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ABSTRACT
Knowledge graphs (KGs) are essential resources for many applica-
tions including Web search and question answering. As KGs are
often automatically constructed, they may contain incorrect facts.
Detecting them is a crucial, yet extremely expensive task. Promi-
nent solutions detect and explain inconsistency in KGs with respect
to accompanying ontologies that describe the KG domain of inter-
est. Compared to machine learning methods they are more reliable
and human-interpretable but scale poorly on large KGs. In this
paper, we present a novel approach to dramatically speed up the
process of detecting and explaining inconsistency in large KGs by
exploiting KG abstractions that capture prominent data patterns.
Though much smaller, KG abstractions preserve inconsistency and
their explanations. Our experiments with large KGs (e.g., DBpedia
and Yago) demonstrate the feasibility of our approach and show
that it significantly outperforms the popular baseline.
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1 INTRODUCTION

Motivation. A Knowledge Graph (KG) describes facts about enti-
ties by labeling entities with classes and interconnecting them via
binary relations. For instance, the top of Figure 1 depicts a KG with
facts about companies and locations, e.g., Nokia is a PopularName,
and it is a customer of IBM. Prominent examples of large-scale KGs
include DBpedia [19], NELL [23], Yago [31], Freebase [3], and Wiki-
data [34] – all contain millions of facts. KGs power a wide variety
of important applications including Web search [5] and question
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Figure 1: A sample KG and ontology.

answering [6]. While data quality of a KG is crucial for such appli-
cations, unfortunately large-scale KGs are often inaccurate. Indeed,
they are constructed using error-prone methods such as informa-
tion extraction (e.g., Yago), crowd-sourcing (e.g., Wikidata) or cu-
rated using embedding-based approaches (see [36] for an overview).
These methods inevitably introduce erroneous information, e.g.,
incorrectly disambiguated entities or faulty relations.

A common task in such settings is that of detecting incorrect
facts in KGs. Although many works on this topic have focused
on machine-learning techniques (e.g., [15, 27]), methods that rely
on symbolic reasoning (e.g., [25, 32]) have shown the benefit for
this task due to their accuracy and human-interpretability [26].
One prominent such method for detecting incorrect facts in KGs
is to compute inconsistency explanations of the KG with respect
to a manually crafted ontology [14], which is a set of axioms that
capture the relevant domain of interest and constraints enforcing
that some statements must not occur together. An example ontol-
ogy presented at the bottom of Figure 1 states that the range of
hasCustomer relation is a Company, the domain of isCityOf relation is
a City, and the classes City, Company and Country are disjoint. Such
ontologies are usually carefully created by domain experts, and the
errors in the KGs are typically characterized by whether there exist
triples in the KG that contradict with the accompanied ontology.
It is easy to verify that our sample KG contradicts the ontology,
as Toyota and Nokia belong to disjoint classes Company and City. A
minimal set of axioms causing this is an inconsistency explanation.

Detecting and explaining inconsistency in KGs enhanced with
ontologies are fundamental and well-studied knowledge manage-
ment tasks [13, 26]. It is well-known that finding all and even some
explanations is computationally demanding and thus does not scale
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for large real-world KGs [28]. This holds even for light-weight on-
tology languages that admit scalable processing since the number
of explanations can be huge: in DBpedia there are at least 3,500,000
such explanations [28].

General Idea. We propose a novel method to compute inconsis-
tency explanations for large-scale KGs. The key idea of our method
is to identify an ontology language and construct a compressed
representation, called abstraction (abstract KG), of the original KG
such that for any ontology written in that language, the following
requirements are satisfied:
[R1] preserve KG’s consistency: the original KG is consistent with

respect to the ontology iff its abstraction is so,
[R2] preserve KG’s explanations: inconsistency explanations for

the abstraction can be used to obtain exactly all inconsistency
explanations for the original KG, and

[R3] be smaller than KG: the size of the abstraction is much smaller
than the size of the original KG.

Then, instead of checking consistency and computing the explana-
tions directly on the original KG (w.r.t. an ontology), we perform
such operations on its abstraction. The requirements R1–R2 guar-
antee the correctness of our method while R3 ensures its scalability.

Contributions. We show the existence of such abstractions for a
fairly expressive fragment of the Web Ontology Language (OWL
2). More precisely, our contributions are as follows:
• Following the requirements R1–R3 we propose and formalize

an abstraction-based framework for computing explanations
for inconsistency of ontology-enhanced KGs.
• We identify a fragment of OWL 2 for which inconsistency

explanations can be computed by partitioning the input KG
into small independent modules.
• For the identified OWL 2 fragment, we develop an efficient al-

gorithm to compute all explanations for inconsistent knowl-
edge graphs based on data abstraction.
• We evaluate our approach on NPD [30], Yago [31], and DB-

pedia [19] KGs with very promising results: we manage to
compute thousands of inconsistency explanations and their
patterns, for which computing directly on the original KGs
is infeasible.

