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Abstract

Incentive compatibility (IC) is one of the most fundamental properties of an auction mech-
anism, including those used for online advertising. Recent methods [20, 30] show that counter-
factual runs of the auction mechanism with different bids can be used to determine whether an
auction is IC. In this paper we show that a similar result can be obtained by looking at the
advertisers’ envy, which can be computed with one single execution of the auction. We introduce
two metrics to evaluate the incentive-compatibility of an auction: IC-Regret and IC-Envy. For
position auction environments, we show that for a large class of pricing schemes (which includes
e.g. VCG and GSP), IC-Envy ≥ IC-Regret (and IC-Envy = IC-Regret when bids are distinct).
We consider non-separable discounts in the Ad Types environment [14] where we show that for
a generalization of GSP also IC-Envy ≥ IC-Regret. Our final theoretical result is that in all
these settings IC-Envy be used to bound the loss in social welfare due advertiser misreports.

Finally, we show that IC-Envy is useful as a feature to predict IC-Regret in auction envi-
ronments beyond the ones for which we show theoretical results. In particular, using IC-Envy
yields better results than training models using only price and value features.

1 Introduction

Over the past decades, online advertising has grown into a huge industry, with many different online
publishers offering impression opportunities. Auction theory has played a major role in shaping
this ecosystem, and many ad auctions strive to be Incentive Compatible (IC), which means that an
advertiser achieves the best outcome by truthfully reporting their willingness-to-pay. Despite the
role that auction theory has played, the resulting systems may not be IC. For example, intermedi-
aries (called Demand Side Platforms or DSPs) first run an auction to determine the best ad among
their clients, and then pass this along to a publisher who runs their own auction including bids from
other sources. Even when both auctions in isolation are IC, their composition is not. Furthermore,
some publishers use past bids to set a reserve price (or minimum bid), and others are moving to a
pay-your-bid model entirely (which has strong incentives to misreport willingness-to-pay) [40, 41].

Recently, there have been several works addressing the problem of determining whether an
auction is IC based on statistical tests using only inputs and outputs of an (unobserved) auction
mechanism [30, 20]. This gives advertisers the power to test whether an auction is IC without
having access to the code. Feng et al. [20] proposed to use regret [24] as a way to measure “how
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far” an auction is from being IC:

IC-Regreti(vi) = max
bi

Eb−i
[ui(bi, b−i)− ui(vi, b−i)] , (1)

where vi is the true value of advertiser i, bi the bid of i, b−i the bids of other advertisers, and ui(·)
the (expected) utility of i. IC-Regret captures the difference in utility between bidding truthfully,
and the maximum utility achievable. By definition, IC mechanisms have IC-Regret 0, while higher
IC-Regret indicates a stronger incentive to misreport.

While measuring IC is most naturally a concern for advertisers (who cannot observe the auction
mechanism directly), it is also both important and non-trivial for the auctioneer. The auctioneer
cares about IC auctions because they admit simple optimal bidding strategies (namely truthful
reporting), and simple bidding strategies may in turn lead to lower churn of advertisers.1 Addi-
tionally, when auctions are not IC, bidders don’t truthfully report their value, which may harm
social welfare2 and thus the quality of the service provided to the advertisers. While important, it
may not be straightforward for publishers to guarantee that their auction is IC for many different
reasons: complex interaction between different layers in the advertising ecosystem, running-time
constraints, bugs in the auction code, and so forth.

Feng et al. [20] proposed a method to determine IC-Regret for publishers (by taking a worst-
case perspective over the advertiser value vi). A downside of their method is that it requires many
counterfactual evaluations of the auction’s outcomes for alternative bids. This means that the
auction code needs to be run many times over. While this may be the best thing one can do with
only black-box access to the auction mechanism, could we do better if we’re using intermediate
data from the auction mechanism?

