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Finite Open-World�ery Answering with Number Restrictions
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Open-world query answering is the problem of deciding, given a set of facts, conjunction of constraints, and query, whether the facts

and constraints imply the query. This amounts to reasoning over all instances that include the facts and satisfy the constraints. We

study finite open-world query answering (FQA), which assumes that the underlying world is finite and thus only considers the finite

completions of the instance. The major known decidable cases of FQA derive from the following: the guarded fragment of first-order

logic, which can express referential constraints (data in one place points to data in another) but cannot express number restrictions

such as functional dependencies; and the guarded fragment with number restrictions but on a signature of arity only two. In this

paper, we give the first decidability results for FQA that combine both referential constraints and number restrictions for arbitrary

signatures: we show that, for unary inclusion dependencies and functional dependencies, the finiteness assumption of FQA can be

lifted up to taking the finite implication closure of the dependencies. Our result relies on new techniques to construct finite universal

models of such constraints, for any bound on the maximal query size.
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I INTRODUCTION

A longstanding goal in computational logic is to design logical languages that are both decidable and expressive. One

approach is to distinguish integrity constraints and queries, and have separate languages for them. We would then

seek decidability of the query answering with constraints problem: given a query q, a conjunction of constraints Σ, and

a finite instance I0, determine which answers to q are certain to hold over any instance I that extends I0 and satisfies

Σ. This problem is often called open-world query answering. It is fundamental for deciding query containment under

constraints, querying in the presence of ontologies, or reformulating queries with constraints. Thus it has been the

subject of intense study within several communities for decades (e.g. [4, 6, 14, 15, 20]).

In many cases (e.g., in databases) the instances I of interest are the finite ones, and hence we can define finite open-

world query answering (denoted here as FQA), which restricts the quantification to finite extensions I of I0. In contrast,

by unrestricted open-world query answering (UQA) we refer to the problem where I can be either finite or infinite.

Generally the class of queries is taken to be the conjunctive queries (CQs) — queries built up from relational atoms via

existential quantification and conjunction. We will restrict to CQs here, and thus omit explicit mention of the query

language, focusing on the constraint language.
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2 Antoine Amarilli and Michael Benedikt

A first constraint class known to have tractable open-world query answering problems are inclusion dependencies

(IDs) — constraints of the form, e.g., ∀xyz R(x,y,z) → ∃vw S(z,v,w,y). The fundamental results of Johnson and Klug

[15] and Rosati [23] show that both FQA and UQA are decidable for ID and that, in fact, they coincide. When FQA and

UQA coincide, the constraints are said to be finitely controllable. These results have been generalized by [4] to a much

richer class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important kind of constraints, namely number restrictions, which ex-

press, e.g., uniqueness. We represent them by the class of functional dependencies (FDs) — of the form∀xy (R(x1, . . . ,xn )∧

R(y1, . . . ,yn) ∧
∧

i ∈L xi = yi ) → xr = yr for some set L of indices and some index r . The implication problem (does

one FD follow from a set of FDs) is decidable for FDs, and coincides with implication restricted to finite instances [1,

Theorem 9.2.3]. Trivially, the FQA and UQA problems are also decidable for FDs alone, and coincide.

IDs require the model to contain some elements, while FDs restrict the ability to add elements. The interaction

is severe enough that trying to combine IDs and FDs makes both UQA and FQA undecidable in general [6]. Some

progress has been made on obtaining decidable cases for UQA. UQA is known to be decidable when the FDs and the

IDs are non-conflicting [6, 15]. Intuitively, this condition guarantees that the FDs can be ignored, as long as they hold

on the initial instance I0, and one can then solve the query answering problem by considering the IDs alone. But the

non-conflicting condition only applies to UQA and not to FQA. In fact it is known that even for very simple classes

of IDs and FDs, including non-conflicting classes, FQA and UQA do not coincide. Rosati [23] showed that FQA is

undecidable for non-conflicting IDs and FDs: this is already the case for IDs and keys, i.e., for the special case of FDs

that specify that some relations are determined by a subset of their attributes.

Thus a broad question is to what extent these classes, FDs and IDs, can be combined while retaining decidable FQA.

The only decidable cases impose very severe requirements. For example, for the specific case of key dependencies

(KDs) and foreign keys (FKs), the constraint class of “single KDs and FKs” introduced in [23] has decidable FQA, but

such constraints cannot model, e.g., FDs which are not keys. Further, in contrast with the general case of FDs and IDs,

single KDs and FKs are always finitely controllable, which limits their expressiveness. Indeed, we know of no tools to

deal with FQA for non-finitely-controllable constraints on relations of arbitrary arity.

A second decidable case is when all relations and all subformulae of the constraints have arity at most two. In

this context, results of Pratt-Hartmann [20] imply the decidability of both FQA and UQA for a very rich non-finitely-

controllable sublogic of first-order logic. For some fragments of this arity-two logic, the complexity of FQA has recently

been isolated by Ibáñez-García et al. [14], and some extensions have been proposed to description logics with transitive

roles [12, 13]. Yet these results do not apply to arbitrary arity signatures.

The contribution of this paper is to provide the first result about finite query answering for non-finitely-controllable

IDs and FDs over relations of arbitrary arity. As the problem is undecidable in general, we must naturally make some

restriction. Our choice is to limit to Unary IDs (UIDs), which export only one variable: for instance, ∀xyz R(x,y,z) →

∃w S(w, x). UIDs and FDs are an interesting class to study because they are not finitely controllable, and allow the

modeling, e.g., of single-attribute foreign keys, a common use case in database systems. In contrast, Johnson and

Klug [15] showed that UIDs in isolation are finitely controllable. The decidability of UQA for UIDs and FDs is known

because they are always non-conflicting. In this paper, we show that finite query answering is decidable for UIDs and

FDs, and obtain tight bounds on its complexity.

The idea is to reduce the finite case to the unrestricted case, but in a more complex way than by finite controllability.

We make use of a technique originating in Cosmadakis et al. [9] to study finite implication on UIDs and FDs: the finite
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Finite Open-World Query Answering with Number Restrictions 3

closure operation which takes a conjunction of UIDs and FDs and determines exactly which additional UIDs and FDs

are implied over finite instances. Rosati [22] and Ibáñez-García et al. [14] make use of the closure operation in their

study of constraint classes over schemas of arity two. They show that finite query answering for a query q, instance I0,

and constraints Σ reduces to unrestricted query answering for I0, q, and the finite closure Σ
f∗ of Σ. In other words, the

closure construction which is sound for implication is also sound for query answering.

We show that the same approach applies to arbitrary arity signatures, with constraints being UIDs and FDs. Our

main result thus reduces finite query answering to unrestricted query answering, for UIDs and FDs in arbitrary arity:

Theorem I.1. For any finite instance I0, CQ q, and constraints Σ consisting of UIDs and FDs, the finite open-world

query answering problem for I0,q under Σ has the same answer as the unrestricted open-world query answering problem

for I0,q under the finite closure of Σ.

Using the known results about the complexity of UQA for UIDs, we isolate the precise complexity of finite query

answering with respect to UIDs and FDs, showing that it matches that of UQA:

Corollary I.2. The combined complexity of the finite open-world query answering problem for UIDs and FDs is NP-

complete, and it is PTIME in data complexity (that is, when the constraints and query are fixed).

Our proof of Theorem I.1 is quite involved, since building finite models that satisfy number restrictions and inclusion

dependencies in a signature with arbitrary arity introduces a multitude of new difficulties that do not arise in the arity-

two case or in the case of IDs in isolation.

We borrow and adapt a variety of techniques from prior work:

• using k-bounded simulations to preserve small acyclic CQs [14],

• partitioning UIDs into components that have limited interaction, and satisfying the UIDs component-by-

component [9, 14],

• performing a chase that reuses sufficiently similar elements [23],

• taking the product with groups of large girth to blow up cycles [18].

However, we must also develop some new infrastructure to deal with number restrictions in an arbitrary arity setting:

distinguishing between so-called dangerous and non-dangerous positions when creating a new element to satisfy some

IDs, constructing realizations for relations in a piecewisemanner following the FDs, reusing elements in a combinatorial

way that shuffles them to avoid violating the higher-arity FDs, and a new notion of mixed product to blow cycles up

while preserving fact overlaps to avoid violating the higher-arity FDs.

Paper structure. The overall structure of the proof, presented in Section III, is to extend a given instance I0 to a

finite model of UID and FD constraints such that for every conjunctive query of size at most k , the model satisfies it

only when it is implied by I0 and the constraints. We call these k-universal superinstances. It is easy to show that if a

k-universal superinstance exists for an instance and set of constraints, then finite implication and implication of CQs

coincide.

We start with only unary FDs (UFDs) and acyclic CQs (ACQs), and by assuming that the UIDs and UFDs are

reversible, a condition inspired by the finite closure construction.

As a warm-up, Sections IV and V approximate even further by replacing k-universality by a weaker notion, proving

the corresponding result starting with binary signatures and generalizing to arbitrary arity. We extend the result to

k-universality in Section VI, maintaining a k-bounded simulation to the chase, and performing thrifty chase steps that
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4 Antoine Amarilli and Michael Benedikt

reuse sufficiently similar elements without violating UFDs. We also rely on a structural observation about the chase

under UIDs (Theorem VI.20). Section VII eliminates the assumption that dependencies are reversible, by partitioning

the UIDs into classes that are either reversible or trivial, and satisfying successively each class following a certain

ordering.

We then generalize our result to higher-arity (non-unary) FDs in Section VIII. This requires us to define a new notion

of thrifty chase steps that apply to instances with many ways to reuse elements; the existence of these instances relies

on a combinatorial construction of models of FDs with a high number of facts but a small domain (Theorem VIII.11).

Last, in Section IX, we apply a cycle blowup process to the result of the previous constructions, to go from acyclic to

arbitrary CQs through a product with acyclic groups. The technique is inspired by Otto [18] but must be adapted to

respect FDs.

The paper is an extended version of the conference paper [2].

II BACKGROUND

II.1 Instances and Constraints

Instances. We assume an infinite countable set of elements (or values) a,b, c, . . . and variable names x,y,z, . . .. We

will often write tuples of elements with boldface as a and denote the i-th element of the tuple by ai , and likewise for

tuples of variables. A schema σ consists of relation names (e.g., R) with an arity (e.g., |R |) which we assume is ≥ 1:

we write |σ | ··= maxR∈σ |R |. Each relation R defines a set of |R | positions that we write Pos(R) ··= {R1, . . . ,R |R |}. For

convenience, given a set L ⊆ {1, . . . , |R |}, we will writeRL tomean {Rl | l ∈ L}. We also define Pos(σ ) ··=
⊔

R∈σ Pos(R),

where ⊔ denotes disjoint union. We will identify Ri and i when no confusion can result.

A relational instance I of σ is a set of facts of the form R(a) where R is a relation name and a an |R |-tuple of values.

The size |I | of a finite instance I is its number of facts. The active domain dom(I ) of I is the set of the elements which

appear in some fact of I . For any position Ri ∈ Pos(σ ), we define the projection πRi (I ) of I to Ri as the set of the

elements of dom(I ) that occur at position Ri in some fact of I . For L ⊆ {1, . . . , |R |}, the projection πRL (I ) is a set

of |L |-tuples defined analogously; we will often index those tuples by the positions in L rather than by {1, . . . , |L |}. A

superinstance of I is a (not necessarily finite) instance I ′ such that I ⊆ I ′.

A homomorphism from an instance I to an instance I ′ is a mapping h : dom(I ) → dom(I ′) such that, for every fact

F = R(a) of I , the fact h(F ) ··= R(h(a1), . . . ,h(a |R | )) is in I ′.

Constraints. We consider integrity constraints (or dependencies) which are special sentences of first-order logic

without function symbols or constants. We write I |= Σ when instance I satisfies constraints Σ, and we then call I a

model of Σ.

An inclusion dependency ID is a sentence of the form τ : ∀x (R(x1, . . . , xn ) → ∃y S(z1, . . . ,zm)), where z ⊆ x ⊔ y

and no variable occurs at two different positions of the same fact. The left-hand side of the implication is called the

body and the right-hand side is called the head. The exported variables are the variables of x that occur in z. This work

only studies unary inclusion dependencies (UIDs) which are the IDs with exactly one exported variable. We write a UID

τ as Rp ⊆ Sq , where Rp and Sq are the positions of R(x) and S(z)where the exported variable occurs. For instance, the

UID ∀xy R(x,y) → ∃z S(y,z) is written R2 ⊆ S1. We assume without loss of generality that there are no trivial UIDs

of the form Rp ⊆ Rp .

A functional dependency FD is a sentence ϕ of the form ∀xy (R(x1, . . . ,xn )∧R(y1, . . . ,yn)∧
∧

Rl ∈L xl = yl ) → xr =

yr , where L ⊆ {1, . . . , |R |} and Rr ∈ Pos(R). Since such a sentence is determined by the subset L and the position r ,
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for brevity, we abbreviate such a ϕ as RL → Rr . We call ϕ a unary functional dependency UFD if |L | = 1; otherwise it

is higher-arity. For instance, ∀xx ′yy′ R(x, x ′) ∧ R(y,y′) ∧ x ′ = y′ → x = y is a UFD, and we write it R2 → R1. We

assume that |L | > 0, i.e., we do not allow nonstandard or degenerate FDs. We also disallow trivial FDs, i.e., those for

which we have Rr ∈ RL . Two facts R(a) and R(b) violate ϕ if πL(a) = πL(b) but ar , br .

For L,L′ ⊆ {1, . . . , |R |}, we write RL → RL
′
the conjunction of FDs RL → Rl for Rl ∈ L′. In particular, conjunctions

of the form κ : RL → R (i.e., L′ = {1, . . . , |R |}) are called key dependencies. The key κ is unary if |L | = 1. If κ holds on

a relation R, we call L a key (or unary key) of R.

II.2 Implication and Finite Implication

We say that a conjunction of constraints Σ in a class CL finitely implies a constraint ϕ if any finite instance that satisfies

Σ also satisfies ϕ. We say that Σ implies ϕ if any instance (finite or infinite) that satisfies Σ also satisfies ϕ. The closure

Σ
∗ of Σ is the set of constraints of CL which are implied by Σ, and the finite closure Σf∗ is the set of those which are

finitely implied.

A deduction rule for CL is a rule which, given dependencies in CL, deduces new dependencies in CL. An axiomatiza-

tion of implication forCL is a set of deduction rules such that the following holds for any conjunction Σ of dependencies

in CL: letting Σ′ be the result of defining Σ
′ ··= Σ and applying iteratively the deduction rules while possible to inflate

Σ
′, then the resulting Σ

′ is exactly Σ
∗ . An axiomatization of finite implication is defined similarly but for Σf∗ .

Implication for IDs. Given a set Σ of IDs, it is known [8] that an ID τ is implied by Σ iff it is finitely implied.

Further, when Σ are UIDs, we can easily compute in PTIME the set of implied UIDs (from which we exclude the trivial

ones), by closing Σ under the UID transitivity rule [8]: if Rp ⊆ Sq and Sq ⊆ T r are in Σ, then so is Rp ⊆ T r unless it is

trivial. We call Σ transitively closed if it is thus closed.

Implication for FDs. Again, a set ΣFD of FDs implies an FD ϕ iff it finitely implies it: see, e.g., [9]. The standard

axiomatization of FD implication is given in [3], and includes the UFD transitivity rule: for any R ∈ σ and L,L′,L′′ ⊆

{1, . . . , |R |}, if RL → RL
′
and RL

′
→ RL

′′
are in ΣFD , then so does RL → RL

′′
.

Implication for UIDs and FDs. It was shown in [9] that given constraints formed of a conjunction ΣUID of UIDs

and of a conjunction ΣFD of FDs, the implication problem for these constraints can be axiomatized by the above UID

and FD rules in isolation. However, for finite implication, we must add a cycle rule, which we now define.

Let Σ be a conjunction of dependencies formed ofUIDs ΣUID and FDs ΣFD . Define the reverse of anUFDϕ : Rp → Rq

as ϕ−1 ··= Rq → Rp , and the reverse of a UID τ : Rp ⊆ Sq as τ−1 ··= Sq ⊆ Rp . A cycle in Σ is a sequence of UIDs

and UFDs of ΣUID and ΣFD of the following form: R
p1
1 ⊆ R

q2
2 , R

p2
2 → R

q2
2 , R

p2
2 ⊆ R

q3
3 , R

p3
3 → R

q3
3 , . . ., R

pn−1
n−1 ⊆ R

qn
n ,

R
pn
n → R

qn
n , R

pn
n ⊆ R

q1
1 , R

p1
1 → R

q1
1 . The cycle rule, out of such a cycle, deduces the reverse of each UID and of each

UFD in the cycle. We then have:

Theorem II.1 ([9], Theorem 4.1). The UID and FD deduction rules and the cycle rule are an axiomatization of finite

implication for UIDs and FDs.

In terms of complexity, this implies:

Corollary II.2 ([9], Corollary 4.4). Given UIDs ΣUID and FDs ΣFD , and a UID or FD τ , we can check in PTIME

whether τ is finitely implied by ΣUID and ΣFD .
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6 Antoine Amarilli and Michael Benedikt

II.3 �eries and QA

Queries. An atom A = R(t) consists of a relation name R and an |R |-tuple t of variables or constants. This work

studies the conjunctive queries CQ, which are existentially quantified conjunctions of atoms, such that each variable

in the quantification occurs in some atom. The size |q | of a CQ q is its number of atoms. A CQ is Boolean if it has no

free variables.

A Boolean CQ q holds in an instance I , written I |= q, exactly when there is a homomorphism h from the atoms

of q to I such that h is the identity on the constants of q (we call this a homomorphism from q to I ). We call such an h

a match of q in I , and by a slight abuse of terminology we also call the image of h a match of q in I . For any atom

A = R(t) of q, we denote by h(A) the fact R(h(t1), . . . ,h(t |R | )) of I to which h maps A.

QA problems. We define the unrestricted open-world query answering problem (UQA) as follows: given a finite

instance I , a conjunction of constraints Σ, and a Boolean CQ q, decide whether there is a superinstance of I that

satisfies Σ and violates q. If there is none, we say that I and Σ entail q and write (I , Σ) |=unr q. In other words, UQA

asks whether the first-order formula I ∧ Σ ∧ ¬q has some (possibly infinite) model.

This work focuses on the finite query answering problem (FQA), which is the variant of open-world query answering

where we require the counterexample superinstance to befinite; if no such counterexample exists, wewrite (I ,Σ) |=fin q.

Of course (I ,Σ) |=unr q implies (I , Σ) |=fin q.

The combined complexity of the UQA and FQA problems, for a fixed class CL of constraints, is the complexity of

deciding one of these problems when all of I , Σ (in CL) and q are given as input. The data complexity is defined by

assuming that Σ and q are fixed, and only I is given as input.

Assumptions on queries. Throughout this work, we will make three assumptions about CQs, without loss of

generality for UQA and FQA. First, we assume that CQs are constant-free. Indeed, for each constant c ∈ dom(I0), we

could otherwise do the following: add a fresh relation Pc to the signature, add a fact Pc (c) to I0, replace c in q by

an existentially quantified variable xc , and add the atom Pc (xc ) to q. It is then clear that UQA with the rewritten

instance and query is equivalent to UQA with the original instance and query under any constraints (remember that

our constraints are constant-free); the same is true for FQA.

Second, we assume all CQs to be Boolean, unless otherwise specified. Indeed, to perform UQA for non-Boolean

queries (where the domain of the free variables is that of the base instance I0), we can always enumerate all possible

assignments, and solve our problem by solving polynomially many instances of the UQA problemwith Boolean queries.

Again, the same is true of FQA.

Third, we assume all CQs to be connected. A CQ q is disconnected if there is a partition of its atoms in two non-empty

sets A and A′, such that no variable occurs both in an atom of A and in one atom of A′. In this case, the query

q : ∃xyA(x) ∧ A(y) can be rewritten to q2 ∧ q′2, for two CQs q2 and q′2 of strictly smaller size. In this paper, we

will show that, on finitely closed dependencies, FQA and UQA coincide for connected queries. This clearly implies the

same for disconnected queries, by considering all their connected subqueries. Hence, we can assume that queries are

connected.

Chase. We say that a superinstance I ′ of an instance I is universal for constraints Σ if I ′ |= Σ and if for any Boolean

CQ q, I ′ |= q iff (I ,Σ) |=unr q. We now recall the definition of the chase (see [17] or [1, Section 8.4]), a standard

construction of (generally infinite) universal superinstances. We assume that we have fixed an infinite set N of nulls

which is disjoint from dom(I ). We only define the chase for transitively closed UIDs, which we call the UID chase.
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Finite Open-World Query Answering with Number Restrictions 7

We say that a fact Factive = R(a) of an instance I is an active fact for a UID τ : Rp ⊆ Sq if, intuitively, Factive

matches the body of τ but there is no fact matching the head of τ . Formally, writing τ : ∀x R(x) → ∃y S(z), we

call Factive an active fact for τ if there is a homomorphism from R(x) to Factive but no such homomorphism can be

extended to a homomorphism from {R(x), S(z)} to I . In this case we say that we want to apply the UID τ to ap ,

written ap ∈ Wants(I ,τ ). Note that Wants(I , τ ) = πRp (I )\πSq (I ). For a conjunction ΣUID of UIDs, we may also write

a ∈ WantsΣUID (I , S
q) if there is τ ∈ ΣUID of the form τ : Uv ⊆ Sq such that a ∈ Wants(I , τ ); we drop the subscript

when there is no ambiguity.

The result of a chase step on the active fact Factive = R(a) for τ : Rp ⊆ Sq in I (we call this applying τ to Factive) is

the superinstance I ′ of I obtained by adding a new fact Fnew = S(b) defined as follows: we set bq ··= ap , which we call

the exported element (and Sq the exported position of Fnew), and use fresh nulls from N to instantiate the existentially

quantified variables of τ and complete Fnew, using a different null at each position; we say the corresponding elements

are introduced at Fnew. This ensures that Factive is no longer an active fact in I ′ for τ .

A chase round of a conjunction ΣUID of UIDs on I is the result of applying simultaneous chase steps on all active

facts for allUIDs of ΣUID, using distinct fresh nulls. TheUID chase Chase(I , ΣUID) of I by ΣUID is the (generally infinite)

fixpoint of applying chase rounds. It is a universal superinstance for ΣUID [11]. Wewill sometimes use the natural forest

structure on the facts of Chase(I , ΣUID), where the roots are the facts of I , and every fact F of Chase(I ,ΣUID) \ I has a

parent which is some arbitrary choice F ′ of an active fact used to create F . The children of a fact F ′ of Chase(I , ΣUID)

are all facts F such that F ′ is the parent of F .

As we are chasing by transitively closed UIDs, if we perform the core chase [10, 17] rather than the UID chase that

we just defined, we can ensure the following Unique Witness Property: for any element a ∈ dom(Chase(I ,ΣUID)) and

position Rp of σ , if two different facts of Chase(I ,ΣUID) contain a at position Rp , then they are both facts of I . In our

context, however, the core chase matches the UID chase defined above, except at the first round. Thus, modulo the

first round, by Chase(I , ΣUID) we refer to the UID chase, which has the Unique Witness Property. See Appendix A for

details.

Finite controllability. We say a conjunction of constraints Σ is finitely controllable forCQ if FQA andUQA coincide:

for every finite instance I and every Boolean CQ q, (I ,Σ) |=unr q iff (I ,Σ) |=fin q.

It was shown in [21, 23] that, while conjunctions of IDs are finitely controllable, even conjunctions of UIDs and FDs

may not be. It was later shown in [22] that the finite closure process could be used to reduce FQA to UQA for some

constraints on relations of arity at most two. Following the same idea, we say that a conjunction of constraints Σ is

finitely controllable up to finite closure if for every finite instance I , and Boolean CQ q, (I , Σ) |=fin q iff (I , Σf∗) |=unr q,

where Σ
f∗ is the finite closure defined by Theorem II.1. If Σ is finitely controllable up to finite closure, then we can

reduce FQA to UQA, even if finite controllability does not hold, by computing the finite closure Σf∗ of Σ and solving

UQA on Σ
f∗ .

III MAIN RESULT AND OVERALL APPROACH

We study open-world query answering for FDs and UIDs. For UQA, the following is already known:

Proposition III.1. UQA for FDs and UIDs has AC0 data complexity and NP-complete combined complexity.

Proof. UQA for UIDs in isolation is NP-complete in combined complexity. The lower bound is immediate because

query evaluation for conjunctive queries is NP-complete already withoutUIDs [1, Theorem 6.4.2], and [15] showed an
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8 Antoine Amarilli and Michael Benedikt

NP upper bound for IDs with any fixed bound on the number of exported variables (which they call “width”: in their

terminology, UIDs are IDs of width 1). For data complexity, the upper bound is from the first-order rewritability of

certain answers for arbitrary IDs [7].

For UIDs and FDs, clearly the lower bound on combined complexity also applies. The upper bounds are proved by

observing that UIDs and FDs are separable, namely, for any FDs ΣFD and UIDs ΣUID, for any instance I0 and CQ q,

if I0 |= ΣFD then we have (I0, ΣFD ∧ ΣUID) |=unr q iff (I0, ΣUID) |=unr q. Assuming separability, to decide UQA for

ΣUID and ΣFD , we first check whether I0 |= ΣFD , in PTIME combined complexity, and AC0 data complexity as ΣFD is

expressible in first-order logic which can be evaluated in AC0 [1, Theorem 17.1.2]. If I0 6 |= ΣFD , then we vacuously

have (I0, ΣUID ∪ ΣFD) |=unr q so UQA is trivial. Otherwise, we then determine whether (I0, ΣUID) |=unr q, using the

upper bound for UQA for UIDs. By separability, the answer to UQA under ΣUID is the same as the answer to UQA

under ΣFD ∧ ΣUID.

Hence, all that remains to show is that UIDs and FDs are always separable. This follows from the non-conflicting

condition of [5, 6] but we give a simpler self-contained argument. Assume that I0 satisfies ΣFD . It is obvious that

(I0, ΣUID) |=unr q implies (I0, ΣFD ∧ ΣUID) |=unr q, so let us prove the converse implication. We do it by noticing that

the chase Chase(I0, ΣUID) satisfies ΣFD . Indeed, assuming to the contrary the existence of F and F ′ in Chase(I0, ΣUID)

violating an FD of ΣFD , there must exist a position Rp ∈ Pos(σ ) such that πRp (F ) = πRp (F
′). Yet, by the Unique

Witness Property, this implies that F and F ′ are facts of I0, but we assumed that I0 |= ΣFD , a contradiction.

Hence, Chase(I0, ΣUID) satisfies ΣFD , so it is a superinstance of I0 that satisfies ΣFD ∧ ΣUID. Hence, (I0, ΣFD ∧

ΣUID) |=unr q implies that we must have Chase(I0, ΣUID) |= q. By universality of the chase, this implies (I0, ΣUID) |=unr

q. Hence, the converse implication is proven, so the two UQA problems are equivalent, which implies that ΣUID and

ΣFD are separable. �

In the finite case, however, even the decidability of FQA for FDs and UIDs was not known. This paper shows that it

is decidable, and that the complexity matches that of UQA:

Theorem III.2. FQA for FDs and UIDs has AC0 data complexity and NP-complete combined complexity.

This result follows from our Main Theorem, which is proven in the rest of this paper:

Theorem III.3 (Main theorem). Conjunctions of FDs and UIDs are finitely controllable up to finite closure.

From the Main Theorem, we can prove Theorem III.2, using the closure process of [9]:

Proof of Theorem III.2. Again, theNP-hardness lower bound is immediate fromquery evaluation [1, Theorem 6.4.2],

so we only show the upper bounds. Consider an input to the FQA problem for FDs and UIDs, consisting of an instance

I0, a conjunction Σ of IDs ΣUID and FDs ΣFD , and aCQq. Let Σ∗FD be the FDs and Σ∗UID theUIDs of the finite closure Σf∗ .

By ourMain Theorem, we have (I0, Σ) |=fin q iff (I0, Σ
f∗) |=unr q. As the computation of Σf∗ from Σ is data-independent,

the data complexity upper bounds follow from Proposition III.1, so we need only show the combined complexity upper

bound.

Materializing Σ
f∗ from the input may take exponential time, which we cannot afford, so we need a more clever

approach. Remember from the proof of Proposition III.1 that, as Σf∗ consists of UIDs and FDs, it is separable. Hence,

to solve UQA for I0, Σ
f∗ and q, as Σf∗ is separable, we need to perform two steps: (1) check whether I0 |= Σ

∗
FD (2) if yes,

solve UQA for I0, Σ
∗
UID and q.
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To perform step 1, compute in PTIME the set Σ∗UFD of the UFDs of Σf∗ , using Corollary II.2. By [9] (remark above

Corollary 4.4), all non-unary FDs in Σ
∗
FD are implied by Σ∗UFD∧ΣFD under the axiomatization of FD implication; hence,

to check whether I0 |= Σ
∗
FD

, it suffices to check whether I0 |= Σ
∗
UFD

and I0 |= ΣFD , which we do in PTIME.

To perform step 2, compute Σ∗
UID

in PTIME by considering each possible UID (there are polynomially many) and

determining in PTIME from Σ whether it is in Σ
f∗ , using Corollary II.2. Then, solve UQA in NP combined complexity

by Proposition III.1. The entire process takes NP combined complexity, and the answer matches that of FQA by our

Main Theorem, which proves the NP upper bound. �

In this section, we first explain howwe can prove Theorem III.3 from a different statement, namely: we can construct

finite universal superinstances for finitely closed UIDs and FDs, which we will equivalently call finite universal models.

We conclude this section with the outline of the proof of this result (Theorem III.6) which will be developed in the rest

of this paper.

III.1 Finite Universal Superinstances

Our Main Theorem claims that a certain class of constraints, namely finitely closed UIDs and FDs, are finitely control-

lable for the class of conjunctive queries (CQ). To prove this, it will be easier to work with a notion of k-sound and

k-universal instances.

Definition III.4. For k ∈ N, we say that a superinstance I of an instance I0 is k-sound for constraints Σ, for I0, and

for CQs if, for every CQ q of size ≤ k such that I |= q, we have (I0, Σ) |=unr q. We say it is k-universal if the converse

also holds: I |= q whenever (I0, Σ) |=unr q. For a subclass Q of CQs, we call I k-sound or k-universal for Σ, for I0,

and for Q if the same holds for all queries q of size ≤ k that are in Q.

We say that a class CL of constraints has finite universal superinstances (or, for brevity, finite universal models) for

a class Q of CQs, if for any constraints Σ of CL, for any k ∈ N, for any instance I0, if I0 has some superinstance that

satisfies Σ, then it has a finite superinstance that satisfies Σ and is k-sound for Σ and Q (and hence is also k-universal

for Σ and Q).

We will thus show that the class of finitely closed UIDs and FDs have finite universal superinstances for CQs. We

explain why this implies our Main Theorem:

Proposition III.5. If constraint class CL has finite universal superinstances for query class Q, then CL is finitely con-

trollable for Q.

Proof. Let Σ be constraints in CL, I0 be a finite instance and q be a query in Q. We show that (I0, Σ) |=unr q iff

(I0, Σ) |=fin q. The forward implication is immediate: if all superinstances of I0 that satisfy Σ must satisfy q, then so do

the finite ones.

For the converse implication, assume that (I0, Σ) 6|=unr q. In particular, this implies that I0 has some superinstance

that satisfies Σ, as otherwise the entailment would be vacuously true. As CL has finite universal superinstances for Q,

let I be a finite k-sound superinstance of I0 that satisfies Σ, where k ··= |q |. As I is k-sound, we have I 6 |= q, and as I |= Σ,

I witnesses that (I0, Σ) 6|=fin q. This proves the converse direction, so we have established finite controllability. �

So, in this paper, we will actually show the following restatement of the Main Theorem:
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10 Antoine Amarilli and Michael Benedikt

Table 1. Roadmap of intermediate results.

Signature Universality Constraints Query

Section IV: binary weakly-sound reversible UIDs, UFDs ACQ

Section V: arbitrary weakly-sound reversible UIDs, UFDs ACQ

Section VI: arbitrary k-sound reversible UIDs, UFDs ACQ

Section VII: arbitrary k-sound finitely closed UIDs, UFDs ACQ

Section VIII: arbitrary k-sound finitely closed UIDs, FDs ACQ

Section IX: arbitrary k-sound finitely closed UIDs, FDs CQ

Theorem III.6 (Universal models). The class of finitely closed UIDs and FDs has finite universal models for CQ: for

every conjunction Σ of FDs ΣFD and UIDs ΣUID closed under finite implication, for any k ∈ N, for every finite instance I0

that satisfies ΣFD , there exists a finite k-sound superinstance I of I0 that satisfies Σ.