2 PRELIMINARIES
Knowledge Graphs and Ontologies. We assume countable pair-
wise disjoint sets NC,NP and NI of class names, e.g., Company, prop-
erty names, e.g., hasCustomer, and individuals, e.g., Toyota. A knowl-
edge graph (KG)G is a finite set of unary and binary facts, also called
assertions, of the form C(a) and R(a,b), where C ∈ NC, R ∈ NP and
a,b ∈ NI, e.g., PopularName(Nokia) or hasCustomer(McAfee,Nokia).
We use ind(G) to denote the sets of individuals occurring in G.

From class and property names one can (recursively) define com-
plex classesC and properties P following the OWL 2 specification. In
this work, we focus on the following types of classes and properties:

P ::=R | ObjectInverseOf(P )
C ::=owl:Thing | owl:Nothing | A | ObjectComplementOf(C) |

ObjectIntersectionOf(C1, C2) | ObjectUnionOf(C1, C2) |
ObjectSomeValuesFrom(P, owl:Thing),

Table 1: Syntax and semantics of the ontology language con-
sidered in this paper where A,R are a class name and prop-
erty name, respectively; C and D are class expressions, P , S
are property expressions, and a,b are individuals.

Syntax Semantics

R RI ⊆ ∆I × ∆I
ObjectInverseOf(R) { ⟨e, d ⟩ | ⟨d, e ⟩ ∈ RI }
A AI ⊆ ∆I

owl:Thing ∆I
owl:NoThing ∅
ObjectComplementOf(C) ∆I \CI
ObjectIntersectionOf(C) CI ∩ DI
ObjectUnionOf(C, D) CI ∪ DI
ObjectSomeValuesFrom(P, owl:Thing) {d | ∃e ∈∆I: ⟨d, e ⟩ ∈ PI }
SubClassOf(C, D) CI ⊆ DI

SubObjectPropertyOf(P, S ) PI ⊆ SI

TransitiveObjectProperty(P ) PI ◦ PI ⊆ PI

ClassAssertion(C, a) aI ∈ CI
ObjectPropertyAssertion(R, a, b) ⟨aI, bI ⟩ ∈ RI

where A ∈ NC, R ∈ NP, C1, C2 are classes and P is a property.
Classes and properties can be used to define axioms that formally
describe the domain of interest, and the set of such axioms is called
an ontology. Table 1 describes the axioms considered in this pa-
per. Note that these axioms can express other common OWL 2
axioms such as: InverseObjectProperties, ObjectPropertyDomain,
ObjectPropertyRange, EquivalentClasses, and DisjointClasses.

Inconsistency and Explanations. The semantics of knowledge
graphs and ontologies is defined using the OWL 2 direct model-
theoretic semantics via interpretations [24]. An interpretation I =
(∆I , ·I ) consists of a non-empty set ∆I , the domain of I, and an
interpretation function ·I , that assigns to each A ∈ NC a subset
AI ⊆ ∆I , to each R ∈ NR a binary relation RI ⊆ ∆I × ∆I , and to
each a ∈ NI an element aI ∈ ∆I . This assignment is extended to
(complex) classes and properties as shown in Table 1.

An interpretation I satisfies an axiom α (written I |= α ) if the
corresponding condition in Table 1 holds. Given a KG G and an
ontology O, I is a model of G∪O (written I |= G∪O) if I |= α for
all axioms α ∈ G∪O. We say that G∪O entails an axiom α (written
G∪O |= α ), if every model of G∪O satisfies α . A knowledge graph
G is inconsistent w.r.t. an ontology O if no model for G ∪ O exists.
In this case, we also say G ∪ O is inconsistent. Intuitively, G ∪ O is
inconsistent when some facts of G contradict some axioms of O.

An explanation for inconsistency of G ∪ O [13], denoted by
E = EG ∪ EO with EG ⊆ G and EO ⊆ O, is a smallest subset-
inclusion inconsistent subset of G ∪O. E.g., the KG part in Figure 1
stating that McAffee hasCustomer Toyota and Toyota isCityOf Japan
together with the three example ontology axioms is an explanation.
In general, inconsistency of G ∪O may have multiple explanations.

Homomorphisms. We now define homomorphisms between KGs
to establish the theoretical foundation for our approach.

Definition 2.1. LetG1 andG2 be knowledge graphs andh : ind(G1)
→ ind(G2) a mapping from the individuals occurring in G1 to in-
dividuals occurring in G2. We extend h to axioms in a straightfor-
ward way: h(C(a)) = C(h(a)), h(R(a,b)) = R(h(a),h(b)). We define
h(O) = O for every ontology O and define h(G1) = {h(α)|α ∈ G1}.
We say that h is a homomorphism (from G1 to G2) if h(G1) ⊆ G2.
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3.2 Compute Explanations via Abstraction
As shown in Theorem 3.4, explanations for modules can be com-
puted separately, but in general it may not be necessary to compute
them for every single module. Indeed, modules with similar struc-
ture share the same data patterns causing inconsistency, which is
the property exploited in Step 3 of our approach. To characterize the
structure of modules, we rely on the local type of individuals [2, 4].
Intuitively, a local type of an individual represents a set of concepts
together with the incoming and outgoing relations occurring in the
corresponding module for that individual.

