
Enabling Effective and Emergent Agent Conversations 
Fuhua Lin 

Institute for Information Technology 
National Research Council 

Building M-50, Montreal Rd. 
Ottawa, K1A 0R6 

CANADA 
Tel: (1-613) 993-2535 

Fuhua.Lin @ iit. n rc.ca 

Douglas H. Norrie 
Dept. of Mechanical & 

Manufacturing Engineering, 
University of Calgary, 2500 

University Dr. NW, Calgary, AB, 
T2N 1N4, CANADA 
Tel: (1-403) 220-5787 

norrie@enme.ucalgary.ca 

Rob Kremer, R.A. Flores-Mendez 
Dept. of Computer Science 

University of Calgary 
2500 University Drive NW 
Calgary, Alberta T2N 1N4 

CANADA 
Tel: (1-403) 220-5112 

kremerl robe rtof @ cpsc. ucalgary.ca 

ABSTRACT 

To enable effective and emergent conversations among software 
agents in open and distributed environment, this paper proposes a 
schema-based conversation modeling and manager-based 
conversation management approach. Conversation policies and 
interaction patterns among a group of agents are formulated and 
organized into class hierarchies of goal-directed conversation 
schemata, which are "sender-initialized" group interaction 
patterns and "receiver-responded" coordination constraints. 
Colored Petri Nets formalism is used for verifying conversation 
schemata. Using conversation schemata, conversation managers 
are constructed to mediate and administer conversations. 

Keywords 
Agent technology, schema, conversation, Colored Petri nets 

1. INTRODUCTION 
People can rely on patterns and incorporate constraints in the 
world to make their communication more efficient and reliable. 
In s o l , a r e  agent systems, when communicating with others, 
agents can also rely on communication patterns and group 
behavioral constraints. Based on the notion of patterns and 
constraints, a conversation schema (schema, for short) -based 
method for modeling conversation is presented [1]. We define a 
conversation schema as a pattern of conversational interactions 
centered on one or more conversation topics. A goal-directed 
schema is a schema in which the pattern of interaction is directed 
towards achieving a specified goal of participating agent(s). 
When instantiated, a schema governs the conversation between a 
group of agents by imposing a role on each of the group 
members. A schema is detailed by communicative acts and 
implemented as a thread for execution. 

2. BACKGROUD 
From methodology point of view, there are two extremes in the 
existing high-level agent conversation approaches. The first is 
"act-based" approach that leaves low-level tasks to be 
accomplished by fixed speech acts that are themselves highly 
conditional. The second is "plan"-based approach. 

Permission to make digital or hard copies of all or part of this work tbr 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Agents 2000 Barcelona Spain 
Copyright ACM 2000 1-58113-230-1/00/6...$5.00 

A conversation plan is a description of how an agent acts locally 
and interacts with other agents by means of communicative acts. 
This approach is not flexible and practical enough when used in a 
dynamic environment. The conversation policies (CP) approach 
tries to find a sweet spot between these two extremes [2]. 
From the implementation point of view, current techniques for 
developing agent applications require developers to implement 
CPs and individual agent behaviors (functionality) together. 
There are three shortcomings: complicated code, lacking of 
modularity, and brittle code [3]. 

3. CONVERSATION MANAGERS 
An agent is a more or less complex software module that is able 
to communicate with others via conversations. For better 
organization and management, in our approach, an agent system 
is divided into three layers: the TOP layer consisting of agents 
like interface agents, task agents, the C&C (communication and 
cooperation) layer, and the NETWORK layer. In an agent 
system, the high-level communication is supported by a group of 
agents called Conversation Managers (CMs) inhabiting the C&C 
layer. The agents do not communicate with one another in an ad- 
hoc, point-to-point manner. Instead, agents that are working 
together form cooperation domains. Each agent in a cooperation 
domain routes all its outgoing messages through the CM, which 
can direct it to a specific agent (imitating point-to-point 
communication), to several agents (imitating multicast 
communication), or to all agents in the cooperation domain 
(imitating broadcast communication). All incoming messages are 
received from the CM as well (the original sender's identity is 
contained in the message header). The benefit of all messages 
going through the CM is that the CM can then provide several 
services, such as coordination, conflict resolving, and security 
control. 

A CM sits among conversing agents. After selecting a suitable 
schema, it keeps track of conversation states, forwards a sender's 
request to the receiver, and thereafter, relays the receiver's reply 
to the original sender. This is realized by executing the schema. 
A CM has the ability to associate messages with a conversation 
policy for the purpose of (1) determining how to respond to a 
received message; (2) understanding what a response is from a 
send message; (3) determining when to stop and resume a 
conversation; and (4) exception handling, or fault recovering. 

A CM has five main components: Schema class library; CPN 
engine; Active schemata; "Goal-task-schema" inference module; 
and Schema execution module, an agent naming mechanism, and 
an I/O module. A local CM in a domain is responsible for 
managing a conversation of a set of agents to ensure its local 
consistency and coherency. The global consistency and 

233 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F336595.341992&domain=pdf&date_stamp=2000-06-01


coherency are the task of a higher-level CM that manages 
communication among agents related to different CMs. The 
organization of CMs forms a hierarchy (see Figure 1). 