Indeed, once we have shown this, we can easily deduce the Main Theorem, namely, that any conjunction Σ of FDs

and UIDs is finitely controllable up to finite closure. Indeed, for any such Σ, for any instance I0 and CQ q, we have

(I0, Σ) |=fin q iff (I0, Σ
f∗) |=fin q: the forward statement is because any finite model of Σ is a model of Σf∗ , and the

backward statement is tautological. Now, from the Universal Models Theorem and Proposition III.5, we know that

Σ
f∗ is finitely controllable, so that (I0, Σ

f∗) |=fin q iff (I0, Σ
f∗) |=unr q. We have thus shown that (I0, Σ) |=fin q iff

(I0, Σ
f∗) |=unr q, which concludes the proof of the Main Theorem.

Hence, we will show the Universal Models Theorem in the rest of this paper. We proceed in incremental steps,

following the plan that we outline next.

III.2 Proof Structure

We first make a simplifying assumption on the signature, without loss of generality, to remove useless relations. Given

an instance I0, UIDs ΣUID and FDs ΣFD , it may the be case that the signature σ contains a relation R that does not occur

in Chase(I0, ΣUID), namely, it does not occur in I0 and the existence of an R-fact is not implied by ΣUID . In this case,

relation R is useless: a CQ q involving R will never be entailed under Σ, neither on unrestricted nor on finite models,

unless I0 has no completion at all satisfying the constraints. In any case, the query q can be replaced by the trivial CQ

False, which is only (vacuously) entailed if there are no completions.

Hence, we can always remove useless relations from the signature, up to rewriting the query to the false query.

Thus, without loss of generality, we always assume that the signature contains no useless relations in this sense: all

relations of the signature occur in the chase.

We now present several assumptions that we use to prove weakenings of the Universal Models Theorem. The first

is on queries, which we require to be acyclic. The second is on FDs, which we require to be unary, i.e., UFDs. The

third is to replace k-soundness by the simpler notion of weak-soundness. Then we present two additional assumptions:

the first one, the reversibility assumption, is on the constraints, and requires that they have a certain special form; the

second one, the arity-two assumption, is on the constraints and signature, which we require to be binary. In the next

section, we show the Universal Models Theorem under all these assumptions, and then we lift the assumptions one by

one, in each section. See Table 1 for a synopsis.

Hence, let us present the assumptions that we will make (and later lift).
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Acyclic queries. It will be helpful to focus first on the subset of acyclic CQs, denoted ACQ, which are the queries

that contain no Berge cycle. Formally:

Definition III.7. A Berge cycle in aCQ q is a sequenceA1,x1,A2, x2, . . . ,An , xn withn ≥ 2, where theAi are pairwise

distinct atoms of q, the xi are pairwise distinct variables of q, the variable xi occurs in Ai and Ai+1 for 1 ≤ i < n, and

xn occurs in An and A1. A query q is in ACQ if q has no Berge cycle and if no variable of q occurs more than once in

the same atom.

Equivalently, consider the incidence multigraph of q, namely, the bipartite undirected multigraph on variables and

atoms obtained by putting one edge between variable x and atom A for every time where x occurs in A (possibly

multiple times). Then q is in ACQ iff its incidence multigraph is acyclic in the standard sense.

Example III.8. The queries ∃x R(x, x), ∃xy R(x,y) ∧ S(x,y), and ∃xyz R(x,y) ∧ R(y,z) ∧ R(z,x) are not in ACQ: the

first has an atom with two occurrences of the same variable, the other two have a Berge cycle. The following query is

in ACQ: ∃xyzw R(x,y,z) ∧ S(x) ∧T (y,w) ∧U (w).

Intuitively, in the chase, all querymatches are acyclic unless they involve some cycle in the initial instance I0. Hence,

only acyclic CQs have matches, except those that match on I0 or those whose cycles have self-homomorphic matches,

so, in a k-sound model, the CQs of size ≤ k which hold are usually acyclic. For this reason, we focus only on ACQ

queries first. We will ensure in Section IX that cyclic queries of size ≤ k have no matches.

Unary FDs. We will first show our result for unary FDs (UFDs); recall from Section II that they are the FDs with

exactly one determining attribute. We do this because the finite closure construction of [9] is not concerned with

higher-arity FDs, except for the UFDs that they imply. Hence, while the UFDs of the finite closure have a special

structure that we can rely on, the higher-arity FDs are essentially arbitrary. This is why we deal with them only in

Section VIII, using a different approach.

k-soundness and weak-soundness. Rather than proving that UIDs and UFDs have finite universal models for

ACQ, it will be easier to prove first that they have finite weakly-universal models. This is defined relative to a notion

of weak soundness, a weakening of k-soundness that we use as an intermediate step in the proof:

Definition III.9. A superinstance I of an instance I0 isweakly-sound for a set ofUIDs ΣUID and for I0 if the following

holds:

• Elements of I0 only appear in new facts at positions where they want to appear. Formally, for any a ∈ dom(I0)

and Rp ∈ Pos(σ ), if a ∈ πRp (I ), then either a ∈ πRp (I0) or a ∈ Wants(I0,R
p );

• Each new element only occurs at positions that are related by UIDs. Formally, for any a ∈ dom(I )\ dom(I0)

and Rp , Sq ∈ Pos(σ ), if a ∈ πRp (I ) and a ∈ πSq (I ) then either we have Rp = Sq or Rp ⊆ Sq and Sq ⊆ Rp are

in ΣUID.

Thus, we first show that UFDs and UIDs have finite weakly-universal superinstances for ACQ, defined analogously

to Definition III.4: for any constraints ΣU of UFDs ΣUFD and UIDs ΣUID , for any query q in ACQ, for any instance

I0, if I0 has a superinstance that satisfies ΣU , then it has a finite superinstance that satisfies ΣU and is weakly-sound

for ΣUID and I0. We will then generalize from weak soundness to the general case of k-soundness in Section VI.

Reversibility assumption. Wewill initially make a simplifying assumption on the structure of theUIDs andUFDs,

which we call the reversibility assumption. This assumption is motivated by the finite closure rules of Theorem II.1;
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12 Antoine Amarilli and Michael Benedikt

intuitively, it amounts to assuming that a certain constraint graph defined from the dependencies has a single connected

component:

Definition III.10. Let Σrev
UID

be a set of UIDs and ΣUFD be a set of UFDs. We call Σrev
UID

and ΣUFD reversible if:

• The set Σrev
UID

is closed under implication, and so is ΣUFD ;

• All UIDs in Σ
rev
UID

are reversible, i.e., their reverses are also in Σ
rev
UID

;

• For any UFD ϕ : Rp → Rq in ΣUFD , if R
p occurs in some UID of Σrev

UID
and Rq also occurs in some UID of Σrev

UID
,

then ϕ is reversible, i.e., ϕ−1 is also in ΣUFD .

We can now state the assumption that we make:

• Reversibility assumption: The UIDs ΣUID and UFDs ΣUFD are reversible.

When making the reversibility assumption, we will write theUIDs Σrev
UID

rather than ΣUID , as in the definition above.

Observe that Σrev
UID

and ΣUFD are then finitely closed: they are closed under UID and UFD implication, and the UIDs

and UFDs of any cycle must be reversible. To lift the reversibility assumption and generalize to the general case, we

will follow an SCC decomposition of the constraint graph to manage each SCC separately. See Section VII for details.

Arity-two assumption. Wewill start our proof in Section IV by introducing important notions in themuch simpler

case of a binary signature. For this, we will initially make the following arity-two assumption on the signature and

on Σ:

• Arity-two assumption: Each relation R has arity 2 and the UFDs R1 → R2 and R2 → R1 are in Σ.

We will lift this assumption in Section V.

Roadmap. Each of the next sections will prove that a certain constraint class has finite universal models for a

certain query class in a certain sense, under certain assumptions. Table 1 summarizes the results that are proved in

each section.

The rest of the paper follows this roadmap: each section starts by stating the result that it proves.

IV WEAK SOUNDNESS ON BINARY SIGNATURES

Theorem IV.1. Reversible UIDs and UFDs have finite weakly-universal superinstances for ACQs under the arity-two

assumption.

We prove this result in this section. Fix an instance I0 and reversible constraints Σrev
U

formed of UIDs Σrev
UID

and

UFDs ΣUFD . Assume that I0 |= ΣUFD as the question is vacuous otherwise, and make the arity-two assumption.

Our goal is to construct a weakly-sound superinstance I of I0 that satisfies Σ
rev
U

. We do so by a completion process

that adds new (binary) facts to connect elements together. Remember that the arity-two assumption implies that all

possible UFDs hold, so if we extend I0 to I by adding a new fact R(a1, a2), we must have ai < πRi (I0) for i ∈ {1, 2}. In

order to achieve weak soundness we require in particular that if ai ∈ dom(I0) we must have ai ∈ Wants(I0,R
i ). Our

task in this section is thus to complete I0 to I by adding R-facts, for each relation R, that connect together elements of

Wants(I0,R
1) and Wants(I0,R

2).
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a b c d e

f д h

T 2 S1 R2 R1

T 1 S2
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Fig. 1. Connecting balanced instances (see Example IV.4)

a b

h

T 2 S1

S2, T 1

R

ST

Fig. 2. Using helper elements to balance

(see Example IV.5)

IV.1 Completing Balanced Instances

One situation where completion is easy is when the instance I0 is balanced: for every relation R, we can construct a

bijection between the elements that want to be in R1 and those that want to be in R2:

Definition IV.2. We call I0 balanced (for UIDs Σrev
UID

) if, for every two positions Rp and Rq such that Rp → Rq and

Rq → Rp are in ΣUFD , we have
�

�

�WantsΣrevUID
(I0,R

p )
�

�

� =

�

�

�WantsΣrevUID
(I0,R

q )
�

�

�.

Note that, as we make the arity-two assumption in this section, the notion of balancedness always applies to the

two positions R1 and R2 of each relation R. However, the definition is phrased in a more general way because we will

reuse it in later sections without making the arity-two assumption.

If I0 is balanced, we can show Theorem IV.1 by constructing I with dom(I ) = dom(I0), adding new facts that pair

together the existing elements:

Proposition IV.3. Under the arity-two and reversibility assumptions, any balanced finite instance I0 satisfying ΣUFD

has a finite weakly-sound superinstance I that satisfies Σrev
U

, with dom(I ) = dom(I0).

We first exemplify this process:

Example IV.4. Consider four binary relations R, S , T , and U , with the UIDs R2 ⊆ S1, S2 ⊆ T 1, T 2 ⊆ R1 and their

reverses, and the FDs prescribed by the arity-two assumption. Consider I0 ··= {R(a,b),U (b, c), S(c,d),T (d,e), S(д, f ),

R(д,д),T (h,д)}, as depicted by the black elements and solid black arrows in Figure 1.

We compute, for each element, the set of positions where it wants to be, and write it in red under each element in

Figure 1 (in this example, it is a set of size at most one for each element). For instance, we have Wants(I0,T
1) = { f }.

We observe that the instance is balanced: we have
�

�Wants(I0,R
1)
�

� =

�

�Wants(I0,R
2)
�

�, and likewise for S , T , and U .

We can construct a weakly-sound superinstance I of I0 as I ··= I0 ⊔ {R(e,c), S(b,h),T (f ,a)}: the additional facts

are represented as dashed red arrows in Figure 1. Intuitively, we just create new facts that connect together elements

which want to occur at the right positions.

We now give the formal proof of the result:

Proof of Proposition IV.3. Define a bijection fR from Wants(I0,R
1) to Wants(I0,R

2) for every relation R of σ ;

this is possible because I0 is balanced.

Consider the superinstance I of I0, with dom(I ) = dom(I0), obtained by adding, for every R of σ , the fact R(a, fR (a))

for every a ∈ Wants(I0,R
1). I is clearly a finite weakly-sound superinstance of I0, because for every a ∈ dom(I ), if a

occurs at some position Rp in some fact F of I , then either F is a fact of I0 and a ∈ πRp (I0), or F is a new fact in I\I0

and by definition a ∈ Wants(I0,R
p ).
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Let us show that I |= ΣUFD . Assume to the contrary that two facts F = R(a1,a2) and F ′ = R(a′1,a
′
2) in I witness a

violation of a UFD ϕ : R1 → R2 of ΣUFD . As I0 |= ΣUFD , one of F and F ′, say F , must be a new fact. By definition

of the new facts, we have a1 ∈ Wants(I0,R
1), so that a1 < πR1 (I0). Now, as {F , F ′} is a violation, we must have

πR1 (F ) = πR1 (F ′), so as a1 < πR1 (I0), F
′ must also be a new fact. Hence, by definition of the new facts, we have

a2 = a′2 = fR (a1), so F = F ′, which contradicts the fact that F and F ′ violate ϕ. For UFDs ϕ of the form R2 → R1, the

proof is similar, but we have a1 = a′1 = f −1
R

(a2).

Let us now show that I |= Σ
rev
UID

. Assume to the contrary that there is an active fact F = R(a1,a2) that witnesses the

violation of a UID τ : Rp ⊆ Sq . If F is a fact of I0, we had ap ∈ Wants(I0, S
q ), so F cannot be an active fact in I as this

violation was solved in I . So we must have F ∈ I\I0. Hence, by definition of the new facts, we had ap ∈ Wants(I0,R
p );

so theremust be τ ′ : T r ⊆ Rp in Σrev
UID

such that ap ∈ πT r (I0). Hence, because Σ
rev
UID

is transitively closed, eitherT r = Sq

or the UID T r ⊆ Sq is in Σ
rev
UID. In the first case, as ap ∈ πT r (I0), F cannot be an active fact for τ , a contradiction. In

the second case, we had ap ∈ Wants(I0, S
q ), so ap ∈ πSq (I ) by definition of I , so again F cannot be an active fact for τ .

Hence, I is a finite weakly-sound superinstance of I0 that satisfies Σrev
U

and with dom(I ) = dom(I0), the desired

claim. �

IV.2 Adding Helper Elements

If our instance I0 is not balanced, we cannot use the construction that we just presented. The idea is then to make I0

balanced, which we do by adding “helper” elements that we assign to positions. The following example illustrates this:

Example IV.5. We use the same signature and dependencies as in Example IV.4. Consider I0 ··= {R(a,b)}, as depicted

in Figure 2. We have a ∈ Wants(I0,T
2) and b ∈ Wants(I0, S

1); however Wants(I0, S
2) = Wants(I0,T

1) = ∅, so I0 is not

balanced.

Still, we can construct the weakly-sound superinstance I ··= I0 ⊔ {S(b,h),T (h,a)} that satisfies the constraints.

Intuitively, we have added a “helper” element h and “assigned” it to the positions {S2,T 1}, so we could connect b to h

with S and h to a with T .

We will formalize this idea of augmenting the domain with helper elements, as a partially-specified superinstance,

namely, an instance that is augmented with helpers assigned to positions. However, we first need to understand at

which positions the helpers can appear, without violating weak-soundness:

Definition IV.6. For any two positions Rp and Sq , we write Rp ∼ID Sq when Rp = Sq or when Rp ⊆ Sq is in Σ
rev
UID

(and hence Sq ⊆ Rp is in Σ
rev
UID

by the reversibility assumption). We write [Rp ]ID for the ∼ID-class of R
p .

As Σrev
UID

is transitively closed, ∼ID is indeed an equivalence relation. Our choice of where to assign the helper

elements will be represented as a mapping to ∼ID-classes. We call the result a partially-specified superinstance, or

pssinstance:

Definition IV.7. A pssinstance of an instance I is a triple P = (I ,H, λ)whereH is a finite set of helpers and λ maps

each h ∈ H to an ∼ID-class λ(h).

We define Wants(P ,Rp ) ··= Wants(I ,Rp ) ⊔ {h ∈ H | Rp ∈ λ(h)}.

In other words, in the pssinstance, elements of I want to appear at the same positions as before, and helper elements

want to occur at their ∼ID-class according to λ. A realization of a pssinstance P is then a superinstance of its underlying

instance I which adds the helper elements, and whose additional facts respectWants(P ,Rp ):
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Definition IV.8. A realization of P = (I ,H, λ) is a superinstance I ′ of I such that dom(I ′) = dom(I ) ⊔H, and, for

any fact R(a) of I ′\I and Rp ∈ Pos(R), we have ap ∈ Wants(P ,Rp ).

Example IV.9. In Example IV.5, a pssinstance of I0 is P ··= (I0, {h},λ) where λ(h) ··= {S2,T 1}. Further, it is balanced.

For instance, Wants(P , S1) = {b} and Wants(P , S2) = {h}. The instance I in Example IV.5 is a realization of P .

It is easy to see that realizations of pssinstances are weakly-sound:

Lemma IV.10 (Binary realizations are completions). If I ′ is a realization of a pssinstance of I0 then it is a weakly-

sound superinstance of I0.

Proof. Consider a ∈ dom(I ′) and Rp ∈ Pos(σ ) such that a ∈ πRp (I
′). As I ′ is a realization, we know that either

a ∈ πRp (I ) or a ∈ Wants(P ,Rp ). By definition of Wants(P ,Rp ), and because H = dom(I ′)\ dom(I ), this means that

either a ∈ dom(I ) and a ∈ πRp (I ) ⊔Wants(I ,Rp ), or a ∈ dom(I ′)\ dom(I ) and Rp ∈ λ(a). Hence, let us check from the

definition that I ′ is weakly-sound:

• For any a ∈ dom(I ) and Rp ∈ Pos(σ ), we have shown that a ∈ πRp (I
′) implied that either a ∈ πRp (I ) or

a ∈ Wants(I ,Rp ).

• For any a ∈ dom(I ′)\ dom(I ) and for any Rp , Sq ∈ Pos(σ ), we have shown that a ∈ πRp (I
′) and a ∈ πSq (I

′)

implies that Rp , Sq ∈ λ(a), so that Rp ∼ID Sq , hence Rp = Sq or Rp ⊆ Sq is in Σ
rev
UID

. �

In the next subsection, we will show that we can construct pssinstances that are balanced in a sense that we will

define, and show that we can construct realizations for these pssinstances.

IV.3 Pu�ing it Together

What remains to show to conclude the proof of Theorem IV.1 is that we can construct a balanced pssinstance of I0,

even when I0 itself is not balanced. By a balanced pssinstance, we mean the exact analogue of Definition IV.2 for

pssinstances.

Definition IV.11. A pssinstance P = (I ,H, λ) is balanced if for every two positions Rp and Rq such that Rp → Rq

and Rq → Rp are in ΣUFD , we have
�

�Wants(P ,Rp )
�

� = |Wants(P ,Rq )|.

Again, the definition is phrased in a general way so as to be usable later without making the arity-two assumption.

If I0 is balanced, the empty pssinstance (I , ∅, λ), with λ the empty function, is a balanced pssinstance of I0, and we

could just complete I0 as we presented before. We now show that, even if I0 is not balanced, we can always construct

a balanced pssinstance, thanks to the helpers:

Lemma IV.12 (Balancing). Any finite instance I satisfying ΣUFD has a balanced pssinstance.

In fact, this lemma does not use the arity-two assumption. We will reuse it in the next section.

Proof. Let I be a finite instance. For any position Rp , define o(Rp ) ··=Wants(I ,Rp ) ⊔ πRp (I ), i.e., the elements that

either appear at Rp or want to appear there. We show that o(Rp ) = o(Sq) whenever Rp ∼ID Sq , which is obvious if

Rp = Sq , so assume Rp , Sq . First, we have πRp (I ) ⊆ o(Sq): elements in πRp (I ) want to appear at Sq unless they

already do, and in both cases they are in o(Sq). Second, elements of Wants(I ,Rp ) either occur at Sq , or at some other

position T r such that T r ⊆ Rp is a UID of Σrev
UID

, so that by transitivity T r = Sq or T r ⊆ Sq also holds, and so they
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want to be at Sq or they already are. Hence o(Rp ) ⊆ o(Sq); and symmetrically o(Sq) ⊆ o(Rp ). Thus, the set o(Rp ) only

depends on the ∼ID-class of R
p .

Let N ··= maxRp ∈Pos(σ )
�

�o(Rp )
�

�, which is finite. We define for each ∼ID-class [R
p ]ID a set p([Rp ]ID) of N −

�

�o(Rp )
�

�

fresh helpers. We let H be the disjoint union of the p([Rp ]ID) for all classes [R
p ]ID, and set λ to map the elements of

p([Rp ]ID) to [R
p ]ID. We have thus defined a pssinstance P = (I ,H, λ).

Let us now show that P is balanced. Consider now two positions Rp and Rq such that ϕ : Rp → Rq and ϕ−1 : Rq →

Rp are in ΣUFD , and show that
�

�Wants(P ,Rp )
�

� = |Wants(P ,Rq )|. We have
�

�Wants(P ,Rp )
�

� =

�

�Wants(I ,Rp )
�

�+

�

�p([Rp ]ID)
�

� =

�

�o(Rp )
�

�−|πRp (I )|+N −
�

�o(Rp )
�

�, which simplifies toN −|πRp (I )|. Similarly |Wants(P ,Rq )| = N −|πRq (I )|. Since I |= ΣUFD

and ϕ and ϕ−1 are in ΣUFD we know that |πRp (I )| = |πRq (I )|. Hence, P is balanced, as we claimed. �

We had seen in Proposition IV.3 that we could construct a weakly-sound superinstance of a balanced I0 by pairing

together elements. We now generalize this claim to the balanced pssinstances that we constructed, showing that we

can build realizations of balanced pssinstances that satisfy Σ
rev
U

:

Lemma IV.13 (Binary realizations). For any balanced pssinstance P of an instance I which satisfies ΣUFD , we can

construct a realization of P that satisfies Σrev
U

.

Proof. As in Proposition IV.3, for every relation R, construct a bijection fR betweenWants(P ,R1) andWants(P ,R2):

this is possible, as P is balanced. We then construct our realization I ′ as in Proposition IV.3: we add to I the fact

R(a, fR (a)) for every R of σ and every a ∈ Wants(P ,R1).

We prove that I ′ is a realization as in Proposition IV.3 by observing that whenever we create a fact R(a, fR (a)), then

we have a ∈ Wants(P ,R1) and fR (a) ∈ Wants(P ,R2). Similarly, we show that I ′ |= ΣUFD as in Proposition IV.3.

We now show that I ′ satisfies Σrev
UID

. Assume to the contrary that there is an active fact F = R(a1, a2) that witnesses

the violation of a UID τ : Rp ⊆ Sq , so that ap ∈ Wants(I ′, Sq). If ap ∈ dom(I ), then the proof is exactly as for

Proposition IV.3. Otherwise, if ap ∈ H, clearly by construction of fR and I ′ we have ap ∈ πT r (I ′) iff T r ∈ λ(ap).

Hence, as ap ∈ πRp (I
′) and as τ witnesses by the reversibility assumption that Rp ∼ID Sq , we have ap ∈ πSq (I

′),

contradicting the fact that ap ∈ Wants(I ′, Sq). �

We now conclude the proof of Theorem IV.1. Given the instance I0, construct a balanced pssinstance P with the

Balancing Lemma (Lemma IV.12), construct a realization I ′ of P that satisfies Σrev
U

with the Binary Realizations Lemma

(Lemma IV.13), and conclude by the “Binary Realizations are Completions” Lemma (Lemma IV.10) that I ′ is a weakly-

sound superinstance of I0.

V WEAK SOUNDNESS ON ARBITRARY ARITY SIGNATURES

We now lift the arity-two assumption and extend the results to arbitrary arity signatures:

Theorem V.1. Reversible UIDs and UFDs have finite weakly-universal models for ACQs.

A first complication when lifting the arity-two assumption is that realizations cannot be created just by pairing two

elements. To satisfy the UIDs we may have to create facts that connect elements on more than two positions, so we

may need more than the bijections between two positions that we used before. A much more serious problem is that

the positions where we connect together elements may still be only a subset of the positions of the relation, which

means that the other positions must be filled somehow.
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We address these difficulties by defining first piecewise realizations, which create partial facts on positions connected

by UFDs, similarly to the previous section. We show that we can get piecewise realizations by generalizing the Binary

Realizations Lemma (Lemma IV.13). Second, to find elements to reuse at other positions, we define a notion of satura-

tion. We show that, by an initial saturation process, we can ensure that there are existing elements that we can reuse

at positions where this will not violate UFDs (the non-dangerous positions). Third, we define a notion of thrifty chase

step to solve UID violations one by one. We last explain how to use thrifty chase steps to solve all UID violations on

saturated instances, using a piecewise realization as a template; this is howwe construct our weakly-sound completion.

As in the previous section, we fix the instance I0, reversible constraints Σ
rev
U

formed of UIDs Σrev
UID

and UFDs ΣUFD ,

and assume that I0 |= ΣUFD .

V.1 Piecewise Realizations

Without the arity-two assumption, we must define a new equivalence relation to reflect the UFDs, in addition to ∼ID

which reflects the UIDs:

Definition V.2. For any two positions Rp and Rq , we write Rp ↔FUN Rq whenever Rp = Rq or Rp → Rq and

Rq → Rp are both in ΣUFD .

By transitivity of ΣUFD ,↔FUN is indeed an equivalence relation.

The definition of balanced instances (Definition IV.2) generalizes as-is to arbitrary arity. We do not change the

definition of pssinstance (Definition IV.7), and talk of them being balanced (Definition IV.11) in the same way. Further,

we know that the Balancing Lemma (Lemma IV.12) holds even without the arity-two assumption.

Our general scheme is the same: construct a balanced pssinstance of I0, and use it to construct the completion I .

What we need is to change the notion of realization. We replace it by piecewise realizations, which are defined on↔FUN-

classes. We number the ↔FUN-classes of Pos(σ ) as Π1, . . . ,Πn and define piecewise instances by their projections to

the Πi :

Definition V.3. A piecewise instance is an n-tuple PI = (K1, . . . ,Kn), where each Ki is a set of |Πi |-tuples, indexed

by Πi for convenience. The domain of PI is dom(PI ) ··=
⋃

i dom(Ki ). For 1 ≤ i ≤ n and Rp ∈ Πi , we define

πRp (PI ) ··= πRp (Ki ).

We will realize a pssinstance P , not as an instance as in the previous section, but as a piecewise instance. The tuples

in each Ki will be defined from P , and will connect elements that want to occur at the corresponding position in Πi ,

generalizing the ordered pairs constructedwith bijections in the proof of the Binary Realizations Lemma (Lemma IV.13).

Let us define accordingly the notion of a piecewise realization of a pssinstance as a piecewise instance:

Definition V.4. A piecewise instance PI = (K1, . . . ,Kn) is a piecewise realization of the pssinstance P = (I ,H, λ)

if:

• πΠi (I ) ⊆ Ki for all 1 ≤ i ≤ n,

• dom(PI ) = dom(I ) ⊔H,

• for all 1 ≤ i ≤ n, for all Rp ∈ Πi , for every tuple a ∈ Ki\πΠi (I ), we have ap ∈ Wants(P ,Rp ).

Notice that the definition is similar to the conditions imposed on realizations (Definition IV.8), although piecewise

realizations are piecewise instances, not actual instances; so we will need one extra step to make real instances out of

them: this is done in Section V.4.
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We must now generalize the Binary Realizations Lemma (Lemma IV.13) to construct these piecewise realizations

out of balanced pssinstances. For this, we need to define what it means for a piecewise instance PI to “satisfy” Σrev
U

.

For ΣUFD , we require that PI respects the UFDs within each ↔FUN-class. For Σrev
UID

, we define it directly from the

projections of PI .

Definition V.5. A piecewise instance PI is ΣUFD-compliant if, for all 1 ≤ i ≤ n, there are no two tuples a , b in Ki

such that ap = bp for some Rp ∈ Πi .

PI is Σrev
UID

-compliant if Wants(PI ,τ ) ··= πRp (PI )\πSq (PI ) is empty for all τ : Rp ⊆ Sq in Σ
rev
UID

.

PI is Σrev
U

-compliant if it is ΣUFD- and Σ
rev
UID

-compliant.

We can then state and prove the generalization of the Binary Realizations Lemma:

Lemma V.6 (Realizations). For any balanced pssinstance P of an instance I that satisfies ΣUFD , we can construct a

piecewise realization of P which is ΣrevU -compliant.

Before we prove the Realizations Lemma, we show a simple example:

Example V.7. Consider a 4-ary relation R and the UIDs τ : R1 ⊆ R2, τ ′ : R3 ⊆ R4 and their reverses, and the UFDs

ϕ : R1 → R2, ϕ′ : R3 → R4 and their reverses. We have Π1 = {R1,R2} and Π2 = {R3,R4}. Consider I0 ··= {R(a,b, c,d)},

which is balanced, and the trivial balanced pssinstance P ··= (I0, ∅, λ), where λ is the empty function. A Σ
rev
U

-compliant

piecewise realization of P is PI ··= ({(a,b), (b,a)}, {(c,d), (d, c)}).

We conclude the subsection with the proof of the Realizations Lemma:

Proof of Lemma V.6. Let P = (I ,H, λ) be the balanced pssinstance. Recall that the↔FUN-classes ofσ are numbered

Π1, . . . ,Πn . By definition of P being balanced (Definition IV.2 applied to arbitrary arity), for any ↔FUN-class Πi , for

any two positions Rp ,Rq ∈ Πi , we have
�

�Wants(P ,Rp )
�

�

= |Wants(P ,Rq )|. Hence, for all 1 ≤ i ≤ n, let us write si to

denote the value of
�

�Wants(P ,Rp )
�

� for some Rp ∈ Πi .

For 1 ≤ i ≤ n, we letmi be |Πi |, and number the positions of Πi as R
p i1 , . . . ,R

p imi . We choose for each 1 ≤ i ≤ n

and 1 ≤ j ≤ mi an arbitrary bijection ϕij from {1, . . . , si } to Wants(P ,R
p ij ). We construct the piecewise realization

PI = (K1, . . . ,Kn) by setting each Ki for 1 ≤ i ≤ n to be πΠi (I ) plus the tuples (ϕ
i
1(l), . . . ,ϕ

i
mi

(l)) for 1 ≤ l ≤ si .

It is clear that PI is a piecewise realization. Indeed, the first two conditions are immediate. Further, whenever we

create a tuple a ∈ Ki for any 1 ≤ i ≤ n, then, for any Rp ∈ Πi , we have ap ∈ Wants(P ,Rp ).

Let us then show that PI is ΣUFD-compliant. Assume by contradiction that there is 1 ≤ i ≤ n and a, b ∈ Ki such that

al = bl but ar , br for some Rl ,Rr ∈ Πi . As I satisfies ΣUFD , we assume without loss of generality that a ∈ Ki\πΠi (I ).

Now either b ∈ πΠi (I ) or b ∈ Ki\πΠi (I ).

• If b ∈ πΠi (I ), thenbl ∈ πRl (I ). Yet, we know by construction that, as a ∈ Ki\πΠi (I ), we have al ∈ Wants(P ,Rl ),

and as al = bl we have al ∈ Wants(P ,Rl ), which contradicts the fact that b ∈ πΠi (I ).

• If b ∈ Ki\πΠi (I ), then, writing R
l
= R

p ij and Rr = R
p i
j′ , the fact that al = bl but ar , br contradicts the fact

that ϕij ◦ (ϕ
i
j′
)−1 is injective.

Hence, PI is ΣUFD-compliant.

Let us now show that PI is Σrev
UID

-compliant. We must show that, for every UID τ : Rp ⊆ Sq of Σrev
UID

, we have

Wants(PI , τ ) = ∅, which means that we have πRp (PI ) ⊆ πSq (PI ). Let Πi be the ↔FUN-class of R
p , and assume to the

contrary the existence of a tuple a of Ki such that ap < πSq (PI ). Either we have ap ∈ dom(I ) or we have ap ∈ H:
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• If ap ∈ dom(I ), then we have ap < πSq (PI ), in particular ap < πSq (I ). Now there are two subcases: either

a ∈ πΠi (I ), and then we have ap ∈ πRp (I ); or a ∈ Ki \ πΠi (I ), in which case we know that ap ∈ Wants(P ,Rp ),

so that as ap ∈ dom(I ) we have ap ∈ Wants(I ,Rp ). In both subcases, τ witnesses that ap ∈ Wants(I ,Sq ). By

construction of PI , then, letting Πi ′ be the ↔FUN-class of S
q and letting Sq = S

p i
′

j , as ϕi
′

j is surjective, we

must have ap ∈ πSq (Ki ′), that is, ap ∈ πSq (PI ), a contradiction.

• If ap ∈ H, then clearly by construction we have ap ∈ πT r (PI ) iff T r ∈ λ(ap ), so that, given that τ witnesses

Rp ∼ID Sq , if ap ∈ πRp (PI ) then ap ∈ πSq (PI ), a contradiction.

We conclude that PI is indeed a Σrev
U

-compliant piecewise realization of P . �

V.2 Relation-Saturation

The Realizations Lemma (Lemma V.6) gives us a Σrev
U

-compliant piecewise realization which is a piecewise instance. To

construct an actual superinstance from it, we will have to expand each tuple t of each Ki , defined on the↔FUN-class

Πi , to an entire fact Ft of the corresponding relation.

