
Energy-Aware Scheduling of Task Graphs with Imprecise
Computations and End-to-End Deadlines

AMIRHOSSEIN ESMAILI, University of Southern California
MAHDI NAZEMI, University of Southern California
MASSOUD PEDRAM, University of Southern California

Imprecise computations provide an avenue for scheduling algorithms developed for energy-constrained
computing devices by trading off output quality with the utilization of system resources. This work proposes
a method for scheduling task graphs with potentially imprecise computations, with the goal of maximizing
the quality of service subject to a hard deadline and an energy bound. Furthermore, for evaluating the efficacy
of the proposed method, a mixed integer linear program formulation of the problem, which provides the
optimal reference scheduling solutions, is also presented. The effect of potentially imprecise inputs of tasks
on their output quality is taken into account in the proposed method. Both the proposed method and MILP
formulation target multiprocessor platforms. Experiments are run on 10 randomly generated task graphs.
Based on the obtained results, for some cases, a feasible schedule of a task graph can be achieved with the
energy consumption less than 50% of the minimum energy required for scheduling all tasks in that task graph
completely precisely.

Additional Key Words and Phrases: Task Scheduling, Imprecise Computations, Real-time MPSoCs, Input Error

1 INTRODUCTION
In many real-time applications, it is often preferred for a task to produce an approximate (aka
imprecise) result by its deadline rather than producing an exact (aka precise) result late [1]. Imprecise
computations increase the flexibility of scheduling algorithms developed for real-time systems by
allowing them to trade off output quality with utilization of system resources, such as processor
cycles.
In imprecise computations, a real-time task is allowed to return intermediate and imprecise

results of poorer quality as long as it processes a predefined chunk of work that defines its baseline
quality. The number of processor cycles required for the task to provide this baseline quality is
referred to as the mandatory workload of the task. Assigning a larger number of processor cycles to
a task beyond its mandatory workload leads to an increase in its quality of results. In other words,
output quality of each task is a monotonic non-decreasing function of processor cycles assigned to
it [2].

The workload of a task beyond its mandatory workload is referred to as the optional workload,
which can be executed partially. The quality of service (QoS) is usually evaluated as a linear or
concave function of the number of processor cycles assigned to optional workload of tasks [2].
When the full workload of a task, both mandatory and optional, is entirely completed, the produced
results by that task are considered precise.
Furthermore, an energy consumption budget may also be one of the main design constraints

for energy-constrained computing devices such as embedded systems. Some of the prior work
have focused on scheduling task graphs with imprecise computations and energy and deadline
constraints on single processor platforms [1, 3] and multiprocessor platforms [4, 5]. In the said
prior work, the effect of potentially imprecise inputs of tasks on the their output quality is not
considered, and thus QoS can be obtained solely based on the number of processor cycles assigned
to optional workload. However, in many real-time applications such as video compression or speech
recognition [6] where tasks are interdependent, there is a set of dependent tasks represented by a
task graph. Therefore, the input to a task can be dependent on the output of one or more other
tasks which may have imprecise results. In the literature, the effect of imprecise input of a task is

ar
X

iv
:1

90
5.

04
39

1v
1

 [
cs

.D
C

]
 1

0
M

ay
 2

01
9

usually modeled with an extension in the workload of that task where this extension is responsible
for compensating the quality degradation due to imprecise inputs.

This work proposes a method for scheduling task graphs with potentially imprecise computations,
with the goal of maximizing QoS subject to a hard deadline and an energy bound. The proposed
method takes into account the effect of potential extension in the workload of each task based
on the quality of its inputs. The proposed method considers task dependencies within a given
task graph in order to find tasks (aka nodes) which can be performed imprecisely without having
a negative impact on QoS. In addition, for evaluating the efficacy of the proposed method, a
mixed integer linear program formulation of the problem, which provides the optimal reference
scheduling solutions, is also presented. Both the proposed method and MILP formulation target
multiprocessor system-on-chip (MPSoC) platforms due to their increasing popularity for many
real-time applications. To the best of our knowledge, this is the first work that takes into account the
effect of workload extension based on input quality in scheduling task graphs on MPSoC platforms
where the goal is to maximize QoS subject to a hard deadline and an energy bound.

The rest of the paper is organized as follows. Section 2 explains models used in the paper,
formally characterizes tasks with potentially imprecise computations, and presents the problem
statement. Next, Section 3 explains the proposed method for scheduling task graphs with imprecise
computation on an MPSoC platform. It also presents a comprehensive MILP formulation of the
same problem, which allows comparing the proposed method with an exact solution. After that,
Section 4 details experimental results. Finally, Section 5 concludes the paper.

2 MODELS AND PROBLEM DEFINITION
2.1 Task Model and Imprecise Computation
Tasks to be scheduled are modeled as a directed acyclic graph (DAG) represented by G(V ,E,Td) in
which V denotes the set of n tasks, E denotes data dependencies among tasks, and Td denotes the
period of the task graph. Td acts as a hard deadline for scheduling and each repetition of the task
graph should be scheduled before the arrival of the next one.