To overcome the practical difficulties to measure IC-Regret, we propose to use Envy [23] as
a proxy for IC-Regret, by identifying relevant classes of auction mechanisms where Envy and
IC-Regret coincide or where IC-Regret is upper bounded by Envy. So what is Envy? Instead
of comparing the advertiser’s utility against her utility for alternative bids, Envy takes a single
outcome, and measures to what extend advertisers are happy with the outcome. Ad auctions
typically simultaneously sell multiple ad slots with varying click-through rates [17, 44]. Let x be
an expected allocation vector (where allocation corresponds to the ad being clicked) and p be an
expected pricing vector. Envy of bidder i given the outcome (x,p) is:

Envyi(vi,x,p) = max
j

(xj · vi − pj)− (xi · vi − pi) (2)

Envy is defined with respect to some outcome. However, in an auction, changing ones bid may
change the outcome in the auction. Therefore, we define IC-Envy as the Envy experienced in the
outcome when a bidder bids truthfully. In the following, let x(vi, b−i) is the expected allocation
of all bidders and p(vi, b−i) be the expected payment vector of all bidders, when bidder i bids
truthfully and for bids b−i of the remaining bidders. IC-Envy is then:

IC-Envy(vi) = max
j

(xj(vi, b−i) · vi − pj(vi, b−i)) (3)

− (xi(vi, b−i) · vi − pi(vi, b−i)) (4)

1Moreover, additional advertisers are better for revenue than being clever about devising a revenue-optimal auction
mechanism, see [3] (and follow-ups).

2While in some cases there are symmetric equilibria in which social welfare is not harmed [44], these need not
always exist and bidders may not reach equilibrium [15, 1, 39].

2



In arbitrary auction environments, IC-Envy and IC-Regret don’t necessarily coincide. There are
natural auction environments with envy-free outcomes, that still have positive IC-Regret and vice
versa.

Example 1.1 (IC-Envy = 0, IC-Regret is positive). Consider a single-item, first-price auction,
with two bidders with values v1 = $10 and v2 = $8 and assume bidder 1 bids truthfully. The
IC-Regret for bidder 1 is $2− ε for arbitrary small ε, as the best alternative bid for them is $8 + ε.
However, IC-Envy is $0 as the only alternative allocation for bidder 1 is to not receive the item.

Example 1.2 (IC-Regret = 0, IC-Envy is positive). Consider the IC auction for a single item
with 2 bidders who face different reserve prices3 r1 = $1 and r2 = $5. With bids b1 = b2 = $3,
bidder 1 received the good at their reserve price of $1. Bidder 2 has IC-Envy of $2, but there is no
counterfactual bid that will give her positive utility (hence IC-Regret = 0).

While in general IC-Regret and IC-Envy can be quite different, in this paper we show that there
are large auction classes for which IC-Regret ≤ IC-Envy (and under mild conditions IC-Regret =
IC-Envy). Since computing IC-Envy requires no counterfactual evaluation of the algorithm, it
can serve as an efficient certificate that IC-Regret is low.4 In particular, for the position auction
environment [17, 44], we show that a large class of payment rules (which includes VCG and GSP),
IC-Envy ≥ IC-Regret, and IC-Envy = IC-Regret when bids are unique (Section 3). We extend these
results to the Ad Types setting [14] (in which ads of different types have different discount curves5)
and show that VCG and a generalization of GSP also have IC-Envy ≥ IC-Regret (Section 4). In
addition to bouding IC-Regret in terms of IC-Envy, we also use IC-Envy to bound the loss in social
welfare loss due to misreports (Section 5), and finally we show empirically that IC-Envy can be
used as a feature in an estimator for IC-Regret in auction environments beyond those for which we
have theoretical results (Section 6)).

1.1 Related Work

We propose to connect IC-Envy and IC-Regret directly by defining a large class of auction mecha-
nisms for which IC-Envy = IC-Regret (and a larger class where IC-Envy ≥ IC-Regret). The line of
work that’s closest in spirit aims to identify classes of auction mechanisms that are simultaneously
envy-free and IC (in our notation: classes for which IC-Regret = IC-Envy = 0). Feldman et al.
[19] and Goldberg et al. [25] studied the conditions that are required in order to have mechanisms
that are efficient, truthful and envy-free and that VCG satisfy these properties for capacitated val-
uation functions. For homogeneous capacities there’s a class of mechanisms that achieve this, while
for heterogeneous capacities there is no mechanisms that simultaneously achieved all 3 conditions.
Cohen et al. [9] provided a characterization based on cycle-monotonicity of the allocation functions
that are incentive-compatible and envy free without considering the efficiency of the algorithms.

The notion of envy-freeness was initially introduced by Varian [43] and Foley [23]. The key
property of an envy-free allocation is that buyers prefer the bundle of goods they receive over
any other allocated bundles (given bundle prices). The notion is particularly appealing due to
its connection to markets: in an envy-free allocation, given the prices for goods, all buyers prefer

3While non-anonymous reserve prices may seem contrived, they naturally occur e.g. for the revenue-optimal
auction on non-i.i.d. bidders [34].