I/0: hpu~/output ra~d~e 

Figure 1: Conversation managers 

Under the control and coordination of CMs, the agents 
participating in a conversation located on TOP layer cooperate, 
negotiate, interact, but they are discharged from resolving 
communication problems. 

4. CONVERSATION SCHEMATA 
We propose a concept, conversation schema by considering: 

First, a schema is designed and used to guide how several 
messages can be connected and often includes steps by different 
speakers. Second, a conversation always centers on one or more 
conversation topics. Topics can be described by a set of 
quantitative and/or qualitative augments. Next, a schema must 
identify agent classes providing some desired services. Their 
instances (agents) will participate in the conversation. Moreover, 
individual "communicative" acts can be then aggregated to create 
more complex structures. These communicative acts and 
structures can be used to describe the (goal-directed) collective 
behaviors of  agents. Lastly, a schema can be thought of as a set 
of activities of two or more agents in which information is 
transmitted. The ultimate result of a conversation is a change of 
state in the participants. Depending on the components of state of 
the particular agents, this could be a change in the agent's 
knowledge, goals, or other attributes. Therefore, it should 
identify the internal state changes, and the external information 
exchange. Also, it can have optional steps that are chosen based 
on a particular situation and variables represented in topics that 
allow them to be adapted. 

5. IMPLEMENTATION 
By introducing CMs into our agent system architecture, agent- 
agent conversation problem is converted to agent-CM interaction 
problem. A schema should contain: data structure to model 
synchronized variables and so on; facilities to manage (re-direct) 
messages; mechanism to support negotiation, data exchange and 
dissemination; mechanism to plan, schedule, and control actions 
in a task; facilities to monitor the status of a distributed task. 

To verify the correctness, completeness, and consistency of 
schemata, a schema can be organized into a Colored Petri net 
(CPN) [4], which represents three types of knowledge: (1) 
Descriptive and fact (goals, tasks, topics, states) knowledge can 
be represented by knowledge annotations of color sets in places; 
(2) Rule knowledge (actions) of  conversation can be represented 
by corresponding knowledge annotations of transitions; (3) 

Control knowledge can be represented by arc functions andflow- 
controls, which are meta-rules that select one of several 
conflicting transitions as the next firing transition in a conflict 
resolution. If all firing conditions of a transition are satisfied, the 
transition can fire and the conversation can be conducted. 

The objective of CPN graph simulation is to visualize the CPN 
graph and its executive process. The number, color, and 
distribution of tokens in places denote the dynamic system states 
in the executive processes. Any firing sequence which goes from 
an initial place to a terminal place represents a sequence of 
messages corresponding to a complete conversation among the 
participating agents. Therefore, the whole CPN of a schema 
conveys the set of all possible message sequences in which an 
agent can be involved. 

A schema class library of a CM consists of  a set of CPN-based 
schema classes. A CPN-based schema class is a template to 
construct a schema instance in which the net is converted into a 
set of " i f - then"  rules. The instantiation of a schema class 
implies the instantiation of the net structure and agent classes. 
For example, a sender mustn't name the addresses of the 
recipients in a schema class. The addresses of the recipients will 
be determined by an agent naming mechanism. Once a schema 
execution reaches an ending state, the schema instance will be 
destroyed immediately. Schema classes are used to structure a 
conceptual schema into modules by encapsulation and 
inheritance. To make schema class reusable and flexible, 
synchronization constraints are separated from the internal part of 
each schema class. The behavior of a subclass is obtained from 
the inherited CPN by adding new transitions and adding new state 
places, or providing more specific details about them. 

Schema execution is a process of  "if-then" rule utilization via 
transition firing, token passing, and state place changing in the 
corresponding CPN. It keeps track of  the current conversation by 
receiving and analyzing messages from other agents participating 
in the conversation, and speaks to different agents depending on 
the current state by sending out messages. 

6 .  C O N C L U S I O N  

We have proposed and developed schema-based conversation 
modeling and conversation manager-based conversation enabling 
mechanism. The initial experimental results have proved that this 
approach has the following distinctive advantages: first, it ensures 
consistency and coherency of agent communication and 
cooperation. Second, it improves effectiveness of  agent 
collaboration. Third, it reduces complexity of implementation by 
constructing conversation managers that separate the description 
of common agents functionality from that of communication and 
synchronization. As a future research topic, we will add the 
security and trust into the schema-based conversation 
management to realize secure and efficient agent communication. 

7. REFERENCES 
[1]. Lin, F., Norrie, D. H., Shen, W., and Kremcr R., "Schema-based 

Approach to Specifying Conversation Policies" Agent '99 Workshop 
on SICP, Seattle, WA, 1999 

[2] Greaves, M. and J. M. Bradshaw (eds.), SICP-99, 2rd Int. Conf. in 
Autonomous Agents'99, Seattle, WA, May 1-5, 1999 

[3] Jamali, N., P. Thati, and Gul A. Agha, An Actor-based Architecture 
for Customizing and Controlling Agent Ensembles, IEEE Intelligent 
Systems & their applications, Vol. 14, No. 2, 1999, pp.38-44 

[4] Jensen, K. (1992) Colored Petri Nets: Basic Concepts, Analysis 
Methods and Practical Use, vol. 1, Springer-Verlag. 

234 