Each task with the possibility of imprecise computation consists of two parts: a mandatory part
and an optional part. In order for a task to produce an acceptable result, its mandatory part must be
completed. The optional part refines the result produced by the mandatory part. If the optional part
of a task is not executed entirely, the result of the task is imprecise and the task has an output error.
In a task graph, if one or more parent tasks of each task u have an output error, task u will have an
input error. Similar to prior work [2, 7], we assume only the execution of mandatory part of task u
will be extended to compensate for the input error and optional part of task u remains the same.
This is a valid assumption for many applications such as weather forecasting systems [2], image
and video processing, and Newton’s root finding method [6]. In other words, mandatory part of a
certain task can be thought of as the minimum amount of processor cycles required for the task to
produce a result with an acceptable quality, and the mandatory part grows when the quality of a
task’s inputs decrease [7]. In order for a task graph to be considered feasibly scheduled, at least the
potentially extended mandatory workload of each task must be completed before the deadline Td .

The number of processor cycles required to finish the mandatory part of task u when its inputs
are error-free is represented byMu . For a task u with nonzero input error, its mandatory workload
is extended such that it is capable of producing correct results. The number of processor cycles
required to process the extension added to Mu , which depends on the quality of its inputs, is
represented byMx

u . Therefore, the total mandatory workload, represented byM ′
u , is obtained as

follows:

M ′
u = Mu +M

x
u . (1)

2

The total optional workload of task u, which can be executed partially, is represented byOu . The
number of processor cycles actually assigned to the optional workload of task u is represented by
ou (ou ≤ Ou). According to [6], the general mandatory extension function of a task can be estimated
by a straight line, which provides an upper bound on the amount of required extension. Therefore,
the slope of this line, which is represented bymu and referred to as the task-specific scaling factor
[2, 6], quantifies the dependency between Eiu andMx

u as follows:

Mx
u =mu × Eiu , (2)

in which Eiu indicates the input error of task u. Similar to [2], Eiu in a task graph is defined as
follows:

Eiu = min{1,
∑

j ∈par (u)
Eoj }, (3)

where par (u) is the set of immediate parents of task u and Eoj represents output error of parent task
j. Eoj is defined as the portion of discarded optional workload of task j [6], and thus obtained as
follows:

Eoj =
O j − oj

O j
= 1 −

oj

O j
, 0 ≤ Eoj ≤ 1. (4)

Based on (3) and (4), we have 0 ≤ Eiu ≤ 1. According to (2), when the input of tasku is error-free (i.e.
Eiu = 0),Mx

u = 0 and thusM ′
u = Mu . On the other hand, when task u has the maximum input-error

(i.e. Eiu = 1), Mx
u =mu and thus M ′

u = Mu +mu . In this case, the mandatory workload extension
for task u reaches its maximum.

Note the assumption that workload extension can always compensate input error is not true in
general. However, based on [6], we can transform the given mandatory and optional portions of a
task workload such that in the worst case, where all transformed optional workloads of parent tasks
are discarded, the extension amount obtained by (2) would be able to compensate the input error.
Therefore,Mu and Ou used in our proposed method are transformed versions of given mandatory
and optional workloads of tasks.

The total number of processor cycles assigned to task u is represented byWu and is obtained as
follows:

Wu = M ′
u + ou . (5)

2.2 Energy Model
To model power consumption of a processor when operating at clock frequency f , we use the
following equation borrowed from [8]:

ρ = α f β + γ f + δ , (6)

in which ρ represents the total power consumption, and α , β , γ , and δ are the power model
constants. α f β represents the dynamic power consumption, and γ f + δ represents the static power
consumption. α is a constant that depends on the average switched capacitance and the average
activity factor, and β indicates the technology-dependent dynamic power exponent, which is usually
≈ 3. Therefore, energy consumption in one clock cycle (ϵcycle), when executing a task at clock
frequency f , is obtained from the following equation:

ϵcycle = α f β−1 + γ +
δ

f
. (7)

3

2.3 Problem Statement
We seek to schedule a task graph with the possibility of imprecise computations represented by
G(V ,E,Td) on a platform comprising of K homogeneous processors in order to maximize QoS
subject to a hard deadline and an energy bound. Each processor supports a set ofm distinct clock
frequencies: { f1, f2, ..., fm}. QoS highly correlates with how many processor cycles are assigned to
the execution of optional workloads of exit tasks, which are the tasks in the task graph with no
child tasks. The reason is that the discarded optional workload of tasks other than exit tasks are
compensated with extensions in the mandatory workload of their child tasks. Consequently, QoS is
quantitatively defined as follows:

QoS =

∑
u ∈exit (G) Pu

|exit(G)| , 0 ≤ QoS ≤ 1, (8)

where exit(G) represents the set of exit tasks of task graphG, and Pu represents the precision of
task u. Pu is a non-decreasing function of number of processor cycles assigned to the optional
workload of task u. Similar to [2], Pu is defined as follows:

Pu = PTu + (1 − PTu)(
ou
Ou

), (9)

in which PTu indicates the minimum precision acceptable from task u, aka precision threshold of
task u. PTu assumes values between 0 and 1. PTu indicates the precision of task u when only its
(extended) mandatory part is completed [2]. Based on (9), executing only the extended mandatory
workload of task u (ou = 0) results in Pu = PTu . On the other hand, executing the entire optional
workload of task u (ou = Ou) in addition to its extended mandatory workload leads to Pu = 1. For
other values of ou , PTu < Pu < 1.

3 PROPOSED FRAMEWORK
The proposed framework comprises of two main steps:

(1) determining the number of processor cycles assigned to optional workload of non-exit tasks,
and

(2) scheduling tasks on anMPSoC for maximizing QoS subject to energy and deadline constraints.