4For an auctioneer who cares about incentive compatibility, false positives (i.e. high IC-Envy but low IC-Regret)
are acceptable while false negatives are not. Therefore the inequality goes in the right direction.

5This is common for example with heterogeneous ad types in an ad auction: the probability of an impression ad
being seen decays differently than the probability of a video ad being watched, or the probability of a link-click ad
being clicked. All discount curves agree on the relative quality of the slots.
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to buy the bundle that’s assigned to them. More recently, the notion of envy-freeness has been
deeply studied with a different perspective that involves item-pricing [26, 12] and bundle-pricing
[21, 18, 10]. In our setting there is no difference between those two models. A similar line of work
focused in studying envy-free algorithms, both in the item-pricing and the bundle pricing models,
when the bidders have budget constraints [18, 12, 10, 2, 42].

In much of the other related work, envy-freeness is taken as an alternative solution concept to
IC (e.g. [27, 16, 11, 18, 13, 21]) and in contexts outside of the auction domain (e.g. [7, 22, 8, 33]).
Of particular note: Daskalakis and Syrgkanis [16] address the relation between envy-freeness and
incentive-compatibility in the context of algorithmic learning. In particular, the authors discussed
the computational complexity of no-regret learning algorithms and no-envy algorithms in simul-
taneous second price auctions. Hartline and Yan [27] studied the relation between envy-freeness
and incentive compatibility in revenue-maximizing prior-free mechanisms. Lipton et al. [31] inves-
tigated envy-free mechanisms in the context of indivisible items with focus on the computational
complexity of finding allocations with minimum envy. Moreover, they proved that is possible to
obtain truthful mechanisms with bounded envy. Those results have been simplified and extended
by Caragiannis et al. [4]. While this line of work is interesting, it does not quantitatively address
the relationship of envy and IC regret.

1.2 Our Contributions

This paper has 4 main contributions:

1. First, in Section 3, we define a class of auction mechanisms—which includes VCG, GSP, and
GFP for position auctions—where IC-Envy is tightly related to IC-Regret. For this class we
give necessary and sufficient conditions for IC-Envy ≥ IC-Regret and mild supplementary
conditions under which they are exactly equal.

2. Secondly, in Section 4 we consider the more general Ad Types auction environment [14] in
which different ads have different discount curves. We show that for VCG and a suitable
generalization of GSP it still holds that IC-Envy ≥ IC-Regret.

3. Third, in Section 5, we upperbound the social welfare loss in terms of IC-Envy for the same
sets of mechanisms introduced in Sections 3 and 4. We show that in equilibrium, the social
welfare loss is at most 4 · IC-Envy (under a technical condition we introduce in the section).

4. Finally, in Section 6, we use bidding data from a major online publisher to show that IC-Envy
can be used as a feature to learn an estimator for IC-Regret. The estimator has low mean-
squared error, and performs better than comparable estimators that are trained using other
features from the auction like values and prices for different slots.

2 Preliminaries

There are n bidders and m slots. Let I be the set of bidders and J be an (ordered) set of slots. Each
bidder i ∈ I has a valuation vector vi = 〈vi,1, vi,2, . . . , vi,m〉 that is the willingness to pay of bidder i
for each slot j, with vi,1 ≥ vi,2 ≥ . . . ≥ vi,m, and are unit demand. In the standard position auction
environment, slots have common quality factor α1 ≥ α2 ≥ . . . ≥ αm such that for each bidder i and
slot j we have vi,j = vi · αj for private value vi ∈ R of the bidder. In the Ad Types setting, each
ad has a type θ and for each type there is a separate discount curve αθ,1 ≥ αθ,1 ≥ ... ≥ αθ,m. Note
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that when there’s is only a single type, the setting specializes to the position auction environment.
Unless specified differently, let θi refer to the type of ad i.

The slots are allocated to the bidders by a (direct-revelation) mechanism M. The mechanism
M is defined by an allocation function A : Rn → Nn and a payment function P : Rn → Rn. Since
bidders’ values vi are private, the mechanism solicits bids bi to represent the values, though reports
may not be truthful. Let v be the valuation vector of all the bidders and b the bid vector. After
receiving the bids from all the bidders, the mechanism M = 〈A,P〉 computes an outcome 〈X,p〉,
i.e., A(b) = X and P(b) = p.