De�nition 3.5. Let A be a set of assertions and a an individual
occurring in A. The local type ofa in A, written as � (a), is de�ned as
a tuple � (a) = h�i (a),�c (a),�o (a)i, where �i (a) = {R | R(c,a) 2 A},
�c (a) = {A | A(a) 2 A}, and �o (a) = {S | S(a,b) 2 A}. We
say the local type t = hti , tc , toi is smaller than the local type
t 0 = ht 0i , t 0c , t 0oi, written as t � t 0, i� ti ⇢ t 0i , tc ⇢ t 0c , and to ⇢ t 0o .
Given a set S of local types, a local type t is called maximal (in S)
if t 2 S and there exists no t 0 2 S such that t � t 0.

For each local type of an individual, we de�ne the abstract graph
(computed in Step 2) such that it can be homomorphically mapped
to the module of that individual.

De�nition 3.6. Let t = hti , tc , toi be a local type, the abstract
graph for t is de�ned as abs(t) = {A(�t ) | A 2 tc } [ {r (uR

t ,�t ) |
R 2 ti }[ {S(�t ,w

S
t ) | S 2 to }, where�t ,u

R
t ,w

S
t are unique abstract

individuals for each t ,R, S , and �t .

To simplify, we sometimes omit the subscripts and superscripts
of individuals in abstract graphs. The scripts are only to formally
make those individuals distinguishable.

Example 3.7. Toyota and Nokia in Figure 1 have the same local
type de�ned as t = h{PopularName}, {hasCustomer}, {isCityOf}i.
The abstract graph for t is abs(t) = {PopularName(�), hasCustomer(u,
�), isCityOf(�,w)}.

The local type of an individual in a knowledge graph is identical
to the local type of that individual within its module. In Step 3
instead of computing inconsistency explanations directly on G
or on it’s modules, we compute inconsistency explanations on its
abstract graphs.

In Step 4 we obtain the explanations for the original KG from
the inconsistency explanations for the abstract graphs via the re-
alizations of the types of the abstract individuals, e.g., �t , in the
inconsistency explanations for abs(t).

Algorithm 1: Computing explanations for inconsistency
of a knowledge graph G w.r.t. an ontology O

Input :A knowledge graph G and an ontology O
Output :The set allExpls of all explanations for

inconsistency of G [ O
1 allExpls ;

/* compute local types of all individuals occurring in G */

2 types {� (a,G) | a 2 ind(G)}
3 foreach maximal t 2 types do

/* compute explanations for the abstract graph of t using

a reasoner */

4 X  all explanations for inconsistency of abs(t) [ O
/* obtain the explanations for G */

5 foreach E = EG [ EO 2 X do
/* compute the local type of �t in EG */

6 t 0 = � (�t , EG)
7 newExpls all realizations of t 0 in G
8 allExpls allExpls [ newExpls
9 return allExpls

De�nition 3.8. Let G be a knowledge graph and t a local type.
A realization of t for an individual a 2 ind(G) is a smallest subset
reala,t of G such that � (a, reala,t ) = t . The realizations of t in G is
the set of all realizations of t for each individual occurring in G.

It can be seen that for the local types t and t 0 such that t � t 0,
for every ontology O, if abs(t)[ O is inconsistent then abs(t 0)[ O
is also inconsistent and the explanations of abs(t 0) [ O include
all explanations for inconsistency of abs(t) [ O. Therefore, as an
optimization to reduce the number of abstract graphs needed to be
checked, we only need to compute explanations for the abstract
graphs of maximal local types.

We are now ready to describe, in Algorithm 1, the procedure
to compute all explanations for a knowledge graph G w.r.t. an
ontology O based on abstract graphs. Example 3.9 demonstrates
how explanations are obtained from the abstract graph for the local
type of Toyota and Nokia.

Example 3.9. Consider the ontology O consists of axioms in
Figure 1 and the abstract graph abs(t) for Toyota and Nokia from
Example 3.7. Since the range of hasCustomer is Company and the
domain of isCityOf is City, from abs(t) [ O we obtain Company(�)
and City(�), which is a contradiction because Company and City are
disjoint classes de�ned in O. Therefore, abs(t) [ O is inconsistent.
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abstract graphs.
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inconsistency explanations for abs(t).
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It can be seen that for the local types t and t 0 such that t � t 0,
for every ontology O, if abs(t)[ O is inconsistent then abs(t 0)[ O
is also inconsistent and the explanations of abs(t 0) [ O include
all explanations for inconsistency of abs(t) [ O. Therefore, as an
optimization to reduce the number of abstract graphs needed to be
checked, we only need to compute explanations for the abstract
graphs of maximal local types.

We are now ready to describe, in Algorithm 1, the procedure
to compute all explanations for a knowledge graph G w.r.t. an
ontology O based on abstract graphs. Example 3.9 demonstrates
how explanations are obtained from the abstract graph for the local
type of Toyota and Nokia.