3.1 Determining the Number of Processor Cycles Assigned to Optional Workload of
Non-Exit Tasks

The first step of the proposed method tries to minimize the summation of total workload of non-exit
tasks plus the total (extended) mandatory workloads of exit tasks. The intuition behind choosing
such objective function is the fact that minimizing the total number of processor cycles associated
with the aforementioned portions of tasks leads to having more processor cycles available for
executing optional workloads of exit tasks as there are fixed deadline and energy budget constraints.
This can result in increased QoS according to (8). Therefore, we aim to minimize the following
expression: [∑

for u ∈ non-exit tasks
Wu

]
+

[∑
for v ∈ exit tasks

M ′
v

]
. (10)

We first explain our approach for minimizing (10) for two simple task graphs that constitute
base cases. Then, we explain our proposed algorithm for a general task graph.

Base Case 1: Consider the task graph demonstrated in Fig. 1a. It consists of a parent task p,
alongside b child tasks. The workload defined in (10) for this simple task graph can be written as

4

follows:

[M ′
p + op] + [

b∑
i=1

Mi +

b∑
i=1

mi × (1 −
op

Op
)], (11)

in which subscripts p and i are used for referring to workload components of the parent task and
child tasks in Fig. 1a, respectively. (11) can be rewritten as:

[M ′
p +

b∑
i=1

(Mi +mi)] + [op × (1 −
∑b

i=1mi

Op
)]. (12)

In (12), the first term in the summation does not depend on how many processor cycles are
assigned to op (note that the actual workload of M ′

p depends on the input error of the parent
task and not op). However, the second term is a function of op and minimizing this term leads to
minimization of (12). Two possible scenarios are postulated in this case:
(1) if

∑b
i=1mi ≤ Op , op should be minimized as much as possible, i.e., op = 0. This means the

optional workload of parent task must be discarded.
(2) if

∑b
i=1mi > Op , op should be maximized as much as possible, i.e., op = Op . This means

that the parent task should be executed precisely. A large number of child tasks and/or high
values of theirmi values lead to a higher chance of this scenario occurring.

Base Case 2: Consider the task graph demonstrated in Fig. 1b. It consists of a child task c ,
alongside b parent tasks. The workload of (10) for this simple task graph can be written as follows:

[
b∑
i=1

(M ′
i + oi)]+

[Mc +mc ×min

(
1,

b∑
i=1

(1 − oi
Oi

)
)
],

(13)

in which subscripts c and i are used for referring to workload components of the child task and
parent tasks in Fig. 1b, respectively. (13) can be rewritten as:

[
b∑
i=1

M ′
i +Mc]+

[
b∑
i=1

oi +mc ×min

(
1,

b∑
i=1

(1 − oi
Oi

)
)
].

(14)

In (14), the first term in the summation does not depend on how many processor cycles are assigned
to o1,o2, ...,ob . However, the second term is a function of how many processor cycles are assigned
to optional workloads of parent tasks and therefore, this term should be minimized for minimizing
(14). Two possible scenarios are postulated in this case:

p

2 b1 c

21 b

(a) (b)

Fig. 1. Task graphs of (a) base case 1 and (b) base case 2

5

(1) If
∑b

i=1Oi ≤ mc , in order to minimize (14), all optional workloads of b parent tasks should be
executed completely, i.e.,

∑b
i=1 oi =

∑b
i=1Oi . The proof is beyond the scope of this paper.

(2) If
∑b

i=1Oi > mc , in order to minimize (14), all optional workloads of b parent tasks should be
discarded, i.e.,

∑b
i=1 oi = 0. The proof is beyond the scope of this paper. A large number of

parent tasks and/or high values of their Oi values lead to a higher chance of this scenario
occurring.

General Task Graphs: While base cases 1 & 2 help determine the number of processor cycles
assigned to optional workload of tasks in simple task graphs, similar conclusions cannot be drawn
for complicated tasks graphs with interdependence of tasks. For instance, consider an example
where two parent tasks share a few child tasks and the goal is to either fully discard or execute
the optional workload of tasks within this task graph. Because a few child tasks are potentially
shared between the two parent tasks, applying base case 1 or base case 2 without considering the
interdependence of tasks may lead to conflicting decisions about execution of optional workloads.
As the number of such parent tasks increases, depending on the interdependencies among them and
their shared child tasks, the number of possible permutations that should be explored in terms of
fully executing or discarding the optional workloads of those parent tasks can grow exponentially.
However, presented base cases can guide us in developing a heuristic that determines the number
of processor cycles assigned to optional workload of non-exit tasks.

Note that in the proposed heuristic, it is assumed that the input task graph has only one source
task (i.e. a task with in-degree of zero), but potentially many exit tasks. In task graphs where the
number of source tasks is larger than one, a dummy task with zero workload is introduced and
connected to all source tasks. The steps of proposed heuristic are as follows:

Step 1 (Forward Pass): This step starts traversing tasks in the task graphG from the source task
and labels each task as precise (fully executing its optional workload) or imprecise (fully discarding
its optional workload) based on the task’s optional workload and the total maximum extension of
its child tasks if the task is executed imprecisely. This step of the proposed heuristic is similar to
base case 1. The difference, though, is the fact that if a child task is encountered more than once due
to being a shared child of multiple parent tasks and its mandatory part is extended because one of
its parents is labeled as imprecise, it is not considered when writing (12) for its other parent tasks.
After exploring all paths in the task graph, tasks with multiple parents and extended workloads
are marked. For these tasks, their parent tasks are evaluated again while their marked child tasks
are removed from (12). This may lead to an update in deciding whether the parent task should
be executed precisely or imprecisely. The same process is repeated until no decisions are further
updated. Note that each child task with multiple parents is visited only once during this update
pass.