X describes the allocation of the slots to the bidders and p describes how much each bidder is
charged for the obtained slot. In particular, X = 〈X1, X2, . . . , Xn〉 where Xi = j, if the bidder i
obtains the slot j and 0 if she does not receive any slot. And p = 〈p1, p2, . . . , pn〉 where pi ∈ R≥0
is the price that the bidder i pays for slot Xi.

For an allocation X and a valuation vector v, the social welfare of the allocation X is SW (v,X) =∑
i∈I viαθi,Xi

. The optimal social welfare is SWOPT (v) = maxX
∑

i∈I viαθi,Xi
. The Social Welfare

Loss is SWL(v,X) = SWOPT (v) − SW (v,X). When the valuation vector v is clear from the
context, we will use SW (X), SWOPT , and SWL(X). When the mechanism M and the truth-
ful valuation vector v is clear from context to we use SW (b), SWOPT , and SWL(b) with the
understanding that X = A(b).

Given an outcome 〈X,p〉, the utility of a bidder i with type θi is ui(Xi, pi) = viαθi,Xi
− pi.

Since the outcome of a mechanismM is a function of the bids, and the auctions we consider are not
necessarily IC, bidders may be incentivized to report a type b different from v in order to produce
an outcome with higher utility.

IC-Regret. IC-Regret describes the outcome for bidding truthfully, compared to the optimal
alternative bid (given constant competition b−i). Formally, the regret of a bidder i for bidding
truthfully compared to a specific alternative bid bi is:

ri(bi, b−i, vi) = max
bi∈R+

{0, ui(A(bi, b−i),P(bi, b−i))− ui(A(vi, b−i),P(vi, b−i))}, (5)

which is used in the formal definition for IC-Regret.

Definition 2.1 (IC-Regret). The IC-Regret that bidder i experiences is6

IC-Regreti(vi, b−i) = max
bi∈R≥0

{ri(bi, b−i, vi)}.

IC-Regret can be directly connected to incentive-compatibility (IC). Indeed, a mechanismM is
IC iff for all vi, b−i, and i ∈ I, we have ri(bi, b−i, vi) = 0 for all bi ∈ R≥0.

IC-Envy. Given an allocation X and payments p, Envy describes how much a bidder prefers the
allocation and price of another buyer, compared to what they received themselves. Since different
bids may lead to a different auction outcome, we define IC-Envy as Envy with respect to the
allocation X and payments p when bidder i bids truthfully. IC-Envy is some notion of fairness of
the produced outcome whereas IC-Regret measures how much the underlying mechanism incentives
misreported types.

6Equation (1) in the introduction takes an expectation over competition b−i since the work of Feng et al. [20]
considers the auction mechanism as a black box. In our setting (from the perspective of the auctioneer) the alternative
bids are known, and we define IC-Regret on an auction-by-auction basis.
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Formally, for given an allocation X and payments p, the envy that bidder i experiences com-
pared to bidder j is

eji (X,p) = max{0, ui(Xj , pj)− ui(Xi, pi)}, (6)

and the envy of bidder i in the outcome 〈X,p〉 is

Ei(X,p) = max
j∈I\{i}

{eji (X,p)} (7)

which is used in the formal definition for IC-Envy.

Definition 2.2 (IC-Envy). IC-Envy the envy of bidder i in the outcome 〈A(vi, b−i),P(vi, b−i)〉:

IC-Envyi(vi, b−i) = max
j∈I\{i}

{eji (A(vi, b−i),P(vi, b−i))}.

Note that computing IC-Envy requires one single execution of the auction whereas the compu-
tation of IC-Regret requires the execution of the auction for multiple bid values of each bidder.

3 Position Auction Environments

As stated before, IC-Envy and IC-Regret measure different things: IC-Envy provides some mea-
sure of fairness of the outcome, whereas IC-Regret measures the incentive-compatibility of the
mechanism. In this section, we focus on position auctions that are widely used in search and feed
advertising.7 We give in the following the definition of regular mechanism for position auctions and
we characterize the class of regular mechanisms that have IC-Envy ≥ IC-Regret. We assume wlog
that the bidders are ordered by non-increasing bid bi, with ties broken lexicographically. Therefore,
slot i is assigned to bidder i.

Definition 3.1 (Regular Mechanisms for Position Auctions). A regular mechanismM for position
auctions is defined as follows:

1. Slots are assigned in order of non-increasing αi to bidders ordered by non-increasing bid value
bi. Ties are broken lexicographically.

2. The payment for bidder i is pi =
∑n

k=1 ai,k · bk with non negative coefficients ai,k ≥ 0.