Example 3.9. Consider the ontology O consists of axioms in
Figure 1 and the abstract graph abs(t) for Toyota and Nokia from
Example 3.7. Since the range of hasCustomer is Company and the
domain of isCityOf is City, from abs(t) [ O we obtain Company(�)
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them for every single module. Indeed, modules with similar struc-
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A realization of t for an individual a 2 ind(G) is a smallest subset
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for every ontology O, if abs(t)[ O is inconsistent then abs(t 0)[ O
is also inconsistent and the explanations of abs(t 0) [ O include
all explanations for inconsistency of abs(t) [ O. Therefore, as an
optimization to reduce the number of abstract graphs needed to be
checked, we only need to compute explanations for the abstract
graphs of maximal local types.

We are now ready to describe, in Algorithm 1, the procedure
to compute all explanations for a knowledge graph G w.r.t. an
ontology O based on abstract graphs. Example 3.9 demonstrates
how explanations are obtained from the abstract graph for the local
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The following well-known lemma states that entailment is pre-
served under homomorphisms.

Lemma 2.2. Let h : ind(G1) → ind(G2) be a homomorphism be-
tween the knowledge graphs G1 and G2. Then, for every ontology O
and every axiom α , we have G1 ∪ O |= α implies G2 ∪ O |= h(α).

3 EXPLAINING KG INCONSISTENCY
In this section, we present our approach for computing all explana-
tions of KG inconsistency. We proceed by presenting the overview
of the approach, and then describe the details of each step, followed
by the proof of correctness. Finally, all steps are put together and
presented in a complete detailed algorithm of the approach.
Approach Overview. In Figure 2, we present a high-level overview
of our method. In Step 1, for every KG individual a we construct its
module (Sec. 3.1). In Step 2, we detect commonalities across mod-
ules and compute their compact representations, i.e., abstractions
(Sec. 3.2). The union of abstractions of all modules gives an ab-
straction for the whole KG. As shown in Sec. 4, this KG abstraction
in practice is much smaller than the original KG. Step 3 takes as
input the ontology and the computed abstractions and invokes an
off-the-shelf reasoner to compute inconsistency explanations for
the abstract modules, which are patterns for inconsistency explana-
tions for the original KG. Finally, in Step 4 (Sec. 3.3), we reconstruct
the explanations of the original KG from those computed in Step 3.

3.1 Modules and Inconsistency Locality Property
In KGs, entities are highly connected, and therefore, ontology ax-
ioms could trigger multi-hop reasoning steps, e.g., the transitiv-
ity axiom TransitiveObjectProperty(foaf), where foaf stands for
friend of a friend, combined with two facts foaf(John,Mary) and
foaf(Mary,Tom) in a KG infers a new fact foaf(John,Tom). However,
under the considered ontology language, we discovered that the KG
inconsistency has a locality property, i.e., the problem of checking
inconsistency for a KG (w.r.t. an ontology O) can be reduced to
checking inconsistency for separated KG modules (w.r.t. O).

Definition 3.1 (Modules). Given a KG G and an individual a ∈
ind(G), the module of a w.r.t. G is defined as M(a,G) = {α |
α ∈ G and a occurs in α }. We denote the set of all modules for
individuals occurring in G asMG = {M(a,G) | a ∈ ind(G)}.

Intuitively, the module for an individual a in a knowledge graph
is the set of all facts containing a. In our example in Figure 1, the
module of Nokia is defined asM(Nokia,G) = {PopularName(Nokia),
hasCustomer(McAffee, Nokia), isCityOf(Nokia, Japan)}.

Lemma 3.2. Let G be a KG and O an ontology. Then G ∪ O is
consistent iffM(a,G) ∪ O is consistent for every a ∈ ind(G).

Before proving Lemma 3.2 we show the following proposition.

Proposition 3.3. Let G be a knowledge graph such that {R(a,b ′),
R(a′,b)} ⊆ G for some property R and individuals a,b,a′,b ′. Fur-
thermore, let G′ = G ∪ {R(a,b)}. Then, for every ontology O, we
have G ∪ O is consistent implies G′ ∪ O is consistent.

Proof of Proposition 3.3. We assume G ∪O is consistent and
show that G′ ∪ O is consistent. The idea is to construct a model of
G′ ∪ O based on a model of G ∪ O. Let I be a model of G ∪ O. We
construct an interpretation J as follows: ∆J = ∆I ; aJ = aI and
AJ = AI for every individual a and class nameA, respectively; and
for every property name P , we define: PJ = PI ∪ {⟨aI,bI⟩ | O |=
SubObjectPropertyOf(R, P)} ∪ {⟨bI,aI⟩ | O |=SubObjectPropertyOf
(ObjectInverseOf(R), P)}.