Step 2 (Backward Pass): This step starts traversing tasks in the task graph G in the reverse
order from exit tasks back to the source task. For a task with multiple parents, those which are
labeled as precise are added to a list and sorted in increasing order of the number of child tasks with
intact (not extended) mandatory workloads. The resulting list is called sorted_precise_parents, which
includes b tasks. Next, a subset of tasks in sorted_precise_parents is chosen such that transforming
those tasks to imprecise tasks and extending the mandatory workload of their child tasks leads to
the highest reduction in (10). However, instead of exploring all 2b possible subsets, we only explore
b subsets which are: the subset containing the first task in the sorted list, the subset containing the
first and second tasks in the sorted list, ..., and for the bth subset, the subset containing all tasks
in the sorted list. The rationale behind such decision is that according to base case 1, labeling a
task with fewer number of intact child tasks as imprecise is more likely to eventually increase QoS.
Such tasks are explored more often in proposed subsets due to the sorting strategy.

6

Step 2 (Backward Pass) is inspired by base case 2 where multiple parents with shared child tasks
can be labeled as imprecise. In other words, the first step of proposed heuristic looks at parent tasks
independently while the second step studies their combined effect on overall QoS.
The presented heuristic determines which tasks in a given task graph should be executed

imprecisely. Therefore, we refer to this heuristic as imp_label. The optional workload of each
non-exit task u marked as imprecise is oimp_label

u = 0 while the optional workload of a precise
task is oimp_label

u = Ou . Furthermore, if a non-exit task u has a parent which is labeled imprecise,
M

′ imp_label
u = Mu +mu , otherwise M

′ imp_label
u = Mu . Therefore, the total workload of each

non-exit task u is determined by imp_label, is represented byW imp_label
u , and obtained as follows:

W
imp_label
u = M

′ imp_label
u + o

imp_label
u . (15)

Note that imp_label also determines whether the mandatory workload of an exit task v is extended
(M ′ imp_label

v = Mv +mv) or not (M
′ imp_label
v = Mv).

3.2 Scheduling Tasks on an MPSoC for Maximizing QoS Subject to Energy and
Deadline Constraints.

In this section, we seek to schedule the task graph obtained from imp_label on an MPSoC platform
for maximizing QoS subject to energy and time constraints. For this purpose, we determine a proper
processor assignment for each task alongside the ordering of tasks on each processor in order to
minimize the finish time while operating at the maximum clock frequency (we temporarily ignore
energy budget constraint). This is achieved by deploying a minimal-delay list scheduling algorithm,
which is a variant of Heterogeneous Earliest Finish Time (HEFT) [9]. HEFT assigns a rank to each
task in the task graph based on the length of the critical path from that task to exit tasks. While
HEFT is designed for heterogeneous platforms, it can be applied to a homogeneous platform as
well. For HEFT, we provide workloads obtained from imp_label for non-exit tasks and for exit tasks,
their (extended) mandatory workloads obtained from imp_label plus their total optional workloads.
Next, we pick tasks in decreasing order of their ranks and schedule each selected task on its “best”
processor, which is the processor that minimizes the finish time of the task under the maximum
available frequency.
Note that HEFT is only used to just obtain a processor assignment for each task alongside the

ordering of tasks on each processor. The obtained start times for tasks from HEFT just show relative
ordering of tasks on each processor. Furthermore, we used the maximum frequency in HEFT and
included the total optional workloads of all exit tasks since we were temporarily ignoring the energy
budget constraint. Therefore, in the next step, the actual number of processor cycles assigned to
optional workload of exit tasks, the actual distribution of workload of each task amongm available
frequencies of the processors, and the actual execution start time of each task should be obtained.

For this purpose, we demonstrate that maximizing QoS for a task graph obtained from imp_label
subject to energy and time constraints, and processor assignment and task ordering obtained from
HEFT, will be reduced to a linear programming (LP) formulation. In the following formulation, u
and v are used to refer to any of the tasks in the task graph.

Duration of task u, u = 1, 2, ...,n, is formulated as follows:

Du =

m∑
i=1

Nu,i

fi
, Nu,i ≥ 0 (16)

7

where Nu,i indicates the number of processor cycles of task u processed at clock frequency fi
(i = 1, 2, ...,m). If task u is a non-exit task, the following constraint is introduced:

m∑
i=1

Nu,i =W
imp_label
u . (17)

On the other hand, if task u is an exit task, we have:

M
′ imp_label
u ≤

m∑
i=1

Nu,i ≤ M
′ imp_label
u +Ou . (18)

According to (6) and (16), energy consumption during the execution of task u can be formulated
as follows:

ϵtask (u) =
m∑
i=1

(Nu,i .(α f β−1i + γ +
δ

fi
)). (19)

To ensure the total energy consumption of tasks is less than or equal to the given energy bound,
represented by ϵmax , we have:

n∑
u=1

ϵtask (u) ≤ ϵmax . (20)

To ensure time and precedence constraints, by representing start time of each task u with Su , we
should have:

Su + Du ≤ Td , u = 1, 2, ...,n, Su ≥ 0, (21)

Su + Du +Cu,v ≤ Sv , ∀e(u,v) ∈ E. (22)
In (22), Cu,v represent the average communication cost associated with eu,v for sending output of
task u to input of task v .