Note that this definition includes several widely used auction mechanisms:

• VCG: ai,k = 0 for k = 1, . . . , i, and ai,k = αk−1 − αk for k = i+ 1, . . . , n.

• GSP: ai,k = 0 for k = 1, . . . , i, ai,i+1 = αk, and ai,k = 0 for k = i+ 2, . . . , n.

• GFP: ai,k = 0 for k = 1, . . . , i− 1, ai,i = αk, and ai,k = 0 for k = i+ 1, . . . , n.

In this section we provide necessary and sufficient conditions for a regular mechanism to be
individually rational, i.e., no bidder is charged more than her bid, and to have for each bidder i,
IC-Envyi(vi) ≥ IC-Regreti(vi).

Lemma 3.1. For a regular mechanism for position auctions the following properties hold

i Individual Rationality;

7In display advertising it is more common to sell ad slots one-by-one, which is a special case of position auctions,
though one which is arguably mathematically less interesting.
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ii IC-Envy(vi) ≥ IC-Regret(vi),

if and only if, for each slot i,

• ai,k = 0, k = 1, . . . , i, and

• pi − pi+1 ≥ (αi − αi+1)bi+1 for i = 1, . . . , n− 1.

Proof. We start by proving the necessity of the first condition of the claim. Conditions ai,k = 0,
k = 1, . . . , i− 1 are needed to ensure the individual rationality of the mechanism. Indeed, if there
exists a coefficient ai,k > 0, k < i, any bidder i with vi < ai,kbk will be charged more than its
valuation, thus violating individual rationality. Condition ai,i = 0 is also needed. Otherwise, if
ai,i > 0, bidder i may have ri(vi − ε, b−i, vi) > 0 while IC-Envy(vi) = 0 as shown in Example 1.1.

Next, we prove that the second condition of the claim is sufficient. We first prove that regret
and envy are 0 for all slots j < i. For envy, we derive:

eji (X,p) = max{0, ui(Xj , pj)− ui(Xi, pi)}
≤ max{0, (αj − αi)vi − (pj − pi)}
≤ 0,

with the last inequality obtained by the second condition on the payments. For regret, note that
for a bid b′i such that Xi = j, j < i, we have a payment pj(b

′
i, b−i) ≥ pj(vi, b−i) and therefore

ri(b
′
i, b−i, vi) ≤ e

j
i ≤ 0.

Envy and regret for bidder i can only be positive for a slot j > i. if slot j can be obtained
from bidder i by decreasing her bid to a value b′i, then, given the first condition of the theorem, the
payment charged to agent i for a bid b′i that gives him slot j ≥ i is exactly equal to the payment
charged to the bidder that received slot j under bid vector b = (vi, b−i), namely, pj(b

′
i, b−i) =

pj(vi, b−i). The reason is that, all the bids bj+1, . . . , bn that determine the payment are unchanged.

Therefore, eji (X,p) = ri(b
′
i, b−i, vi).

However, not all slots j > i can be obtained from bidder i by decreasing her bid since ties
are broken lexicographically. If there exists a slot j > i that cannot be obtained from bidder i
for any bid b′i < vi, then we have still the possibility that eji (X,p) > Ri(vi, b−i, and therefore
IC-Envy(vi) ≥ IC-Regret(vi).

The part where the strict inequality IC-Envy(vi) > IC-Regret(vi) came in was due to the
lexicographic tie-breaking when there are ties. When bids are distinct this case disappears and
IC-Envy(vi) = IC-Regret(vi).

Theorem 3.2. When all bids b1, . . . , bn are different, the conditions of Lemma 3.1 are necessary
and sufficient for individual rationality and IC-Regret(vi) = IC-Envy(vi).

Proof. In addition to the necessary conditions of Lemma 3.1 we prove that pi−pi+1 ≥ (αi−αi+1)bi+1

is also necessary condition for IC-Regret(vi) = IC-Envy(vi). By contradiction, consider the largest
value of i such that pi − pi+1 < (αi − αi+1)bi+1. Bidder i + 1 will envy the allocation of bidder i
since the marginal utility of having allocated slot i instead of slot i + 1 is positive. On the other
hand, increasing the bid of bidder i+ 1 to obtain slot i will have negative regret for bidder i+ 1 if
bid bi is enough bigger than bid bi+1 and therefore the payment of pi will be increased more than
the marginal utility of bidder i+ 1 for slot i.