We show J entails all axioms in G ∪ O except for the property
transitivity axioms. Since I |= G ∪ O and the interpretation of
class names and individuals remains the same in J , we have J
entails each class assertion in G′. Furthermore, from the definition
of J , the interpretations of properties are expanded such that
⟨aJ ,bJ⟩ ∈ RJ , therefore,J entails each property assertionR(a,b)
in G′. It remains to show that J |= O. We prove by induction that,
for every class expression D, we have DJ = DI .
• Cases D = owl:Thing,D = owl:NoThing, and D = A, where
A ∈ NC follow directly from the definition of J .
• Case D = ObjectSomeValuesFrom(R, owl:Thing). We consider

the case, where R is a property name; the case of inverse
property is similar. Let d be an arbitrary element in DJ . Ac-
cording to the semantics of existential axioms represented in
Table 1, we have d ∈ ObjectSomeValuesFrom(P , owl:Thing)J
iff there exists e ∈ ∆J s.t. ⟨d, e⟩ ∈ PJ . If ⟨d, e⟩ ∈ PI , then
d ∈ DI . Otherwise, from the definition of J , ⟨d, e⟩ results
from one of the cases in the role extension. We consider the
case d = aI , e = bI , where O |= SubObjectPropertyOf(R, P)
(the other cases are analogous). Since R(a,b ′) ∈ G and I
is a model of G ∪ O, we obtain ⟨aI ,b ′I⟩ ∈ PI . Therefore,
d = aI ∈ DI . Since d is arbitrary, we have DJ ⊆ DI .
Furthermore, since the interpretations of properties are ex-
panded, we get DI ⊆ DJ . Hence, DI = DJ .
• CasesD = ObjectComplementOf(D ′),D = ObjectIntersectionOf

(D1,D2), and D = ObjectunionOf(D1,D2) follow from their
semantics and the induction hypothesis.

For every subclass axiom SubClassOf(C1,C2) ∈ O, we have
CJ1 = CI1 ⊆ CI2 = CJ2 , i.e. J |= SubClassOf(C1,C2). Since the
interpretations of properties are expanded according to the sub
property axioms, J entails every subproperty axiom in O.

In the last step, J is extended to obtain J ′ by expanding the
interpretations of properties such that J ′ entails every transitivity
axiom in O. One could repeat the previous steps to show that J ′
still entails other axioms in O. Therefore, J ′ |= G′ ∪ O, which
implies that G′ ∪ O is consistent. □

We are now ready to show the proof for Lemma 3.2.
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Proof of Lemma 3.2. The “only-if direction” is trivial since each
module of G is a subset of G, and therefore, G ∪O is consistent im-
plies all modules are consistent. We prove the remaining direction
by assuming thatM(a,G) ∪ O is consistent for all a ∈ ind(G); we
then show that G ∪ O is also consistent. This is done via the fol-
lowing steps. First, for each module, e.g.,M(a,G) of G, we rename
all individuals in it except for a s.t. individuals occurring in each
module are pairwise disjoint. It allows us to use the disjoint union
of the models to construct an interpretation which is close to a
model of G∪O. For each moduleM(a,G), we denote the resulting
renamed module asM ′(a,G), and sinceM(a,G) ∪ O is consistent,
we haveM ′(a,G) ∪ O is consistent (by Lemma 2.2). Let Ia be a
model ofM ′(a,G) ∪ O for each individual a ∈ ind(G). We define
an interpretation I as the disjoint union of all Ia for all individuals
a occurring in G. Then, I |= {M ′(a,G) | a ∈ ind(G)} ∪ O, which
implies that G1∪O, where G1 =

⋃
a∈ind(G)M ′(a,G), is consistent.

Second, we extend G1 by adding all property assertions in G to ob-
tain G2 defined as G2 = G1 ∪ {ObjectPropertyAssertion(R,a,b) |
ObjectPropertyAssertion(R,a,b) ∈ G1}. By Proposition 3.3, we
have G2 ∪ O is consistent. Finally, by monotonicity, we obtain
G ∪ O is consistent because G ⊆ G2 and G2 ∪ O is consistent. □

Using Lemma 3.2, we can show that all explanations for incon-
sistency of a KG can be obtained by computing explanations for its
modules and thus in Step 1 of our approach we construct modules.

Theorem 3.4. Let G be a KG and O an ontology s.t. G ∪ O is
inconsistent. Then, E is an explanation for inconsistency of G ∪ O iff
there exists a ∈ ind(G) s.t.M(a,G) ∪ O is inconsistent and E is an
explanation for the inconsistency ofM(a,G) ∪ O.

Proof of Theorem 3.4. The “if” direction of Theorem 3.4 holds
as, by monotonicity, all explanations for inconsistency of the mod-
ules of G are explanations for the inconsistency of G. We now
show the “only-if” direction. Let E = EG ∪ EO , where EG ⊆ G
and EO ⊆ O, is an inconsistency explanation for G ∪ O. Since E is
inconsistent, by Lemma 3.2, an individual a occurring in GE exists,
such thatM(a, EG) ∪ OE is inconsistent. Let E ′ be an explanation
for inconsistency ofM(a, EG) ∪ EO , which is also an explanation
for G ∪ O. Since E ′ ⊆ M(a, EG) ∪ EO ⊆ E and E is minimal, we
have E = E ′, which is what is required to be proved. □

Using Theorem 3.4, one can already compute inconsistency ex-
planations for a KG based on its modules, even without further
steps. We show in Section 4 that this gives a significant speed-up
over the baseline. More importantly, we observe that many modules
have similar structures and computing inconsistency explanations
for multiple modules can be performed on just one representative
module. This motivates the further steps for KG abstraction.