However, to fill the other positions of Ft , we will need to reuse existing elements of I0. To do this, it is easier to

assume that I0 contains some R-fact for every relation R of the signature.

Definition V.8. A superinstance I of I0 is relation-saturated if for every R ∈ σ there is an R-fact in I .

We illustrate why it is easier to work with relation-saturated instances:

Example V.9. Suppose our schema has two binary relations R and T and a unary relation S , the UIDs τ : S1 ⊆ R1,

τ ′ : R2 ⊆ T 1 and their reverses, and no UFDs. Consider the non-relation-saturated instance I0 ··= {S(a)}. It is balanced,

so P ··= (I0, ∅, λ), with λ the empty function, is a pssinstance of I .

Now, a Σrev
U

-compliant piecewise realization of P is PI = (K1, . . . ,K5) with K2 = K4 = K5 = ∅ and K1 = K3 = {a},

where Π1 and Π3 are the↔FUN-classes of R
1 and S1. However, we cannot easily complete PI to an actual superinstance

of I0 satisfying τ and τ ′. Indeed, to create the fact R(a, •), as indicated by K1, we need to fill position R2. Using an

existing element would violate weak-soundness, and using a fresh element would introduce a violation of τ ′, which P

and PI would not tell us how to solve.

Consider instead the relation-saturated instance I1 ··= I0 ⊔ {S(c),R(c,d),T (d, e)}. We can complete I1 to a weakly-

sound superinstance that satisfies τ and τ ′, by adding the fact R(a,d). Observe how we reused d to fill position R2: this

does not violate weak-soundness or introduce new UID violations.

Relation-saturation can clearly be ensured by initial chasing, which does not violate weak-soundness. We call this

a saturation process to ensure relation-saturation:

Lemma V.10 (Relation-saturated solutions). For any reversible UIDs Σrev
UID

, UFDs ΣUFD , and instance I0 satisfying

ΣUFD , there exists a finite numbern ∈ N such that the result of performingn chase rounds on I0 by Σ
rev
UID

is a weakly-sound

relation-saturated superinstance of I0 that satisfies ΣUFD .

This allows us to assume that I0 was preprocessed with initial chasing if needed, so we can assume it to be relation-

saturated. To show the lemma, and also for further use, we make a simple observation on weak-soundness:

Lemma V.11 (Weak-soundness transitivity). If I ′ is a weakly-sound superinstance of I , and I is a weakly-sound

superinstance of I0, then I
′ is a weakly-sound superinstance of I0.
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Proof. Let a ∈ dom(I ′), and let us show that it does not witness a violation of the weak-soundness of I ′ for I0. We

distinguish three cases:

• If a ∈ dom(I0), then in particular a ∈ dom(I ). Hence, letting Sq be any position such that a ∈ πSq (I
′), as I ′ is

a weakly-sound superinstance of I , either a ∈ πSq (I ) or we have a ∈ Wants(I , Sq). Let Rp be a position such

that a ∈ πRp (I ), and such that Rp = Sq (in the first case) or Rp ⊆ Sq is in Σ
rev
UID

(in the second case). As I is

a weakly-sound superinstance of I0, either a ∈ πRp (I0) or a ∈ Wants(I0,R
p ). As Σrev

UID
is transitively closed,

we conclude that a ∈ Wants(I0, S
q ) or a ∈ πSq (I0). Hence, the fact that a occurs at position Sq in I ′ does not

cause a violation of weak-soundness in I ′ for I0.

• If a ∈ dom(I )\dom(I0), we must show that for any two positions Rp , Sq where a occurs in I ′, we have

Rp ∼ID Sq . Let us fix two such positions, i.e., we have a ∈ πRp (I
′) and a ∈ πSq (I

′). As I ′ is a weakly-

sound superinstance of I , we have either a ∈ πRp (I ) or a ∈ Wants(I ,Rp ), and we have either a ∈ πSq (I ) or

a ∈ Wants(I ,Sq). As in the previous case, let Tv and Uw be positions such that a ∈ πTv (I ) and a ∈ πU w (I ),

and Tv = Rp or the UID τ : Tv ⊆ Rp is in Σ
rev
UID

, and Uw
= Sq or the UID τ ′ : Uw ⊆ Sq is in Σ

rev
UID

. As

I is a weakly-sound superinstance of I0, and a < dom(I0), we know that Tv ∼ID Uw . By the reversibility

assumption and as Σrev
UID

is transitively closed, we deduce (using τ and τ ′ if necessary) that Rp ∼ID Sq , which

is what we wanted to show. Hence, the fact that a occurs at positions Rp and Sq in I ′ does not cause a violation

of weak-soundness in I ′ for I0.

• If a ∈ dom(I ′)\ dom(I ), then from the fact that I ′ is a weakly-sound superinstance of I , we deduce immediately

about a what is needed to show that it does not witness a violation of the weak-soundness of I ′ for I0.

So we conclude that I ′ is a weakly-sound instance of I0, as desired. �

We conclude the subsection by proving the Relation-Saturated Solutions Lemma (Lemma V.10):

Proof of Lemma V.10. Remember that the signature σ was assumed without loss of generality not to contain any

useless relation. Hence, for every relation R ∈ σ , there is an R-fact in Chase(I0, Σ
rev
UID

), which was generated at the

nR-th round of the chase, for some nR ∈ N. Let n ··= maxR∈σ nR , which is finite because the number of relations in σ

is finite. We take I to be the result of applying n chase rounds to I0.

It is clear that I is relation-saturated. The fact that I is weakly-sound is by the Weak-Soundness Transitivity Lemma

(Lemma V.11), because each chase step clearly preserves weak-soundness: the exported element occurs at a position

where it wants to occur, so we can use the reversibility assumption and new elements only occur at one position. �

V.3 Thri�y Chase Steps

We have explained why I0 can be assumed to be relation-saturated, and we know we can build a Σ
rev
U

-compliant

piecewise realization PI of a balanced pssinstance. Our goal is now to satisfy the UIDs using PI . We will do so by a

completion process that fixes each violation one by one, following PI . This subsection presents the tool that we use for

this, and the next subsection describes the actual process.

Our tool is a form of chase step, a thrifty chase step, which adds a new fact Fnew to satisfy a UID violation. For some

of the positions, the elements of Fnew will be defined from the realization PI , using one of its tuples. For each of these

elements, either Fnew makes them occur at a position that they want to be (thus satisfying another violation) or these

elements are helpers that did not occur already in the domain. At any other position Sr of Fnew, we may either reuse

an existing element (by relation saturation, one can always reuse an element that already occurs in that position) or
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create a fresh element (arguing that noUIDwill be violated on that element). This depends on whether Sr is dangerous

or non-dangerous:

Definition V.12. We say a position Sr ∈ Pos(σ ) is dangerous for the position Sq , Sr if Sr → Sq is in ΣUFD , and

write Sr ∈ Dng(Sq). Otherwise, still assuming Sq , Sr Sr is non-dangerous for Sq , written Sr ∈ NDng(Sq ). Note

that {Sq} ⊔ Dng(Sq ) ⊔ NDng(Sq) = Pos(S).

We can now define thrifty chase steps. The details of the definition are designed for the completion process defined

in the next subsection (Proposition V.17), and for the specialized notions that we will introduce later in this subsection

as well as in the following sections.

Definition V.13. Let I be a superinstance of I0, let τ : Rp ⊆ Sq be a UID of Σrev
UID

, and let Factive = R(a) be an active

fact for τ in I . We call Sq the exported position, and write Πi for its ↔FUN-class.

Applying a thrifty chase step to Factive (or a) in I by τ yields a superinstance I ′ of I0 which is I plus a single new

fact Fnew = S(b). We require the following on br for all S
r ∈ Pos(S):

• For Sr = Sq , we require bq = ap and bq ∈ Wants(I ,τ );

• For Sr ∈ Πi\{S
q}, we require that one of the following holds:

– br ∈ Wants(I ,Sr );

– br < dom(I ) and for all Ss ∈ Πi , such that br = bs , we have S
r ∼ID Ss ;

• For Sr ∈ Dng(Sq )\Πi , we require br to be fresh and occur only at that position;

• For Sr ∈ NDng(Sq), we require that br ∈ πS r (I ).

Thrifty chase steps eliminate UID violations on the element at the exported position Sq of the new fact (which is

why we call them “chase steps”), and also eliminate violations on positions in the same ↔FUN-class as S
q , unless a

fresh element is used there. The completion process that we will define in the next subsection will only apply thrifty

chase steps (namely, relation-thrifty steps, which we will define shortly), and indeed this will be true of all completion

processes used in this paper.

For now, we can observe that thrifty chase steps cannot break weak-soundness:

Lemma V.14 (Thrifty preserves weak-soundness). For any weakly-sound superinstance I of an instance I0, letting

I ′ be the result of applying a thrifty chase step on I , we have that I ′ is a weakly-sound superinstance of I0.

Proof. By the Weak-Soundness Transitivity Lemma (Lemma V.11), it suffices to show that I ′ is a weakly-sound

superinstance of I . It suffices to check this for the elements occurring in the one fact Fnew = S(b) of I ′\I , as the other

elements occur at the same positions as before. Let us show for each br for Sr ∈ Pos(S) that br does not cause a

violation of weak-soundness:

• For Sr = Sq , we have br ∈ Wants(I ,Sr ), so br does not violate weak-soundness;

• For Sr ∈ Πi\{S
q}, there are two possible cases:

– br ∈ Wants(I ,Sr ), so br does not violate weak-soundness;

– br < dom(I ) and br occurs only at positions related by ∼ID, so br does not violate weak-soundness;

• For Sr ∈ Dng(Sq )\Πi , br is fresh and occurs at a single position in I ′, so br does not violate weak-soundness;

• For Sr ∈ NDng(Sq), as br ∈ πS r (I ), br does not violate weak-soundness. �
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Thrifty chase steps may introduce UFD violations. For this reason, we introduce the special case of relation-thrifty

chase steps, which can not introduce such violations. (Relation-thrifty chase steps may still introduce FD violations;

we will deal with this in Section VIII.)

Definition V.15 (Relation-thrifty). A relation-thrifty chase step is a thrifty chase step where, reusing the notation

of Definition V.13, we choose one fact Freuse = S(c) of I , and use Freuse to define br ··= cr for all S
r ∈ NDng(Sq).

Remember that relation-saturation ensures that such a fact S(c) can always be found, so clearly any UID violation

can be solved on a relation-saturated instance by applying some relation-thrifty chase step. Further, we can show that

relation-thrifty chase steps, unlike thrifty chase steps, preserve UFDs:

Lemma V.16 (Relation-thrifty preservation). For any superinstance I of an instance I0 such that I satisfies ΣUFD ,

letting I ′ be the result of applying a relation-thrifty chase step on I , then I ′ satisfies ΣUFD . Further, if I is relation-saturated,

then I ′ is relation-saturated.

Proof. Assume to the contrary the existence of two facts F = S(a) and F ′ = S(b) in I ′ that witness a violation of

some UFD ϕ : Sr → Sp of ΣUFD . As I |= ΣUFD , we may assume without loss of generality that F ′ is Fnew = S(b), the

unique fact of I ′\I . Write τ : Rp ⊆ Sq the UID of Σrev
UID

applied in the relation-thrifty chase step.

We first note that we must have Sr inNDng(Sq ). Indeed, assuming to the contrary that Sr = Sq or Sr ∈ Dng(Sq), the

definition of thrifty chase steps requires that either br < dom(I ) or br ∈ Wants(I ,Sr ), so that in either case br < πS r (I ).

Yet, as ar = br , F witnesses that br ∈ πS r (I ), a contradiction. Thus, S
r ∈ NDng(Sq).

Now, because ϕ is in ΣUFD and ΣUFD is closed under the UFD transitivity rule, unwinding the definitions we can

see that Sp ∈ NDng(Sq ) as well. Now, let Freuse = S(c) be the chosen fact for the relation-thrifty chase step. Observe

that we must have F , Freuse: this follows because we have πS r (Freuse) = cq = bq but πS r (F ) = aq and aq , bq by

definition of a UFD violation. Remember now that the definition of Fnew from Freuse ensures that bq = cq and br = cr .

As we also showed that F , Freuse, we know that F and Freuse are also a violation of ϕ. But as F and Freuse are in I , this

contradicts the fact that I |= ΣUFD .

The second part of the claim is immediate. �

To summarize: we have defined the general tool used in our completion process, thrifty chase steps, along with a

special case that preserves UFDs, relation-thrifty chase steps, which applies to relation-saturated instances. We now

move to the last part of this section, where we use this tool to satisfy UID violations, also using the tools previously

defined in this section.

V.4 Relation-Thri�y Completions

To prove Theorem V.1, let us start by taking our initial finite instance I0, which satisfies ΣUFD , and use the Relation-

Saturated Solutions Lemma (Lemma V.10) to obtain a finite weakly-sound superinstance I ′0 which is relation-saturated

and still satisfies ΣUFD . We now obtain our weakly-sound superinstance from I ′0 by performing a completion process

by relation-thrifty chase steps, which we phrase as follows:

Proposition V.17 (Reversible relation-thrifty completion). For any reversible ΣUFD and Σ
rev
UID

, for any finite

relation-saturated instance I ′0 that satisfies ΣUFD , we can use relation-thrifty chase steps to construct a finite weakly-sound

superinstance If of I
′
0 that satisfies Σ

rev
U
= Σ

rev
UID

∪ ΣUFD .
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Indeed, once this result is proven, we can immediately conclude the proof of Theorem V.1 with it, by applying it

to I ′0 and obtaining If which is a weakly-sound superinstance of I ′0, hence of I0 by the Weak-Soundness Transitivity

Lemma (Lemma V.11). So we conclude the section with the proof of this proposition.

Recall that we number Π1, . . . ,Πn the ↔FUN-classes of Pos(σ ). For two classes Πi ,Πj over a relation R, we write

Πi → Πj to mean that for all Rp ∈ Πi and Rq ∈ Πj the UFD Rp → Rq is in ΣUFD . Note that this is true iff it is true

for some pair of positions (by definition of a↔FUN-class and the fact that ΣUFD is transitively closed). We first define

the inner classes, where creating elements may cause UID violations, and the outer classes, where this cannot happen

because no position of the class occurs in any UID:

Definition V.18. We say that Πj is an inner ↔FUN-class if it contains a position occurring in Σ
rev
UID

; otherwise, it is

an outer↔FUN-class.

The fundamental property is:

Lemma V.19. For any 1 ≤ i, j ≤ n with i , j, if Πi is inner and Πj → Πi then Πj is outer.

Proof. Assume to the contrary that Πj is inner. This means that it contains a position Rq that occurs in Σ
rev
UID

. As

Πi is inner, pick any Rp ∈ Πi that occurs in Σ
rev
UID

. As Πj → Πi , ϕ : Rq → Rp is in ΣUFD . Hence, by the reversibility

assumption, ϕ−1 also is in ΣUFD . But then we have Rp ↔FUN Rq , contradicting the maximality of ↔FUN-classes Πi

and Πj . �

Let us now start the actual proof of Proposition V.17, and fix the finite relation-saturated instance I ′0 that satisfies

ΣUFD . We start by constructing a balanced pssinstance P of I ′0 using the Balancing Lemma (Lemma IV.12), and a finite

Σ
rev
U

-compliant piecewise realization PI = (K1, . . . ,Kn) of P by the Realizations Lemma (Lemma V.6). Let F be an

infinite set of fresh elements (not in dom(P)) from which we will take the (finitely many) fresh elements that we will

introduce (only at dangerous positions, in outer classes) during the relation-thrifty chase steps.

We will use PI to construct a weakly-sound superinstance If by relation-thrifty chase steps. We maintain the fol-

lowing invariant when doing so:

Definition V.20. A superinstance I of the instance I ′0 follows the piecewise realization PI = (K1, . . . ,Kn) if for every

inner ↔FUN-class Πi , we have πΠi (I ) ⊆ Ki .

We prove the Reversible Relation-Thrifty Completion Proposition (Proposition V.17) by satisfying UID violations

in I ′0 with relation-thrifty chase steps using the piecewise realization PI . We call I the current state of our superinstance,

starting at I ··= I ′0, and we perform relation-thrifty chase steps on I to satisfy UID violations, until we reach a finite

weakly-sound superinstance If of I
′
0 such that If satisfies Σ

rev
UID

and If follows PI . This If will be the final result of the

Reversible Relation-Thrifty Completion Proposition.

Chasing by relation-thrifty chase steps preserves the following invariants:

sub: I ′0 ⊆ I (this is clearly monotone);

wsnd: I is weakly-sound (by Lemma V.14);

fun: I |= ΣUFD (by Lemma V.16);

rsat: I is relation-saturated (by Lemma V.16).

Further, we maintain the following invariants:

fw: I follows PI ;
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help: For a position Rp of an outer class, πRp (I ) and H (the set of helper elements), are disjoint.

Let us show that any UID violation in I at any stage of the construction can be solved by applying a relation-thrifty

chase step that preserves these invariants. To show this, let a ∈ Wants(I ,τ ) be an element to which some UID τ : Rp ⊆

Sq of Σrev
UID

is applicable. Let Factive = R(a) be the active fact, with a = ap . Let Πi ,Πj denote the ↔FUN-classes of R
p

and Sq respectively. The UID τ witnesses that Πi is inner, so by invariant fw we have a ∈ πRp (PI ). As PI is Σ
rev
UID

-

compliant, we must have a ∈ πSq (PI ), and there is a
�

�Πj

�

�-tuple t ∈ K j such that tq = a; in fact, by ΣUFD-compliance,

there is exactly one such tuple. What is more, this tuple must be in K j \πΠj
(I ), as otherwise we would have a ∈ ΠSq (I ),

contradicting the applicability of τ to Factive.

Let Freuse = S(c) be an S-fact of I ′0, which is possible by invariant rsat. We create a new fact Fnew = S(b) with the

relation-thrifty chase step defined as follows:

• For the exported position Sq , we set bq ··= ap .

• For any Sr ∈ Πj , we set br ··= tr .

• For any position Sr ∈ Dng(Sq)\Πj , we take br to be a fresh element fr from F .

• For any position Sr ∈ NDng(Sq), we set br ··= cr .

We first verify that this satisfies the conditions of thrifty chase steps. We have set bq = a, and by definition of Freuse

it is immediate that br ∈ πS r (I ) for S
r ∈ NDng(Sq). For Sr ∈ Dng(Sq)\Πj , we use a fresh element fr from F which

occurs only at position Sr , as we should.

The last case to check is for Sr ∈ Πj\{S
q}. The first case is if br < dom(I ), in which case we must show that all

positions at which br occurs are ∼ID-equivalent. Assume that br occurs at some other position Ss ∈ Πj . Now as br is

in πS s (PI ), by definition of PI being a piecewise realization of P , we have br ∈ Wants(P , Ss ). Now, as br < dom(I ), by

invariant subwe also have br < dom(I ′0). But as br ∈ dom(PI ), we must have br ∈ H. So by definition of a pssinstance

we have Ss ∈ λ(br ). Now, observe that we have br ∈ Wants(P , Sr ) because br = tr and t ∈ K j \ πΠj
(I ) implies by

definition of a piecewise realization that tr ∈ Wants(P , Sr ). Hence, we have Sr ∈ λ(br ). By definition of λ(br ) being

an ∼ID-class, this means that Sr ∼ID Ss , as required.

The second case is br ∈ dom(I ). We will show that we have br ∈ Wants(I ,Sr ). Observe first thatbr < πS r (I ). Indeed,

assuming to the contrary that br ∈ πS r (I ), let F = S(d) be a witnessing fact in I . Now, τ witnesses that Πj is inner, so

by invariant fw, we deduce that πΠj
(d) ∈ πΠj

(PI ). Now, as dr = tr and PI is ΣUFD-compliant, we deduce that d = t,

so that F witnesses that dq is in πSq (I ). As we have dq = tq = a, this contradicts the applicability of τ to a. Hence, we

have br < πS r (I ).

Second, observe that we have tr ∈ Wants(P , Sr ). Indeed, we have br = tr which is in πS r (PI ), and we cannot have

t ∈ πΠj
(I ), as otherwise this would contradict the applicability of τ to a, as we showed; so in particular, by invariant

sub, we cannot have t ∈ πΠj
(I ′0). Thus, by definition of a piecewise realization, we have tr ∈ Wants(P , Sr ).

Now, as tr ∈ Wants(P , Sr ), by definition ofWants(P , Sr ), there are two cases:

• We have tr ∈ dom(I ′0) and tr ∈ Wants(I ′0, S
r ). In this case, as we have shown that tr < πS r (I ), we conclude

immediately that tr ∈ Wants(I ,Sr ).

• We have tr ∈ H and Sr ∈ λ(tr ). In this case, consider a fact F ′ of I witnessing tr ∈ dom(I ), where tr occurs

at a position T l ; let Πi ′ be the ↔FUN-class of T
l . As tr ∈ H, by invariant help, Πi ′ is inner, so by invariant

fw there is a tuple t′ of Ki ′ such that t ′
l
= tr . Now, as tr ∈ H, by definition of piecewise realizations, we have

T l ∈ λ(tr ). Hence, either the UID τ ′ : T l ⊆ Sr is in Σ
rev
UID

or we have T l = Sr . As tr ∈ πT l (I ) and we have
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shown earlier that tr < πS r (I ), we know thatT l , Sr , so τ ′ is in Σ
rev
UID

. Hence, as F ′ witnesses that tr ∈ πT l (I ),

and as tr < πS r (I ), we conclude that tr ∈ Wants(I ,Sr ).

Hence, in either case we have tr ∈ Wants(I ,Sr ), as claimed. This concludes the proof of the fact that we have indeed

defined a thrifty chase step. Further, the step is clearly relation-thrifty by construction. The last thing to do is to check

that invariants fw and help are preserved by the relation-thrifty chase step:

• For invariant fw, τ witnesses that the class Πj of S
q is inner. Hence, for any Sr ∈ Dng(Sq )\Πj , by Lemma V.19,

the↔FUN-class of S
r is outer. Thus, to show that fw is preserved, it suffices to show it for the↔FUN-class Πj

and on the ↔FUN-classes included in NDng(Sq) (clearly no ↔FUN-class includes both a position of Dng(Sq)

and a position of NDng(Sq )). For Πj , the new fact Fnew is defined following t; for the classes in NDng(Sq ), it

is defined following an existing fact of I . Hence, invariant fw is preserved.

• Invariant help is preserved because the only new elements of Fnew that may be inH are those used at positions

of Πj , which is inner.

Let If be the result of the process that we have described. It satisfies ΣUID by definition, and it is a weakly-sound

superinstance of I ′0 that satisfies ΣUID, by invariants wsnd, sub, and fun. Further, it follows PI by invariant fw, and

PI is finite. This implies that If is finite, because we apply chase steps by Σ
rev
UID

, so each chase step makes an element

of dom(PI ) occur at a new position, so we only applied finitely many chase steps. This concludes the proof of the

Reversible Relation-Thrifty Completion Proposition (Proposition V.17), and concludes the section.

VI ENSURING k-UNIVERSALITY

We build on the constructions of the previous section to replace weak-soundness by k-soundness for acyclic queries

in ACQ, for some k > 0 fixed in this section. That is, we aim to prove:

Theorem VI.1. Reversible UIDs and UFDs have finite k-universal models for ACQs.

We first introduce the concept of aligned superinstances, which give us an invariant that ensures k-soundness. We

then give the fact-saturation process that generalizes relation-saturation, and a related notion of fact-thrifty chase step.

We then define essentiality, which must additionally be ensured for us to be able to reuse the weakly-sound completions

of the previous section. We conclude by the construction of a generalized completion process that uses these chase

steps to repair UID violations in the instance while preserving k-soundness.

In this section, we still make the reversibility assumption on Σ
rev
UID

and ΣUFD . However, we will also be consider-

ing a superset ΣUID of Σrev
UID

, which we assume to be transitively closed, but which may not satisfy the reversibility

assumption. To prove Theorem VI.1, it suffices to define ΣUID ··= Σ
rev
UID

, so the distinction can be safely ignored on first

reading. The reason for the distinction will become apparent in the next section.

VI.1 Aligned Superinstances

In this subsection, we only work with the superset ΣUID, and we do not use the reversibility assumption. We en-

sure k-soundness relative to ΣUID by maintaining a k-bounded simulation from our superinstance of I0 to the chase

Chase(I0, ΣUID).

Definition VI.2. For I , I ′ two instances, a ∈ dom(I ), b ∈ dom(I ′), and n ∈ N, we write (I ,a) ≤n (I ′,b) if, for any fact

R(a) of I with ap = a for some Rp ∈ Pos(R), there exists a fact R(b) of I ′ such that bp = b , and (I ,aq) ≤n−1 (I
′
,bq) for

all Rq ∈ Pos(R) (note that this is tautological for Rq = Rp ). The base case (I ,a) ≤0 (I
′
,b) always holds.
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Fig. 3. Examples of 2-bounded simulations (represented as dashed red lines): see Example VI.3

Ann-bounded simulation from I to I ′ is a mapping sim such that for all a ∈ dom(I ), we have (I ,a) ≤n (I ′, sim(a)).

We write a ≃n b for a,b ∈ dom(I ) if both (I ,a) ≤n (I ,b) and (I ,b) ≤n (I ,a); this is an equivalence relation on

dom(I ).

Example VI.3. We illustrate in Figure 3 some examples of 2-bounded simulations from one instance to another, on

a binary signature. For any element a in a left instance I and image a′ of a in the right instance I ′ by the 2-bounded

simulation (represented by the dashed red arrows), we have (I ,a) ≤2 (I ′,a′). This means that, for any element b in I

which is adjacent to a by some relation R, there must be an element b ′ in I ′ which is adjacent to a′ by R and satisfies

(I ,b) ≤1 (I
′
,b ′); however, note that b ′ need not be the image of b by the bounded simulation.

Figure 3a illustrates how a homomorphism is a special case of a 2-bounded simulation (indeed, it is an n-bounded

simulation for any n ∈ N).

Figure 3b illustrates how a 2-bounded simulation from I to I ′ does not guarantee that any ACQ satisfied by I is also

true in I ′: for this example, consider the query ∃xyzuvw R(x,y) ∧ S(y,z) ∧T (z,u) ∧U (u,v) ∧V (v,w). However, we

will soon see that n-bounded simulations preserve ACQ of size ≤ n (Lemma VI.4).

Figure 3c shows that a 2-bounded simulation does not preserveCQs that are notACQs, as witnessed by∃xyz R(x,y)∧

S(y,z) ∧T (z,x). More generally, n-bounded simulations for all n do not generally preserve this CQ, or other such CQs.

The point of bounded simulations is that they preserve acyclic queries of size smaller than the bound:

Lemma VI.4 (ACQ preservation). For any instance I and ACQ q of size ≤ n such that I |= q, if there is an n-bounded

simulation from I to I ′, then I ′ |= q.

To show this lemma, we introduce a different way to write queries in ACQ. Consider the following alternate query

language:

Definition VI.5. We inductively define a special kind of query with at most one free variable, a pointed query. The

base case is that of a tautological query with no atoms. Inductively, pointed queries include all queries of the form:

q(x) :
∧

i

(

∃yi
(

Ai (x, yi) ∧
∧

yij ∈y
i

qij (y
i
j )
)

)
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where the yi are vectors of pairwise distinct variables (also distinct from x),Ai are atomswith free variables as indicated

and with no repeated variables (each free variable occurs at exactly one position), and the qij are pointed queries.

The size |q | of a pointed query q is the total number of atoms in q, including its subqueries.

It is easily seen that, for any pointed query q′, the query q : ∃x q′(x) is an ACQ. Conversely, we can show:

Lemma VI.6. For any (Boolean) ACQ q and variable x of q, we can rewrite q as ∃x q′(x) with q′ a pointed query such

that |q | = |q′ |.

Proof. We show the claim by induction on the size of q. It is clearly true for the empty query.

Otherwise, let A = A1, . . . ,Am be the atoms of q where x occurs. Because q is an ACQ, x occurs exactly once in

each of them, and each variable y occurring in one of theAi occurs exactly once in them overall: y cannot occur twice

in the same atom, nor can occur in two different atoms Ap and Aq (as in this case Ap , y, Aq , x would be a Berge cycle

of q). Let Y be the set of the variables occurring in A, not including x .

Consider the incidence multigraphG of q (Definition III.7). Remember that we assume queries to be connected, so

q is connected, and G is connected. Let Z be the variables of q which are not in Y ∪ {x}. For each z ∈ Z , there must

be a path pz from x to z in G, written x = wz
1 , . . . ,w

z
nz = z. Observe that, by definition of Y , we must have wz

2 ∈ Y

for any such path. Further, for each z ∈ Z , we claim that there is a single yz ∈ Y such thatwz
2 = yz for any such path.

Indeed, assuming to the contrary that there are yz , y′z in Y , a path pz whose second element is yz , and a path p ′z

whose second element is y′z , we deduce from pz and p ′z a Berge cycle in q.

Thus we can partition Z into sets of variables Zy for y ∈ Y , where Zy contains all variables z of Z such that y is

the variable used to reach z from x . Let Ay for y ∈ Y be the atoms of q whose variables are a subset of Zy ∪ {y}. It is

clear that A and the Ay are a partition of the atoms of q: no atom A can include a variable z from Zy and a variable

z ′ from Zy′ for y , y′ in Y , as otherwise a path from x to z and a path from x to z ′, together with A, imply that q has

a Berge cycle.

Now, we form for each y ∈ Y a query qy as the set of atoms Zy , with all variables existentially quantified except

for y. As the queries ∃y qy (y) are connected queries in ACQ which are strictly smaller than q, by induction we can

rewrite qy to a pointed query of the same size. Hence, we have shown that q can be rewritten as a pointed query built

from the Ai and, for each i , the qy for y ∈ Y . �

We use this normal form to prove the ACQ Preservation Lemma (Lemma VI.4):

Proof of Lemma VI.4. Fix the instances I and I ′, and the ACQ q. We show, by induction on n ∈ N, the following

claim: for anyn ∈ N, for any pointed query q such that |q | ≤ n, for any a ∈ dom(I ), if I |= q(a), then for any a′ ∈ dom(I ′)

such that (I ,a) ≤n (I ′,a′), we have I ′ |= q(a′). Clearly this claim implies the statement of the Lemma, as by Lemma VI.6

any ACQ query can be written as ∃x q(x) with q a pointed query. The case of the trivial query is immediate.

For the induction step, consider a pointed queryq(x) of sizen ··= |q |,n > 0, written in the form of Definition VI.5, and

fix a ∈ dom(I ). Consider a match h of q(a) on I , which must map x to a. Let a′ ∈ dom(I ′) be such that (I ,a) ≤n (I ′,a′).

We show that I ′ |= q′(a).

Using notation fromDefinition VI.5, write y the (disjoint) union of the yi , writeA = A1
, . . . ,An , and writeqij (y

i
j ) the

subqueries. Let bij
··= h(yij ) for all y

i
j ∈ y. We show that there is a match hA ofA on I ′ that maps x to a′ and such that

every yij ∈ y is mapped to some element (bij )
′ of I ′ such that (I ,bij ) ≤n−1 (I

′
, (bij )

′). Indeed, start by fixing hA(x) ··= a′.

Now, for each atom Ai = R(x, yi) of A, the variable x occurs at some position, say Rp , and h(Ai ) = R(bi) is a fact of I
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where h(x) = a occurs at position Rp . As each variable in yi occurs at precisely one position of Ai , we index each of

these variables by the one position in Ai where it occurs. Now, as (I ,a) ≤n (I ′, a′), there is a fact (Ai )′ = R((bi)′) of I ′

such that (bip )
′
= a′ and, for all 1 ≤ j ≤ |R | with p , j, we have (I ,bij ) ≤n−1 (I ′, (bij )

′). We define hA(yij )
··= (bij )

′

for all i and j. As each variable of y occurs exactly once in A overall, the definitions cannot conflict, so this correctly

defines a function hA which is clearly a match of A on I ′ with the claimed properties.

Now, each of the qij is a pointed query which is strictly smaller than q. Further, the restriction of h to the variables

of qij is a match of qij on I that maps each yij (indexing the variables of yi in the same way as before) to bij ∈ dom(I ).

As we have (I ,bij ) ≤n−1 (I
′
, (bij )

′), then we can apply the induction hypothesis to show that each of the qij has a match

hi, j in I ′ that maps yij to (b
i
j )
′. As these queries have disjoint sets of variables, the range of the hi, j is disjoint, and the

range of each hi, j overlaps with hA only on {yij }, where we have hA(yij ) = hi, j(y
i
j ) = (bij )

′. Thus, we can combine the

hi, j and the previously defined hA to obtain an overall match of q in I ′ that matches x to a′. This concludes the proof

of the induction step, and proves our claim on pointed queries. �

This implies that any superinstance of I0 that has a k-bounded simulation toChase(I0, ΣUID)must be k-sound for ΣU

(no matter whether it satisfies ΣU or not). Indeed, the chase is a universal model for ΣUID, and it satisfies ΣUFD (by

the Unique Witness Property, and because I0 does). Hence, the chase is in particular k-universal for ΣU . Hence, by the

ACQ Preservation Lemma (Lemma VI.4), any superinstance with a k-bounded simulation to the chase is k-sound.