Finally, we need to ensure tasks assigned to the same processor do not overlap:
Su + Du ≤ Sv , For tasks u and v which are

assigned to the same processor
and task v is the immediate task
after task u based on HEFT

(23)

Maximizing the objective function of (8), with the constraints introduced in (16) to (23), forms
an LP over positive real variables of Su , Nu,i , and optional workload of exit tasks (ou for u ∈ exit
tasks).

3.3 MILP formulation
In order to evaluate the performance of our 2-step proposed method in Sections 3.1 and 3.2 compared
to the optimal solution, we present a comprehensive mixed-integer linear programming (MILP)
formulation of the problem statement in Section 2.3. By solving the MILP, we obtain the optimal
values for the number of processor cycles assigned to the optional workload of each task, processor
assignment for each task alongside the ordering of tasks on each processor, task execution start
time, and distribution of the total number of processor cycles associated with the execution of each
task amongm available frequencies. For this purpose, the following variables are defined:

Denoting the number of processors with K , for the processor assignment of task u to processor
k , k = 1, 2, ...,K , we use the decision variable Πk,u , defined as follows:

Πk,u =

{
1 if task u is assigned to processor k
0 otherwise . (24)

8

Consequently, we have the following constraint for Πk,u :

K∑
k=1

Πk,u = 1, for u = 1, 2, ...,n. (25)

In order to prevent the overlap of execution of tasks assigned to the same processor with each
other, we use the decision variable Yk,u,v indicating ordering of the tasks. For k = 1, 2, ...,K ;
u = 1, 2, ...,n; v = 1, 2, ...,n,v , u; we define:

Yk,u,v =


1 if task u is scheduled immediately

before task v on processor k

0 otherwise

. (26)

In addition, if task v is the first task assigned to processor k , Yk,0,v is defined to be 1 (and is 0
otherwise). On the other hand, if task u is the last task assigned to processor k , Yk,u,n+1 is defined
to be 1 (and is 0 otherwise). Furthermore, if there is no task assigned to processor k , Yk,0,n+1 is
defined to be 1 (and is 0 otherwise). Accordingly, using (26) and the definitions provided for Yk,0,v ,
Yk,u,n+1 and Yk,0,n+1, we have the following constraints for k = 1, 2, ...,K :

n+1∑
v=1
v,u

Yk,u,v = Πk,u , for u = 0, 1, ...,n (27)

n∑
u=0
u,v

Yk,u,v = Πk,v , for v = 1, 2, ...,n + 1. (28)

According to (27), if task u is assigned to processor k (Πk,u = 1), either there is one and only
one task scheduled immediately after task u on processor k or task u is the last task assigned to
processor k . Similarly, according to (28), if task v is assigned to processor k (Πk,v = 1), either
there is one and only one task scheduled immediately before task v on processor k or task v is
the first task assigned to processor k . In both (27) and (28), Πk,0 and Πk,n+1 are defined as 1 for all
k = 1, 2, ...,K . Using Yk,u,v , we rewrite the constraint in (23) as the following:

Su + Du − (1 − Yk,u,v) ×Td ≤ Sv ,

for u = 1, 2, ...,n,
for v = 1, 2, ...,n,v , u,

for k = 1, 2, ...,K .

(29)

Finally, instead of using imp_label algorithm to determine the workload of non-exit and exit
tasks in (17) and (18), the following constraint is used for all the tasks:

Mu +mu × Eiu ≤
m∑
i=1

Nu,i ≤ Mu +mu × Eiu +Ou , (30)

where Eiu is obtained by (3). In order to present the minimum formulation existing in (3) as a linear
constraint, we rewrite (3) using an auxiliary decision variable, represented by Xu , as the following:

Eiu = Xu . (1) + (1 − Xu).(
∑

j ∈par (u)
Eoj), (31)

9

in which Xu is a decision variable which is 1 when
∑

j ∈par (u) E
o
j > 1 and is 0 otherwise. According

to [10], the corresponding constraint for Xu can be written as follows:∑
j ∈par (u) E

o
j − 1

n
≤ Xu ≤

∑
j ∈par (u)

Eoj , Xu ∈ {0, 1}, (32)

in which n serves as an upper bound for
∑

j ∈par (u) E
o
j . Furthermore, we use the lemma presented in

[10] for linearization of multiplication of a Boolean decision variable and a bounded real-valued
variable for the second term of (31).

Consequently, maximizing the objective function of (8) with the constraints introduced in (16),
(19) to (22), (25), (27) to (32), and the lemma mentioned in [10] for linearization of the second term
of (31), forms an MILP yielding the optimal values for the desired variables mentioned in the
beginning of this section.

3.4 Complexity Analysis
The time complexity of the proposed labeling heuristic described in Section 3.1 is O(|E |+ |V |)where
|E | denotes the number of edges in the task graph while |V | represents the number of vertices.
Furthermore, the time complexity of HEFT, which is used for obtaining the processor assignment
of tasks in the labeled graph and ordering of them on each processor for an MPSoC platform, is
O(K × |E |) where K denotes the number of processors.