3.2 Graph Abstraction
Let NV be a countable set of abstract individuals that is disjoint
with NC, NP, and NI. An abstract KG is a KG consisting of facts
over abstract individuals, i.e., a finite set of facts of the form C(u),
R(u,v), where u,v ∈ NV,C ∈ NC,R ∈ NP. Intuitively, each abstract
individual is a representative for several ones in the original KG.

Given an ontology O and a KG G, an abstract graph G′ is in-
consistency preserving (for G) when G′ is consistent (w.r.t. O) iff G
is consistent. An abstract graph G′ is explanation preserving (for

Original KG  in Figure 1
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Figure 3: KG abstraction and explanations (without EO ).

G) if for every inconsistency explanation E of G, there exists an
inconsistency explanation E ′ of G′ such that E ′ can be homomor-
phically mapped to E. An inconsistency and explanation preserving
abstract graph G′ (for G) is called an abstraction of G. Clearly, an
abstraction of any KG satisfies the requirements R1–R2, but it does
not always guarantee to satisfy R3, which is important for handling
large KGs. In the following, we propose a method for construct-
ing KG abstractions that are significantly smaller than the original
real-world KGs, i.e., R3 holds for them in practice (see Section 4).

The abstraction of a KG is computed by identifying modules
with similar structures and then representing each group of similar
modules by just a single representative one. To characterize the
structure of modules, we rely on the local type of individuals [9,
11]. Intuitively, a local type of an individual represents a set of
classes and the incoming and outgoing properties occurring in the
corresponding module for that individual.

Definition 3.5 (Local Types). Let G be a KG and a ∈ ind(G), then,
the local type of a w.r.t. G, written as τ (a,G) or τ (a)when G is clear
from the context, is defined as a tuple τ (a) = ⟨τi (a),τc (a),τo (a)⟩,
where τi (a) = {R | R(c,a) ∈ G}, τc (a) = {A | A(a) ∈ G}, and
τo (a) = {S | S(a,b) ∈ G}.The local type t = ⟨ti , tc , to⟩ is smaller
or equal than the local type t ′ = ⟨t ′i , t ′c , t ′o⟩, written as t ⪯ t ′, iff
ti ⊆ t ′i , tc ⊆ t ′c , and to ⊆ t ′o . We write t ≺ t ′ iff t ⪯ t ′ and t , t ′.
Given a set S of local types, a local type t is called maximal (in S)
if t ∈ S and no t ′ ∈ S exists s.t. t ≺ t ′.

Each local type consists of sets of classes and properties. We now
define a (star shape) abstraction for each local type by instantiating
these classes and properties with abstract individuals in NV.

Definition 3.6 (Star Shape Abstractions). Let t = ⟨ti , tc , to⟩ be a
local type, the star shape abstraction for t is defined as abs(t) =
{A(vt ) | A ∈ tc }∪{R(uRt ,vt ) | R ∈ ti } ∪ {S(vt ,wS

t ) | S ∈ to }, where
vt ,u

R
t ,w

S
t are unique abstract individuals for each t ,R, S , and vt .

For simplicity, we will omit the subscripts and superscripts of
individuals in star shape abstractions. These are only needed to
formally make those individuals distinguishable.

Example 3.7. Toyota and Nokia in Figure 1 have the same local
type defined as t = ⟨{PopularName}, {hasCustomer}, {isCityOf}⟩.
For t , abs(t)= {PopularName(v), hasCustomer(u,v), isCityOf(v, w)}
is the star shape abstraction.
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Algorithm 1: Computing explanations for inconsistency
of a knowledge graph G w.r.t. an ontology O

Input :A knowledge graph G and an ontology O
Output :The set allExpls of all explanations for inconsistency of G ∪ O

1 allExpls← ∅
/* Step 1 & 2: compute local types of all individuals in G */

2 types← {τ (a, G) | a ∈ ind(G)}
3 foreach maximal τ ∈ types do

/* Step 3: compute explanations for the star shape

abstraction of τ using a reasoner */

4 X ← all explanations for inconsistency of abs(τ ) ∪ O
/* Step 4: obtain the explanations for G */

5 foreach E = EG ∪ EO ∈ X do
/* compute the local type of vτ in EG */

6 τ ′ = τ (vτ , EG )
7 newExpls← all realizations of τ ′ in G
8 allExpls← allExpls ∪ newExpls
9 return allExpls

For each explanation E = EG ∪ EO , EG and EO are minimal.
Therefore, we only need to consider maximal local types. One can
show that for τ and τ ′ such that τ ≺ τ ′, for every ontology O, if
abs(τ ) ∪ O is inconsistent then abs(τ ′) ∪ O is also inconsistent and
inconsistency explanations of abs(τ ′) ∪ O can be used to obtain all
those of abs(τ )∪O. Thus, smaller types are irrelevant for computing
explanations.

3.3 Inconsistency Explanation Reconstruction
We now define the realization of a local type that allows us to recon-
struct explanations for the original KG from those for abstractions.