We give a name to such superinstances. For convenience, we also require them to be finite and satisfy ΣUFD . For

technical reasons we require that the simulation is the identity on I0, that it does not map other elements to I0, and

that elements occur in the superinstance at least at the position where their sim-image was introduced in the chase

(the directionality condition):

Definition VI.7. An aligned superinstance J = (I , sim) of I0 (for ΣUFD and ΣUID) consists of a finite superinstance I

of I0 that satisfies ΣUFD , and a k-bounded simulation sim from I to Chase(I0, ΣUID) such thatsim | dom(I0) is the identity

and sim | dom(I\I0) maps to Chase(I0, ΣUID)\I0.

Further, for any a ∈ dom(I )\ dom(I0), letting Rp be the position where sim(a) was introduced in Chase(I0, ΣUID),

we require that a ∈ πRp (I ). We call this the directionality condition.

We write dom(J ) to mean dom(I ), and extend other existing notation in the same manner when relevant, e.g.,

Wants(J ,τ ) means Wants(I ,τ ).

VI.2 Fact-Saturation

Before we perform the completion process that allows us to satisfy the UIDs Σrev
UID

, we need to perform a saturation

process. Like aligned superinstances, this process is defined with respect to the superset ΣUID, and does not depend

on the reversibility assumption. The process generalizes relation-saturation from the previous section: instead of

achieving all relations, we want the aligned superinstance to achieve all fact classes:

Definition VI.8. A fact class is a pair (Rp ,C) of a position Rp ∈ Pos(σ ) and a |R |-tuple of ≃k -classes of elements of

Chase(I0, ΣUID), with ≃k as in Definition VI.2.

The fact class of a fact F = R(a) of Chase(I0, ΣUID)\I0 is (R
p
,C), where ap is the exported element of F and Ci is

the ≃k -class of ai in Chase(I0, ΣUID) for all R
i ∈ Pos(R).

A fact class (Rp ,C) is achieved in Chase(I0, ΣUID) if NDng(R
p ) , ∅ and if it is the fact class of some fact of

Chase(I0, ΣUID)\I0. Such a fact is an achiever of the fact class. We write AFactCl for the set of all achieved fact classes.
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For brevity, the dependence on I0, ΣUID , and k is omitted from this notation.

The requirement that NDng(Rp ) is non-empty is a technicality that will prove useful in Section VIII. The following

is easy to see:

Lemma VI.9. For any initial instance I0, set ΣUID of UIDs, and k ∈ N, AFactCl is finite.

Proof. We first show that ≃k has only a finite number of equivalence classes on Chase(I0, ΣUID). Indeed, for any

element a ∈ dom(Chase(I0, ΣUID)), by the Unique Witness Property, the number of facts in which a occurs is bounded

by a constant depending only on I0 and ΣUID . We use the standard notion of the Gaifman graph of Chase(I0, ΣUID),

which is the infinite undirected graph having vertices the elements of Chase(I0, ΣUID), with an edge between any pair

of elements that occur in the same fact. The elements of dom(Chase(I0, ΣUID)) which are relevant to determine the

≃k -class of a are only those whose distance to a in the Gaifman graph is ≤ k . From the bound above, we see that there

is a constantM depending only on I0, ΣUID, and k , bounding the number of such elements. Since there are only finitely

many isomorphism types of structures onM elements, we get a finite bound on the number of equivalence classes.

This reasoning clearly implies that AFactCl is finite, because the number ofm-tuples of equivalence classes of ≃k

that occur in Chase(I0, ΣUID) is then finite for anym ≤ maxR∈σ |R |, and Pos(σ ) is finite. �

We define fact-saturated superinstances, which achieve all fact classes in AFactCl:

Definition VI.10. An aligned superinstance J = (I , sim) of I0 is fact-saturated if, for any achieved fact class D =

(Rp ,C) in AFactCl, there is a fact FD = R(a) of I\I0 such that sim(ai ) ∈ Ci for all R
i ∈ Pos(R). We say that FD

achieves D in J .

Note that this definition does not depend on the position Rp of the fact class.

The point of fact-saturation is that, when we perform thrifty chase steps, we can reuse elements from a suitable

achiever at the non-dangerous positions. With relation-saturation, the facts were of the right relation; with fact-

saturation, they further achieve the right fact class, which will be important to maintain the bounded simulation sim.

The fact-saturation completion process, which replaces the relation-saturation process of the previous section,

works in the same way.

Lemma VI.11 (Fact-saturated solutions). For any UIDs ΣUID, UFDs ΣUFD , and instance I0, there exists a finite

number n ∈ N such that the result I of performing n chase rounds on I0 is such that J0 = (I , id) is a fact-saturated aligned

superinstance of I0.

Proof. For every D ∈ AFactCl, let nD ∈ N be such that D is achieved by a fact of Chase(I0, ΣUID) created at round

nD . As AFactCl is finite, n ··= maxD ∈AFactCl nD is finite. Hence, all classes of AFactCl are achieved after n chase rounds

on I0.

Consider now I ′0 obtained from the aligned superinstance I0 by n rounds of the UID chase, and J0 = (I ′0, id). It is

clear that for any D ∈ AFactCl, considering an achiever of D in Chase(I0, ΣUID), the corresponding fact in J0 is an

achiever of D in J0. Hence, J0 is indeed fact-saturated. �

We thus obtain a fact-saturated aligned superinstance J0 of our initial instance I0, which we now want to complete

to one that satisfies the UIDs we are interested in, namely Σ
rev
UID

.
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VI.3 Fact-Thri�y Steps

In the previous section, we defined relation-thrifty chase steps, which reused non-dangerous elements from any fact of

the correct relation, assuming relation-saturation. We now define fact-thrifty steps, which are thrifty steps that reuse

elements from a fact achieving the right fact class, thanks to fact-saturation. To do so, however, we must first refine

the notion of thrifty chase step, to make them apply to aligned superinstances. We will always apply them to aligned

superinstances for ΣUID and ΣUFD ; however, we will always chase by the UIDs of Σrev
UID

.

Definition VI.12 (Applying thrifty chase steps to aligned superinstances). Let J = (I , sim) be an aligned superinstance

of I0 for ΣUID and ΣUFD , let τ : Rp ⊆ Sq be a UID of Σrev
UID

, and let a ∈ Wants(J ,τ ). The result of applying a thrifty

chase step to a in J by τ is a pair (I ′, sim′) where:

• The instance I ′ is the result of applying some thrifty step to a in I by τ , as in Definition V.13 (note that this

only depends on Σ
rev
UID

and ΣUFD , not on ΣUID).

• The mapping sim′ extends sim to elements of dom(I ′)\ dom(I ) as follows. Because sim is a k-bounded simu-

lation and k > 0, it is in particular a 1-bounded simulation, so we have sim(a) ∈ πRp (Chase(I0, ΣUID)). Hence,

because τ ∈ Σ
rev
UID

⊆ ΣUID , there is a fact Fwitness = S(b′) in Chase(I0, ΣUID) with b
′
q = sim(a). We call Fwitness

the chase witness. For any b ∈ dom(I ′)\ dom(I ), let S(®b) be the unique fact of I ′\I and let br be the only

element of that fact such that b = br ; we define sim
′(br ) ··= b

′
r .

We do not know yet whether the result (I ′, sim′) of a thrifty chase step on an aligned superinstance (I , sim) is still

an aligned superinstance; we will investigate this later.

Now that we have defined thrifty chase steps on aligned superinstances, we can clarify the role of the directionality

condition. Its goal is to ensure, intuitively, that as chase steps go “downwards” in the original chase, thrifty chase steps

on aligned superinstances makes the sim mapping go “downwards” in the chase as well. Formally:

Lemma VI.13 (Directionality). Let J be an aligned superinstance of I0 for ΣUID and ΣUFD , and consider the applica-

tion of a thrifty chase step for a UID τ : Rp ⊆ Sq . Consider the chase witness Fwitness = S(b′). Then b ′q is the exported

element of Fwitness.

Proof. Let F = R(a) be the active fact in J , let Fnew = S(b) be the new fact of J ′, and let τ : Rp ⊆ Sq be the UID,

so ap = bq is the exported element of this chase step. Let Fwitness = S(b′) be the chase witness in Chase(I0, ΣUID).

Assume by way of contradiction that b ′q was not the exported element in Fwitness, so that it was introduced in Fwitness.

In this case, as sim(ap ) = sim(bq) = b
′
q , by the directionality condition in the definition of aligned superinstances, we

have ap ∈ πSq (J ), which contradicts the fact that ap ∈ Wants(J ,τ ). Hence, we have proved by contradiction that b ′q

was the exported element in Fwitness. �

This observation will be important to connect fact-saturation to the fact-thrifty chase steps that we now define:

Definition VI.14. We define a fact-thrifty chase step, using the notation of Definition V.13, as follows: ifNDng(Sq)

is non-empty, choose one fact Freuse = S(c) of I\I0 that achieves the fact class of Fwitness = S(b′) (that is, sim(ci ) ≃k b ′i

for all i), and use Freuse to define br ··= cr for all S
r ∈ NDng(Sq ).

We also call a fact-thrifty chase step fresh if for all Sr ∈ Dng(Sq), we take br to be a fresh element only occurring

at that position (and extend sim′ accordingly).
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We first show that, on fact-saturated instances, any UID violation can be repaired by a fact-thrifty chase step; this

uses Lemma VI.13. More specifically, we show that, for any relation-thrifty chase step that we could want to apply, we

could apply a fact-thrifty chase step instead.

Lemma VI.15 (Fact-thrifty applicability). For any fact-saturated superinstance J of an instance I0, for any UID

τ : Rp ⊆ Sq of Σrev
UID

, for any element a ∈ Wants(J ,τ ), we can apply a fact-thrifty chase step on a with τ to satisfy this

violation. Further, for any new fact S(e) that we can create by chasing on a with τ with a relation-thrifty chase step, we

can instead apply a fact-thrifty chase step on a with τ to create a fact S(b) with br = er for all Sr ∈ Pos(S)\NDng(Sr ).

Proof. We prove the first part of the statement by justifying the existence of the fact Freuse, which only needs to

be done if NDng(Sq ) is non-empty. In this case, considering the fact Fwitness = S(b′) in Chase(I0, ΣUID), we know

by Lemma VI.13 that b ′q is the exported element in Fwitness. Hence, letting D be the fact class of Fwitness, we have

D = (Sq ,C) for some C, and D is in AFactCl because NDng(Sq) is non-empty. Hence, by definition of fact-saturation,

there is a fact Freuse = S(c) in J such that, for all Sr ∈ Pos(R), we have sim(ci ) ∈ Ci , i.e., sim(ci ) ≃k b ′i inChase(I0, ΣUID).

This proves the first part of the claim.

For the second part of the claim, observe that the definition of fact-thrifty chase steps only imposes conditions on

the non-dangerous positions, so considering any new fact S(e) created by a relation-thrifty chase step, changing its

non-dangerous positions to follow the definition of fact-thrifty chase steps, we can create it with a fact-thrifty chase

step. �

We now look at which properties are preserved on the result (I ′, sim′) of fact-thrifty chase steps. First note that fact-

thrifty chase steps are in particular relation-thrifty, so I ′ is still weakly-sound and still satisfies ΣUFD (by Lemmas V.14

and V.16). However, we do not know yet whether (I ′, sim′) is an aligned superinstance for ΣUFD and ΣUID .

For now, we show that it is the case for fresh fact-thrifty chase steps:

Lemma VI.16 (Fresh fact-thrifty preservation). For any fact-saturated aligned superinstance J of I0 (for ΣUFD

and ΣUID), the result J
′ of a fresh fact-thrifty chase step on J is still a fact-saturated aligned superinstance of I0.

We prove this result in the rest of the subsection. For non-fresh fact-thrifty chase steps, the analogous claim is not

true in general: it requires us to introduce essentiality, the focus of the next subsection, and relies on the reversibility

assumption that we made on Σ
rev
UID

and ΣUFD .

To prove the Fresh Fact-Thrifty Preservation Lemma, we first make a general claim about how we can extend a

superinstance by adding a fact, and preserve bounded simulations.

Lemma VI.17. Let n ∈ N. Let I1 and I be instances and sim be a n-bounded simulation from I1 to I . Let I2 be a

superinstance of I1 defined by adding one fact Fnew = R(a) to I1, and let sim
′ be a mapping from dom(I2) to dom(I ) such

that sim′
| dom(I1)

= sim. Assume there is a fact Fwitness = R(b) in I such that, for all Ri ∈ Pos(R), sim′(ai ) ≃n bi . Then

sim′ is an n-bounded simulation from I2 to I .

Proof. We prove the claim by induction on n. The base case of n = 0 is immediate.

Let n > 0, assume that the claim holds for n − 1, and show that it holds for n. As sim is an n-bounded simulation, it

is an (n − 1)-bounded simulation, so we know by the induction hypothesis that sim′ is an (n − 1)-bounded simulation.

Let us now show that it is an n-bounded simulation. Let a ∈ dom(I2) be an element and show that (I2, a) ≤n

(I , sim′(a)). Hence, for any F = S(a) a fact of I2 with ap = a for some p, we must show that there exists a fact

F ′ = S(a′) of I with a′p = sim′(ap ) and (I2,aq) ≤n−1 (I ,a
′
q) for all S

q ∈ Pos(S).
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The first possibility is that F is the new fact Fnew = R(a). In this case, as we have (I ,bp ) ≤n (I , sim′(ap )), considering

Fwitness, we deduce the existence of a fact F
′
witness = R(c) in I such that cp = sim′(ap ) and (I ,bq ) ≤n−1 (I ,cq ) for all

1 ≤ q ≤ |R |. We take F ′ = F ′
witness

as our witness fact for F . By construction we have cp = sim′(ap ). Fixing

1 ≤ q ≤ |R |, to show that (I2,aq) ≤n−1 (I ,cq ), we use the fact that sim
′ is an (n− 1)-bounded simulation to deduce that

(I2,aq) ≤n−1 (I , sim′(aq)). Now, we have (I , sim
′(aq)) ≤n−1 (I ,bq ), and as we explained we have (I ,bq) ≤n−1 (I ,cq ),

so we conclude by transitivity.

If F is another fact, then it is a fact of I1, so its elements are in dom(I1), and as sim′ coincides with sim on such

elements, we conclude because sim is a n-bounded simulation. �

We now prove the Fresh Fact-Thrifty Preservation Lemma (Lemma VI.16), which concludes the subsection:

Proof of Lemma VI.16. It is immediate that, letting J ′ = (I ′, sim′) be the result of the fact-thrifty chase step, I ′ is

still a finite superinstance of I0, and it still satisfies ΣUFD , because fact-thrifty chase steps are relation-thrifty chase

steps, so we can still apply Lemma V.16.

To show that sim′ is still a k-bounded simulation, we apply Lemma VI.17 with Fnew = S(b) and Fwitness = S(b′).

Indeed, letting τ : Rp ⊆ Sq be the appliedUID in Σrev
UID

, we have sim′(bq) = b
′
q by definition, and have set sim

′(br ) ··= b
′
r

for all Sr ∈ Dng(Sq) (note that each such br occurs at only one position). For S
r ∈ NDng(Sq), we have sim′(br ) ≃k b ′r

inChase(I0, ΣUID) by definition of a fact-thrifty chase step. Hence, by Lemma VI.17, sim′ is still ak-bounded simulation

from I ′ to Chase(I0, ΣUID).

We now check the directionality condition on elements of dom(I ′)\ dom(I ), namely, we show: for Sr , Sq , if

br ∈ dom(I ′)\ dom(I ), then br occurs in J ′ at the position where sim′(br ) was introduced in Chase(I0, ΣUID). By the

Directionality Lemma (Lemma VI.13), we know that b ′q was the exported element of Fwitness. Hence, as sim
′(br ) ··= b

′
r ,

we know that b ′r was introduced at position S
r in Fwitness in Chase(I0, ΣUID), so the condition is respected.

Last, the preservation of fact-saturation is immediate, and the fact that sim′ is the identity on I0 is immediate because

sim′
| dom(I0)

= sim | dom(I0). We show that sim′
| dom(I ′\I0)

maps to Chase(I0, ΣUID)\I0, using the directionality condition.

Indeed, for all elements br ∈ dom(I ′)\ dom(I ) (with Sr , Sq ), which are clearly not in I0, we have fixed sim
′(br ) ··= b

′
r ,

and as we explained b ′r is introduced in Fwitness in Chase(I0, ΣUID) so it cannot be an element of I0; hence b
′
r is indeed

an element of Chase(I0, ΣUID)\I0. This is the last point we had to verify. �

VI.4 Essentiality

The problem of non-fresh fact-thrifty chase steps is that, while they try to preserve k-soundness on the non-dangerous

positions, they may not preserve it overall:

Example VI.18. Consider the instance I0 = {U (a,u),R(a,b),V (v,b)} depicted as the solid black elements and edges

in Figure 4. Consider the UID τ : R1 ⊆ R2, and the UFD ϕ : R1 → R2. We define Σ
rev
UID
= ΣUID = {τ , τ−1} and

ΣUFD = {ϕ,ϕ−1}, so that ΣUFD and Σ
rev
UID

are reversible. We have a ∈ Wants(I , τ ) and b ∈ Wants(I ,τ−1). To satisfy

these violations, we can apply a fact-thrifty chase step by τ on a and create F = R(b,a), noting that there are no non-

dangerous positions. However, the superinstance I0 ⊔ {F } is not a k-sound superinstance of I0 for k ≥ 3. For instance,

it makes the following ACQ true, which is not true in Chase(I0, ΣUID): ∃xyzw V (x,y),R(y,z),U (z,w).

Instead, for any value of k , this problem can be avoided as follows. First, apply k fresh fact-thrifty chase steps by τ−1

to create the chain R(b,b1),R(b1,b2), . . . ,R(bk−1,bk ). Then apply k fresh fact-thrifty chase steps by τ to create R(a1, a),

R(a2,a1), . . . ,R(ak ,ak−1). Now we can apply a non-fresh fact-thrifty chase step by τ on ak and create R(bk , ak ), and
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Fig. 5. UID Chase Similarity Theorem (Theorem VI.20); see Example VI.29.

this does not make any new ACQ of size ≤ k true. This process is illustrated with red elements and red dashed edges

in Figure 4 for k = 2.

The intuition behind this example is that non-fresh fact-thrifty chase steps may connect together elements at the

dangerous positions, but their image by sim may be too dissimilar, so the bounded simulation does not extend. This

implies that, in general, the result of a fact-thrifty chase step may not be an aligned superinstance. As the example

shows, however, we can avoid that problem if we chase for sufficiently long, so that the “history” of elements no longer

contains anything specific about them.

We first formalize this notion for elements of the chase Chase(I0, ΣUID), which we call essentiality. We will then

define it for aligned superinstances using the sim mapping.

Definition VI.19. We define a forest structure on the facts of Chase(I0, ΣUID): the facts of I0 are the roots, and the

parent of a fact F not in I0 is the fact F
′ that was the active fact for which F was created, so that F ′ and F share the

exported element of F .

For a ∈ dom(Chase(I0, ΣUID)), if a was introduced at position Sr of an S-fact F = S(a) created by applying the UID

τ : Rp ⊆ Sq (with Sq , Sr ) to its parent fact F ′, we call τ the last UID of a. The last two UIDs of a are (τ , τ ′) where

τ ′ is the last UID of the exported element aq of F (which was introduced in F ′). For n ∈ N, we define the last n UIDs

in the same way, for elements of Chase(I0, ΣUID) introduced after sufficiently many rounds.

We say that a is n-essential if its last n UIDs are reversible in ΣUID . This is in particular the case if these last UIDs

are in Σ
rev
UID

: indeed, Σrev
UID

satisfies the reversibility assumption so for any τ ∈ Σ
rev
UID

, we have τ−1 ∈ Σ
rev
UID

, so that

τ−1 ∈ ΣUID.

The point of this definition is the following result, which we state without proof for now. We will prove it in

Section VI.5:

TheoremVI.20 (UID chase similarity theorem). For any instance I0, transitively closed set ofUIDs ΣUID, andn ∈ N,

for any two elements a and b respectively introduced at positions Rp and Sq in Chase(I0, ΣUID), if a and b are n-essential,

and if Rp ⊆ Sq and Sq ⊆ Rp are in ΣUID , then a ≃n b .

In other words, in the chase, when the last n UIDs of an element were reversible, then the ≃n-class of that element

only depends on the position where it was introduced.

We use this to define a corresponding notion on aligned superinstances: an aligned superinstance is n-essential if,

for all elements that witness a violation of the UIDs Σrev
UID

that we wish to solve, their sim image is an n-essential
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element of the chase, introduced at a suitable position. In fact, we introduce a more general definition, which does not

require the superinstance to be aligned, i.e., does not require that sim is a k-bounded simulation.

Definition VI.21. Let J = (I , sim) be a pair of a superinstance I of I0 and a mapping sim from I to Chase(I0, ΣUID).

Let k ∈ N. We call a ∈ dom(I ) n-essential in J for Σrev
UID

if the following are true:

• sim(a) is an n-essential element of Chase(I0, ΣUID);

• for any position Sq ∈ Pos(σ ) such that a ∈ WantsΣrevUID
(I ,Sq ), the positionTv where sim(a) was introduced in

Chase(I0, ΣUID) is such that Tv ⊆ Sq and Sq ⊆ Tv are in Σ
rev
UID

, which we write Tv ∼ID Sq as in the previous

sections.

Note that the second point is vacuous if there is no UID of Σrev
UID

applicable to a. We call J n-essential for Σrev
UID

if, for

all a ∈ dom(J ), a is n-essential in J for Σrev
UID

.

We now show that, as we assumed the UIDs of Σrev
UID

to be reversible (by the reversibility assumption), fresh fact-

thrifty chase steps by Σ
rev
UID

never make essentiality decrease, and even make it increase on new elements:

Lemma VI.22 (Thrifty steps and essentiality). For any n-essential aligned superinstance J , letting J ′ = (I ′, sim′)

be the result of a thrifty chase step on J by a UID of Σrev
UID

, J ′ is still n-essential. Further, all elements of dom(J ′)\ dom(J )

are (n + 1)-essential in J ′.

Proof. Fix J and J ′; note that J ′ may not be an aligned superinstance. Consider first the elements of dom(J ) in J ′.

For any a ∈ dom(J ), by definition of thrifty chase steps, we know that for any Tv ∈ Pos(σ ) such that a ∈ πTv (J ′), we

have either a ∈ πTv (J ) or a ∈ WantsΣrevUID
(J ,Tv ). Hence, as Σrev

UID
is transitively closed, for any Uw ∈ Pos(σ ) such that

a ∈ WantsΣrevUID
(J ′,Uw ), we have also a ∈ WantsΣrevUID

(J ,Uw ), and as J is n-essential, we conclude that a is n-essential

in J ′. Hence, it suffices to show that any element in dom(J ′)\ dom(J ) is (n + 1)-essential in J ′.

To do this, write τ : Rp ⊆ Sq the UID applied in the chase step, and let Fnew = S(b) be the new fact. By definition of

thrifty chase steps, and as τ ∈ Σ
rev
UID

, we hadbq ∈ WantsΣrevUID
(J ,Sq), sobq wasn-essential because J was. Hence, sim(bq)

is n-essential in Chase(I0, ΣUID). By the Directionality Lemma (Lemma VI.13), b ′q ··= sim(bq) is also the exported

element of the chase witness Fwitness = S(b′), and as bq is n-essential, we know by the second part of Definition VI.21

that b ′q was introduced in Chase(I0, ΣUID) at some position Tv such that Tv ∼ID Sq . This means that Fwitness was

created in Chase(I0, ΣUID) by applying the UIDTv ⊆ Sq which is in Σ
rev
UID

. This implies that, for all Sr ∈ Pos(S)\{Sq},

the element b ′r is (n + 1)-essential in Chase(I0, ΣUID), and is introduced at position Sr .

Now, let a ∈ dom(J ′)\ dom(J ), and let Tv such that a ∈ WantsΣrevUID
(J ′,Tv ). Let Uw ∈ Pos(σ ) and τ ′ : Uw ⊆ Tv that

witness this, i.e., τ ′ ∈ Σ
rev
UID

and a ∈ πUw (J ′). By the reversibility assumption, we have Uw ∼ID Tv in Σ
rev
UID

. Now, by

definition of thrifty chase steps on aligned superinstances, we know that we defined sim′(a) ··= b
′
r for some Sr where

a occurred in Fnew. Further, by definition of thrifty chase steps, we know that all positions in which a occurs in Fnew,

and thus all positions where it occurs in J ′, are ∼ID-equivalent in Σ
rev
UID

; in particular Sr ∼ID Uw , hence by transitivity

Sr ∼ID Tv . By the previous paragraph, sim(a) = b ′r is an (n + 1)-reversible element introduced in Chase(I0, ΣUID) at

position Sr , and we have Sr ∼ID Tv . This shows that a is (n + 1)-reversible in J ′.

Hence, J ′ is indeed n-reversible, and the elements of dom(J ′)\ dom(J ) are indeed (n+1)-reversible, which concludes

the proof. �

In conjunctionwith the Fresh Fact-Thrifty Preservation Lemma (LemmaVI.16), this implies that applying sufficiently

many fresh fact-thrifty chase rounds yields an n-essential aligned superinstance:
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Lemma VI.23 (Ensuring essentiality). For any n ∈ N, applying n + 1 fresh fact-thrifty chase rounds on a fact-

saturated aligned superinstance J by the UIDs of Σrev
UID

yields an n-essential aligned superinstance J ′.

Proof. Fix the aligned superinstance J = (I , sim). We use the Fresh Fact-Thrifty Preservation Lemma (Lemma VI.16)

to show that the property of being aligned is preserved, so we only show that the result is n-essential. We prove this

claim by induction on n.

For the base case, we must show that the result J ′ = (I ′, sim′) of a fresh fact-thrifty chase round on J by Σ
rev
UID

is

0-essential. Let Sq ∈ Pos(σ ) and a ∈ WantsΣrevUID
(J ′, Sq). As Σrev

UID
is transitively closed, by definition of a chase round,

we have a ∈ dom(J ′)\ dom(J ), because UID violations on elements of dom(J ) must have been solved in J ′; hence, a

was created by a fact-thrifty chase step on J . By similar reasoning as in the proof of Lemma VI.22, considering the

chase witness Fwitness for this chase step, we conclude that sim(a) was introduced at a positionTv in Chase(I0, ΣUID)

such that Tv ∼ID Sq in Σ
rev
UID

. Further, sim(a) is vacuously 0-essential. Hence, J ′ is indeed 0-essential.

For the induction step, let J ′ be the result of n + 1 fresh fact-thrifty chase rounds on J , and show that it is n-

essential. By induction hypothesis, the result J ′′ = (I ′′, sim′′) of n fresh fact-thrifty chase rounds is (n − 1)-essential.

Now, again by definition of a chase round, for any position Sq ∈ Pos(σ ) and a ∈ WantsΣrevUID
(J ′′, Sq), we must have

a ∈ dom(J ′)\ dom(J ′′), so that a was created by applying a fact-thrifty chase step on an element a′′ in J ′′ which

witnessed a violation of a UID of Σrev
UID

. As J ′′ is (n − 1)-essential, a′ was (n − 1)-essential in J ′′, so we conclude by

Lemma VI.22 that a is n-essential in J ′. Hence, we conclude that J ′ is indeed n-essential. �

Hence, we can ensure k-essentiality. The point of essentiality is to guarantee that the result of non-fresh fact-thrifty

chase steps on a k-essential aligned superinstance is also an aligned superinstance.

Lemma VI.24 (Fact-thrifty preservation). For any fact-saturated k-essential aligned superinstance J for ΣUID and

ΣUFD , the result J
′ of any fact-thrifty chase step on J by a UID of Σrev

UID
is still a fact-saturated and k-essential aligned

superinstance.

Proof. Fix J ′ = (I ′, sim′), the UID τ : Rp ⊆ Sq of Σrev
UID

, which is reversible by the reversibility assumption, and

the element a ∈ dom(J ) to which it is applied.

The fact that k-essentiality is preserved is by Lemma VI.22, and fact-saturation is clearly preserved, so we must

only show that J ′ is still an aligned superinstance. The fact that J ′ is a finite superinstance of I0 is immediate, and it

still satisfies ΣUFD by Lemma V.16 because fact-thrifty chase steps are relation-thrifty chase steps. The directionality

condition is clearly respected because any new element in dom(J ′)\ dom(J ) occurs at least at the position at which its

sim′-image was introduced in the chase (namely, the positionwhere it occurs in Fwitness), and the additional conditions

onsim′
| dom(I0)

and sim′
| dom(J ′\I0)

still hold.

The only thing to show is that sim′ is still a k-bounded simulation. Let Fnew = S(b) be the new fact and Fwitness =

S(b′) be the chase witness. Now, as in the proof of the Thrifty Steps And Essentiality Lemma (Lemma VI.22), and

using the Directionality Lemma (Lemma VI.13), all elements of Fwitness are n-essential (and, except for b
′
q , they were

introduced at their position of Fwitness).

Now, to show that sim′ is a k-bounded simulation, we use Lemma VI.17, so it suffices to show that we have

sim(br ) ≃k b ′r for all r . This is the case whenever we have sim(br ) = b ′r , which is guaranteed by definition for

Sr = Sq and for elements in Dng(Sq ) such that Sr ↔FUN Sq does not hold. For non-dangerous elements, the fact that

sim(br ) ≃k b ′r is by definition of fact-thrifty chase steps. For the other positions, there are two cases:
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• br ∈ dom(I ), in which case br ∈ WantsΣrevUID
(I ,Sr ). As J is n-essential, sim(br ) is an n-essential element of

Chase(I0, ΣUID) introduced at a position Tv such that Tv ∼ID Sr holds in Σ
rev
UID

. Now, b ′r is an n-essential

element of Chase(I0, ΣUID) introduced at position S
r . By the UID Chase Similarity Theorem (Theorem VI.20),

we then have sim′(br ) ≃k b ′r in Chase(I0, ΣUID)

• br < dom(I ), in which case the claim is immediate unless it occurs at multiple positions. However, by definition

of thrifty chase steps, all positions at which it occurs are related by ∼ID in Σ
rev
UID

, so the corresponding elements

of Fwitness are also ≃k -equivalent by the UID Chase Similarity Theorem: hence we have sim′(br ) ≃k b ′r .

We conclude by Lemma VI.17 that J ′ is indeed an aligned superinstance, which concludes the proof. �

We can now conclude the proof of Theorem VI.1. Let I0 be the initial instance, and consider J0 = (I0, id) which

is trivially an aligned superinstance of I0. Apply the Fact-Saturated Solutions Lemma (Lemma VI.11) to obtain a fact-

saturated aligned superinstance J ′0 = (I ′0, sim
′). We must now show that we can complete J ′0 to a superinstance

that satisfies Σ
rev
UID

as well, which we do with the following variant of the Reversible Relation-Thrifty Completion

Proposition (Proposition V.17):

Proposition VI.25 (Reversible Fact-Thrifty Completion). For any reversible ΣUFD and Σrev
UID

, for any transitively

closedUIDs ΣUID ⊇ Σ
rev
UID, for any fact-saturated aligned superinstance J

′
0 of I0 (for ΣUFD and ΣUID), we can use fact-thrifty

chase steps by UIDs of Σrev
UID

to construct an aligned fact-saturated superinstance Jf of I0 (for ΣUFD and ΣUID) that satisfies

Σ
rev
UID

.

We conclude this section by proving this proposition. To do so, we first apply the Ensuring Essentiality Lemma

(Lemma VI.23) with theUIDs of Σrev
UID

tomake J ′0 k-essential. By the Fresh Fact-Thrifty Preservation Lemma (Lemma VI.16),

the result J1 = (I1, sim1) is then a fact-saturated k-essential aligned superinstance of I0 (for ΣUID and ΣUFD).

We will then use the Reversible Relation-Thrifty Completion Proposition (Proposition V.17) on J1; but we must

refine it to a stronger claim. We do so using the following definition:

Definition VI.26. A thrifty sequence on an instance I for UIDs ΣUID and UFDs ΣUFD is a sequence L defined

inductively as follows, with an output L(I ) which is a superinstance of I that we also define inductively:

• The empty sequence L = () is a thrifty sequence, with L(I ) = I

• Let L′ be a thrifty sequence, let I ′ = L′(I ) be the output of L′, and let t = (a, τ , b) be a triple formed of an

element a ∈ dom(I ′), a UID τ : Rp ⊆ Sq of ΣUID, and an |S |-tuple b. We require that the fact S(b) can be

created in I ′ by applying a thrifty chase step to a in L′(I ) by τ (Definition V.13). Then the concatenation L of

L′ and t is a thrifty sequence, and its output L(I ) is the result of performing this chase step on L′(I ), namely,

L(I ) ··= L′(I ) ⊔ {S(b)}.