4 RESULTS
4.1 Simulation Setup
For solving the formulated MILP in Section 3.3 and the LP part of the porposed method in Section
3.2, we use IBM ILOG CPLEX Optimization Studio[11]. The platform on which simulations are
performed is a computer with a 3.2 GHz Intel Core i7-8700 Processor and 16 GB RAM. For obtaining
energy model parameters, we employ [12] which uses a classical energy model of a 70nm technology
processor that supports 5 discrete frequencies. The frequency-independent component of processor
power consumption, which is represented by δ in (6), is obtained as 276mW . Each processor can
operate independently of other processors at either f1 = 1.01GHz, f2 = 1.26GHz, f3 = 1.53GHz,
f4 = 1.81GHz, f5 = 2.1GHz. For these frequencies, frequency-dependent component of processor
power consumption, which is represented by α f β + γ f in (6), is 430.9mW , 556.8mW , 710.7mW ,
896.5mW , and 1118.2mW , respectively. Using curve fitting, we obtain α = 23.8729, γ = 401.6654,
and β = 3.2941 in (6). We consider an architecture with 4 processors. Simulations are performed for
10 task graphs randomly generated using TGFF[13], which is a randomized task graph generator
widely used in the literature to evaluate the performance of scheduling algorithms. These task
graphs are named as TGFF0 to TGFF9. The number of tasks in studied random task graphs ranges
from 23 (in TGFF0) to 57 (in TGFF9). The maximum in-degree and out-degree for each task in our
randomly generated task graphs are set to 6. For each task u, the amount of workload required to
be assigned to produce precise results when input is error-free is referred to as the initial workload
of the task, and is represented byW init ial

u . Therefore:W init ial
u = Mu +Ou . For studied task graphs,

the average value forW init ial
u of each task u is set to 2 × 106 cycles. For each task u, based on what

portion ofW init ial
u is for its base mandatory workload (Mu), we consider 3 cases:

(1) man_low :Mu ∼ U (0.2, 0.4) ×W init ial
u (low portion ofW init ial

u is for the base mandatory).
(2) man_med :Mu ∼ U (0.4, 0.6)×W init ial

u (medium portion ofW init ial
u is for the basemandatory).

(3) man_hiдh:Mu ∼ U (0.6, 0.8) ×W init ial
u (high portion ofW init ial

u is for the base mandatory).

10

In each of 3 cases, similar to[2],mu is set asmu ∼ U (0, 2 ×Mu) for each task u. For having a fair
comparison among these 3 cases, each task graph uses the same random seed for all the above
uniform distributions, where this random seed is different in each task graph. In all 3 cases, PTu
for all the tasks are uniformly chosen from [0, 1]. Average communication costs associated with
edges of task graphs are chosen uniformly from 0.4 ms to 0.6 ms. Td of each task graph is set to
twice the length of the longest path from its source task to an exit task (including communication
costs), when executing the total workload along the path, including all optional workloads, with
the maximum frequency.

4.2 Evaluating the Effect of Energy Budget on the obtained QoS
In this section, for each of the studied task graphs, we evaluate the effect of the ϵmax value on
the obtained QoS, defined in (8), using the proposed method in Sections 3.1 and 3.2. In order to
obtain a proper value for ϵmax , first, we derive the minimum energy required for scheduling the
task graph in one Td without the possibility of imprecise computations. We refer to this energy
value as ϵ∗. For obtaining ϵ∗, HEFT is again used to obtain the processor assignment for each
task and the ordering of tasks on each processor. Then, we solve the LP which minimizes the
objective function of

∑n
u=1 ϵtask (u), with the constraints described in (16), (19), (21) to (23), and the

constraint imposing that the workload of each task u, whether non-exit task or exit task, should be
executed precisely:

∑m
i=1 Nu,i =W

init ial
u . By solving this LP, ϵ∗ of each task graph will be obtained.

Optionally, one can use an MILP formulation to obtain ϵ∗.
For the case of imprecise computations, for each task graph, if its ϵ∗ is used as the value for

ϵmax , QoS is obtained as its maximum value (QoS = 100%, if QoS in (8) is shown with percentage).
Therefore, for each task graph, we reduce ϵmax gradually, starting from its ϵ∗ with the resolution of
0.05×ϵ∗, and observe QoS obtained using our proposed method for each value of ϵmax , as presented
in Fig. 2. In Fig. 2, for each task graph, existence of a QoS ≥ 0 for a ratio of its ϵ∗ as ϵmax , shows
that our proposed method can generate a feasible schedule for that task graph and ϵmax , which
produces that value of QoS. A feasible schedule manes at least (extended) mandatory workloads of
all tasks are completed before Td , and the total energy consumption is below the ϵmax .

