especially cost constraints.
Engineers make deliberate choices among alternative
designs for both technical and nontechnical reasons [1].
Their judgments are based on deep knowledge of the
discipline in which they design, and they assume personal
responsibility for the safety and quality of the systems they
design. (This view of engineering differs from Maibaum's
[6], in that his suggests a largely linear process of creation,
with iterative refinement but not revision. Maibaum's view
lacks a sense of drawing on accumulated disciplinary
experience, of reconciling conflicting constraints, and of
the need to generate candidate alternatives at various stages
and choose among them.)

I interpret "software engineering" in this sense of
engineering, and I'll focus principally on education of these
engineers, which should prepare them for technical design
and decision-making and for assuming responsibility for
the success of their products. I'll refer to the entire
community of people involved in software development as
"software developers".

Identifying Distinct Roles in Software Development and
Providing Appropriate Education for Each
Software development and support requires many skills,
including design, management, programming, validation,
analysis, user studies, documentation, system integration,
and property-specific techniques such as design for security
and reliability. While engineers apply most of these skills,
not everyone who has any of the skills is an engineer.
Despite intermittent attempts to identify specific roles, the
distinctions remain unclear. Indeed, a wide variety of
software developers, including many with no engineering
responsibilities, aspire to the title, "software engineer."

Currently, the ambiguity among software development

375

roles is mirrored in the educational programs. Universities
may offer software development materials in different
departments, and these programs may distinguish a
software focus from other areas of the respective fields.
However, there is rarely a sense of specialization within
software.

Aspiration 1: Discriminate among different software
development roles

Available knowledge about software development far
exceeds what any one person can know. Other fields
responded to such growth in knowledge by specializing
roles. The specialization may be vertical (specialist in an
application area such as scientific computation), horizontal
(specialist in system security), or by level of responsibility
(programmer vs engineer). As fields mature, these divisions
become the recognized structure of the field, allowing
business as well as personnel specialization. For historical
reasons, some distinctions are already well-established in
software - for example, database administration and more
recently web site development.

It is not yet clear whether vertical or horizontal
specialization will serve us better. Progress toward
identifying the knowledge required for specific functions
will help us understand how to align specialties.

Aspiration 2: Make undergraduate software education a
valuable long-term investment

The chief responsibility of universities, especially in
undergraduate programs, is to teach essential, durable
content that will serve the student for several decades. For
both practical and pedagogical reasons, it is appropriate to
teach the material with examples from current practice.
However, courses with a primary emphasis on current
technology in which most of the knowledge will become
obsolete when the technology does are better taught in
other institutions.

Curriculum design is at heart a resource allocation problem,
with curriculum space (as measured by courses, hours of
study, number of homework problems and projects) as
the scarce resource. Courses must earn their places in the
curriculum with enough compact, durable content to justify
the curriculum space they use. Universities regularly face
pressure from potential employers to sacrifice systematic
understanding for immediately useful skills. (I first
encountered this in the 1960's, when employers asked
"teach them more JCL".) Each university must select its
own balance between immediate and long-term knowledge.

We should therefore resist the temptation to start up new
bachelor's degree programs in software engineering, let
alone set up new academic departments. Software
engineering does not yet have an independent curriculum
with enough durable, codified content to justify a separate
undergraduate curriculum. Most of the meaty content
overlaps substantially with good computer science content.

Undergraduate computer science programs would
themselves benefit from adding a stronger engineering
sense through most of the curriculum, and the energy
required for administering separate programs or
departments would be better invested in improving the
discipline and the courses.

Further, the professional societies should refrain from
dictating curricula. The evidence of the past 30 years is that
creative, innovative curricula come from individual
colleges and universities, not from large committees whose
members have diverse and conflicting interests.

Aspiration 3: Provide for specialization through training
and graduate education

As specializations emerge, educational institutions must
provide opportunities to master them. The character of
these opportunities should depend on the level of
responsibility the student will assume. Prospective
engineers can begin specialization with undergraduate
concentrations and electives, but at our present state of
maturity they should expect to spend at least a year of
graduate study (or comparable time while working)
becoming proficient in the specialty. At the other end of the
spectrum, vocational schools, proprietary schools, and in-
house training already provides a path to product-specific
skills.