The length ofL is written |L | and the elements ofL are indexed byL1, . . . ,L |L | . We define a relation-thrifty sequence

in the same way with relation-thrifty steps, and likewise define a fact-thrifty sequence.

With this definition, the Reversible Relation-Thrifty Completion Proposition (Proposition V.17) implies that there is

a relation-thrifty sequence L such that L(I ′0) is a finite weakly-sound superinstance If of I0 that satisfies ΣUFD and ΣrevUID .

Our goal to prove the Reversible Fact-Thrifty Completion Proposition (Proposition VI.25) is to rewrite L to a fact-thrifty

sequence. To do this, we first need to show that any two thrifty sequences that coincide on non-dangerous positions

have the same effect in terms of UID violations:
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Definition VI.27. Let ΣUID be UIDs and ΣUFD be UFDs, let I0 be an instance, and L and L′ be thrifty sequences on I0.

We say that L and L′ non-dangerously match if |L | = |L′ | and that for all 1 ≤ i ≤ |L |, writing Li = (a, τ , b) and

L′i = (a′, τ ′, b′), we have a = a′, τ = τ ′, and, writing τ : Rp ⊆ Sq , we have br = b
′
r for all S

r ∈ Pos(S)\NDng(Sq).

Lemma VI.28 (Thrifty seqence rewriting). Let ΣUID be UIDs and ΣUFD be UFDs, let I0 be an instance, and let L

and L′ be thrifty sequences on I0 that non-dangerously match. Then L(I0) satisfies ΣUID iff L′(I0) satisfies ΣUID .

Proof. We prove by induction on the common length of L and L′ that, if L and L′ non-dangerously match, then,

for all Uv ∈ Pos(σ ), we have πU v (L(I0)) = πU v (L′(I0)). If both L and L′ have length 0, the claim is trivial. For the

induction step, write I ··= L(I0) and I ′ ··= L′(I0). Write L as the concatenation of L2 and its last tuple t = (a, τ , b),

and write similarly L′ as the concatenation of L′2 and the last tuple t ′ = (a′, τ ′, b′). Let Uv ∈ Pos(σ ) and show that

πU v (L(I0)) = πU v (L′(I0)). Clearly L2 and L
′
2 non-dangerously match and are strictly shorter than L and L′, respectively,

so by the induction hypothesis, writing I2 ··= L2(I0) and I ′2
··= L′2(I0), we have πU v (I2) = πU v (I ′2). Further, we have

τ = τ ′; write them as Rp ⊆ Sq . We then have I = I2 ⊔ S(b), and I ′ = I ′2 ⊔ S(b′). As we must have br = b ′r if

Uv
< NDng(Sq), there is nothing to show unless we have Uv ∈ NDng(Sq). However, in this case, writing Uv as Sr ,

then, by definition of thrifty chase steps, we have br ∈ πS r (I2), so that πS r (I ) = πS r (I2). Likewise, πS r (I
′) = πS r (I

′
2),

hence πS r (I ) = πS r (I
′). This concludes the induction proof.

We now prove the lemma. Fix τ : Rp ⊆ Sq in ΣUID . We have L(I0) |= τ iff πRp (L(I0))\πSq (L(I0)) = ∅, and likewise

for L′(I0). By the result proved in the paragraph above, these conditions are equivalent, and thus we have L(I0) |= τ iff

L′(I0) |= τ . �

Hence, consider our fact-saturated aligned superinstance J1 = (I1, sim1) (for ΣUID and ΣUFD). As we explained, the

Reversible Relation-Thrifty Completion Proposition (Proposition V.17) implies that there is a relation-thrifty sequence

L such that L(I1) satisfies ΣUID. We modify L inductively to obtain a fact-thrifty sequence L′ that non-dangerously

matches L, in the following manner. Whenever L applies a relation-thrifty step t = (a, τ , b) to the previous instance

L2(I1), then observe that L2(I1) is fact-saturated, because I1 was fact-saturated and fact-thrifty chase steps preserve

fact-saturation, by the Fact-Thrifty Preservation Lemma (Lemma VI.24). Hence, by that lemma, instead of applying the

relation-thrifty step described by t , we can choose to apply a fact-thrifty step on awith τ , defining the new fact using b

except on the non-dangerous positions. By Lemma VI.28, the resulting L′ also ensures that L′(I1) satisfies ΣUID .

Considering now the fact-thrifty sequence L′, as J1 is a fact-saturated k-essential aligned superinstance of I0 (for

ΣUID and ΣUFD), letting If ··= L′(I1), we can use the Fact-Thrifty Preservation Lemma (Lemma VI.24) to define an aligned

fact-saturated superinstance Jf = (If , simf ) (for ΣUID and ΣUFD), following each fact-thrifty step, and we have shown

that If satisfies ΣUID. Hence, we have proven the Reversible Fact-Thrifty Completion Proposition (Proposition VI.25).

To prove Theorem VI.1, we can simply apply the proposition with ΣUID = Σ
rev
UID

, and the resulting aligned superin-

stance Jf = (If , simf ) of I0 satisfies ΣUID and is k-sound for ΣU and ACQ. Further, it satisfies ΣUFD and is finite, by

definition of being an aligned superinstance. Hence, If is the desired k-universal model, which proves Theorem VI.1.

VI.5 UID Chase Similarity Theorem

We conclude the section by proving the UID Chase Similarity Theorem:

TheoremVI.20 (UID chase similarity theorem). For any instance I0, transitively closed set ofUIDs ΣUID, andn ∈ N,

for any two elements a and b respectively introduced at positions Rp and Sq in Chase(I0, ΣUID), if a and b are n-essential,

and if Rp ⊆ Sq and Sq ⊆ Rp are in ΣUID , then a ≃n b .
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Note that this result does not involve FDs, and applies to any arbitrary transitively closed set of UIDs, not relying

on any finite closure properties, or on the reversibility assumption. It only assumes that the last n dependencies used

to create a and b were reversible.

Example VI.29. Consider Figure 5 on page 33, which illustrates the neighborhood of two elements, a and a′, in the

UID chase by someUIDs. Each rectangle represents a higher-arity fact, and edges represent theUIDs used in the chase,

with thick edges representing reversible UIDs.

The last UID applied to create a was S2 ⊆ R1, and the last UID for a′ is V 1 ⊆ U 1; they are reversible. Further, a is

introduced at position R3 and a′ at position U 3, and R3 ⊆ U 3 holds and is reversible. The theorem claims that a that

a′ are 1-bounded-bisimilar, which is easily verified; in fact, they are 2-bounded-bisimilar. This is intuitively because

all child facts of the R-fact at the left must occur at the right by definition of the UID chase, and the parent fact must

occur as well because of the reverse of the last UID for a; a similar argument ensures that the facts at the right must

be reflected at the left.

However, note that a and a′ are not 3-bounded-bisimilar: the A-fact at the left is not reflected at the right, and

vice-versa for the B-fact, because these UIDs are not reversible,

To prove the theorem, fix the instance I0 and the set ΣUID of UIDs. We first show the following easy lemma:

Lemma VI.30. For any n > 0 and position Rp , for any two elements a,b of Chase(I0, ΣUID) introduced at position R
p in

two facts Fa and Fb , letting a
′ and b ′ be the exported elements of Fa and Fb , if a

′ ≃n−1 b
′, then a ≃n b .

Proof. Weproceed by induction onn. By symmetry, it suffices to show that (Chase(I0, ΣUID),a) ≤n (Chase(I0, ΣUID),b).

For the base case n = 1, observe that, for every fact F of Chase(I0, ΣUID) where a occurs at some position Sq , there

are two cases. Either F = Fa , so we can pick Fb as the representative fact, or the UID Rp ⊆ Sq is in ΣUID so we can

pick a corresponding fact for b by definition of the chase. Hence, the claim is shown for n = 1.

For the induction step, we proceed in the same way. If F = Fa , we pick Fb as representative fact, and use either

the hypothesis on a′ and b ′ or the induction hypothesis (for other elements of Fa and Fb ) to justify that Fb is suitable.

Otherwise, we pick the corresponding fact for b which must exist by definition of the chase, and apply the induction

hypothesis to the other elements of the fact to conclude. �

We now prove the UID Chase Similarity Theorem (Theorem VI.20). Throughout the proof, we write Rp ∼ID Sq as

shorthand to mean that Rp ⊆ Sq and Sq ⊆ Rp are in ΣUID : it is still the case that ∼ID is an equivalence relation, even

without the reversibility assumption.

We prove the main claim by induction onn: for any positionsRp and Sq such that Rp ∼ID Sq , for any twon-essential

elements a and b respectively introduced at positions Rp and Sq , we have a ≃n b . By symmetry it suffices to show that

a ≤n b in Chase(I0, ΣUID), formally, (Chase(I0, ΣUID),a) ≤n (Chase(I0, ΣUID),b).

The base case of n = 0 is immediate.

For the induction step, fix n > 0, and assume that the result holds for n − 1. Fix Rp and Sq such that Rp ∼ID Sq , and

let a,b be two n-essential elements introduced respectively at Rp and Sq in facts Fa and Fb . Note that by the induction

hypothesis we already know that a ≤n−1 b in Chase(I0, ΣUID); we must show that this holds for n.

First, observe that, as a and b are n-essential with n > 0, they are not elements of I0. Hence, by definition of the

chase, for each one of them, the following is true: for each fact of the chase where the element occurs, it only occurs

at one position, and all other elements co-occurring with it in a fact of the chase occur only at one position and in
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exactly one of these facts. Thus, to prove the claim, it suffices to construct a mapping ϕ from the set N1(a) of the facts

of Chase(I0, ΣUID)where a occurs, to the set N1(b) of the facts where b occurs, such that the following holds: for every

fact F = T (a) of N1(a), letting T
c be the one position of F such that ac = a, the element b occurs at position T c in

ϕ(F ) = T (b), and for every i , we have ai ≤n−1 bi .

By construction of the chase (using the Unique Witness Property), N1(a) consists of exactly the following facts:

• The fact Fa = R(a), where ad = a′ is the exported element (for a certain Rd , Rp ) and ap = a was introduced

at Rp in Fa . Further, for i < {p,d}, the element ai was introduced at R
i in Fa .

• For every UID τ : Rp ⊆ V д of ΣUID, a V -fact F
τ
a where the element at position Vд is a. Further, for i , д, the

element at positionV i in Fτa was introduced at this position in that fact.

A similar characterization holds for b: we write the corresponding facts Fb and Fτ
b
. We construct the mapping ϕ as

follows:

• If Rp = Sq then set ϕ(Fa ) ··= Fb ; otherwise, as τ : Sq ⊆ Rp is in ΣUID, set ϕ(Fa ) ··= Fτ
b
.

• For every UID τ : Rp ⊆ Vд of ΣUID , as R
p ∼ID Sq , by transitivity, either Sq = Vд or the UID τ ′ : Sq ⊆ Vд is

in ΣUID. In the first case, set ϕ(Fτa ) ··= Fb . In the second case, set ϕ(Fτa ) ··= Fτ
′

b
.

We must now show that this mapping ϕ from N1(a) to N1(b) satisfies the required conditions. Verify that indeed, by

construction, whenever a occurs at position T c in F , then ϕ(F ) is a T -fact where b occurs at position T c . So we must

show that for any F ∈ N1(a), writing F = T (a) and ϕ(F ) = T (b), with ac = a and bc = b for some c , we have indeed

ai ≤n−1 bi for all T
i ∈ Pos(T ). If n = 1 there is nothing to show and we are done, so we assume n ≥ 2. If i = c then

the claim is immediate by the induction hypothesis; otherwise, we distinguish two cases:

(1) F = Fa (so that T = R and c = p), or F = Fτa such that the UID τ : Rp ⊆ T c is reversible, meaning that

τ−1 ∈ ΣUID. In this case, by construction, either ϕ(F ) = Fb or ϕ(F ) = Fτ
′

b
for τ ′ : Sq ⊆ T c ; τ ′ is then reversible,

because Rp ∼ID Sq and Rp ∼ID T c .

We show that for all 1 ≤ i ≤ |T | such that i , c , the element ai is (n − 1)-essential and was introduced

in Chase(I0, ΣUID) at a position in the ∼ID-class of T
i . Once we have proved this, we can show the same for

all bi in a symmetric way, so that we can conclude that ai ≤n−1 bi by induction hypothesis. To see why the

claim holds, we distinguish two subcases. Either ai was introduced in F , or we have F = Fa , i = d and ai is

the exported element for a.

In the first subcase, ai was created by applying the reversible UID τ and the exported element was a, which

is n-essential, so ai is (n − 1)-essential (in fact it is even (n + 1)-essential), and ai is introduced at positionT
i .

In the second subcase, ai is the exported element used to create a, which is n-essential, so ai is (n − 1)-

essential; and as n ≥ 2, the last dependency applied to create ai is reversible, so that ai was introduced at a

position in the same ∼ID-class asT
i .

Hence, we have proved the desired claim for the first case.

(2) F = Fτa such that τ : Rp ⊆ T c is not reversible. In this case, we cannot have T c = Sq (because we have

Rp ∼ID Sq ), so we must have ϕ(F ) = Fτ
′

b
with τ ′ : Sq ⊆ T c . Now, all ai for i , c were introduced in F at

positionT i , and likewise for the bi in ϕ(F ). Using Lemma VI.30, as a ≃n−1 b , we conclude that ai ≃n bi , hence

ai ≤n−1 b .

This concludes the proof of the UID Chase Similarity Theorem (Theorem VI.20), thus completing the proof of Theo-

rem VI.1.
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1 2 3 1 2 3R S

Fig. 6. Manageable partition (see Example VII.5)

VII DECOMPOSING THE CONSTRAINTS

In this section, we lift the reversibility assumption, proving:

Theorem VII.1. Finitely-closed UIDs and UFDs have finite k-universal models for ACQs.

VII.1 Partitioning the UIDs

We write the UFDs as ΣUFD and the UIDs as ΣUID . We will proceed by partitioning ΣUID into subsets of UIDs which

are either reversible or are much simpler to deal with.

Our desired notion of partition respects an order on UID, which we now define. As we will show (Lemma VII.8),

the order is also respected by thrifty chase steps.

Definition VII.2. For any τ , τ ′ ∈ ΣUID , we write τ  τ ′ when we can write τ : Rp ⊆ Sq and τ ′ : Sr ⊆ Tv with

Sq , Sr , and the UFD Sr → Sq is in ΣUFD . An ordered partition (P1, . . . , Pn ) of ΣUID is a partition of ΣUID (i.e.,

ΣUID =
⊔

i Pi ) such that for any τ ∈ Pi , τ
′ ∈ Pj , if τ  τ ′ then i ≤ j.

The point of partitioning ΣUID is to be able to control the structure of the UIDs in each class:

Definition VII.3. We call P ⊆ ΣUID reversible if P and ΣUFD are reversible (Definition III.10). We say P ⊆ ΣUID is

trivial if we have P = {τ } for some τ ∈ ΣUID such that τ 6 τ . A partition ismanageable if it is ordered and all of its

classes are either reversible or trivial.

As we will show in Section VII.3, we can always construct a manageable partition of ΣUID :

Proposition VII.4. Any conjunction ΣUID of UIDs closed under finite implication has a manageable partition.

Example VII.5. Consider two ternary relations R and S . Consider the UIDs τR : R1 ⊆ R2, τS : S2 ⊆ S3, τRS : R3 ⊆ S1,

and the UFDs ϕR : R1 → R2, ϕS : S2 → S3, ϕ′
R
: R3 → R1, and ϕ′

S
: S3 → S1. The UIDs τ−1

R
and τ−1

S
, and the UFDs

ϕ−1
R
, ϕ−1

S
, and R3 → R2, S2 → S1, are finitely implied. The two relations R and S are illustrated in Figure 6, where UIDs

are drawn as solid black edges, and UFDs as dashed red edges that are reversed (this follows Definition VII.10).

A manageable partition of the UIDs of the finite closure is ({τR , τ
−1
R

}, {τRS }, {τS , τ
−1
S

}), where the first and third

classes are reversible and the second is trivial. The classes of the partition are drawn as green hatched rectangles in

Figure 6; they are intuitively related to a topological sort of the graph of the black and red edges (see Definition VII.12).

VII.2 Using Manageable Partitions

Fix the instance I0 and the finitely closed constraints ΣU formed ofUIDs ΣUID andUFDs ΣUFD . To prove TheoremVII.1,

startingwith the initial aligned superinstance J0 = (I0, id) of I0 (for ΣUID and ΣUFD), we first note that the Fact-Saturated

Solutions Lemma (Lemma VI.11) does not use the reversibility assumption. Hence, we apply it (with ΣUID) to obtain

from I0 an aligned fact-saturated superinstance J1 of I0 (for ΣUFD and ΣUID). This is the saturation process.
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The goal is now to apply a completion process to satisfy ΣUID , which we formalize as the following proposition.

Recall the definition of thrifty sequences (Definition VI.26). We refine the definition below.

Definition VII.6. We define a preserving fact-thrifty sequence L (for UIDs ΣUID and UFDs ΣUFD) on any fact-

saturated aligned superinstance J of I0 in the following inductive way, with its output L(J ) also being a fact-saturated

aligned superinstance:

• The empty list L = () is a preserving fact-thrifty sequence, with output L(J ) ··= J .

• Let L be the concatenation of a preserving fact-thrifty sequence L′ and a triple t = (a,τ , b). Let J ′ ··= L′(J ) be

the output of L′. We call L preserving, if one of the following holds:

– t is a fresh fact-thrifty chase step. In this case, by the Fresh Fact-Thrifty Preservation Lemma (Lemma VI.16),

J ′ is indeed a fact-saturated aligned superinstance of I0.

– J ′ isk-essential for some subset Σrev
UID

of ΣUID such that τ ∈ Σ
rev
UID

and Σrev
UID

and ΣUFD are reversible. In this

case, by the Fact-Thrifty Preservation Lemma (Lemma VI.24), J is a fact-saturated aligned superinstance

of I0 (which is also k-essential for the same subset).

In either case, the output of L is the aligned superinstance obtained as the result of applying the fact-thrifty

chase step represented by t on J ′.

We can now state our intended result, which implies Theorem VII.1:

Proposition VII.7 (Fact-thrifty completion). Let ΣU = ΣUFD ⊔ ΣUID be finitely closed UFDs and UIDs, and I0 be

an instance satisfying UFDs. For any fact-saturated aligned superinstance J of I0 for ΣU , there is a preserving fact-thrifty

sequence L such that L(J ) satisfies ΣUID .

We prove Proposition VII.7, and from it Theorem VII.1, in the rest of the subsection. We construct a manageable

partition P = (P1, . . . , Pn ) of ΣUID using Proposition VII.4. Now, for 1 ≤ i ≤ n, we use fact-thrifty chase steps by UIDs

of Pi to extend the fact-saturated aligned superinstance Ji to a larger one Ji+1 that satisfies Pi .

The crucial point is that we can apply fact-thrifty chase steps to satisfy Pi without creating any new violations of Pj

for j < i , and hence we can make progress following the partition. The reason for this is the following easy fact about

thrifty chase steps:

Lemma VII.8. Let J be an aligned superinstance of I0 and J ′ be the result of applying a thrifty chase step on J for a UID

τ of ΣUID . Assume that a UID τ ′ of ΣUID was satisfied by J but is not satisfied by J ′. Then τ  τ ′.

Proof. Fix J , J ′, τ : Rp ⊆ Sq and τ ′. As chase steps add a single fact, the only new UID violations in J ′ relative

to I are on elements in the newly created fact Fnew = S(b), As ΣUID is transitively closed, Fnew can introduce no new

violation on the exported element bq . Now, as thrifty chase steps always reuse existing elements at non-dangerous

positions, we know that if Sr ∈ NDng(Sq) then no new UID can be applicable to br . Hence, if a new UID is applicable

to br for Sr ∈ Pos(S), then necessarily Sr ∈ Dng(Sq ). By definition of dangerous positions, the UFD Sr → Sq is then

in ΣUFD , and we have Sr , Sq . Hence, writing τ ′ : Sr ⊆ T r , we see that τ  τ ′. �

The lemma justifies our definition of ordered partition, since it will allow us to prove Proposition VII.7 inductively.

Using the fact that P is ordered ensures that we can indeed apply fact-thrifty chase steps to satisfy each Pi individually,

dealing with them in the order of the partition.
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Thus, to prove Proposition VII.7, consider each class Pi in order. As P is manageable, there are two cases: either Pi

is trivial or it is reversible.

First, if Pi is trivial, it can simply be satisfied by a preserving fact-thrifty sequence Li of fresh fact-thrifty chase steps

using the one UID of Pi . This follows from Lemma VII.8.

Lemma VII.9. For any trivial class {τ }, performing one chase round on an aligned fact-saturated superinstance J of I0

by fresh fact-thrifty chase steps for τ yields an aligned superinstance J ′ of I0 that satisfies τ .

Proof. Fix J , J ′ and τ . All violations of τ in J have been satisfied in J ′ by definition of J ′, so we only have to show

that no new violations of τ were introduced in J ′. But by Lemma VII.8, as τ 6 τ , each fresh fact-thrifty chase step

cannot introduce such a violation, hence there is no new violation of τ in J ′. Hence, J ′ |= τ . �

Second, returning to the proof of Proposition VII.7, the interesting case is that of a reversible Pi , for which we have

done the work of the last three sections. We satisfy a reversible Pi by a preserving fact-thrifty sequence Li obtained

using the Reversible Fact-Thrifty Completion Proposition (Proposition VI.25). Indeed, Ji is a fact-saturated aligned

superinstance of I0 for ΣUFD and ΣUID, and by definition of Pi being reversible, letting Σ
rev
UID

··= Pi , the constraints

ΣUFD and Σ
rev
UID

are reversible. By the Reversible Fact-Thrifty Completion Proposition, we can thus construct a fact-

thrifty sequence Li (by UIDs of Σrev
UID

) such that Ji+1 ··= Li (Ji ) is a fact-saturated aligned superinstance of I0 for ΣUFD

and ΣUID that satisfies Pi . Further, from the proof, it is clear that Li is preserving.

Hence, in either of the two cases, we construct a preserving fact-thrifty sequence Li and Ji+1 ··= Li (Ji ) satisfies

Pi . Further, as Li only performs fact-thrifty chase steps by UIDs of Pi , Ji+1 actually satisfies
⋃

j≤i Pj , thanks to

Lemma VII.8.

The concatenation of the preserving fact-thrifty sequences Li for each Pi is thus a preserving fact-thrifty sequence L

whose final result L(J ) = Jn+1 is thus an aligned superinstance of I0 that satisfies ΣUID , which proves the Fact-Thrifty

Completion Proposition (Proposition VII.7). As an aligned superinstance, Jn+1 is also finite, satisfies ΣUFD , and is

k-sound for ACQ; so it is k-universal for ΣU and ACQ. This concludes the proof of Theorem VII.1.

VII.3 Building Manageable Partitions

The only missing part is to show how manageable partitions are constructed (Proposition VII.4), which we show in

this subsection. We will construct the manageable partition using a constraint graph defined from the dependencies,

inspired by the multigraph used in the proof of Theorem II.1 in [9].

Definition VII.10. Given a set ΣU of finitely closed UIDs and UFDs on signature σ , the constraint graph G(ΣU) is

the directed graph with vertex set Pos(σ ) and with the following edges:

• For each UID Rp ⊆ Sq in ΣU , an edge from Rp to Sq

• For each UFD Ra → Rb in ΣU , an edge from Rb to Ra .

As we forbid trivial UIDs and UFDs, G(ΣU) has no self-loop, but it may contain both the edge (Rp , Sq) and (Sq ,Rp ).

However, we do not represent multiple edges inG(ΣU): for instance, if the UID Ra ⊆ Rb and the UFD Rb → Ra are in

G(ΣU), we only create a single copy of the edge (Ra ,Rb ).

Hence, fix the finitely closed UIDs and UFDs ΣU ··= ΣUID ∧ ΣUFD , and construct the graph G(ΣU). As observed by

[9], the graphG(ΣU) has the following property, which will be needed to show that classes are reversible:
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Lemma VII.11. For any edge e occurring in a cycle in G(ΣU), for any dependency τ which caused the creation of e , the

reverse τ−1 of τ is in ΣU .

Proof. Let e1 be the edge, and e1, . . . , en be the cycle (the first vertex of e1 is the second vertex of en ), and let τ

be the dependency. Consider a cycle of dependencies τ1, . . . , τn , with τ1 = τ , such that each τi caused the creation of

edge ei in G(ΣU). We must show that the reverse τ−1 of τ is in ΣU .

If all the τi are UIDs, then, as ΣUID is closed under the UID transitivity rule, we apply it to τ2, . . . , τn and deduce

that τ−11 is in ΣUID . Likewise, if all the τi are UFDs, then we proceed in the same way because ΣUFD is closed under

the UFD transitivity rule.

If the τi are of alternating types (alternatively UIDs and UFDs), then, recalling that ΣU is closed under the cycle rule

(see Section II.2) we deduce that τ−1i is in ΣU for all i .

In the general case, consider the maximal subsequence τj , . . . , τn , τ1, . . . , τi (i < j) of consecutive dependencies in

the cycle that includes τ and where all dependencies are of the same type. Let τm be the result of combining these

dependencies by the UID or UFD transitivity rule (depending on whether they are UIDs or UFDs), and consider the

cycle τm, τi+1, . . . , τn , τ1, . . . , τj−1. Collapsing all other consecutive sequences of dependencies to a single dependency

using the UID and UFD transitivity rules, and applying the cycle rule as in the previous case, we deduce that τ−1m is

in ΣU . Hence, the cycle τj , . . . , τn , τ1, . . . , τi , τ
−1
m is a cycle of dependencies of the same type as τ , and it includes τ , so

we conclude as in the first two cases that τ−1 is in ΣU .

Hence, in all cases τ−1 is in ΣU . This concludes the proof. �

Compute the strongly connected components ofG(ΣU), ordered following a topological sort: we label themV1, . . . ,Vn .

The order of the Vi guarantees that there are no edges inG(ΣU) fromVi toVj unless i ≤ j.

We will build each class of the manageable partition, either as the set of UIDs within the positions of an SCC (a

reversible class), or as a singleton UID going from a class Vi to a class Vj with j > i (a trivial class). Formally:

Definition VII.12. The topological sort of the SCCs ofG(ΣU), writtenV1, . . . ,Vn , defines a partition P of the UIDs of

ΣUID , in the following manner. For each Vi , if there are any non-trivial UIDs of the form Rp ⊆ Sq with Rp , Sq ∈ Vi ,

create a class of UIDs (the main class) containing all of them. Then, for each UID of the form Rp ⊆ Sq with Rp ∈ Vi

and Sq ∈ Vj with j > i , create a singleton class of UIDs containing exactly that UID (a satellite class). The partition

P is obtained by taking the concatenation, for i from 1 to n, of the main class of Vi (if it exists) and then all satellite

classes of Vi (if any) in an arbitrary order.

Remember that, while the constraint graph reflects both the UIDs and the UFDs, the partition P that we define is a

partition of ΣUID , that is, a partition of UIDs, and does not contain UFDs. We first show that P is indeed a partition,

and then that it is an ordered partition.

Lemma VII.13. P is indeed a partition of ΣUID .

Proof. As the SCCs of G(ΣU) partition the vertex set of G(ΣU), it is clear by construction that any UID occurs in

at most a single class of the partition, which must be a class for the SCC of its first position, and either a satellite class

or the main class depending on the SCC of its second position.

Conversely, each UID τ is reflected in some class of the partition, for the SCC Vi of its first position: either the

second position of τ is also in Vi , so τ is in the main class for Vi ; or the second position of τ is in an SCC Vj with
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i , j, in which case i < j by definition of a topological sort, and τ is in some satellite class forVi . Hence, P is indeed a

partition of ΣUID. �

Lemma VII.14. P is an ordered partition.

Proof. Assume by way of contradiction that there are two classes Pi and Pj and τ ∈ Pi , τ
′ ∈ Pj , such that τ  τ ′

but i > j. LetVp andVq be the SCCs in which Pi and Pj were created. Wemust have p ≥ q, so there are two possibilities.

First, if p = q, then the first positions of τ and τ ′ must both be in Vp = Vq , and as Pi is not the first class created

for Vp = Vq , it must be a satellite class. Hence, the second position of τ is in another SCC, say Vr , with r > p. Now,

as τ  τ ′, there is a UFD from the first position of τ ′ to the second position of τ , which implies that there is an edge

from Vr toVp in G(ΣU). As r > p, this contradicts the fact that the SCCs are ordered following a topological sort.

Second, if we have p > q, then again the first position of τ must be in Vp , and the first position of τ ′ is in Vq . Let

Vr be the SCC of the second position of τ . As τ  τ ′, the UFD from the first position of τ ′ to the second position of

τ witnesses that there is an edge inG(ΣU) from Vr toVq . Hence, we must have r ≤ q. But τ witnesses that there is an

edge from p to r inG(ΣU), so that we must have p ≤ r . Hence, p ≤ q, but we had assumed p > q, a contradiction. �

We now show that P is manageable, by considering each class and showing that it is either trivial or that it is

reversible:

Lemma VII.15. Each satellite class in P is trivial.

Proof. Each satellite class consists by construction of a singleton dependency τ : Rp ⊆ Sq , implying the existence

of an edge in the constraint graph G(ΣU) from Rp to Sq . Assume by way of contradiction that τ  τ . This implies

that Rp → Sq is in ΣUFD , so there is an edge inG(ΣU) from Sq to Rp . Hence, {Rp , Sq} is strongly connected, so Rp and

Sq belong to the same SCC, which contradicts the definition of a satellite class. �

Lemma VII.16. Each main class in the partition is reversible.

Proof. Let Pi be the class and Vi be the corresponding SCC. We first show that Pi is transitively closed. Consider

two UIDs τ and τ ′ of Pi that would be combined by the transitivity rule to the UID τ ′′. As ΣUID is transitively closed,

we have τ ′′ ∈ ΣUID. Now, if both τ and τ ′ have both positions in Vi , then so does τ ′′, so we also have τ ′′ ∈ Pi .

Second, to see that every UID τ in Pi is reversible, consider a UID τ : Rp ⊆ Sq of Pi , with Rp , Sq ∈ Vi . We forbid

trivial UIDs, so Rp , Sq . As Vi is strongly connected, consider a directed path π of edges of G(ΣU) from Sq to Rp .

Combining π with the edge created in G(ΣU) for the UID τ , we deduce the existence of a cycle in G(ΣU). Hence, by

Lemma VII.11, the UID τ−1 is in ΣUID , and it also has both positions in Vi , so τ
−1 is in Pi .

Third, we prove the claim about UFDs. Consider a UFD ϕ : Rp → Rq of ΣUFD , with Rp , Rq . Assume that Rp and

Rq occur in a UID of Pi ; thus R
p
,Rq ∈ Vi . Reasoning as before, we find a cycle in G(ΣU) that includes the edge that

corresponds to ϕ, and deduce that ϕ−1 is in ΣUFD . �

Hence, P is an ordered partition of ΣUID where each class is either reversible or trivial, i.e., it is a manageable

partition. This concludes the proof of Proposition VII.4.

VIII HIGHER-ARITY FDs

The goal of this section is to generalize our results to functional dependencies of arbitrary arity:

Manuscript submitted to ACM



Finite Open-World Query Answering with Number Restrictions 45

aS

a b cR

=

zT

z b cR

=

, = =

(a) Example VIII.2: an FD violation
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(b) Example VIII.15: a way to avoid the FD violation

Fig. 7. Example of a higher-arity FD violation in our process, and the proposed solution

Theorem VIII.1. Finitely-closed UIDs and FDs have finite universal models for ACQs.

We fix the finitely-closed constraints Σ ··= ΣFD ∧ ΣUID , consisting of arbitrary-arity FDs ΣFD and UIDs ΣUID . We

denote by ΣUFD the unary FDs among ΣFD , and write ΣU ··= ΣUFD ∧ ΣUID . From the definition of the finite closure

(Section II.2), it is clear that ΣU is finitely closed as well, so the construction of the previous sections applies to ΣU .

The problem to address in this section is that our completion process to satisfy ΣUID was defined with fact-thrifty

chase steps. These chase steps may reuse elements from the same facts at the same positions multiple times. This may

violate ΣFD , and it is in fact the only point where we do so in the construction.

Example VIII.2. For simplicity, weworkwith instances rather than aligned superinstances. Consider I0 ··= {S(a),T (z)},

theUIDs τ : S1 ⊆ R1 and τ ′ : T 1 ⊆ R1 for a 3-ary relation R, and the FDϕ : R2,3 → R1. Consider I ··= I0⊔{R(a,b, c)} ob-

tained by one chase step of τ on S(a). Figure 7a represents I in solid black, using edges to highlight equalities between

elements.