According to Fig. 2, by reducing ϵmax , we observe the sharpest drop in the obtained QoS by our
proposed method in theman_hiдh case, while the slowest drop in QoS is observed in theman_low
case. This reflects the fact that when lower portion of initial task workloads are mandatory, feasible
results can be achieved with lower values of ϵmax , compared to the case that higher portion of
initial task workloads are mandatory. For instance, in theman_low case, our proposed method can
generate a feasible schedule for TGFF8 even with using 45% of its ϵ∗ as the value for ϵmax , while in

(a)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

²
max (fraction of ²∗

40

50

60

70

80

90

100

Q
o
S
 (

%
)

man_low case
TGFF0
TGFF1
TGFF2
TGFF3
TGFF4
TGFF5
TGFF6
TGFF7
TGFF8
TGFF9

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

Q
o
S
 (

%
)

man_med case
TGFF0
TGFF1
TGFF2
TGFF3
TGFF4
TGFF5
TGFF6
TGFF7
TGFF8
TGFF9

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

Q
o
S
 (

%
)

man_high case
TGFF0
TGFF1
TGFF2
TGFF3
TGFF4
TGFF5
TGFF6
TGFF7
TGFF8
TGFF9

)
(a)

²
max (fraction of ²∗)

(b)

²
max (fraction of ²∗)

(c)

Fig. 2. QoS versus ϵmax obtained via the proposed method for different cases of mandatory workload portion: (a) man_low
(b) man_med (c) man_high.

11

theman_hiдh case, it can only generate a feasible schedule for TGFF8 when ϵmax is reduced to at
most 85% of its ϵ∗.

4.3 Evaluating the Performance of the Proposed Method versus MILP
In this section, we compare the the performance of the proposed method in Sections 3.1 and 3.2
with the MILP formulation presented in Section 3.3, in terms of their obtained QoS in different
values of ϵmax . We consider our comparison in a case where Mu of tasks in a task graph can be
chosen uniformly from 20% to 80% ofW init ial

u (a mix of 3 aforementioned cases in Section 4.1;
we refer to this case as theman_mixed case). For each task graph and ϵmax value, we impose a
time limit of 60 minutes for MILP to find the optimal scheduling solutions. For evaluating the
performance of our proposed method, we only consider those task graphs for which MILP found
the optimal solutions for each value of ϵmax within the time limit (This comparison is actually in
the favor of MILP. We elaborate more on this later). Using this setup, MILP could find solutions for
7 of 10 studied task graphs within the time limit (TGFF0 to TGFF3, TGFF5, TGFF6 , and TGFF9).
For these task graphs, the obtained QoS values for different ϵmax values by the proposed method
and MILP are shown in Fig. 3. According to Fig. 3, QoS values found by our proposed method are
completely equal to those found by MILP for 4 task graphs (TGFF0, TGFF3, TGFF6, and TGFF9).
Furthermore, for other task graphs, the average QoS difference found by the proposed method
versus MILP for different ϵmax values is 1.63% (up to 6.64%). Consequently, the proposed method
yeilds close QoS values compared to the optimal MILP formulation.
Comparing the runtime of the proposed method and MILP, we see a clear advantage for the

proposed method. On the platform we performed simulations, the average runtime of the proposed
method for each task graph and ϵmax value was 99.38% lower compared to MILP. This is without
considering the cases that MILP did not find the optimal solutions within the time limit. for many
real-world applications, as the task graphs can have higher number of nodes and more complex
interdependencies compared to studied task graphs, the runtime of using MILP for those task
graphs can grow exponentially. Therefore, employing the proposed method, as it provided close
estimations to MILP, can be an efficient alternative.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

man_mixed case

TGFF0

TGFF1

TGFF2

TGFF3

TGFF5

TGFF6

TGFF9

Q
o
S

 (
%

)

²
max (fraction of ²∗)

(a)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

man_mixed case obtained from MILP

TGFF0

TGFF1

TGFF2

TGFF3

TGFF5

TGFF6

TGFF9

²
max (fraction of ²∗)

Q
o
S

 (
%

)

(b)

Fig. 3. QoS versus ϵmax obtained via (a) the proposed method and (b) MILP for theman_mixed case. As presented,
QoS values obtained using the proposed method are close (and in some cases completely equal) to the optimal reference
QoS values found by MILP.

12

4.4 Evaluating the Effect of imp_label algorithm
In order to evaluate the effect of imp_label algorithm presented in Section 3.1, which traverses
the graph and labels some tasks as the ones that should be executed imprecisely before feeding
that graph to the scheduling method presented in Section 3.2, we compare the results obtained
from our proposed method with a baseline approach in which we feed the task graph with their
initial workloads (W init ial) for non-exit tasks to the scheduling method presented in Section 3.2,
and assign as much as processor cycles possible to exit tasks in order to maximize QoS. Therefore,
In the baseline approach, we solve the same LP as the one formulated in Section 3.2, however, the
constraint in (17) for non-exit task u will be transformed to the following constraint:

m∑
i=1

Nu,i =W
init ial
u , (33)

and the constraint in (18) for exit task u will be transformed to the following constraint:

Mu ≤
m∑
i=1

Nu,i ≤ Mu +Ou . (34)

Fig. 4 presents QoS values obtained via the proposed method and the baseline approach for the
studied task graphs for different values of ϵmax . The base mandatory portion of initial workload
of tasks is set based on theman_mixed case, similar to Section 4.3. According to Fig. 4, using the
baseline approach, QoS for all task graphs immediately drops from 100% as soon as ϵmax is reduced
from ϵ∗. However, in the correspondingman_mixed case of our proposed method, as shown in
Fig. 4, QoS can be maintained as 100% even for values lower than ϵ∗ for our studied task graphs.
For instance, as presented in Fig. 4, our proposed method can generate QoS of 100% for TGFF8
with 85% of its ϵ∗. Furthermore, for each task graph, the minimum ϵmax with which our proposed
method can generate a feasible schedule for that task graph is lower in comparison to the baseline
approach. For those ϵmax values that both the proposed method and the baseline approach can
provide a feasible schedule for, QoS values obtained via our proposed method are on average 12.82%
(up to 43.40%) higher than QoS values obtained via the baseline approach.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

man_mixed case

TGFF0

TGFF1

TGFF2

TGFF3

TGFF4

TGFF5

TGFF6

TGFF7

TGFF8

TGFF9

²
max (fraction of ²∗)