Preparation for research, of course, is different from
preparation for engineering practice. A researcher needs
deeper preparation in underlying principles, in problem
formulation, and in validation of results [7] as well as a
special kind of inquisitiveness and creativity. PhD
programs rely heavily on direct mentorship to develop
these skills and talents.

Instilling an Engineering Attitude in Educational
Programs
Any student who claims an education in any area of
software development must be good at developing
software. This requires proficiency in both design and
programming; both of these proficiencies require an
engineering point of view: resolving constraints,
considering users, comparing alternatives, etc. Software
development should be treated this way not only for
prospective software engineers, but for all students.

We currently include software development courses in
undergraduate computer science and information
technology curricula. All these students, including the
software engineers, should learn the material with the
engineering point of view.

We regularly hear complaints about the undergraduate
computer science curriculum failing to educate engineers.
In many respects, the problem lies with failure of the
software development courses to address practical
considerations of real software. These problems should be

376

addressed in the courses for all students; the improvements
do not require separate software engineering courses, let
alone separate curricula. Moreover, they will improve the
curriculum for all students who learn about software, not
just the prospective software engineers.

In particular, engineers must consider numerous
alternatives and choose the appropriate one for the task at
hand. Jackson and Rinard, for example, says "Engineers
need different degrees of precision in different situations, at
different points in the program, and for different data
structures" [4] and goes on to emphasize the need for an
engineer to exercise judgment in selecting appropriate
analyses in light of cost and need. Boehm and Sullivan
emphasize that software engineering has a business side,
and economic as well as technical considerations should
affect decisions [1].

Aspiration 4: Integrate an engineering point of view in
undergraduate computer science and other information
technology curricula

Practical, useful software doesn't happen by accident. It
requires design skills not unrelated to traditional
engineering design. Even a cursory look at what engineers
know and do reveals problems in the current software
curriculum. Shortcomings include:

Programming from scratch: Most courses teach students to
code from scratch, rather than by modifying existing
programs or by working from model solutions.
Moreover, students rarely read good programs. It's as if
we asked students to write good prose without first
reading good prose.

Programming before reasoning: Although the situation is
improving, coding and debugging still seems to win
out over specification, analysis, and careful
construction or derivation.

Implementing the first design: Problems often admit of
more than one solution. The best solution in a given
setting often depends heavily on facts about the user or
the intended use of the system.

Designing for the implementer: Implementers often chose
solutions that match their own tastes, not the needs of
the customer.

Failing to understand problem scale: Class assignments
usually emphasize functionality but neglect
performance requirements, especially scale
requirements such as size and throughput.

Writing throwaway exercises: When assignments are
discarded as soon as they are graded, students have no
incentive for creating comprehensible, well-
documented, maintainable software.

Ignoring reliability, safety, economic, and other system
requirements: Class assignments usually focus on
getting correct results for correct inputs. They

occasionally require rudimentary checking of inputs,
and they occasionally require performance
measurement. Students rarely do systematic analyses
of reliability and safety. Similarly, class assignments
address asymptotic performance of algorithms and
sometimes speedy code, but many students never
confront a requirement for practical real-time response.
It's also rare for a student to encounter nontechnical
issues that drive decisions.

We can address these problems without major disruption to
our course structure by changing the emphasis within
individual courses. The result would improve the quality of
the courses for all students, not just for prospective
software engineers:

Study good examples of software systems: Doing this
properly requires case studies organized for
presentation. Meanwhile, do careful guided reading of
good code and make assignments that start from
running code provided with the assignment.

Present theory and models in the context of practice:
Emphasize durable ideas that will transcend a major
shift of technology. Students often learn them best
when they appear in concrete examples; good
examples will themselves be worth remembering for
reuse.

Require consideration of at least two serious designs:
Make students choose between design alternatives.
Require these choices to address customer needs.

Require consultation with end users: Use projects with
actual clients. Unless end users have a voice in
reviewing a design, students won't understand that
their needs and preferences are different from the
students' own.