For the sufficient condition, note that, given the fact that all bids are different, we never have
ties in the allocation of a slot. Therefore, for every slot j > Xi, there exists a bid b′i such that
A(b′, b−i) produces Xi = j, and the payment is exactly equal to the payment charged to the bidder
that received slot j under bid vector b = (vi, b−i). Therefore IC-Regret(vi) = IC-Envy(vi).
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Lemma 3.1 and Theorem 3.2 hold for mechanisms like VCG, GSP, and any combination of the
two. The first condition is clearly true for the two mechanisms. The second condition is true with
pi − pi+1 = (αi − αi+1)bi+1 for VCG and with pi − pi+1 = αibi − αi+1bi+1 ≥ (αi − αi+1)bi+1 for
GSP. On the contrary, even the first condition of the theorem is violated for GFP.

4 The Ad Types Environment

We now consider a more general setting that position auction, in which bidders can have different
types and thus face different discount curves, as proposed by Colini-Baldeschi et al. [14]. Each
bidder i ∈ I is associated with a vector αi,1, . . . , αi,m of non-increasing quality values for the m
slots. The valuation of bidder i on slot j is vi,j = vi ·αi,j . Valuation vi remains private information
of the bidders, while the mechanism knows the quality value vectors αi for each bidder i.

The social-welfare maximizing allocation is obtained by solving the Max-Weight Perfect Match-
ing (MWPM) problem, for example by using the Hungarian method. This returns a perfect match-
ing M together with a dual certificate of its optimality. The certificate is a dual price vector p for
the m slots J and a dual utility vector q for the n bidders I, such that the value of the optimal
solution is equal to

∑
i pi+

∑
j qj , i.e., the sum of the prices of the slots plus the sum of the utilities

of the bidders. If bidder i is matched to slot j, the dual constraint pj +qi ≥ vi,j holds with equality.
Let E= be the set of tight edges in the final solution. The MWPW M is therefore a subset of E=.

In the exposition, we assume that the number of ads n is equal to the number of slots m and
that the matching M is unique for each instance of the problem. This can be achieved by first
adding slots if n > m that each bidder values at 0 or by removing the lowest slots if n < m, followed
by a deterministic perturbation of position discounts to remove ties on the value of any subset of
edges. A formal description of this process is given in the appendix (see Appendix A).

The following properties hold for shadow prices when using a suitable variation of the Hungarian
method [14, 28, 14]:

1. Wlog, the Hungarian algorithm can output dual prices p that are pointwise minimal over
feasible dual solutions of the max-weight allocation [14].

2. For the minimal dual prices, prices pj , j = 1, . . . ,m of the slots are non increasing, and the
final slot is free: pm = 0.

3. For the minimal dual prices, each bidder j is connected with an alternating path Pj ⊆ E= to
an item j with price pj = 0 [28].

4. The minimum dual prices are market clearing prices, i.e. each bidder is matched with a slot
that maximizes their utility.

In addition to the properties above, the following is true (the proof appears in the appendix).

Claim 4.1. Each bidder i is matched to the lowest slot j for which (i, j) ∈ E=.

4.1 The Extended GSP Pricing Scheme

We want to handle pricing schemes for this setting with different discount curves for different ads,
but what pricing schemes should be considered? We focus on attention on pricing schemes with
the following fundamental properties:

8



1. Prices are monotonically non increasing, i.e., for each bidder i, slots of lower quality do not
have higher price;

2. IC-Envy ≤ IC-Regret

The first property is an obvious requirement since the discount curves of all the bidders are
non-increasing. Observe that in this setting, VCG prices satisfy both constraints trivially since
IC-Envy = IC-Regret = 0, but what about other pricing rules that charge higher prices? GSP
for this setting can be generalized, e.g. as done in [6, 5], by considering charging the value for
a slot corresponding to the lowest bid that maintains the same allocation. For position auctions,
this specializes to the normal GSP pricing scheme. The following example shows that this pricing
scheme fails to preserve price monotonicity:

Example 4.1. Consider three bidders with valuations over three slots (10, 9, 8), (7, 6, 4)(4, 0, 0).
The threshold prices of the three slots are p1 = 2, p2 = 3, p3 = 0. For the first slot, we need to
reduce the valuation of bidder 3 to 2 in order to have the first two slots assigned to bidders 1 and
2 for a total value of 16. For the second slot, if we scale down by 1/2 the bid of bidder 2 (we are
in a single parameter setting) and we bring the values of bidder 2 to (3.5, 3, 2), it is convenient to
assign slot 2 to bidder 1 instead of bidder 2 that is now assigned to slot 3.