Q
o
S
 (

%
)

(a)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

40

50

60

70

80

90

100

man_mixed case for the baseline approach

TGFF0

TGFF1

TGFF2

TGFF3

TGFF4

TGFF5

TGFF6

TGFF7

TGFF8

TGFF9Q
o
S

 (
%

)

²
max (fraction of ²∗)

(b)

Fig. 4. QoS versus ϵmax obtained via (a) the proposed method and (b) the baseline approach (without the imp_label
algorithm) for theman_mixed case. As presented, QoS values obtained using the proposed method are considerably
higher compared to the baseline approach.

13

5 CONCLUSION
In this paper, we presented a method for time and energy constrained scheduling of task graphs on
MPSoC platforms, with the possibility of imprecise computation of each task of the task graph. We
took into the account the effect of the extension in the workload of each task when the input to
that task is not precise. For this purpose, we presented an algorithm which by traversing the task
graph, determines the optional workload of each non-exit task should be executed or discarded,
and then scheduled the labeled graph on a MPSoC platform. For evaluating the efficacy of the
proposed method, we also presented a MILP formulation of the problem which provided us the
optimal reference scheduling solutions. Our results shows the effectiveness of our proposed method
in terms of obtaining promising QoS values even with low energy budgets.

REFERENCES
[1] H. Yu, B. Veeravalli, and Y. Ha. Dynamic scheduling of imprecise-computation tasks in maximizing qos under energy

constraints for embedded systems. In Proceedings of the 2008 Asia and South Pacific Design Automation Conference,
pages 452–455. IEEE Computer Society Press, 2008.

[2] G. L. Stavrinides and H. D. Karatza. Scheduling multiple task graphs with end-to-end deadlines in distributed real-time
systems utilizing imprecise computations. Journal of Systems and Software, 83(6):1004–1014, 2010.

[3] L. A. Cortés, P. Eles, and Z. Peng. Quasi-static assignment of voltages and optional cycles in imprecise-computation
systems with energy considerations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(10):1117–1129,
2006.

[4] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu. Energy-adaptive scheduling of imprecise computation tasks for qos
optimization in real-time mpsoc systems. In Proceedings of the conference on design, automation & test in Europe, pages
1406–1411. European Design and Automation Association, 2017.

[5] H. Yu, B. Veeravalli, Y. Ha, and S. Luo. Dynamic scheduling of imprecise-computation tasks on real-time embedded
multiprocessors. In 2013 IEEE 16th International Conference on Computational Science and Engineering, pages 770–777.
IEEE, 2013.

[6] W.-c. Feng and J.-S. Liu. Algorithms for scheduling real-time tasks with input error and end-to-end deadlines. IEEE
Transactions on Software Engineering, 23(2):93–106, 1997.

[7] D. Hull, A. Shankar, K. Nahrstedt, and J. W. Liu. An end-to-end qos model and management architecture. In in
Proceedings of IEEE Workshop on Middleware for Distributed Real-time Systems and Services. Citeseer, 1997.

[8] M. E. Gerards, J. L. Hurink, and J. Kuper. On the interplay between global dvfs and scheduling tasks with precedence
constraints. IEEE Transactions on Computers, 64(6):1742–1754, 2015.

[9] H. Topcuoglu, S. Hariri, and M.-y. Wu. Performance-effective and low-complexity task scheduling for heterogeneous
computing. IEEE transactions on parallel and distributed systems, 13(3):260–274, 2002.

[10] A. Esmaili, M. Nazemi, and M. Pedram. Modeling processor idle times in mpsoc platforms to enable integrated dpm,
dvfs, and task scheduling subject to a hard deadline. In Proceedings of the 24th Asia and South Pacific Design Automation
Conference, pages 532–537. ACM, 2019.

[11] Ibm ilog cplex optimization studio, version 12.8. Available from: https://www.ibm.com/products/
ilog-cplex-optimization-studio.

[12] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-time multiprocessor system-on-chip with optimal dvfs
and dpm combination. ACM Transactions on Embedded Computing Systems (TECS), 13(3s):111, 2014.

[13] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In Proceedings of the 6th international workshop on
Hardware/software codesign, pages 97–101. IEEE Computer Society, 1998.

14

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

	Abstract
	1 Introduction
	2 Models and Problem Definition
	2.1 Task Model and Imprecise Computation
	2.2 Energy Model
	2.3 Problem Statement

	3 Proposed Framework
	3.1 Determining the Number of Processor Cycles Assigned to Optional Workload of Non-Exit Tasks
	3.2 Scheduling Tasks on an MPSoC for Maximizing QoS Subject to Energy and Deadline Constraints.
	3.3 MILP formulation
	3.4 Complexity Analysis

	4 Results
	4.1 Simulation Setup
	4.2 Evaluating the Effect of Energy Budget on the obtained QoS
	4.3 Evaluating the Performance of the Proposed Method versus MILP
	4.4 Evaluating the Effect of imp_label algorithm

	5 Conclusion
	References