We can perform a fact-thrifty chase step of τ ′ on z to create R(z,b, c), reusing (b,c) at NDng(R1) = {R2,R3}; this

is illustrated in dashed red in Figure 7a. However, the two R-facts would then be a violation of ϕ, as shown by the

patterns of equalities and inequalities illustrated as thick red edges.

The goal of this section is to define a new version of thrifty chase steps that preserves ΣFD rather than just ΣUFD ;

we call them envelope-thrifty chase steps. We first describe the new saturation process designed for them, which is

much more complex because we need to saturate sufficiently with respect to the completion process that we do next.

To saturate, we use a separate combinatorial result, of possible independent interest: Theorem VIII.11, proved in

Section VIII.3. Second, we redefine the completion process of the previous section for this new notion of chase step,

and use this new completion process to prove Theorem VIII.1.

VIII.1 Envelopes and Envelope-Saturation

We start by defining our new notion of saturated instances. Recall the notions of fact classes (Definition VI.8) and

thrifty chase steps (Definition V.13). When a fact-thrifty chase step creates a fact Fnew whose chase witness Fwitness
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has fact class (Rp ,C), we need elements to reuse in Fnew at positions of NDng(Rp ), which need to already occur at the

positions where we reuse them. Further, the reused elements must have sim-images of the right class.

Fact-thrifty chase steps reuse a tuple of elements from one fact Freuse, and thus apply to fact-saturated instances,

where each fact class D which is achieved in the chase is also achieved by some fact (recall Definitions VI.8 and VI.10).

Our new notion of envelope-thrifty chase steps will consider multiple tuples that achieve each class D, that we call

an envelope for D; with the difference, however, that not all tuples need to actually occur in an achiever fact in the

instance, though each individual element needs to occur in some achiever fact. Formally:

Definition VIII.3. Consider D = (Rp ,C) in AFactCl, and writeO ··= NDng(Rp ). Remember thatO is then non-empty.

An envelope E for D and for an aligned superinstance J = (I , sim) of I0 is a non-empty set of |O |-tuples indexed byO ,

with domain dom(I ), such that:

(1) for every FD ϕ : RL → Rr of ΣFD with RL ⊆ O and Rr ∈ O , for any t, t′ ∈ E, πRL (t) = πRL (t
′) implies tr = t

′
r ;

(2) for every FD ϕ : RL → Rr of ΣFD with RL ⊆ O and Rr < O , for all t, t′ ∈ E, πRL (t) = πRL (t
′) implies t = t′;

(3) for every a ∈ dom(E), there is exactly one position Rq ∈ O such that a ∈ πRq (E), and then we also have

a ∈ πRq (J );

(4) for any fact F = R(a) of J and Rq ∈ O , if aq ∈ πRq (E), then F achieves D in J and πO (a) ∈ E.

Intuitively, the tuples in the envelope E satisfy the FDs of ΣFD within NDng(Rp ) (condition 1), and never overlap on

positions that determine a position out ofNDng(Rp ) (condition 2). Further, their elements already occur at the position

where they will be reused, and we require for simplicity that there is exactly one such position (condition 3). Last, the

elements have the right sim-image for the fact class D, and for simplicity, whenever a fact reuses an envelope element,

we require that it reuses a whole envelope tuple (condition 4).

We then extend this definition across all achieved fact classes in the natural way:

Definition VIII.4. A global envelope E for an aligned superinstance J = (I , sim) of I0 is a mapping from each

D ∈ AFactCl to an envelope E (D) for D and J , such that the envelopes have pairwise disjoint domains.

It is not difficult to see that an aligned superinstance with a global envelope must be fact-saturated, as for each

D ∈ AFactCl, the envelope E (D) is a non-empty set of non-empty tuples, and any element of this tuple must occur in

a fact that achieves D, by conditions 3 and 4. However, the point of envelopes is that they can contain more than a

single tuple, so we have multiple choices of elements to reuse.

For some fact classes (Rp ,C) it is not useful for envelopes to contain more than one tuple. This is the case if the

position Rp is safe, meaning that no FD from positions in O ··= NDng(Rp ) determines a position outside ofO . (Notice

that by definition of NDng(Rp ), such an FD could never be a UFD.) Formally:

Definition VIII.5. We call Rp ∈ Pos(σ ) safe if there is no FD RL → Rr in ΣFD with RL ⊆ NDng(Rp ) and Rr <

NDng(Rp ). Otherwise, Rp is unsafe.

We accordingly call a fact class (Rp ,C) ∈ AFactCl safe or unsafe depending on Rp . Observe that the second

condition of Definition VIII.3 is trivial for envelopes on safe fact classes.

It is not hard to see that when we apply a fact-thrifty (or even relation-thrifty) chase step, and the exported position

of the new fact is safe, then the problem illustrated by Example VIII.2 cannot arise. In fact, one could show that fact-

thrifty or relation-thrifty chase steps cannot introduce FD violations in this case. Because of this, in envelopes for safe

fact classes, we do not need more than one tuple, which we can reuse as we did with fact-thrifty chase steps.
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For unsafe fact classes, however, it will be important to have more tuples, and to never reuse the same tuple twice.

This motivates our definition of the remaining tuples of an envelope, depending on whether the fact class is safe or

not; and the definition of envelope-saturation, which depends on the number of remaining tuples:

Definition VIII.6. Letting E be an envelope for (Rp ,C) ∈ AFactCl and J be an aligned superinstance, the remaining

tuples of E are E\πNDng(Rp )(J ) if (R
p
,C) is unsafe, and just E if it is safe.

We call J n-envelope-saturated if it has a global envelope E such that E (D) has ≥ n remaining tuples for all unsafe

D ∈ AFactCl. J is envelope-saturated if it is n-envelope-saturated for some n > 0.

In the rest of the subsection, inspired by the Fact-Saturated Solutions Lemma (Lemma VI.11), we will show that we

can construct envelope-saturated solutions. However, there are some complications when doing so. First, we must

show that we can construct sufficiently envelope-saturated solutions, i.e., instances with sufficiently many remaining

tuples. To do this, we will need multiple copies of the chase, which explains the technical switch from I0 to I
′
0 in the

statement of the next result. Second, for reasons that will become clear later in this section, we need to ensure that the

envelopes are large relative to the resulting instance size. This makes the result substantially harder to show.

Proposition VIII.7 (Sufficiently envelope-saturated solutions). For any K ∈ N and instance I0, we can con-

struct an instance I ′0 formed of disjoint copies of I0, and an aligned superinstance J of I ′0 that satisfies ΣFD and is (K · |J |)-

envelope-saturated.

We prove the proposition in the rest of the subsection. It is not hard to see that I ′0 and J can be constructed separately

for each fact class in AFactCl, and that this is difficult only for unsafe classes. In other words, the crux of the matter is

to prove the following:

Lemma VIII.8 (Single envelope). For any unsafe class D in AFactCl, instance I0 and constant factor K ∈ N, there

exists N0 ∈ N such that, for any N ≥ N0, we can construct an instance I ′0 formed of disjoint copies of I0, and an aligned

superinstance J = (I , sim) of I ′0 that satisfies ΣFD , with an envelope E for D of size ≥ K · N , such that |J | ≤ N .

Indeed, let us prove Proposition VIII.7 with this lemma, and we will prove the lemma afterwards:

Proof of Proposition VIII.7. Fix the constant K ∈ N and the initial instance I0, and let us build I
′
0 and the aligned

superinstance J = (I , sim) of I ′0 that has a global envelope E . AsAFactCl is finite, we build one JD perD ∈ AFactClwith

an envelope ED for the classD, and we will define J ··=
⊔

D ∈AFactCl JD and define E by E (D) ··= ED for allD ∈ AFactCl.

When D = (Rp ,C) is safe, we proceed as in the proof of the Fact-Saturated Solutions Lemma (Lemma VI.11): take a

single copy JD of the truncated chase to achieve the classD, and take as the only fact of the envelope ED the projection

toNDng(Rp ) of an achiever ofD in JD . When D is unsafe, we use the Single Envelope Lemma (Lemma VIII.8) to obtain

JD and the envelope ED . AsAFactCl is finite and its size does not depend on I0, we can ensure that that |ED | ≥ (K+1)·|J |

for all unsafe D ∈ AFactCl by using the Single Envelope Lemma with K ′ ··= (K + 1) · |AFactCl|, and taking N ∈ N

which is larger than the largest N0 of that lemma across all D ∈ AFactCl. Indeed, the resulting model J then ensures

that |J | ≤ |AFactCl| · N and |ED | ≥ (K + 1) · |AFactCl| · N .

We now check that the resulting J and E satisfy the conditions. Each JD is an aligned superinstance of an instance

(I ′0)D which is formed of disjoint copies of I0 (for unsafe classes) or which is exactly I0 (for safe classes), so J is an

aligned superinstance of I ′0
··=

⊔

D ∈AFactCl(I
′
0)D , so I ′0 is also a union of disjoint copies of I0. There are no violations

of ΣFD in J because there are none in any of the JD . The disjointness of domains of envelopes in the global envelope
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E is because the JD are disjoint. It is easy to see that J is (K · |I |)-envelope-saturated, because |E (D)| ≥ (K + 1) · |I |

for all unsafe D ∈ AFactCl, so the number of remaining facts of each envelope for an unsafe class is ≥ K · |I | because

every fact of I eliminates at most one fact in each envelope. Hence, the proposition is proven. �

So the only thing left to do is to prove the Single Envelope Lemma (Lemma VIII.8). Let us accordingly fix the unsafe

class D = (Rp ,C) in AFactCl. We will need to study more precisely the FDs implied by the definition of an envelope

for D (Definition VIII.3). We first introduce notation for them:

Definition VIII.9. Given a set ΣFD of FDs on a relation R andO ⊆ Pos(R), the FD projection Σ
O
FD

of ΣFD toO consists

of the following FDs, which we close under implication:

(1) the FDs RL → Rr of ΣFD such that RL ⊆ O and Rr ∈ O ;

(2) for every FD RL → Rr of ΣFD where RL ⊆ O and Rr < O , the key dependency RL → O .

We will need to show that, as Rp is unsafe, ΣO
FD

cannot have a unary key inO , namely, there cannot be Rq ∈ O such

that, for every Rr ∈ O , either Rq = Rr or the UFD Rq → Rr is in Σ
O
FD. We show the contrapositive of this statement:

Lemma VIII.10. For any Rp ∈ Pos(σ ), lettingO ··= NDng(Rp ), if O has a unary key in Σ
O
FD

, then Rp is safe.

Proof. Fix Rp ∈ Pos(σ ) and letO ··= NDng(Rp ). We first show that ifO has a unary key Rs ∈ O in the original FDs

ΣFD , then Rp is safe. Indeed, assume the existence of such an Rs ∈ O . Assume by way of contradiction that Rp is not

safe, so there is an FD RL → Rr in ΣFD with RL ⊆ O and Rr < O . Then, as ΣFD is closed under the transitivity rule,

the UFD ϕ : Rs → Rr is in ΣUFD . Now, as R
r
< O , either Rr = Rp or Rr ∈ Dng(Rp ); in both cases, ϕ witnesses that

Rs ∈ Dng(Rp ), but we had Rs ∈ O , a contradiction.

We must now show that if O has a unary key in O according to ΣO
FD

, then O has a unary key in O according to ΣFD .

It suffices to show that for any two positions Rq ,Rs ∈ O , if the UFD ϕ′ : Rq → Rs is in Σ
O
FD

then it also does in ΣFD .

Hence, fix Rq in O , and consider the set S of positions in O that Rq determines according to Σ
O
FD

. Let Φ be the FDs

in the list given in Definition VIII.9, so that ΣO
FD

is the result of closing Φ under FD implication. We can compute S

using the well-known “fd closure algorithm” [1, Algorithm 8.2.7], which starts at S = {Rq} and iterates the following

operation: whenever there is ϕ : RL → Rr such that RL ⊆ S , add Rr to S .

Assume now that there is a position Rs in S such thatϕ′ : Rq → Rs is not in ΣFD . This implies that, when computing

S , we must have used some FD RL → Rt from a key dependency κ in Φ, as they are the only FDs of Φ which are not

in ΣFD . The first time we did this, we had derived, using only FDs from ΣFD , that R
L ⊆ S , so that the key dependency

Rq → RL is in ΣFD. Now, κ witnesses that there is an FD RL → Rr in ΣFD with Rr < O , so that, as ΣFD is closed under

implication, we deduce that Rq → Rr is in ΣFD with Rq in O and Rr < O . As before, this contradicts the definition of

O ··= NDng(Rp ). So indeed, there is no such Rs in S .

Hence, if O has a unary key in O according to Σ
O
FD , then it also does according to ΣFD, and then, by the reasoning

of the first paragraph, Rp is safe, which is the desired claim. �

We now know that O has no unary key in Σ
O
FD

. This allows us to introduce the crucial tool needed to prove the

Sufficiently Envelope-Saturated Solutions Proposition (PropositionVIII.7). It is the following independent result, which

is proved separately in Section VIII.3 using a combinatorial construction.

Theorem VIII.11 (Dense interpretations). For any set ΣFD of FDs over a relation R with no unary key, for allK ∈ N,

there exists N0 ∈ N such that for all N ≥ N0, we can construct a non-empty instance I of R that satisfies ΣFD and such

that |dom(I )| ≤ N and |I | ≥ K · N .

Manuscript submitted to ACM



Finite Open-World Query Answering with Number Restrictions 49

Further, we can impose a disjointness condition on the result I : we can ensure that for all a ∈ dom(I ), there exists

exactly one Rp ∈ Pos(R) such that a ∈ πRp (I ).

We can now prove the Single Envelope Lemma (Lemma VIII.8) and conclude the subsection. Choose a fact Fach =

R(b) of Chase(I0, ΣUID)\I0 that achieves the fact class D, and let I1 be obtained from I0 by applying UID chase steps

on I0 to obtain a finite truncation of Chase(I0, ΣUID) that includes Fach but no child fact of Fach. Consider the aligned

superinstance J1 = (I1, sim1) of I0, where sim1 is the identity.

Remember that we wrote D = (Rp ,C), andO = NDng(Rp ), which is non-empty. Define a |O |-ary relationR |O (with

positions indexed byO for convenience), define ΣO
FD

as in Definition VIII.9, and consider ΣO
FD

as FDs onR |O . BecauseD

is unsafe, by Lemma VIII.10,R |O has no unary key in Σ
O
FD

. Letting K ∈ N be our target constant for the Single Envelope

Lemma, apply the Dense Interpretations Theorem (Theorem VIII.11) toR |O and Σ
O
FD

, taking K ′ ··= 2 · K · |J1 | as the

constant. Define N0 ∈ N for the Single Envelope Lemma as 2 · max(|J1 | , 1) · max(N ′
0, 1) where N

′
0 is obtained from

the Dense Interpretations Theorem for K ′. Letting N ′ ∈ N be our target size for the Single Envelope Lemma, using

N ··= ⌊N ′/|J1 |⌋ as the target size for the Dense Interpretations Theorem (which is ≥ N ′
0), we can build an instance

Idense ofR |O that satisfies ΣO
FD

and such that |Idense | ≥ N · K ′ and |dom(Idense)| ≤ N .

Let I ′
dense

⊆ Idense be a subinstance of size exactly N of Idense such that we have dom(I ′
dense

) = dom(Idense), that

is, such that each element of dom(Idense) occurs in some fact of I ′
dense

: we can clearly construct I ′
dense

by picking, for

each element of dom(Idense), one fact of Idense where it occurs, removing duplicate facts, and completing with other

arbitrary facts of Idense so the number of facts is exactly N . Number the facts of I ′
dense

as F ′1, . . . , F
′
N
.

Let us now create N − 1 disjoint copies of J1, numbered J2 to JN . Let Ipre be the disjoint union of the underlying

instances of the Ji , let I
′
0 be formed of the N disjoint copies of I0 in Ipre, and define a mapping simpre from dom(Ipre)

to Chase(I ′0, ΣUID) following the simi in the expected way. It is clear that Jpre is an aligned superinstance of I ′0. For

1 ≤ i ≤ N , we call Fi = R(ai) the fact of Ii that corresponds to the achiever Fach in Chase(I0, ΣUID). In particular, for all

1 ≤ i ≤ N , we have that sim(aij ) = bj for all j, and a
i
p is the only element of Fi that also occurs in other facts of Ji , as

Ji does not contain any descendent fact of Fi .

Intuitively, we will now identify elements in Jpre so that the restriction of the Fi toO is exactly the F ′i , and this will

allow us to use the instance Idense to define the envelope. Formally, as the aij are pairwise distinct, we can define the

function f that maps each aij , for 1 ≤ i ≤ N and Rj ∈ O , to πR j (F
′
i ). In other words, f is a surjective (but generally

not injective) mapping, the domain of f is the projection toO of the Fi in Ii , the range of f is dom(I ′
dense

), and f maps

each element of the projection to the corresponding element in F ′i . Extend f to a mapping f ′ with domain dom(Ipre)

by setting f ′(a) ··= f (a) when a is in the domain of f , and f ′(a) ··= a otherwise. Now, let I ··= f ′(Ipre). In other words,

I is Ipre except that elements in the projection to O of the facts Fi are renamed, and some are identified, so that the

projection toO of { f ′(Fi ) | 1 ≤ i ≤ N }, seen as an instance ofR |O -facts, is exactly I ′
dense

. Because aij occurs only in Fi

for all Rj , Rp , and Rp < O , this means that the elements identified by f ′ only occurred in the Fi in Ipre.

We now build J = (I , sim) obtained by defining sim from simpre as follows: if a is in the domain of f , then sim(a) ··=

simpre(a
′) for any preimage of a′ by f ′ (as we will see, the choice of preimage does not matter), and if a is not in

the domain of f , then sim(a) ··= simpre(a) because a is then the only preimage of a by f ′. We have now defined the

instance I ′0 formed of disjoint copies of I0 and the final J , and we define E ··= Idense. We must now show that J is indeed

an aligned superinstance of I ′0, and that E is an envelope for I and D, and that they satisfy the required conditions.

We note that it is immediate that J = (I , sim) is a superinstance of I ′0. Indeed, we have I
··= f (Ipre), and Ipre was a

superinstance of I ′0, so it suffices to note that dom(I ′0) is not in the domain of f : this is because the achiever Fach is not
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a fact of I0, so the domain of f , namely, the projection of the Fi onO , does not intersect dom(I ′0). Further, it is clear that

J is finite and has N · |J1 | facts, because this is the case of Jpre by definition, and f ′ cannot have caused any facts of Jpre

to be identified in J , because we have Rp < O , so the projection of each Fi to R
p is a different element which is mapped

to itself by f ′. Hence, we have |J | = N · |J1 | ≤ N ′. Further, we have |E | = |Idense | ≥ N · K ′ ≥ ⌊N ′/|J1 |⌋ · 2 · K · |J1 |,

and as N ′ ≥ N0 ≥ 2 · |J1 | we have ⌊N
′/|J1 |⌋ ≥ (1/2) · (N ′/|J1 |). Hence, |E | ≥ K ·N ′, so we have achieved the required

size bound.

We now show that J is indeed an aligned superinstance of I ′0. The technical conditions on sim are clearly respected,

because they were respected on Jpre, because f
′ only identifies elements in Ipre\I0, and because the identified elements

occur at the same positions as their preimages so the directionality condition is respected.

We show that sim is a k-bounded simulation from J to Chase(I ′0, ΣUID) by showing the stronger claim that it is

actually a k ′-bounded simulation for all k ′ ∈ N, which we show by induction on k ′. The case of k ′ = 0 is trivial. The

induction case is trivial for all facts except for the f ′(Fi ), because the a
i
j only occurred in Ipre in the facts Fi , by our

assumption that the Fi have no children in the Ii , and because the exported position of Fach is R
p
< O . Hence, consider a

fact F ′ = R(c) of I which is the image by f ′ of some fact Fi . Choose 1 ≤ p ≤ |R |. We wish to show that there exists a fact

F ′′ = R(d) ofChase(I ′0, ΣUID) such that sim(cp ) = dp and for all 1 ≤ q ≤ |R | we have (I ,cq ) ≤k′−1 (Chase(I
′
0, ΣUID),dq).

Let ai0j0
be the preimage of cp used to define sim(cp ); by the disjointness condition of the Dense Interpretations Theorem

(Theorem VIII.11), we must have j0 = p. Observe that Chase(I ′0, ΣUID) is formed of disjoint copies of Chase(I0, ΣUID),

so, recalling the definition of J ′i0 , consider the fact F
′′
= R(d) ofChase(I ′0, ΣUID) corresponding to Fi0 in I . By definition,

sim(cp ) = sim(ai0j0
) = dp .

We now show that for all 1 ≤ q ≤ |R | we have (I ,cq ) ≤k′−1 (Chase(I
′
0, ΣUID),dq). Fix 1 ≤ q ≤ |R |. It suffices to show

that sim(cq ) ≃k′ dq , as we can then use the induction hypothesis to know that (I ,cq ) ≤k′−1 (Chase(I
′
0, ΣUID), sim(cq )),

so that by transitivity (I ,cq ) ≤k′−1 (Chase(I
′
0, ΣUID),dq). Hence, we show that sim(cq ) ≃k′ dq . Let a

i ′0
j′0
be the preimage

of cq used to define sim(cq ). Again we must have j ′0 = q by the disjointness condition, and, considering the fact

F ′′′ = R(e) of Chase(I ′0, ΣUID) corresponding to Fi ′0
in I , we have sim(cq ) = eq . But as both F ′′′ and F ′′ are copies in

Chase(I ′0, ΣUID) of the same fact Fach of Chase(I0, ΣUID), it is indeed the case that dq ≃k′ eq . Hence, sim(cq ) ≃k′ dq ,

from which we conclude that F ′′ is a suitable witness fact for F ′. By induction, we have shown that sim is indeed a

k ′-bounded simulation from J to Chase(I ′0, ΣUID) for any k
′ ∈ N, so that it is in particular a k-bounded simulation.

We now show that J satisfies ΣFD . For this, it will be convenient to define the overlap of two facts:

Definition VIII.12. The overlap OVL(F , F ′) between two facts F = R(a) and F ′ = R(b) of the same relation R in an

instance I is the subset O of Pos(R) such that as = bs iff Rs ∈ O . If |O | > 0, we say that F and F ′ overlap.

As Ipre satisfies ΣFD by the Unique Witness Property of the UID chase, any new violation of ΣFD in I relative to Ipre

must include some fact F = f ′(F ′i0
), and some fact F ′ , F that overlaps with F , so necessarily F ′ = f ′(F ′i1

) for some i1

by construction of I , and OVL(F , F ′) ⊆ O . If OVL(F , F ′) = O , then, by our definition of f and of the F ′i , this implies

that F ′i0 = F ′i1
, a contradiction because F , F ′. So the only case to consider is when OVL(F , F ′) ( O , but we can also

exclude this case:

Lemma VIII.13. Let I be an instance, ΣFD be a conjunction of FDs, and F , F ′ be two facts of I . Assume there is a

position Rp ∈ Pos(σ ) such that, writing O ··= NDng(Rp ), we have OVL(F , F ′) ( O , and that {πO (F ),πO (F ′)} is not a

violation of ΣO
FD

. Then {F , F ′} is not a violation of ΣFD .
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Proof. Assume by way of contradiction that F and F ′ violate an FD ϕ : RL → Rr of ΣFD , which implies that

RL ⊆ OVL(F , F ′) ⊆ O and Rr < OVL(F , F ′). Now, if Rr ∈ O , then ϕ is in Σ
O
FD

, so that πO (F ) and πO (F ′) violate ΣO
FD

,

a contradiction. Hence, Rr ∈ Pos(R)\O , and the key dependency κ : RL → O is in Σ
O
FD

, so that πO (F ) and πO (F ′)

must satisfy κ . Thus, because RL ⊆ OVL(F , F ′), we must have OVL(F , F ′) = O , which is a contradiction because we

assumed OVL(F , F ′) ( O . �

Now, by definition of I ′
dense

, we know that I ′
dense

satisfies ΣO
FD

, so that {πO (F ),πO (F ′)} is not a violation of ΣO
FD

.

Thus, we can conclude with Lemma VIII.13 that {F , F ′} is not a violation of ΣFD , so that J satisfies ΣFD. We have thus

shown that J is an aligned superinstance of I ′0.

Last, we check that E is indeed an envelope for D and for J . Indeed, E satisfies ΣO
FD

by construction, so conditions 1

and 2 are respected. The first part of condition 3 is ensured by the disjointness condition, and its second part follows

from our definition of I ′
dense

that ensures that any element in dom(E) occurs in a fact F ′i of I
′
dense

, hence occurs in f ′(Fi )

in J . Last, condition 4 is true because the elements of dom(E) are only used in the f ′(Fi ), and the sim-images of the

f ′(Fi ) are copies in Chase(I ′0, ΣUID) of the same fact Fach in Chase(I0, ΣUID) that achieves D, so the Fi are all achievers

of D; further, by definition, their projection to O is a tuple of E because it is a fact of I ′
dense

.

Hence, J is indeed an aligned superinstance of a disjoint union I ′0 of copies of I0, J satisfies ΣFD , |J | ≤ N ′, and J has

an envelope E of size K · N ′ for D. This concludes the proof of the Single Envelope Lemma (Lemma VIII.8), and hence

of the Sufficiently Envelope-Thrifty Solutions Proposition (Proposition VIII.7).

VIII.2 Envelope-Thri�y Chase Steps

We have shown that we can construct sufficiently envelope-saturated superinstances of the input instance. The point

of this notion is to introduce envelope-thrifty chase steps, namely, thrifty chase steps that use remaining tuples from

the envelope to fill the non-dangerous positions:

Definition VIII.14. Envelope-thrifty chase steps are thrifty chase steps (Definition V.13) which apply to envelope-

saturated aligned superinstances. Following Definitions V.13 and VI.14, we write Sq for the exported position of the

new fact Fnew, we write Fwitness = S(b′) for the chase witness, and we let D = (Sq ,C) ∈ AFactCl be the fact class

of Fwitness. Analogously to Definition V.13, we define an envelope-thrifty chase step as follows: if NDng(Sq) is

non-empty, choose one remaining tuple t of E (D), and set br ··= tr for all S
r ∈ NDng(Sq ).

We define a fresh envelope-thrifty step in the same way as a fresh fact-thrifty step: all elements at dangerous

positions are fresh elements only occurring at that position.

Example VIII.15. Recall I0, τ , τ
′ and ϕ from Example VIII.2. Now, consider I ′0

··= {S(a),T (z), S(a′), S(z ′)} formed of

two copies of I0, and I ′ ··= I ′0 ⊔ {R(a,b, c),R(a′,b ′, c ′)} obtained by two chase steps: this is illustrated in solid black in

Figure 7b on page 45. The two facts R(a,b,c) and R(a′,b ′, c ′) would achieve the same fact class D, so we can define

E(D) ··= {(b,c), (b ′, c ′), (b ′, c), (b, c ′)}.

We can now satisfy ΣUID on I ′ without violating ϕ, with two envelope-thrifty chase steps that reuse the remaining

tuples (b ′, c) and (b,c ′) of E(D): the new facts and the pattern of equalities between them is illustrated in red in

Figure 7b.

Recall that fact-thrifty chase steps apply to fact-saturated aligned superinstances (Lemma VI.15). Similarly, envelope-

thrifty chase steps apply to envelope-saturated aligned superinstances:
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Lemma VIII.16 (Envelope-thrifty applicability). For any envelope-saturated superinstance I of an instance I0, UID

τ : Rp ⊆ Sq and element a ∈ Wants(I ,τ ), we can apply an envelope-thrifty chase step on a with τ to satisfy this violation.

Further, for any new fact S(e) that we can create by chasing on a with τ with a fact-thrifty chase step, we can instead

apply an envelope-thrifty chase step on a with τ to create a fact S(b) with br = er for all Sr ∈ Pos(S)\NDng(Sr ).

Proof. For the first part of the claim, as in the proof of the Fact-Thrifty Applicability Lemma (Lemma VI.15), there

is nothing to show unless NDng(Sq ) is non-empty, and the fact class D = (Sq ,C) is then in AFactCl, where C is the

tuple of the ≃k -equivalence classes of the elements of the chase witness Fwitness. Hence, as J is envelope-saturated, it

has some remaining tuple for the class D that we can use to define the non-dangerous positions of the new fact.

For the second part, again as in the proof of the Fact-Thrifty Applicability Lemma, observe that the definition of

envelope-thrifty chase steps only poses additional conditions (relative to thrifty chase steps) on NDng(Sq ), so that, for

any fact that we would create with a fact-thrifty chase step, we can change the elements at NDng(Sq) to perform an

envelope-thrifty chase step, using the fact that I is envelope-saturated. �

Further, recall that we showed that relation-thrifty chase steps never violate ΣUFD (Lemma V.16). We now show

that envelope-thrifty chase steps never violate ΣFD , which is their intended purpose:

Lemma VIII.17 (Envelope-thrifty FD preservation). For an n-envelope-saturated aligned superinstance J satisfy-

ing ΣFD , the result of an envelope-thrifty chase step on J satisfies ΣFD .

Proof. Fix J and its global envelope E . Let Fnew = S(b) be the fact created by the envelope-thrifty step, let τ :

Rp ⊆ Sq be the UID, let J ′ = (I ′, sim′) be the result of the chase step, let Fwitness be the chase witness, and let D be

the fact class of Fwitness. Write O ··= NDng(Sq ). Assume by contradiction that I ′ 6 |= ΣFD ; as I |= ΣFD , any violation

of ΣFD in I ′ must be between the new fact Fnew and an existing fact F = S(c) of I . Recalling the definition of overlaps

(Definition VIII.12), note that we only have br ∈ πS r (I ) for S
r ∈ O by definition of thrifty chase steps, so we must have

OVL(Fnew, F ) ⊆ O . Now, as πO (Fnew) was defined using elements of dom(E (D)), taking any Sr ∈ OVL(Fnew, F ) ⊆ O

(which is non-empty by definition of an FD violation), we have cr = br ∈ πS r (E (D)), so that, by condition 4 of

the definition of the envelope E (D), we know that πO (c) is a tuple t′ of E (D). Now, either OVL(Fnew, F ) ( O or

OVL(Fnew, F ) = O .

In the first case, we observe that, by conditions 1 and 2 of the definition of the envelope E (D), we know that

{πO (c), πO (b)} is not a violation of ΣO
FD

. Together with the fact that OVL(Fnew, F ) ( O , this allows us to apply

Lemma VIII.13 and deduce that {F , Fnew} actually does not violate ΣFD, a contradiction.

In the second case, where OVL(Fnew, F ) = O , we have t = t′. Now, either D is safe or D is unsafe. If D is unsafe,

we have a contradiction because F witnesses that t was not a remaining tuple of E (D), so we cannot have used t to

define Fnew. If D is safe, then by definition there is no FD RL → Rr of ΣFD with RL ⊆ O and Rr < O . Now, as

OVL(Fnew, F ) = O , it is clear that F and Fnew cannot violate any FD of ΣFD , a contradiction again. �

Last, recall that we showed that fresh fact-thrifty steps preserve the property of being aligned (Lemma VI.16)

and that non-fresh fact-thrifty steps also do when we additionally assume k-essentiality, which they also preserve

(Lemma VI.24). We now prove the analogous claims for envelope-thrifty steps assuming envelope-saturation. The

only difference is that envelope-thrifty chase steps make envelope-saturation decrease, unlike fact-thrifty steps which

always preserved fact-saturation:
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Lemma VIII.18 (Envelope-thrifty preservation). For any n ∈ N, for any n-envelope-saturated aligned superin-

stance J of I0, the result J
′ of a fresh envelope-thrifty chase step on J is an (n−1)-envelope-saturated aligned superinstance

of I0. Further, if J is k-essential, the claim holds even for non-fresh envelope-thrifty chase steps, and the result J ′ is addi-

tionally k-essential.

Proof. We reuse notation from Lemma VIII.17: considering an application of an envelope-thrifty chase step: let

J = (I , sim) be the aligned superinstance of I0, let τ : Rp ⊆ Sq be the UID, write O ··= NDng(Sq), let Fwitness = S(b′)

the chase witness, let D = (Sq ,C) be the fact class, let Fnew = S(b) be the new fact to be created, and let t be the

remaining tuple of E (D) used to define Fnew, and let J ′ = (I ′, sim′) be the result.

We now prove that J ′ is still an aligned superinstance. We first adapt the Fresh Fact-Thrifty Preservation Lemma

(Lemma VI.16) to work with envelope-thrifty chase steps. We can no longer use Lemma V.16 to prove that J ′ |= ΣUFD ,

but we have shown already that J ′ |= ΣFD in Lemma VIII.17, so this point is already covered. The only other point

specific to fact-thriftiness is proving that sim′ is still a k-bounded simulation, but it actually only relies on the fact that

sim′(br ) ≃k b ′r in Chase(I0, ΣUID) for all S
r ∈ NDng(Sq), which is still ensured by envelope-thrifty chase steps: by

conditions 3 and 4 of the definition of envelopes, we know that, for any Sr ∈ NDng(Sq ), the element tr already occurs

at position Sr in a fact of I that achieves D, so that sim(tr ) ≃k b ′r .