Teach back-of-the-envelope estimation: Students often
believe that they can't do any analysis until all the facts
are in hand. Teach them to do quick estimates of usage
levels, throughputs, sizes, bandwidths. Show them how
this can provide early guidance about scale and
performance.

Modify and combine programs as well as creating them:
Teach students to work with program structures
devised by others, to reuse components, to adhere to
standards, and to value good documentation.

Test student implementations with bad data: Run test cases
chosen by the instructor, not just demonstration data
from the student. Include not only correct inputs, but
also erroneous and even malicious inputs. Do this not
only for isolated assignments, but as a matter of
course.

Make assignments with embedded system requirements:
Bad data isn't the only source of real-world demands.
Make assignments that expose students to end-to-end
time requirements, nondeterminism, race conditions,

377

and nontechnical constraints.

Keeping Education Current in the Face of Rapid
Change
Changes in software technology and models for software
development require commensurate change in the
education of software developers. First, the educational
institutions themselves must be able to adapt quickly, both
in the content of their offerings and in their ability to
exploit new technology in support of education. Second,
the educational institutions must prepare their graduates to
assume responsibility for upgrading their own skills
throughout their careers.

Aspiration 5: Make curricula flexible and responsive to
change

The enduring principles and models at the center of the
curriculum will change more slowly than the examples of
current practice. Nevertheless, compared to other fields,
even the core of the software development curriculum must
change rapidly.

For example, most curricula have not kept up with practice
in recognizing the role of good abstractions for software
architectures in software design [3]. As another example,
within the past few years the conversion of the Internet
from an email/telnet/ftp service for professionals to an
information-distribution system embedded in popular
culture has introduced new techniques and models for
design and development:

• Open-source software development

• Large-scale, highly distributed information systems,
including local caching, automatic updating, push and pull
service, event-style control and other features

• Security for transactions between parties who have not pre-
arranged passwords or keys

• Software that is platform-independent and trusted not to
interfere with the computer on which it executes

• Computation carried out through coalitions of independently-
managed resources

• Large-scale information collection and data mining of
personal information, with attendant privacy concerns

The curriculum of even five years ago does not cover the
concepts required to understand these phenomena, let alone
to control them.

Educational institutions need the flexibility and the
resources to react to these changes. They should not be
constrained by internal fragmentation in the form of
multiple competing programs or departments. They should
not be constrained externally by standards that constrain the
subject matter of the curriculum - as curricula and
accreditation standards developed in professional society
committees often do. If the professional societies are to be
involved, it should be to establish levels of quality and a
forum for sharing curriculum examples, not to govern

specifics of content.

Aspiration 6: Exploit our own technology in support of
education

Computer science and information technology curricula
have always been aggressive about making assignments
involving actual programming; in this respect we are ahead
of many other fields. We can do better, though, at
exploiting technology to support the learning process itself.

In local classrooms, we could make better use of
simulations and game-playing exercises. We could take
better advantage of tutorials embedded in systems that
provide information as it 's needed; since these facilities
would benefit all users, their development cost could be
amortized across a large user community.

The internet is already used to support courses. Often it's
used simply as an easy way to distribute course materials to
resident students, but we are beginning to see courses
offered to remote students. Most of the distance courses are
skills courses in the use of specific applications or
programming languages, but university courses are
increasingly coming on-line. Most of the functions of the
classroom can be supported through some combination of
the web, advance distribution of readings or CD-ROMs,
and chat rooms or teleconferencing. The major exception is
spontaneous interaction between instructor and students
and among students. When this technology shortfall is
overcome (perhaps through advances in technology for
computer-supported cooperative work), we should be
prepared to exploit it.

Unfortunately, the initial investment in preparing a
electronic support for a course can be very large, as can the
cost of regular revisions to reflect technology change. The
cost and faculty load models appropriate to conventional
subject areas do not take these factors into account.

Aspiration 7: Provide effective means for software
engineers to keep their skills current

The objective of education is learning. Even in the
classroom, the objective of teaching is to create a fertile
setting for the student to learn. After graduation, though,
the student becomes responsible for his or her own further
education. Even with the best undergraduate education,
software developers - especially software engineers - will
need to periodically update their skills and their mastery of
new technology. So one of the responsibilities of the formal
education is to prepare the student with skills for
independent lifelong learning.