Definition 3.8 (Realization of a local type). Let G be a KG and τ ′
a local type. A realization of τ ′ for an individual a ∈ ind(G) is an
inclusion-smallest subset reala,τ ′ of G s.t. τ (a, reala,τ ′) = τ ′. The
realization of τ ′ in G is the set of all realizations of τ ′ for each
individual occurring in G.

In Figure 3, we present the KG-part EG of an inconsistency expla-
nation for the abstractions and three corresponding explanations
(i.e., the realizations of τ (v1, EG)), for the original KG in Figure 1.
The former is regarded as explanation pattern for the latter.

3.4 Bringing all Together
Finally, we proceed with Algorithm 1 that computes all explanations
for KGGw.r.t. an ontologyO using abstraction. Since it iterates over
local types, whose number is bounded by |ind(G)|, and the number
of explanations for abstractions as well as the number of realizations
for types are bounded by the signature of G and O, Algorithm 1
terminates. Figure 3 illustrates all steps of the algorithm for the
example in Figure 1. The following theorem shows its correctness.

Theorem 3.9. Given a KGG and an ontologyO as inputs for Alg. 1,
∪a∈ind(G)abs(τ (a)) is an abstraction of G and the set allExpls con-
sists of all inconsistency explanations for G w.r.t. O.

Proof of Theorem 3.9. The abstraction abs(τ ) for every type
τ can be homomorphically mapped to any realization of τ in G.
Therefore, by Lemma 2.2, if τ ′ is the local type of some individual
vτ in an inconsistency explanation of abs(τ ) ∪ O, then the realiza-
tions of τ ′ (together with ontology axioms) in G are inconsistency

Table 2: Statistics of the datasets.
KG Axioms Assertions Entities Classes Relations

NPD 678 929,710 264,081 343 142
Yago 1,045 7,321,308 3,275,593 960 38
DBpedia 4,287 22,955,173 5,867,913 685 663

Table 3: Results of inconsistency explanation computation.

Method Total
Modules

Processed
Modules Patterns Explanations Time

(hours)

N
PD

Pellet 1 0 - - 72
Modular 264,081 243,467 - 41,128 72
Abstraction 11,970 11,866 20,251 60,554 4.5

Ya
go

Pellet 1 0 - - 72
Modular 3,275,593 1,624,196 - 1,547 72
Abstraction 2,821 2,821 69 3,565 0.1

D
Bp

ed
ia Pellet 1 0 - - 72

Modular 5,867,913 647,443 - 73,152 72
Abstraction 91,084 90446 1,797 20,093,617 21

explanations of G ∪O. This shows that every element of allExpls
(in Algorithm 1) is an inconsistency explanation of G ∪ O.

To prove that allExpls contains all explanations of G ∪ O,
we rely on the claim that G ∪ O is consistent iff abs(τ (a)) ∪ O is
consistent for every individual a in G, which can be proved based
on Proposition 3.3 as done in the proof of Lemma 3.2. Then, similar
to the proof of Theorem 3.4, we show that every explanation for
inconsistency of G∪O can be obtained via some inconsistency
explanation of abs(τ )∪O for some maximal local type τ . □

4 EXPERIMENTS
We have implemented our method for computing inconsistency
explanations in a system prototype and evaluated it on three real
world KGs equipped with their ontologies: the Norwegian Petroleum
Directorate (NPD) [30], Yago [31], and DBpedia [19]. Since the orig-
inal version of the NPD dataset is consistent, for the purpose of our
experiments we introduced inconsistency by adding 2% of random
property and class assertions. We used the ontologies provided with
NPD and DBpedia KGs. For Yago, we took the union of the available
simple taxonomy and its relational schema as the ontology. More
details of our experiments are publicly available.1

Experiment Setup. To demonstrate the benefits of our method
(Abstraction) presented in Alg. 1, we compare it with respect to
the number of detected inconsistency explanations against the
following baselines: module-based implementation as described in
Section 3.1 (Modular) and the off-the-shelf reasoner [29] (Pellet),
in which a KG is processed as a whole. Note that for computing
explanations, Pellet is as efficient as other state-of-the-art reasoners,
e.g., HermiT [8]. Table 2 presents the sizes of the test ontologies
and of the KGs, and the number of entities, classes and properties.

All experiments were performed on a 48 cores machine with
500GB of memory. Pellet reasoner was invoked for computing
inconsistency explanations in all settings. In the Abstraction setting,
we regard each abstraction generated for a maximal local type
(described in Algorithm 1) as a module. We set a timeout of 72
hours for the overall computation and 2 minutes for processing
every module in the Abstraction and Modular settings.

1https://github.com/boschresearch/kg_inconsistency_explanation
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Table 4: Top frequent inconsistency explanation patterns.
Abstract KG Assertions Ontology Axioms Examples #Explanations

Ya
go wn:building(v)

isLocatedIn(u,v)
DisjointClasses(wn:building, GeoEntity)
ObjectPropertyRange(isLocatedIn,GeoEntity)

wn:building(<J._Forrestal_Building>)
isLocatedIn(<NNSA>,<J._Forrestal_Building>) 1,768

D
Bp

ed
ia bandMember(u1 ,v)

instrument(u2 ,v)

SubClassOf(Ship,MeanOfTransportation)
SubClassOf(Instrument,Product), SubClassOf(Product,Ship)
DisjointClasses(MeanOfTransportation,Person)
ObjectPropertyRange(bandMember,Person)
ObjectPropertyRange(instrument,Instrument)

instrument(<African_blues>,<Djembe> )
bandMember(<Baka_Beyond>,<Djembe> ) 11,357,430

0

0.1

0.2
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NPD Yago DBpedia

Figure 4: Distribution of the top-10 frequent explanations.