Extended GSP. The extended GSP pricing scheme prices slots based on the the analysis of the
set E= of tight edges connecting a bidder i with the slot of price 0. Indeed, the standard GSP
mechanism with bidders of only one ad type prices each slot i at the value of bidder i+ 1 for slot
i, and the highest value of a tight edge on the alternating path from bidder i to slot m with price
pm = 0.

However, we cannot extend directly this mechanism to the case of different ad types. We show
a simple example in which the final prices for the case of three different ad types cannot be higher
than the VCG prices.

Example 4.2. Consider three bidders with valuations over three slots (10, 9, 8), (7, 6, 4)(4, 0, 0).
The optimal VCG solution will match the bidders according to the order 3, 2, 1 and will charge
p1 = 2, p2 = 1, p3 = 0. We also observe that bidder 1 is tight with slots 1 and 2. However, the
values of bidder 1 for slots 1 and 2 are higher than the values of bidders 3 and 2, respectively.
Bidder 2 is also tight with slot 1 but his value is higher than the value of bidder 3 that has assigned
slot 1. We must therefore conclude that the largest price we can charge for the slots are exactly
equal to the VCG prices.

The example above suggests to limit the maximum price that a slot can be charged. Consider
a bid vector b for the n bidders.

Definition 4.1. Extended GSP prices. Consider bidder i assigned to slot j with VCG clearing
price pj. Let E=

j be the set of tight edges (i′, j′), with j′ ≥ j and bidder i′ matched with an item
j′ ≥ j. Let ti,j = max(i′,j′)∈E=

j
{bi′,j′ : bi′,j′ <≤ bi,j}, i.e., the maximum value smaller than bi,j of

an edge in E=
j . We assume ti,j = 0 if no edge in E=

j has value smaller than bi,j. We define the
extended GSP price of bidder i for slot j by

gspi,j = max{pj , ti,j} (8)
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Observe that the prices are non-anonymous since we must impose a different upper bound on
the maximum value that we can charge each bidder for a given slot. Indeed, by similar arguments
used for GSP in Section 3, these are intuitively the largest prices we can charge a bidder in a
setting with different ad types without violating the property IC-Envy ≥ IC-Regret. Any larger
value of the payment of bidder i for item j can only depend on the bid of bidder i. If we had
this dependence, bidder i can decrease his payment by decreasing the bid and therefore IC-Regret
would be higher than IC-Envy.

We first observe the following:

Claim 4.2. The extended VCG prices gspi,j are monotonic, i.e., gspi,1 ≥ . . . ≥ gspi,m.

Proof. Monotonicity follows directly from the definition of extend VCG prices by observing that
VCG clearing prices pj are non increasing, E=

j ⊆ E=
j−1, and, finally, αi is a vector of non increasing

quality values.

We also observe that the extended GSP prices are not monotonic. An open problem that we
pose is the one of finding anonymous monotonic prices for different ad types such that IC-Envy ≥
IC-Regret.

4.2 IC-Envy ≥ IC-Regret for Extended GSP

In the following, we prove for extended GSP that IC-Envy ≥ IC-Regret. In order to prove this
result, we need to argue as follows. Assume bidder i is matched to slot j at price gspi,j with truthful

bid bi = vi, and let us also assume there is envy for slot j̃ at price gspi,j̃ . If bidder i modifies the

bid to b̃i in order to be matched to j̃, then we have ˜gspi,j̃ ≥ gspi,j̃ , and therefore IC-Envy is at
least as large as IC-Regret. We use in the following the simple fact that a slot of higher quality
value can only be obtained by increasing bi, and, symmetrically, a slot of lower quality value can
only be obtained by decreasing bi.

Let us start by proving that the set of tight edges E=
j can only be larger if bid bi is increased

(proof appears in the appendix).

Claim 4.3. Let bi ≤ b̃i, and let j and j̃ ≤ j the slots assigned to bidder i with bids bi and b̃i,
respectively. Then, E=

j̃
⊆ Ẽ=

j̃
and p̃j̃ ≥ pj̃.

The second claim considers the decrease of bid bi.

Claim 4.4. Let b̃i ≤ bi and let j̃ and j ≤ j̃, the items assigned to bidder i with bids b̃i and bi,
respectively. Then, Ẽ=

j̃
= E=

j̃
and pj̃ = p̃j̃.