Individual learning skills need to be complemented with
materials for independent study. Occasional efforts by
professional societies to provide self-assessment and
independent study materials haven't reached critical mass.
Short intensive courses from commercial providers tend to
be very concrete (and expensive). Remote offerings of

378

university courses require a substantial commitment, and
the size of a full semester course, or even a half-course may
make it poorly matched to the needs of individual
professionals.

We can aspire to providing opportunities for ongoing, on-
demand, on-location education and training. Eventually, we
should provide support that tracks each student's prior
knowledge and current objectives, then provides a sequence
of content that brings together the content for the current
objective with any prerequisites required for that student.

Mid-career students need not be locked into the academic
calendar. This provides an opportunity for individually-
scheduled competency-based education, where the student
studies however long it takes to master the material. In this
setting the only grade is "A", but the grade isn't awarded
until the student demonstrates competence.

Establishing Credentials that Accurately Represent
Ability
As noted above, there are at least three ways to gain
confidence in software: direct validation of the product,
confidence in the development organization, and
confidence in the developer. Our concern here is with ways
for individual software practitioners, especially software
engineers, to assure clients of their competence.

Credentialling of practitioners can be done (indeed is done)
by both public and private bodies. The consequences - the
rights, restrictions, privileges, and responsibilities - of
these credentials differ for public and private credentials.

Public-interest credentialling of practitioners is generally
done in the name of public interest. It is intended to ensure
adherence to a minimum standard of practice, both
technical and ethical. These credentials can address both
professional (engineer, lawyer, doctor) proficiency and
nonprofessional (truck driver, electrician, hairdresser)
skills.

Private credentialling can be done for many reasons. The
most common in software at present are academic degrees
(intended to assure depth of understanding and the ability
to grow with the field as well as current competence) and
vendor-specific skills certification (intended to assure
proficiency with a specific set of tools).

Public credentialling for individuals engaged in the practice
of an engineering discipline requires

• an achievable level of practice that ensures quality consistent
with public safety (i.e., reasonable intuitive expectations, but
not perfection),

• an assessment instrument that can be confidently expected to
predict that an individual will practice at that level in the
future,

• in a field evolving as rapidly as software engineering, a
means of ensuring that the practitioner will maintain his/her
skills as the level of practice improves

For engineering licensing, in particular, this standard has not yet
been achieved. For other, narrower or lower-level skills, it has
been: consider, for example, the vendor certifications that are
associated with particular versions of systems.

Credentialling, especially public credentialling, resembles
software specification: it makes commitments about the
capabilities of the practitioner. We have an obligation to
ensure that the credentials make assurances that reflect
demonstrated skills and address the concerns about
competency that are of concern to clients who are laymen
with respect to computing.

Aspiration 8: Establish distinct and appropriate
credentials for distinct software development roles when
possible

As a follow-up to Aspiration 1 (discriminating among
different software development roles), we should establish
credentials that match the roles, or at least those roles for
which the field is sufficiently mature. This will entail both
identification of content and clear separation of roles.

The role separation must be done not only to separate
professional from non-professional roles, but also to
identify professional roles more specialized than the role
implied by professional engineering registration.

There are certainly some technical areas in which a useful
level of expertise can be achieved and demonstrated. Some
are skills, such as administering a particular brand of
system software. Others are higher-level, such as database
administration or (perhaps) certain aspects of reliability.
We should continue existing activities in establishing
appropriate credentials for these skills. This can set
reasonable expectations, give us experience with
certification, and provide discrimination between software
developers with audited competence and those without.
Certifications can be added as warranted; by making it
clear what's being certified, they can avoid misleading the
public or the clients.