Results. In Table 3 , we compare the three methods with respect
to the total number of modules computed, the number of modules
processed within the timeout and the number of found explanation
patterns together with the actual explanations that they yield.

Pellet reasoner failed to process all of the test KGs within the
given timeout, i.e., no inconsistency explanations have been com-
puted by this baseline method. Naively splitting the KG into smaller
modules is already beneficial yielding some explanations. However,
as the number of modules to be considered is still very large, many
of them cannot be processed within the time limit, and hence, still
only few inconsistency explanations are detected.

The Abstraction method significantly reduces the number of
modules to be considered to 0.1% , 1.55%, and 4.5% of the original
modules (i.e. computed by the Modular method) for Yago, DBpedia
and NPD respectively. Although not all of the modules could be
handled by the invoked reasoner, we managed to process a much
larger fraction of the KGs compared to the baselines.

Inconsistency explanations were computed by our method within
6 minutes, 4.5 hours, and 21 hours for Yago, NPD and DBpedia re-
spectively, which naturally correlates with the size and complexity
of the considered KGs and their ontologies. The results demonstrate
that our method can process large KGs within reasonable times,
which are beyond of what earlier proposed approaches can handle.

Figure 4 depicts the top-10 most frequent explanation patterns
(X-axis), and the percentage of concrete inconsistency explanations
they represent (Y-axis). The majority of explanations follow one
of the 5 prominent patterns. Importantly, the analysis of these
patterns may reveal systematic issues in the information extraction
process, which makes the patterns valuable on their own. As shown
in Table 4, about 50% of explanations result from the fact that the
ontology specifies that the range of isLocatedIn is GeoEntity, which
is disjoint with building. However, in the KG, there are 1.7K triples
connecting some entity to an entity belonging to the building class
via the isLocatedIn relation. Similarly, in DBpedia, about 57% of
explanations are caused by an entity being an object of triples
with relations bandMember and playInstrument, whose domains are
Person and Instrument respectively, which are known to be disjoint.

5 RELATED WORK
The problem of detecting erroneous information in KGs has recently
gained a lot of attention. Proposed approaches can be roughly
divided into statistics-based [12, 20–22, 27], logic-based [1, 7, 17,
18, 37], and the combination of the first two groups [21, 32], where
constraints are learned (e.g., from edit history [32]) and exploited
for inconsistency detection. Among the statistics-based methods,
the closest to ours are [22, 27], where faulty triples are identified
by exploiting statistical distributions of KG relations and types.
Another relevant work from this category [15] introduces a machine
learning model to measure the trustworthiness of triples.

Our method falls into the logic-based group, in which constraints
[25] or ontologies [2, 16] are utilized to identify and repair errors
in KGs. In particular, the works [1, 13, 33] are the most relevant;
however, in contrast to our method they do not exploit module-
based splitting of the KG and the abstractions for inconsistency
explanation computation, and do not scale as well as our method.

The idea of using compressed/summarized data and modules
to address the scalability issue in large KGs has been explored
in several works [4, 35]. Our method is similar in spirit to the
abstraction refinement approach [9–11] developed for the purpose
of KG expansion, which is different from our goal of computing
inconsistency explanations. Importantly, we have identified a new
fragment of OWL in which the refinement phase is not necessary
and have shown that only maximal local types need to be considered
for computing explanations. Computing inconsistency explanations
is also done via caching [28], but only limited types of explanations
can be discovered, e.g., the most frequent explanations reported in
Section 4 have not been detected by the method from [28].

6 CONCLUSIONS
We presented a novel method for computing inconsistency expla-
nations of KGs based on KG abstraction. The applicability of our
explanations is manifold. For instance, they can be used to facilitate
error resolution in KGs e.g., following the automatic approach of Bi-
envenu et al. [1] or that of Tanon et al. [32], where a human decides
which axioms are to be deleted. Another advantage of our method is
that it provides error patterns which could reveal systematic issues
in the KG construction process. We plan to exploit this direction in
the future e.g., by exploiting inconsistency explanations to guide
the information extraction process.

Another future direction is to extend our method to handle more
expressive ontologies. Currently, it is restricted to the presented
OWL 2 fragment. Adding other standard OWL 2 axioms such as
sameAs or unrestricted form of someValuesFrom/allValuesFrom ax-
ioms, would make the approach incomplete. A possibility for exten-
sion of our algorithm to larger fragments of OWL 2 is by adapting it
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in a "pay-as-you-go" fashion, e.g., by performing additional reason-
ing steps to handle the new axioms and employing the refinement
phase as done in [11].
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