Second, we adapt the Fact-Thrifty Preservation Lemma (Lemma VI.24) to envelope-thrifty chase steps. Again, the

only condition of fact-thrifty chase steps used when proving that lemma is that sim′(br ) ≃k b ′r in Chase(I0, ΣUID) for

all Sr ∈ NDng(Sq ), which is still true. Hence, having adapted these two lemmas, we conclude that J ′ has the required

properties.

We now prove that E is still a global envelope of J ′ after performing an envelope-thrifty chase step. The condition

on the disjointness of the envelope domains only concerns E itself, which is unchanged. Hence, we need only show

that, for any D′ ∈ AFactCl, E (D′) is still an envelope. All conditions of the definition of envelopes except condition 4

are clearly true, because they were true in J , and they only depend on E (D′) or they are preserved when creating more

facts. We now check condition 4, which only needs to be verified on the new fact Fnew.

Consider Su ∈ Pos(S) and St ∈ NDng(Su ), and assume that bt ∈ πS t (E (D
′)). As E (D) is an envelope for J , by

condition 3 of the definition, we have bt ∈ πS t (I ) as well, so that, by definition of thrifty chase steps, we must have

St ∈ O . Now, as the envelopes of E are pairwise disjoint, and as the br for Sr ∈ O are all in dom(E (D)), we must have

D = D′, and t witnesses that πO (b) ∈ E (D). Hence E is still a global envelope of J ′.

Last, to see that the resulting J ′ is (n − 1)-envelope-saturated, it suffices to observe that, for each unsafe class

D ∈ AFactCl, the remaining tuples of E (D) for J ′ are those of E (D) for J minus at most one tuple (namely, some

projection of Fnew). This concludes the proof. �

Hence, we know that envelope-thrifty chase steps preserve being aligned and also preserve ΣFD (rather than ΣUFD

for fact-thrifty chase steps). Our goal is then to modify the Fact-Thrifty Completion Proposition of the previous section

(Proposition VII.7) to use envelope-thrifty rather than fact-thrifty chase steps, relying on the previous lemmas to

preserve all invariants. The problem is that unlike fact-saturation, envelope-saturation “runs out”; whenever we use a

remaining tuple t in a chase step to create Fnew and obtain a new aligned superinstance J ′, then we can no longer use

the same t in J ′. This is why the result of an envelope-thrifty chase step is less saturated than its input, and it is why
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we made sure in the Sufficiently Envelope-Saturated Solutions Proposition (Proposition VIII.7) that we could construct

arbitrarily saturated superinstances.

For this reason, before we modify the Fact-Thrifty Completion Proposition, we need to account for the number of

chase steps that the proposition performs. We show that it is linear in the size of the input instance.

Lemma VIII.19 (Accounting). There exists B ∈ N depending only on σ , k , and ΣU , such that, for any aligned su-

perinstance J = (I , sim) of I0, letting L be the preserving fact-thrifty sequence constructed in the Fact-Thrifty Completion

Proposition (Proposition VII.7), we have |L | < B · |I |.

Proof. It suffices to show that |L(J )| < B · |I |, because, as each chase step creates one fact, we have |L | ≤ |L(J )|.

Remember that the fact-thrifty completion process starts by constructing an ordered partition P = (P1, . . . , Pn ) of

ΣUID (Definition VII.2). This P does not depend on I . Hence, as we satisfy the UIDs of each Pi in turn, if we can show

that the instance size only increases by a multiplicative constant for each class, then the blow-up for the entire process

is by a multiplicative constant (obtained as the product of the constants for each Pi ).

For trivial classes, we apply one chase round by fresh fact-thrifty chase steps (Lemma VII.9), It is easy to see that

applying a chase round by any form of thrifty chase step on an aligned superinstance J1 = (I1, sim1) yield a result

whose size has only increased relative to J1 by a multiplicative constant. This is because |dom(I1)| ≤ |σ | · |I1 |, and the

number of facts created per element of I1 in a chase round is at most |Pos(σ )|. Hence, for trivial classes, we only incur

a blowup by a constant multiplicative factor.

For non-trivial classes, we apply the Reversible Fact-Thrifty Completion Proposition (Proposition VI.25). Remember

that this lemma first ensures k-essentiality by applying k + 1 fact-thrifty chase rounds (Lemma VI.23) and then makes

the result satisfy ΣUID using the sequence constructed by the Reversible Relation-Thrifty Completion Proposition.

Ensuring k-essentiality only implies a blow-up by a multiplicative constant, because it is performed by applying k + 1

fact-thrifty chase rounds, so we can use the same reasoning as for trivial classes. Hence, we focus on the Reversible

Relation-Thrifty Completion Proposition, and show that it also causes only a blow-up by a multiplicative constant.

When we apply the Reversible Relation-Thrifty Completion Proposition to an instance I , we start by constructing a

balanced pssinstance P using the Balancing Lemma (Lemma IV.12), and a ΣU-compliant piecewise realization PI of P

by the Realizations Lemma (Lemma V.6), and we then apply fact-thrifty chase steps to satisfy ΣUID following PI . We

know that, whenever we apply a fact-thrifty chase step to an element a, the element a occurs after the chase step at

a new position where it did not occur before. Hence, it suffices to show that |dom(P)| is within a constant factor of

|I |, because then we know that the final number of facts created by the sequence of the Reversible Relation-Thrifty

Completion Proposition will be ≤ |dom(P)| · |Pos(σ )|.

To show this, remember that dom(P) = dom(I ) ⊔ H, where H is the helper set. Hence, we only need to show

that |H| is within a multiplicative constant factor of |I |. From the proof of the Balancing Lemma, we know that H

is a disjoint union of ≤ |Pos(σ )| sets whose size is linear in |dom(I )| which is itself ≤ |σ | · |I |. Hence, the Reversible

Relation-Thrifty Completion Proposition only causes a blowup by a constant factor. As we justified, this implies the

same about the entire completion process, and concludes the proof. �

This allows us to deduce the minimal level of envelope-saturation required to adapt the Fact-Thrifty Completion

Proposition (Proposition VII.7):
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Proposition VIII.20 (Envelope-thrifty completion). Let Σ = ΣFD ∧ ΣUID be finitely closed FDs and UIDs, let

B ∈ N be as in the Accounting Lemma (Lemma VIII.19), and let I0 be an instance that satisfies ΣFD . For any (B · |J |)-

envelope-saturated aligned superinstance J of I0 that satisfies ΣFD , we can obtain by envelope-thrifty chase steps an aligned

superinstance Jf of I0 that satisfies Σ.

Proof. We define envelope-thrifty sequences, and preserving envelope-thrifty sequences, analogously to (preserv-

ing) fact-thrifty sequences (Definition VI.26 and Definition VII.6) in the expected manner, but further requiring that all

intermediate aligned superinstances remain envelope-saturated. This definition makes sense thanks to the Envelope-

Thrifty Preservation Lemma (Lemma VIII.18).

By the Fact-Thrifty Completion Proposition (Proposition VII.7), there exists a preserving fact-thrifty sequence L

such that L(J ) satisfies ΣUID , and |L | < B · |I |. Construct from L an envelope-thrifty sequence L′ that non-dangerously

matches L, by changing each fact-thrifty chase step to an envelope-thrifty chase step, which we can do at each indi-

vidual step thanks to the Envelope-Thrifty Applicability Lemma (Lemma VIII.16). It is clear that this is a preserving

envelope-thrifty sequence, thanks to the Envelope-Thrifty Preservation Lemma, and thanks to the fact that the En-

suring Essentiality Lemma (Lemma VI.23) clearly adapts from fact-thrifty chase steps to envelope-thrifty chase steps:

again, it only relies on the fact that, letting Fnew = S(b) be the new fact, Fwitness = S(b′) the chase witness, and

τ : Rp ⊆ Sq the UID, we have sim′(br ) ≃k b ′r in Chase(I0, ΣUID) for all S
r ∈ NDng(Sq). This also uses the fact that,

by the Accounting Lemma (Lemma VIII.19), we have |L | ≤ B · |I |, so by the Envelope-Thrifty Preservation Lemma, all

intermediate aligned superinstances remain envelope-saturated.

Hence, Jf ··= L′(J ) is an aligned superinstance of I0. Further, by theThrifty Sequence Rewriting Lemma (Lemma VI.28),

as L(J ) |= ΣUID, so does Jf . Last, as J |= ΣFD , by the Envelope-Thrifty FD Preservation Lemma (Lemma VIII.17), so

does Jf . This concludes the proof. �

We can now conclude the proof of Theorem VIII.1. Start by applying the saturation process of the Sufficiently

Envelope-Saturated Solutions Proposition (Proposition VIII.7) to obtain an aligned superinstance J = (I , sim) of a dis-

joint union I ′0 of copies of I0, such that J satisfies ΣFD and is (B·|I |)-envelope-saturated. Now, apply the Envelope-Thrifty

Completion Proposition (Proposition VIII.20) to obtain an aligned superinstance Jf = (If , simf ) of I
′
0 that satisfies Σ.

We know that If satisfies Σ and is a k-sound superinstance of I ′0 for ACQ, but clearly it is also a k-sound superinstance

of I0, as is observed by the k-bounded simulation from I ′ to Chase(I0, ΣUID) obtained by composing sim′ with the

obvious homomorphism from Chase(I ′0, ΣUID) to Chase(I0, ΣUID). This concludes the proof.

VIII.3 Constructing Dense Interpretations

All that remains is to show the Dense Interpretations Theorem:

Theorem VIII.11 (Dense interpretations). For any set ΣFD of FDs over a relation R with no unary key, for allK ∈ N,

there exists N0 ∈ N such that for all N ≥ N0, we can construct a non-empty instance I of R that satisfies ΣFD and such

that |dom(I )| ≤ N and |I | ≥ K · N .

Further, we can impose a disjointness condition on the result I : we can ensure that for all a ∈ dom(I ), there exists

exactly one Rp ∈ Pos(R) such that a ∈ πRp (I ).

Fix the relation R, and let ΣFD be an arbitrary set of FDs which we assume is closed under FD implication. Let ΣUFD

be theUFDs implied by ΣFD ; it is also closed under FD implication. Recall the definition ofOVL (Definition VIII.12). We
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introduce a notion of tame overlaps for ΣUFD , which depends only on ΣUFD but is a sufficient condition to satisfy ΣFD ,

as we will show.

Definition VIII.21. We say a subset O ⊆ Pos(R) is tame for ΣUFD if O is empty or for every Rp ∈ Pos(R)\O , there

exists Rq ∈ Pos(R) such that:

• for all Rs ∈ O , the UFD Rq → Rs is in ΣUFD ,

• the UFD Rq → Rp is not in ΣUFD .

We say that an instance I has the tame overlaps property (for ΣUFD) if for every F , F ′ of I , OVL(F , F ′) is tame.

Example VIII.22. Consider a 5-ary relation R and ΣUFD containing R1 → R5, R2 → R4, R2 → R5, R3 → R4, and

R3 → R5. The subset O = {R1,R5} is tame, because it is determined by R1 and all other positions are not determined

by R1, so we can always take Rq = R1. In fact, more generally, when there exists a position that determines exactlyO ,

then O is tame; we will show a refinement of this as Lemma VIII.26.

However, this is not a characterization, because the subset {R4,R5} is also tame: for Rp = R2 we take Rq = R3, for

Rp = R3 we take Rq = R2, and for Rp = R1 we take Rq to be one of R2 or R3.

The subsets {R4} and {R5} are also tame (always taking Rq = R4 or Rq = R5 respectively).

The subsetO = {R1,R4} is not tame, because Pos(R)\O is non-empty but there is no single position determining all

positions of O . The subset {R2,R4} is not tame because for Rp = R5 there is no choice for Rq .

We now claim the following lemma, and its immediate corollary:

Lemma VIII.23. If O ⊆ Pos(R) is tame for ΣUFD then there is no FD ϕ : RL → Rr in ΣFD such that RL ⊆ O but Rr < O .

Proof. If O is empty the claim is immediate. Otherwise, assume to the contrary the existence of such an FD ϕ. As

Rr < O and O is tame, there is Rq ∈ Pos(R) such that Rq → Rs is in ΣUFD for all Rs ∈ O , but ϕ′ : Rq → Rr is not in

ΣUFD . Now, as R
L ⊆ O , we know that Rq → Rs is in ΣUFD for all Rs ∈ RL , so that, by transitivity with ϕ, as ΣFD is

closed by implication, ϕ′ is in ΣFD . As ϕ
′ is a UFD, by definition of ΣUFD , ϕ

′ is in ΣUFD , a contradiction. �

Corollary VIII.24. For any instance I , if I has the tame overlaps property for ΣUFD , then I satisfies ΣFD .

Proof. Considering any two facts F and F ′ in I , as O ··= OVL(F , F ′) is tame, we know by Lemma VIII.23 that for

any FD ϕ : RL → Rr in ΣFD , we cannot have R
L ⊆ O but Rr < O . Hence, F and F ′ cannot be a violation of ϕ. �

We forget for now the disjointness condition in the Dense Interpretations Theorem (Theorem VIII.11), which we

will prove at the very end of the subsection (Corollary VIII.27), and focus only on the first part. We claim the following

generalization of the result:

Theorem VIII.25. Let R be a relation and ΣUFD be a set of UFDs over R. Let D be the smallest possible cardinality of

a key K of R (i.e., K ⊆ Pos(R) and for all Rq ∈ Pos(R), there is Rp ∈ K such that Rp → Rq is in ΣUFD). Let x be D
D−1 if

D > 1 and 1 otherwise.

For every N ∈ N, there exists a finite instance I of R such that |dom(I )| is O(N ), |I | is Ω(N x ), and I has the tame

overlaps property for ΣUFD .

Observe that, thanks to the use of the tame overlaps, the result does not mention higher-arity FDs, only UFDs;

intuitively, tame overlaps ensures that the construction works for any FDs that have the same consequences as UFDs.
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It is clear that this theorem implies the first part of the Dense Interpretations Theorem (Theorem VIII.11), because

if R has no unary key for ΣFD then D > 1 and thus x > 1, which implies that, for any K , by taking a sufficiently large

N0, we can obtain for all N ≥ N0 an instance I for R with ≤ N elements and ≥ K · N facts that has the tame overlaps

property for ΣUFD ; now, by Lemma VIII.24, this implies that I satisfies ΣFD .

In the rest of this subsection, we prove Theorem VIII.25, until the very end where we additionally show that we can

enforce the disjointness condition for the Dense Interpretations Theorem. Fix the relation R and set of UFDs ΣUFD .

The case ofD = 1 is vacuous and can be eliminated directly (consider the instance {R(ai , . . . ,ai ) | 1 ≤ i ≤ N }). Hence,

assume that D > 1, and let x ··=
D

D−1 .

We first show the claim on a specific relation Rfull and set Σfull
UFD

of UFDs. We will then generalize the construction

to arbitrary relations and UFDs. Let T ··= {1, . . . ,D}, and consider a bijection ν : {1, . . . , 2D − 1} → P(T )\{∅}, where

P(T ) is the powerset of T . Let Rfull be a (2
D − 1)-ary relation, and take Σfull

UFD
··= {Ri → Rj | ν (i) ⊆ ν (j)}. Note that

Σ
full
UFD

is clearly closed under implication of UFDs. Fix N ∈ N, and let us build an instance Ifull withO(N ) elements and

Ω(N x ) facts.

Fix n ··= ⌊N 1/(D−1)⌋. LetF be the set of partial functions fromT to {1, . . . ,n}, and writeF = Ft⊔Fp, where Ft and

Fp are respectively the total and the strictly partial functions. We take Ifull to consist of one fact Ff for each f ∈ Ft,

where Ff = Rfull(a
f ) is defined as follows: for 1 ≤ i ≤ 2D − 1, a

f
i
··= f |T \ν (i ). In particular:

• a
f

ν−1(T )
, the element of Ff at the position mapped by ν to T ∈ P(T )\{∅}, is the strictly partial function that is

nowhere defined; note that R
ν−1(T )
full

is determined by all positions in Σ
full
UFD

.

• a
f

ν−1({i })
, the element of Ff at the position mapped by ν to {i} ∈ P(T )\{∅}, is the strictly partial function equal

to f except that it is undefined on i ; note that R
ν−1({i })
full

is determined by no other position of Rfull in Σ
full
UFD

.

Hence, dom(Ifull) = Fp (because ∅ is not in the image of ν ), so that |dom(Ifull)| =
∑

0≤i<D

(D
i

)

ni . Remembering

that D is a constant, this implies that |dom(Ifull)| is O(n
D−1), so it is O(N ) by definition of n. Further, we claim that

|Ifull | = |Ft | = nD = N x . To show this, consider two facts Ff and Fд . We show that Ff = Fд implies f = д, so there

are indeed |Ft | different facts in Ifull. As πν−1({1})(Ff ) = πν−1({1})(Fд), we have f (t) = д(t) for all t ∈ T \{1}, and as

D ≥ 2, we can look at πν−1({2})(Ff ) and πν−1({2})(Fд) to conclude that f (1) = д(1), hence f = д as claimed. Hence, the

cardinalities of Ifull and of its domain are suitable.

We must now show that Ifull has the tame overlaps property for Σfull
UFD

. For this we first make the following general

observation:

Lemma VIII.26. Let ΣUFD be any conjunction of UFDs and I be an instance such that I |= ΣUFD . Assume that, for any

pair of facts F , F ′ of I that overlap, there exists Rp ∈ OVL(F , F ′) which is a unary key for OVL(F , F ′). Then I has the

tame overlaps property for ΣUFD.

Proof. Consider F , F ′ ∈ I and O ··= OVL(F , F ′). If F = F ′, thenO = Pos(R), andO is vacuously tame. Otherwise, if

F , F ′, let Rp ∈ Pos(R)\O . We take Rq ∈ O to be the unary key ofO . We know that Rq → Rs is in ΣUFD for all Rs ∈ O ,

so to show that O is tame it suffices to show that ϕ : Rq → Rp is not in ΣUFD . However, if it were, then as Rq ∈ O and

Rp < O , F and F ′ would witness a violation of ϕ, contradicting the fact that I satisfies ΣUFD . �

So we show that Ifull satisfies Σ
full
UFD and that every non-empty overlap between facts of Ifull has a unary key, so we

can conclude by Lemma VIII.26 that Ifull has tame overlaps.
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First, to show that Ifull satisfies Σ
full
UFD

, observe that (*) whenever ϕ : Ri
full

→ R
j
full

is in Σ
full
UFD

, then ν (i) ⊆ ν (j),

so that, for any fact F of Ifull, for any 1 ≤ t ≤ D, whenever (πj (F ))(t) is defined, so is (πi (F ))(t), and we have

(πj (F ))(t) = (πi (F ))(t). Further, by our construction, we easily see that (**) for any fact F of Ifull, for any 1 ≤ i ≤ 2D − 1

and 1 ≤ t ≤ D, the fact that (πi (F ))(t) is defined or not only depends on i and t , not on F . Hence, consider a UFD

ϕ : Ri
full

→ R
j
full

in Σ
full
UFD , let F and F ′ be two facts of Ifull such that πi (F ) = πi (F

′), and show that πj (F ) = πj (F
′). Take

1 ≤ t ≤ D and show that either (πj (F ))(t) and (πj (F
′))(t) are both undefined, or they are both defined and equal. By

(**), either both are undefined or both are defined, so it suffices to show that if they are defined then they are equal.

But then, if both are defined, by (*), we have (πj (F
′))(t) = (πi (F

′))(t) = (πi (F ))(t) = (πj (F ))(t). So we conclude indeed

that πj (F ) = πj (F
′), so that F and F ′ cannot witness a violation of ϕ. Hence, Ifull |= Σ

full
UFD

.

Second, to show that non-empty overlaps in Ifull have unary keys, consider two facts Ff = Rfull(a
f ) and Fд =

Rfull(a
g), with f , д so that Ff , Fд . Assume that OVL(Ff , Fд ) is non-empty, and let us show that it has a unary

key. Let O ··= {t ∈ T | f (t) = д(t)}, and let X = T \O ; we have X , ∅, because otherwise f = д, so we can define

p ··= ν−1(X ). We will show that

OVL(Ff , Fд) = {Ri ∈ Pos(Rfull) | X ⊆ ν (i)}

This implies that Rp ∈ OVL(Ff , Fд) and that Rp is a unary key of OVL(Ff , Fд), because, for all R
q ∈ OVL(Ff , Fд),

X ⊆ ν (q), so that Rp → Rq is in Σ
full
UFD

.

To show the equality above, consider Ri such that X ⊆ ν (i). Then T \ν (i) ⊆ T \X . Because a
f
i = f |T \ν (I ) and

a
д
i = д |T \ν (I ) , we have a

f
i = a

д
i by definition of O = T \X . Thus Ri ∈ OVL(Ff , Fд). Conversely, if R

i ∈ OVL(Ff , Fд),

then we have a
f
i = a

д
i , so by definition of O we must have T \ν (i) ⊆ O = T \X , which implies X ⊆ ν (i).

Hence, Ifull is a finite instance of Σ
full
UFD

which satisfies the tame overlaps property and contains O(N ) elements and

Ω(N x ) facts. This concludes the proof of Theorem VIII.25 for the specific case of Rfull and Σ
full
UFD

.

Let us now show Theorem VIII.25 for an arbitrary relation R and set ΣUFD of UFDs. Let K be a key of R of minimal

cardinality, so that |K | = D. Let λ be a bijection from K to T . Extend λ to a function µ such that, for all Rp ∈ Pos(R),

we set µ(Rp ) ··= {λ(Rk ) | Rk ∈ K such that Rk = Rp or Rk → Rp is in ΣUFD}; note that this set is never empty.

Consider the instance Ifull for relation Rfull that we defined previously, and create an instance I of R that contains,

for every fact Rfull(a) of Ifull, a fact F = R(b) in I , with bi = aν−1(µ (Ri )) for all 1 ≤ i ≤ |R |.

We first show that |dom(I )| = O(N ) and |I | = Ω(N x ). Indeed, for the first point, we have dom(I ) ⊆ dom(Ifull),

and as we had |dom(Ifull)| = O(N ), we deduce the same of dom(I ). For the second point, it suffices to show that we

never create the same fact twice in I for two different facts of Ifull. Assume that there are two facts Ff = Rfull(a) and

Fд = Rfull(a
′) in Ifull for which we created the same fact F = R(b) in I , and let us show that we then have f = д so

that Ff = Fд . As |K | ≥ 2, consider Rk1 , Rk2 in K . We have µ(Rk1 ) = {λ(Rk1 )} and µ(Rk2 ) = {λ(Rk2)}. Hence, let

i j ··= λ(Rkj ) for j ∈ {1, 2}; as λ is bijective, we deduce from Rk1 , Rk2 that i1 , i2. From the definition of bk1 we deduce

that aν−1({i1 }) = a′
ν−1({i1 })

, and likewise aν−1({i2 }) = a′
ν−1({i2 })

. Similarly to the proof of why Ifull has no duplicate

facts, this implies that f (t) = д(t) for all t ∈ T \{i1} and for all t ∈ T \{i2}. As i1 , i2, we conclude that f = д, so that

Ff = Fд . Hence, we have |I | = |Ifull | = Ω(N x ).

Let us now show that I has tame overlaps for ΣUFD . Consider two facts F , F
′ of I that overlap, and letO ··= OVL(F , F ′).

We first claim that there exists ∅ ( K ′ ⊆ K , such that, letting X ′ ··= {λ(Rk ) | Rk ∈ K ′}, we have OVL(F , F ′) = {Ri ∈

Pos(R) | X ′ ⊆ µ(Ri )}. Indeed, letting Ff and Fд be the facts of Ifull used to create F and F ′, we previously showed the
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existence of ∅ ( X ⊆ T such that OVL(Ff , Fд) = {Ri ∈ Pos(Rfull) | X ⊆ ν (i)}. Our definition of F and F ′ from Ff and

Fд makes it clear that we can satisfy the condition by taking K ′ ··= λ−1(X ), so that X ′
= X .

Consider now Rp ∈ Pos(R)\O . We cannot have X ′ ⊆ µ(Rp ), otherwise Rp ∈ O . Hence, there exists Rk ∈ K ′ such

that λ(Rk ) < µ(Rp ). This implies that Rk → Rp is not in ΣUFD . However, as R
k ∈ K ′, we have λ(Rk ) ∈ µ(Rq ) for all

Rq ∈ O , so that Rk → O is in ΣUFD . This proves thatO = OVL(F , F ′) is tame. Hence, I has the tame overlaps property,

which concludes the proof of Theorem VIII.25.

The only thing left is to show that we can enforce the disjointness condition in the Dense Interpretations Theorem

(Theorem VIII.11), namely:

Corollary VIII.27. We can assume in the Dense Interpretations Theorem (Theorem VIII.11) the following disjointness

condition on the resulting instance I : each element occurs at exactly one position of the relation R. Formally, for all

a ∈ dom(I ), there exists exactly one Rp ∈ Pos(R) such that a ∈ πRp (I ).

Proof. Let I be the instance constructed in the proof of the Dense Interpretations Theorem, and consider the

instance I ′ whose domain is {(a,Rp ) | a ∈ dom(I ),Rp ∈ Pos(σ )} and which contains for every fact F = R(a) of I a fact

F ′ = R(b) such that bp = (ap ,R
p ) for every Rp ∈ Pos(σ ). Clearly this defines a bijection ϕ from the facts of I to the

facts of I ′, and for any facts F , F ′ of I ′, OVL(F , F ′) = OVL(ϕ−1(F ),ϕ−1(F ′)). Thus any violation of the FDs ΣFD in I ′

would witness one in I . Of course, |dom(I ′)| = |σ | · |dom(I )|, so to achieve a constant factor of K between the domain

size and instance size with the disjointness condition, we need to use the proof of the Dense Interpretations Theorem

(Theorem VIII.11) with a constant factor of K ′ ··= |σ | · K . �

IX BLOWING UP CYCLES

We are now ready to prove the Universal Models Theorem, which concludes the proof of our Main Theorem (Theo-

rem III.3):

Theorem III.6 (Universal models). The class of finitely closed UIDs and FDs has finite universal models for CQ: for

every conjunction Σ of FDs ΣFD and UIDs ΣUID closed under finite implication, for any k ∈ N, for every finite instance I0

that satisfies ΣFD , there exists a finite k-sound superinstance I of I0 that satisfies Σ.

To do this, we must ensure k-soundness for arbitrary Boolean CQs rather than just acyclic CQs.

Intuitively, the only cyclic CQs that hold inChase(I0, ΣUID) either have an acyclic self-homomorphic match (so they

are implied by an acyclic CQ that also holds) or have all cycles matched to elements of I0. Hence, in a k-sound instance

for CQ, no other cyclic queries should be true. Our way to ensure this is by a cycle blowup process: starting with the

superinstance constructed by Theorem VIII.1, which satisfies Σ and is k-sound for ACQ, we build its product with a

group of high girth. The standard way to do so, inspired by [18], is presented in Section IX.1.

The problem is that this blowup process may create FD violations. We work around this problem using some

additional properties ensured by our construction. In Section IX.2, we accordingly show the CautiousModels Theorem,

a variant of Theorem VIII.1 with additional properties. Section IX.2 is the only part of this section that depends on the

details of the previous sections.

We then apply a slightly different blowup construction to that model, as described in Section IX.3, which ensures

that no FD violations are created. This blowup no longer depends on the specifics of the construction, and does not

depend on the specific UIDs and FDs that hold; in particular, the blowup constructions do not even require that the

UIDs and FDs are finitely closed.
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IX.1 Simple Product

We first define a simple notion of product, which we can use to extend k-soundness from ACQ to CQ, but which may

introduce FD violations. Let us first introduce preliminary notions:

Definition IX.1. A group G = (S, ·) over a finite set S consists of:

• an associative product law · : S × S → S ;

• a neutral element e ∈ S such that e · x = x · e = x for all x ∈ S ;

• an inverse law ·−1 : S → S such that x · x−1 = x−1 · x = e for all x ∈ S .

We say that G is generated by X ⊆ S if all elements of S can be written as a product of elements of X and X−1 ··=

{x−1 | x ∈ X }.

Given a group G = (S, ·) generated by X , assuming |S | > 2, the girth of G under X is the length of the shortest

non-empty word w of elements of X and X−1 such thatw1 · · ·wn = e andwi , w
−1
i+1 for all 1 ≤ i < n.

The following result, originally from [16], is proven for |X | > 1 in, e.g., [19] (Section 2.1), and is straightforward for

|X | = 1 (take Z/nZ):

Lemma IX.2. For all n ∈ N and finite non-empty set X , there is a finite group G = (S, ·) generated by X with girth ≥ n

under X . We call G an n-acyclic group generated by X .

In other words, in an n-acyclic group generated by X , there is no short product of elements of X and their inverses

which evaluates to e , except those that include a factor x · x−1.

We now explain how to take the product of a superinstance I of I0 with such a finite group G. This ensures that

any cycles in the product instance are large, because they project to cycles in G, i.e., words evaluating to e as in

Definition IX.1. We use a specific generator:

Definition IX.3. The fact labels of a superinstance I of I0 are Λ(I ) ··= {lFi | F ∈ I\I0, 1 ≤ i ≤ |F |}, where |F | is the

arity of the relation for fact F .

Now, we define the product of a superinstance I of I0 with a group generated by Λ(I ). We make sure not to blow up

cycles in I0, so the result remains a superinstance of I0:

Definition IX.4. Let I be a finite superinstance of I0 and G be a finite group generated by Λ(I ). The product of I

byG preserving I0, written (I , I0) ⊗G, is the finite instance with domain dom(I ) ×G consisting of the following facts,

for all д ∈ G:

• For every fact R(a) of I0, the fact R((a1,д), . . . , (a |R | ,д)).

• For every fact F = R(a) of I\I0, the fact R((a1,д · lF1 ), . . . , (a |R | ,д · lF
|R |

)).

We identify (a,e) to a for a ∈ dom(I0), so (I , I0) ⊗ G is still a superinstance of I0.

It will be simpler to reason about initial instances I0 where each element has been individualized by the addition of

a fresh fact that is unique to that element. We give a name to this notion:

Definition IX.5. An individualizing instance I0 is such that, for each a ∈ dom(I0), I0 contains a fact Pa (a) where

Pa is a fresh unary predicate which does not occur in queries, in UIDs or in FDs.

An individualizing superinstance of an instance I0 is a superinstance I1 of I0 that adds precisely one unary

fact Pa (a), for a fresh unary relation Pa , to each a ∈ dom(I0), so that I1 is individualizing. In particular, we have

dom(I0) = dom(I1), and I0 and I1 match for all relations of σ that occur in the query q and the constraints Σ.
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Fig. 8. Product with a group of large girth (see Example IX.7)

We can now state the following property, which we will prove in the rest of this subsection:

Lemma IX.6 (Simple product). Let Σ be finitely closed FDs and UIDs, let I be a finite superinstance of an individual-

izing I0 and letG be a finite (2k + 1)-acyclic group generated by Λ(I ). If I is (k · (|σ | + 1))-sound for ACQ, I0, and Σ, then

(I , I0) ⊗G is k-sound for CQ, I0, and Σ.

The following example illustrates the idea of taking the simple product of an instance with a group of high girth:

Example IX.7. Consider F0 ··= R(a,b) and I0 ··= {F0}, illustrated in solid black in the left part of Figure 8. Consider

ΣUID consisting of τ : R2 ⊆ S1, τ ′ : S2 ⊆ R1, τ−1, and (τ ′)−1. Let F ··= S(b,a), and I ··= I0 ⊔ {F }, where F is a red dashed

edge in the drawing. I satisfies ΣUID and is sound for ACQ, but not for CQ: take for instance q : ∃xy R(x,y) ∧ S(y,x),

which is cyclic and holds in I while (I0, ΣUID) 6|=unr q.

We have Λ(I ) = {lF1 , l
F
2 }. Identify lF1 and lF2 to 1 and 2 and consider the groupG ··= ({0, 1, 2},+) where + is addition

modulo 3. The groupG has girth 2 under Λ(I ).

The product Ip ··= (I , I0) ⊗ G, writing pairs as subscripts for brevity, is {R(a0,b0),R(a1,b1),R(a2,b2), S(b1,a2),

S(b2,a0), S(b0,a1)}. The right part of Figure 8 represents Ip. Here, Ip happens to be 5-sound for CQ.

We cannot directly use the simple product for our purposes, however, because Ip ··= (If , I0) ⊗ G may violate ΣUFD

even though our instance If satisfies ΣFD . Indeed, there may be a relation R, a UFD ϕ : Rp → Rq in ΣUFD , and two

R-facts F and F ′ in If\I0 with πRp ,Rq (F ) = πRp ,Rq (F
′). In Ip there will be images of F and F ′ that overlap only on Rp ,

so they will violate ϕ.