Aspiration 9: Establish credentials that accurately reflect
achievable practice

The question "should there be a profession of software
engineering" is often asked in the form "isn't it time we
started licensing software engineers through the usual
mechanisms of professional engineering registration?"
There's a problem with using engineering registration as a
surrogate for the activity of raising professional standards,
though: The purpose of professional engineering
registration is to protect the public by providing some
external assurance that a particular engineer will produce
safe systems; by signing off on a project, the engineer
assumes personal responsibility. The level of performance
required for this assurance isn't "the best we can do now";
it's "good enough". Unfortunately, we don't yet have an
established, widely achievable level of practice in software
engineering that meets this standard. Proposals that we

379

P

certify engineers on the basis of current best practice, even
the proposals are accompanied by promises to raise the
standard as we get better, simply don't address the
overriding criterion.

Two things are required before adding software engineers
to the pantheon of engineers. First, we need a widely
achievable level of practice that provides reasonable
protection for the public. Second, we need a testing
instrument that can make a reasonable prediction about
whether a given person will practice at that level. There's
no point in pursuing the second until we have the first.

4 SUMMARY AND CONCLUSIONS
Education for software developers currently emphasizes
content inspired by closed-shop mainframe development. It
is offered largely in traditional classroom formats. Training
also follows traditional lines, teaching specific skills in
short-course, hands-on, and independent study formats.

We can aspire to improvements over the next decade,
including clarification of the roles involved in software
development and appropriate eredentialling for those roles;
improved treatment of engineering issues; faster response
of educational content to changes in technology and
fundamental understanding; and better use of information
technology in our own education and training.

Realizing these aspirations will require imagination and
flexibility. Most important will be providing
encouragement, resources, and opportunities to interested
faculty - and challenging them to set their own standards
high enough to raise the standards of the field.

ACKNOWLEDGEMENTS
Thanks to colleagues who have taught me about education,
showed me new alternatives, and otherwise stimulated my
appreciation of the problems and opportunities: Jim
Tomayko and other members of the CMU Institute for
Software Research, International and its Master of Software
Engineering program; colleagues in the CMU Center for
Innovation in Learning; participants in the ACM/IEEE
discussions on professional licensing; Herb Simon, Frank
Bruns, and Roger Dannenberg. Portions of this paper are
derived from [10] and [11].

REFERENCES
1. Barry W. Boehm and Kevin J. Sullivan. Software

Economics. In this volume.

2. Carnegie Mellon University Institute for Software
Research, International. PhD Program in Software
Engineering. http://www.isri.cs.cmu.edu/, then follow
link to PhD program.

3. David Garlan. Software Architecture: A Roadmap. In
this volume.

4. Daniel Jackson and Martin Rinard. The Future of
Software Analysis. In this volume

5. Peter Knoke via Don Bagert. Graduate Software
Engineering Program Survey Results & Evaluation.
Forum for Advancing Software engineering Education
(FASE), vol 8 no 9, September 15, 1998,
http://www.cs.ttu.edu/fase/v8n09.txt.

6. TSE Maibaum. Mathematical Foundations of Software
Engineering: A Roadmap. In this volume.

7. Dewayne E. Perry, Adam A. Porter, and Lawrence G.
Votta. Empirical Studies of Software Engineering: A
Roadmap. In this volume.

8. Eric S. Raymond. The Cathedral and the Bazaar.
http://www.tuxedo.org/~esr/writings/cathedral-
paper.html, 1998.

9. Mary Shaw. Prospects for an engineering discipline of
software. IEEE Software, pages 15-24, November
1990.

10. Mary Shaw. We Can Teach Software Better.
Computing Research News, 4,4 September 1992 (pp. 2,
3,4,12).

11. Mary Shaw. A Profession of Software Engineering: Is
There a Need? YES; Are We Ready? NO. Proc. ACM
SIGSOFT Sixth Int'l Symposium on the Foundations of
Software Engineering, FSE-6, Nov 1998, pp. 207-208.

12. Mary Shaw. Architectural Requirements for
Computing with Coalitions of Resources. Position
paper for First Working IFIP Conference on Software
Architecture,
http://www.cs.cmu.edu/~Vit/paperabstraets/Shaw-
Coalitions._paper.html, 1999.

13. Software Engineering Coordinating Committee of
ACM and IEEE. Guide to the Software Engineering
Body of Knowledge. http://www.swebok.org/.

14. James E. Tomayko. Forging a discipline: An outline
history of software engineering education. Annals of
Software Engineering 6 (1998) 3-18.

380