Nevertheless, in the remainder of this subsection we prove the Simple Product Lemma (Lemma IX.6), as it will be

useful for our purposes later. Remember that a match of a CQ in an instance is witnessed by a homomorphism h, and

that we also call the match the image of h. We start by proving an easy lemma:

Lemma IX.8. For any CQ q and instance I , if I |= q with a witnessing homomorphism h that maps two different atoms

of q to the same fact, then there is a CQ q′ such that:

• |q′ | < |q |

• q′ entails q, meaning that for any instance I , if I |= q′ then I |= q

• I |= q′

Proof. Fix q, I , h, and letA = R(x) andA′
= R(y) be the two atoms of q mapped to the same fact F by h. Necessarily

A and A′ are atoms for the same relation R of the fact F , and h(A) = h(A′) means that h(xi ) = h(yi ) for all R
i ∈ Pos(R).

Let dom(q) be the set of variables occurring in q. Consider the map f from dom(q) to dom(q) defined by f (yi ) = xi

for all i , and f (z) = z if z does not occur in A′. Observe that this ensures that h(z) = h(f (z)) for all z ∈ dom(q). Let

q′ = f (q) be the query obtained by replacing every variable z in q by f (z), and, as f (A′) = f (A), removing one of

those duplicate atoms so that |q′ | < |q |. We claim that h′ ··= h | dom(q′) is a match of q′ in I . Indeed, observe that any

atom f (A′′) of q′ is homomorphically mapped by h′ to h(A′′) because h′(f (z)) = h(z) for all z so h′(f (A′′)) = h(A′′).
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To see why q′ entails q, observe that f defines a homomorphism from q to q′, so that, for any instance I ′, if q′ has

a match h′′ in I ′, then h′′ ◦ f is a match of q in I ′. �

Let us now prove the Simple Product Lemma (Lemma IX.6). Fix the constraints Σ and the superinstance I of the

individualizing I0 such that I is ((|σ | + 1) · k)-sound for ACQ, I0, and Σ. Fix the (2k + 1)-acyclic group G generated

by Λ(I ). Consider Ip ··= (I , I0) ⊗G, which is a superinstance of I0, up to our identification of (a,e) to a for a ∈ dom(I0),

where e is the neutral element ofG. We must show that Ip is k-sound for CQ, I0, and Σ.

We call a match h of a CQ q in Ip pure-instance-cyclic if every atom containing two occurrences of the same

variable is mapped by h to a fact of I0 ×G, and every Berge cycle of q contains an atom mapped by h to a fact of I0 ×G.

In particular, if q is in ACQ then any match h of q in Ip is vacuously pure-instance-cyclic. Our proof consists of two

claims:

(1) If a CQ q with |q | ≤ k has a pure-instance-cyclic match h in Ip, then Chase(I0, ΣUID) |= q.

(2) If aCQqwith |q | ≤ k has amatchh in Ip which is not pure-instance-cyclic, then there is aCQq′ with |q′ | < |q |

such that q′ entails q and q′ has a match in Ip.

The fact that Ip is k-sound for CQ clearly follows from the two claims: if a CQ q with |q | ≤ k has a match in Ip,

then we can apply the second claim repeatedly until we obtain a CQ q′ with |q′ | < |q | ≤ k , q′ entails q, and q′ has a

pure-instance-cyclic match in Ip: this must eventually occur because the empty query is in ACQ. Then use the first

claim to deduce that Chase(I0, ΣUID) |= q
′, where it follows that Chase(I0, ΣUID) |= q. So it suffices to prove these two

claims.

We start by proving the first claim. Let q be a CQ with |q | ≤ k that has a pure-instance-cyclic match h in Ip.

We partition the atoms of q between the atoms A matched by h to I0 ×G and the atoms A′ which are not: we can

then write q as ∃x A(x)∧A′(x). LetA′′ consist of the atom Pa (z) for each variable z occurring inA
′ which is mapped

by h to an element a ∈ dom(I0 ×G), and let q′ be the query ∃x A′(x) ∧A′′(x). As I0 is individualizing, it is immediate

that h is a match of q′ in Ip.

We first claim that q′ is in ACQ. Indeed, no Berge cycle in q′ can use the atoms of A′′ as they are unary, and for

the same reason no atom in A′′ contains two occurrences of the same variable. Further, A′ does not contain any

Berge cycle or atom with two occurrences of the same variable, by definition of h being pure-instance-cyclic. Hence,

q′ is indeed in ACQ. Further, we have |q′ | ≤ k · (|σ | + 1), as |A′′ | ≤ |σ | · |A′ | and we have |A′ | ≤ |q | ≤ k , so

that |q′ | ≤ k · (|σ | + 1). Now, we know that I |= q′, as evidenced by the homomorphism pr from Ip to I defined by

pr : (a,д) 7→ a for all a ∈ dom(I ) and д ∈ G. As I is (k · (|σ | + 1))-sound for ACQ, and q′ is an ACQ query that holds in

I with |q′ | ≤ k · (|σ | + 1), we know that Chase(I0, ΣUID) |= q
′.

Now, as A′′ covers all variables of q′, by definition of I0 being individualizing, the only possible match of q′ in the

chase is the one that maps each variable z to the a ∈ dom(I0) such that the atom Pa (z) is inA′′. Further, as h matched

A to facts of I0 such that h(z) = a where Pa (z) occurs in A′′, we can clearly extend the match of q′ in Chase(I0, ΣUID)

to a match of q in Chase(I0, ΣUID). This concludes the proof of the first claim.

We now prove the second claim. Let q be aCQwith |q | ≤ k that has a matchh in Ip which is not pure-instance-cyclic.

Consider a Berge cycle C of q, of the form A1,x1,A2,x2, . . . ,An ,xn , where the Ai are pairwise distinct atoms and the

xi pairwise distinct variables, where theAi are mapped by h to facts not in I0 ×G, and where for all 1 ≤ i ≤ n, variable

xi occurs at position qi of atom Ai and position pi+1 of Ai+1, with addition modulo n ··= |C |. We assume without

loss of generality that pi , qi for all i . However, we do not assume that n ≥ 2: either n ≥ 2 and C is really a Berge
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cycle according to our previous definition, or n = 1 and variable x1 occurs in atom A1 at positions p1 , q1, which

corresponds to the case where there are multiple occurrences of the same variable in an atom.

For 1 ≤ i ≤ n, we write Fi = Ri (a
i) the image of Ai by h in Ip; by definition of Ip, as Fi is not a fact of I0 × G,

there is a fact F ′i = Ri (b
i) of I and дi ∈ G such that aij = (bij ,дi · l

F ′
i

j ) for R
j
i ∈ Pos(Ri ). Now, for all 1 ≤ i ≤ n, as

h(xi ) = aiqi = ai+1pi+1
for all 1 ≤ i ≤ n, we deduce by projecting on the second component that дi · l

F ′
i

qi = дi+1 · l
F ′
i+1

pi+1
, so

that, by collapsing the equations of the cycle together, l
F ′
1

q1 · (l
F ′
2

p2
)−1 · · · · · l

F ′
n−1

qn−1 · (l
F ′
n

pn
)−1 · l

F ′
n

qn · (l
F ′
1

p1
)−1 = e .

As the girth ofG under Λ(I ) is ≥ 2k + 1, and this product contains 2n ≤ 2k elements, we must have either l
F ′
i

qi = l
F ′
i+1

pi+1

for some i , or l
F ′
i

pi
= l

F ′
i

qi for some i . The second case is impossible because we assumed that pi , qi for all 1 ≤ i ≤ n.

Hence, necessarily l
F ′
i

qi = l
F ′
i+1

pi+1
, so in particular we must have n > 1 and F ′i = F ′i+1. Hence the atoms Ai , Ai+1 of q are

mapped by h to the same fact F ′i = F ′i+1. We conclude by Lemma IX.8 that there is a strictly smaller q′ which entails

q and has a match in Ip, which is what we wanted to show. This concludes the proof of the second claim, and of the

Simple Product Lemma (Lemma IX.6).

IX.2 Cautiousness

As the simple product may cause FD violations, we will define a more refined notion of product, which intuitively does

not attempt to blow up cycles within fact overlaps. In order to clarify this, however, we will first need to study in more

detail the instance If to which we will apply the process, namely, the one that we constructed to prove Theorem VIII.1.

We will consider a quotient of If :

Definition IX.9. The quotient I/∼ of an instance I by an equivalence relation ∼ on dom(I ) is defined as follows:

• dom(I/∼) is the equivalence classes of ∼ on dom(I ),

• I/∼ contains one fact R(A) for every fact R(a) of I , where Ai is the ∼-class of ai for all R
i ∈ Pos(R).

The quotient homomorphism χ∼ is the homomorphism from I to I/∼ defined by mapping each element of dom(I )

to its ∼-class.

We quotient If by the equivalence relation ≃k (recall Definition VI.2). The result may no longer satisfy Σ. However,

it is still k-sound for ACQ, for the following reason:

Lemma IX.10. Any k-bounded simulation from an instance I to an instance I ′ defines a k-bounded simulation from

I/≃k to I ′.

Proof. Fix the instance I and the k-bounded simulation sim to an instance I ′, and consider I ′′ ··= I/≃k . We show

that there is a k-bounded simulation sim′ from I ′′ to I , because sim◦ sim′ would then be a k-bounded simulation from

I ′′ to I ′, the desired claim. We define sim′(A) for all A ∈ I ′′ to be a for any member a ∈ A of the equivalence class A

in I , and show that sim′ thus defined is indeed a k-bounded simulation.

We will show the stronger result that (I ′′,A) ≤k (I ,a) for all A ∈ dom(I ′′) and for any a ∈ A. We do it by proving,

by induction on 0 ≤ k ′ ≤ k , that (I ′′,A) ≤k′ (I ,a) for all A ∈ dom(I ′′) and a ∈ A. The case k ′ = 0 is trivial. Hence, fix

0 < k ′ ≤ k , assume that (I ′′,A) ≤k′−1 (I ,a) for allA ∈ dom(I ′′) and a ∈ A, and show that this is also true for k ′. Choose

A ∈ dom(I ′′), a ∈ A, we must show that (I ′′,A) ≤k′ (I ,a). To do so, consider any fact F = R(A) of I ′′ such that Ap = A

for some Rp ∈ Pos(R). Let F ′ = R(a′) be a fact of I that is a preimage of F by χ≃k , so that a′q ∈ Aq for all Rq ∈ Pos(R).

We have a′p ∈ A and a ∈ A, so that a′p ≃k a holds in I . Hence, in particular we have (I ,a′p ) ≤k′ (I ,a) because k
′ ≤ k , so
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there exists a fact F ′′ = R(a′′) of I such that a′′p = a and (I ,a′q) ≤k′−1 (I ,a
′′
q ) for all R

q ∈ Pos(R). We show that F ′′ is a

witness fact for F . Indeed, we have a′′p = a. Let us now choose Rq ∈ Pos(R) and show that (I ′′,Aq) ≤k′−1 (I ,a′′q ). By

induction hypothesis, as a′q ∈ Aq , we have (I
′′
,Aq ) ≤k′−1 (I ,a′q), and as (I ,a′q) ≤k′−1 (I ,a′′q ), by transitivity we have

indeed (I ′′,Aq) ≤k′−1 (I ,a
′′
q ). Hence, we have shown that (I ′′,A) ≤k′ (I ,a).

By induction, we conclude that (I ′′,A) ≤k (I ,a) for all A ∈ dom(I ′′) and a ∈ A, so that there is indeed a k-bounded

simulation from I ′′ to I , which, as we have explained, implies the desired claim. �

Let us thus consider I ′
f
··= If/≃k which is still k-sound for ACQ by the previous lemma, and consider the homomor-

phism χ≃k from If to I
′
f
. Our idea is to blow up cycles in If by amixed product that only distinguishes facts that have a

different image in I ′
f
by χ≃k . This is sufficient to lift k-soundness from ACQ to CQ, and it will not create FD violations

on facts that have the same image by χ≃k . Crucially, however, we can show from our construction that all overlapping

facts of If have the same image by χ≃k . Let us formalize this condition:

Definition IX.11. Let I be an instance, let I1 ⊆ I , and let f be any mapping with domain I . We say I is cautious for f

and I1 if for any two overlapping facts, namely, two facts F = R(a) and F ′ = R(b) of the same relation with ap = bp

for some Rp ∈ Pos(R), one of the following holds: F , F ′ ∈ I1, or f (ap ) = f (bp ) for all R
p ∈ Pos(R).

We conclude the subsection by presenting a strengthening of Theorem VIII.1. This is the only point in this section

where we rely on the details of the process of the previous sections:

Theorem IX.12 (Cautious models). For any finitely closed Σ formed of UIDs ΣUID and FDs ΣFD , instance I0, and

k ∈ N, we can build a finite superinstance If of an instance I1 such that:

• I1 is an individualizing superinstance of a disjoint union of copies of I0;

• If satisfies Σ;

• If is k-sound for Σ, ACQ, and I1;

• If is cautious for χ≃k and I1.

We will use the Cautious Models Theorem in the next subsection. For now, let us show how to prove it. Fix Σ, I0,

and k ∈ N. Let I0, i be an individualizing superinstance of I0, and apply k UID chase rounds with the UIDs of ΣUID to

I0, i to obtain I
′
0, i
. Apply the Sufficiently Envelope-Saturated Proposition (Proposition VIII.7) to I ′

0, i
to obtain an aligned

superinstance J of a disjoint union I ′′0, i of copies of I
′
0, i. Now, modify J to J ′ and I ′′0, i to I

′
1 by replacing the copies of the

facts of I0, i\I0 by new individualizing facts (i.e., make the individualizing facts unique across copies of I ′0, i). This ensures

by definition that I ′1 is the result of applying k UID chase rounds to an individualizing superinstance of a disjoint union

of copies of I0. Further, the modification to J ′ can be done so as to ensure that J ′ is an aligned superinstance of I ′1;

the k chase rounds applied when defining I ′0, i ensure that the sim mapping can still be defined notwithstanding the

change in the individualizing facts. Further, we have |J ′| = |J |, so J ′ is still sufficiently envelope-saturated.

We now apply the Envelope-Thrifty Completion Proposition (Proposition VIII.20) to the aligned superinstance J ′

of I ′1 to obtain a superinstance Jf of I
′
1 which is k-sound for Σ, ACQ, and I ′1, and that satisfies Σ. Now, define I1 from

I ′1 by removing the facts created in the k UID chase rounds, so it is by definition an individualizing superinstance of

a disjoint union of copies of I0. As I
′
1 is the result of applying chase rounds to I1, If is also k-sound for Σ, ACQ and I1.

Hence, If satisfies the first three conditions that we have to show in the Cautious Models Theorem (Theorem IX.12).

The only thing left is to show the last one, namely:

Lemma IX.13 (Cautiousness). If is cautious for χ≃k and I1.
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We show the Cautiousness Lemma in the rest of the subsection, which concludes the proof of the Cautious Models

Theorem.

We first show that overlapping facts in Jf = (If , simf ) are cautious for the sim mapping that we construct, in terms

of ≃k -classes. Formally, let Ic ··= Chase(I1, ΣUID), and let χ ′≃k be the homomorphism from Ic to Ic/≃k . We claim:

Lemma IX.14. If is cautious for χ
′
≃k ◦ sim and I1.

In other words, whenever two facts F = R(a) and F ′ = R(b) have non-empty overlap in If and are not both in I1,

then, for any position Rp ∈ Pos(R), we have sim(ap ) ≃k sim(bp ) in Ic.

Proof. We first check that this claim holds on the result J ′ of the Sufficiently Envelope-Saturated Proposition

(Proposition VIII.7), with our modifications to the individualizing facts. J ′ is a disjoint union of instances JD for each

fact class D ∈ AFactCl. If D is safe, no facts overlap in JD except possibly fact pairs in the copy of I0, hence, in I1. For

unsafe D, in Lemma VIII.8, the only facts with non-empty overlap in JD are fact pairs in some copy of I0, hence in I1,

or they are the facts f ′(Fi ), which all map to ≃k -equivalent sim-images by construction. So the claim holds on J ′.

Second, it suffices to show that the claim is preserved by envelope-thrifty chase steps. By their definition, whenever

we create a new fact Fnew for a fact class D, the only elements of Fnew that can be part of an overlap between Fnew

and an existing fact are envelope elements, appearing at the one position at which they appear in E (D). Then, by

condition 4 of the definition of envelopes (Definition VIII.3), we deduce that the two overlapping facts achieve the

same fact class. �

Returning to the proof of the Cautiousness Lemma (Lemma IX.13), we now show that two elements in Jf having

≃k -equivalent sim images in Ic must themselves be ≃k -equivalent in Jf . We do it by showing that, in fact, for any

a ∈ dom(If ), not only do we have (If , a) ≤k (Ic, sim(a)), as required by the k-bounded simulation sim, but we also

have the reverse: (Ic, sim(a)) ≤k (If , a); in fact, we even have a homomorphism from Ic to If that maps sim(a) to a.

The existence of this homomorphism is thanks to our specific definition of sim, and on the directionality condition

of aligned superinstances; further, it only holds for the final result If , which satisfies ΣUID ; it is not respected at

intermediate steps of the process.

To prove this, and conclude the proof of the Cautiousness Lemma, remember the forest structure on the UID chase

(Definition VI.19). We define the ancestry AF of a fact F in Ic as I1 plus the facts of the path in the chase forest that

leads to F ; if F ∈ I1 then AF is just I1. The ancestryAa of a ∈ dom(Ic) is that of the fact where a was introduced.

We now claim the following lemma about Jf , which relies on the directionality condition:

Lemma IX.15. For any a ∈ dom(If ), there is a homomorphism ha from Asim(a) to If such that ha(sim(a)) = a.

Proof. We prove that this property holds on If , by first showing that it is true of J
′ constructed by our modification

of the Sufficiently Envelope-Saturated Solutions Proposition (Proposition VIII.7). This is clearly the case because the

instances created by Lemma VIII.8 are just truncations of the chase where some elements are identified at the last level.

Second, we show that the property is maintained by envelope-thrifty steps; in fact, by any thrifty chase steps

(Definition VI.12) Consider a thrifty chase step where, in a state J1 = (I1, sim1) of the construction of our aligned

superinstance, we apply a UID τ : Rp ⊆ Sq to a fact Factive = R(a) to create a fact Fnew = S(b) and obtain the aligned

superinstance J2 = (I2, sim2). Consider the chase witness Fwitness = S(b′). By Lemma VI.13, b ′q is the exported element

between Fwitness and its parent in Chase(I0, ΣUID). So we know that for any Sr , Sq , we haveAb ′
r
= Ab ′

q
⊔ {Fwitness}.
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We must build the desired homomorphism ha for all a ∈ dom(I2)\ dom(I1). Indeed, for a ∈ dom(I1), by hypothesis

on I1, there is a homomorphismha fromAsim1(a) to I1 withha(sim1(a)) = a, and as sim2(a) = sim1(a), we can useha as

the desired homomorphism fromAsim2(a) to I2. So let us pick b ∈ dom(I2)\ dom(I1) and construct hb . By construction

of I2, b must occur in the new fact Fnew; further, by definition of thrifty chase steps, we have defined sim2(b) ··= b
′
r for

some Sr wherebr = b . Now, as ap = bq is in dom(I1), we know that there is a homomorphismhbq fromAsim(bq ) = Ab ′
q

to I1 such that we have hbq (b
′
q) = bq . We extend hbq to the homomorphism hb from Ab ′

r
= Ab ′

q
⊔ {Fwitness} to I2

such that hb (b
′
r ) = b , by setting hb (Fwitness) ··= Fnew and hb (F ) ··= h(F ) for any other F ofAb ′

r
; we can do this because,

by definition of the UID chase, Fwitness shares no element with the other facts ofAb ′
r
(that is, withAb ′

q
), except b ′q for

which our definition coincides with the existing image of b ′q by hbq . This proves the claim. �

This allows us to deduce the following, which is specific to Jf , and relates to the universality of the chase Ic:

Corollary IX.16. For any a ∈ dom(If ), there is a homomorphism ha from Ic to If such that ha(sim(a)) = a.

Proof. Choose a ∈ dom(If ) and let us construct ha . Let h′a be the homomorphism from Asim(a) to If with

h′a(sim(a)) = a whose existence was proved in Lemma IX.15. Now start by setting ha ··= h′a , and extend h′a to be

the desired homomorphism, fact by fact, using the property that If |= ΣUID : for any b ∈ dom(Ic) not in the domain

of h′a but which was introduced in a fact F whose exported element c is in the current domain of h′a , let us extend h
′
a to

the elements of F in the following way: consider the parent fact F ′ of F in Ic and its match by h′a in If , let τ be the UID

used to create F ′ from F , and c ′ ∈ dom(Ic) be the exported element between F and F ′ (so h′a(c
′) is defined). We know

that c ··= h′a(c
′) occurs in If at all positions where c

′ occurs in Ic. Hence, because If |= τ , there must be a suitable fact

F ′′ in If to extend h′a to all elements of F by setting h′a(F ) ··= F ′′, which is consistent with the image of c previously

defined in h′a . The (generally infinite) result of this process is the desired homomorphism ha . �

We are now ready to show our desired claim:

Lemma IX.17. For any a,b ∈ dom(If ), if sim(a) ≃k sim(b) in Ic, then a ≃k b in If .

Proof. Fix a,b ∈ dom(If ). We have (If ,a) ≤k (Ic, sim(a)) because sim is a k-bounded simulation; we have

(Ic, sim(a)) ≤k (Ic, sim(b)) because sim(a) ≃k sim(b); andwe have (Ic, sim(b)) ≤k (If ,b) byCorollary IX.16 aswitnessed

by hb . By transitivity, we have (If ,a) ≤k (If ,b). The other direction is symmetric, so the desired claim follows. �

The Cautiousness Lemma (Lemma IX.13) follows immediately from Lemma IX.14 and Lemma IX.17. This concludes

the proof of the Cautious Models Theorem (Theorem IX.12).

IX.3 Mixed Product

Using the Cautious Models Theorem, we now define the notion of mixed product, which uses the same fact label for

facts with the same image by h ··= χ≃k :

Definition IX.18. Let I be a finite superinstance of I1 with a homomorphism h to another finite superinstance I ′ of I1

such thath | dom(I1) is the identity andh | dom(I\I1) maps to I ′\I1. Let G be a finite group generated by Λ(I ′).

Themixed product of I byG via h preserving I1, written (I , I1) ⊗
h G, is the finite superinstance of I1 with domain

dom(I ) ×G consisting of the following facts, for every д ∈ G:

• For every fact R(a) of I1, the fact R((a1,д), . . . , (a |R | ,д)).
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• For every fact F = R(a) of I\I1, the fact R((a1,д · l
h(F )
1 ), . . . , (a |R | ,д · l

h(F )
|R |

)).

We now show that the mixed product preserves UIDs and FDs when cautiousness is assumed.

Lemma IX.19 (Mixed product preservation). For anyUID or FD τ , if I |= τ and I is cautious forh, then (I , I1)⊗
hG |=

τ .

Proof. Write Im ··= (I , I1) ⊗
h G and write I ′ for the range of h as before.

If τ is a UID, the claim is immediate even without the cautiousness hypothesis. (In fact, the analogous claim could

even be proven for the simple product.) Indeed, for any a ∈ dom(I ) and Rp ∈ Pos(σ ), if a ∈ πRp (I ) then (a,д) ∈ πRp (Im)

for all д ∈ G; conversely, if a < πRp (I ) then (a,д) < πRp (Im) for all д ∈ G. Hence, letting τ : Rp ⊆ Sq be a UID of ΣUID ,

if there is (a,д) ∈ dom(Im) such that (a,д) ∈ πRp (Im) but (a,д) < πSq (Im) then a ∈ πRp (I ) but a < πSq (I ). Hence any

violation of τ in Im implies the existence of a violation of τ in I , so we conclude because I |= τ .

Assume now that τ is a FD ϕ : RL → Rr . Assume by contradiction that there are two facts F1 = R(a) and F2 = R(b)

in Im that violateϕ, i.e., we have al = bl for all l ∈ L, but ar , br . Write ai = (vi , fi ) and bi = (wi ,дi ) for all R
i ∈ Pos(R).

Consider F ′1
··= R(v) and F ′2

··= R(w) the facts of I that are the images of F1 and F2 by the homomorphism from Im to I

that projects on the first component. As I |= τ , F ′1 and F ′2 cannot violate ϕ, so as vl = wl for all l ∈ L, we must have

vr = wr . Now, as I is cautious for h and F ′1 and F ′2 overlap (take any Rl0 ∈ RL), either F ′1, F
′
2 ∈ I1 or h(F

′
1) = h(F

′
2).

In the first case, by definition of the mixed product, there are f ,д ∈ G such that fi = f and дi = д for all R
i ∈ Pos(R).

Thus, taking any l0 ∈ L, as we have al0 = bl0 , we have fl0 = дl0 , so f = д, which implies that fr = дr . Hence, as

vr = wr , we have (vr , fr ) = (wr ,дr ), contradicting the fact that ar , br .

In the second case, as h is the identity on I1 and maps I\I1 to I ′\I1, h(F
′
1) = h(F ′2) implies that either F ′1 and F ′2 are

both facts of I1 or they are both facts of I\I1; but we have already excluded the former possibility in the first case, so

we assume the latter. By definition of the mixed product, there are f ,д ∈ G such that fi = f · l
h(F ′

1)

i and дi = д · l
h(F ′

2)

i

for all Ri ∈ Pos(R). Picking any l0 ∈ L, from al0 = bl0 , we deduce that f · l
h(F ′

1)

l0
= д · l

h(F ′
2)

l0
; as h(F ′1) = h(F ′2), this

simplifies to f = д. Hence, fr = дr and we conclude like in the first case. �

Second, we show that h : I → I ′ lifts to a homomorphism from the mixed product to the simple product, so we can

rely on the result of the Simple Product Lemma (Lemma IX.6).

Lemma IX.20 (Mixed product homomorphism). There is a homomorphism from (I , I1) ⊗
h G to (I , I1) ⊗ G.

Proof. We use the homomorphism h : I → I1 to define the homomorphism h′ from Im ··= (I , I1) ⊗
h G to Ip ··=

(I , I1) ⊗G by h′((a,д)) ··= (h(a),д) for every (a,д) ∈ dom(I ) ×G.

Consider a fact F = R(a) of Im, with ai = (vi ,дi ) for all R
i ∈ Pos(R). Consider its image F ′ = R(v) by the homomor-

phism from Im to I obtained by projecting to the first component, and the image h(F ′) of F ′ by the homomorphism h.

Ash | dom(I1) is the identity andh | dom(I\I1) maps to I1\I1, h(F
′) is a fact of I1 iff F ′ is. Now by definition of the simple

product it is clear that Ip contains the fact h′(F ): it was created in Ip from h(F ′) for the same choice of д ∈ G. This

shows that h′ is indeed a homomorphism, which concludes the proof. �

We can now conclude our proof of the Universal Models Theorem (Theorem III.6). Let I1 be the individualizing

union of disjoint copies of I0 and If be the superinstance of I1 given by the Cautious Models Theorem (Theorem IX.12)

applied to k ′ ··= k · (|σ |+1). As I1 is individualizing, we know that each element of I1 is alone in its ≃k′-class in If , so the

restriction of If/≃k′ to χ≃k′ (I1) is actually I1 up to isomorphism; so we define I ′
f
to be If/≃k′ modified by identifying
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χ≃k′ (I1) to I1; it is a finite superinstance of I1. Let h be the homomorphism from If to I
′
f
obtained by modifying χ≃k′

accordingly, which ensures thath | dom(I1) is the identity andh | dom(If \I1) maps to I ′
f
\I1.

Let G be a (2k + 1)-acyclic group generated by Λ(I ′
f
), and consider Ip ··= (I ′

f
, I1) ⊗G. As If was k

′-sound for ACQ, I1

and Σ, so is I ′
f
by Lemma IX.10, so, as I1 is individualizing, Ip is k-sound for CQ, I1 and Σ by the Simple Product Lemma

(Lemma IX.6). However, as we explained, it may be the case that Ip 6 |= Σ. We therefore construct Im ··= (If , I1) ⊗
hG. By

the Mixed Product Homomorphism Lemma (Lemma IX.20), Im has a homomorphism to Ip, so it is also k-sound for CQ,

I1 and Σ. Now, as I1 is an individualizing superinstance of a disjoint union of copies of I0, and as the fresh relations

in the individualizing superinstance I1 do not occur in queries or in constraints, it is clear that Im is also k-sound for

CQ, I0 and Σ. Further, by the conditions ensured by the Cautious Models Theorem (Theorem IX.12), If is cautious for

h and I1. So, by the Mixed Product Preservation Lemma (Lemma IX.19), we have Im |= Σ because If |= Σ.

Hence, the mixed product Im is a finite k-universal instance for CQ, I0 and Σ. This concludes the proof of the

Universal Models Theorem, and hence of our main theorem (Theorem III.3).

X CONCLUSION

In this work we have developed the first techniques to build finite models on arbitrary arity schemas that satisfy

both referential constraints and number restrictions, while controlling which CQs are satisfied. We have used these

techniques to prove that finite open-world query answering for CQs, UIDs and FDs is finitely controllable up to finite

closure of the dependencies. This allowed us to isolate the complexity of FQA for UIDs and FDs.

As presented the constructions are quite specific to dependencies, so we leave as future work the question of con-

straint languages featuring conjunction, disjunction, constants, and other such features. For instance, one goal could

be to generalize to higher arity the rich arity-2 constraint languages of, e.g., [14, 20], while maintaining the decidability

of FQA.
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A DETAILS ABOUT THE UID CHASE AND UNIQUEWITNESS PROPERTY

In this appendix, we give details about the UID chase and the Unique Witness Property. Recall its statement:

For any element a ∈ dom(Chase(I ,ΣUID)) and positionR
p ofσ , if two facts ofChase(I ,ΣUID) contain a at positionR

p ,

then they are both facts of I .

We first give an example showing why this may not be guaranteed by the first round of the UID chase. Consider

the instance I = {R(a),S(a)} and the UIDs τ1 : R1 ⊆ T 1 and τ2 : S1 ⊆ T 1, where T is a binary relation. Applying a

round of the UID chase creates the instance {R(a),S(a),T (a,b1),T (a,b2)}, with T (a,b1) being created by applying τ1

to the active fact R(a), and T (a,b2) being created by applying τ2 to the active fact S(a).

By contrast, the core chase would create only one of these two facts, because it would consider that two new facts

are equivalent: they have the same exported element occurring at the same position. In general, the core chase keeps

only one fact within each class of facts that are equivalent in this sense.

However, after one chase round by the core chase, there is no longer any distinction between the UID chase and

the core chase, because the following property holds on the result I ′ of a chase round (be it by the core chase or by the

UID chase) on any instance I ′′: (*) for any τ ∈ ΣUID and element a ∈ Wants(I ′, τ ), a occurs in only one fact of I ′. This

is true because ΣUID is transitively closed, so we know that no UID of ΣUID is applicable to an element of dom(I ′′) in

I ′; hence the only elements that witness violations occur in the one fact where they were introduced in I ′.

We now claim that (*) implies that the Unique Witness Property holds when we chase by the core chase for the first

round and the UID chase for subsequent rounds. Indeed, assume to the contrary that a ∈ dom(Chase(I ,ΣUID)) violates

the Property, and that two facts F1 and F2 contain a at some position Rp .

If a ∈ dom(I ), because ΣUID is transitively closed, after the first chase round on I , we no longer create any fact that

involves a. Hence, each one of F1 and F2 is either a fact of I or a fact created in the first round of the chase (which

is a chase round by the core chase). However, if one of F1 and F2 is in I , then it witnesses that we could not have

a ∈ Wants(I ,Rp ), so it is not possible that the other fact was created in the first chase round. It cannot be the case

either that F1 and F2 were both created in the first chase round, by definition of the core chase. Hence, F1 and F2 must

both be facts of I .

If a ∈ dom(Chase(I ,ΣUID))\ dom(I ), assume that a occurs at position Rp in two facts F1, F2. As a < dom(I ), none of

them is a fact of I . We then show a contradiction. It is not possible that one of those facts was created in a chase round
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before the other, as otherwise the second created fact could not have been created because of the first. Hence, both

facts were created in the same chase round. So there was a chase round from I ′′ to I ′ where we had a ∈ Wants(I ′′,Rp )

and both F1 and F2 were created respectively from active facts F ′1 and F ′2 of I
′′ by UIDs τ1 : S

q ⊆ Rp and τ2 : T
r ⊆ Rp .

But then, by property (*), a occurs in only one fact, so as it occurs in F ′1 and F
′
2 we have F

′
1 = F ′2. Further, as a < dom(I ),

F ′1 and F ′2 are not facts of I either, so by definition of the UID chase and of the core chase, it is easy to see a occurs at

only one position in F ′1 = F ′2. This implies that τ1 = τ2. Hence, we must have F1 = F2, a contradiction. This establishes

the Unique Witness Property.
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