We then argue about the relation between IC-Regret and IC-Envy when the bid bi of bidder i
is modified.

Lemma 4.5. Let bi ≤ b̃i, and let j and j̃ ≤ j the slots assigned to bidder i with bids bi and b̃i,
respectively. Then g̃sp(i, j̃) ≥ gsp(i, j̃).

Proof. Claim 4.3 shows that the increase of bid bi yields E=
j̃
⊆ Ẽ=

j̃
and p̃j̃ ≥ pj̃ . Then, the price

gsp(i, j̃) can only increase if bi is increased.

Lemma 4.6. Let b̃i ≤ bi, and let j̃ and j̃ ≥ j the items assigned to bidder i with bids b̃i and bi,
respectively. Then g̃sp(i, j̃) = gsp(i, j̃).

10



Proof. Claim 4.4 implies that Ẽ=
j̃

= E=
j̃

and pj̃ = p̃j̃ . We therefore conclude that price gsp(i, j̃) is

not reduced if bi is decreased.

We therefore conclude with the following:

Theorem 4.7. For extended GSP it holds IC-Regret ≤ ICEnvy.

5 Measuring Social Welfare Loss with IC-Envy

We proved in the previous sections that IC-Envy is an upper bound on IC-Regret for a large class
of mechanisms and that they are equal under mild conditions on the bid vector.

We next show that IC-Envy can also be used to measure the efficiency of the auction. We show
a direct connection between Social Welfare Loss (SWL) and the IC-Envy experienced by all the
bidders. This connection will be proved under the assumption that any bidder i is bidding a bid bi
that gives a utility not lower than the truthful strategy, namely ui(bi, b−i) ≥ ui(vi, b−i). Observe
that we do not require the bidders to play a min-regret strategy, neither we assume the bid vector
b to be a Nash Equilibrium. Indeed, assuming that the bidders report a bid that is at least as
good as their truthful valuations is not too restrictive, since reporting the truthful value is always
a feasible option, whereas computing the min-regret strategy is computationally expensive.

The connection between SWL and IC-Envy is proved using the notion of smoothness which has
been introduced in [37]. This concept was introduced to prove bounds on the price of anarchy [38]
of an auction at the equilibrium. We use a relaxation of the notion of smoothness called semi-
smoothness. Semi-smoothness has been introduced [32] with the goal of studying the efficiency of
a position auctions even off equilibrium.

The notion of semi-smoothness is defined as follows: Given a bid vector b, there exists an
alternative bid vector b′ such that∑

i∈I
ui(bi, b−i) ≥ λSW (b′)− µSW (b)

for suitable constants λ and µ. In our specific case we have λ = 1/2 and µ = 1. The state b′ is
actually obtained by setting for each bidder b′i = vi/2.

In order to prove our result, we extend the following claim proved in [32] for GSP to the extended
GSP. We remind to the reader that positions are ordered by non increasing quality value αj . We
denote by π(b, j) the advertiser allocated to slot j under bid vector b. We denote by X(b, i) the
slot allocated to bidder i under bid vector b. Moreover, Let Ri(bi, b−i) be the maximum regret
that the bidder i can experience with respect to the bid bi, i.e.,

Ri(bi, b−i) = max
b′i∈R≥0

{ri(b′i, b−i, bi)}.

All proofs of this section appear in the appendix.

Claim 5.1. Fix a valuation profile v and an agent i. Let us denote j = X(v, i) the optimal
assignment to bidder i with truthful bids. Consider any bid profile b an define b′i = vi/2. We claim
that

ui(vi/2, b−i) + απ(b,j),jvπ(b,j) ≥ 1/2αi,X(v,i)vi

By applying the claim above we derive the following:
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∑
i

Ri(bi, b−i) ≥
∑
i

ui(b
′
i, b−i)−

∑
i

αi,X(b,i)vi

≥
∑
i

1/2αi,X(v,i)vi −
∑
i

απ((vi/2,b−i),j),jvπ(b,j) −
∑
i

αi,X(b,i)vi

≥
∑
i

1/2αi,X(v,i)vi −
∑
i

απ(b,j),jvπ(b,j) −
∑
i

αi,X(b,i)vi

≥ 1

2
SWOPT − 2SW (b) (9)

where the first inequality stems from the fact that the maximum regret of bidder i playing bi is
lower bounded by the regret obtained when playing b′i and the second inequality derives from the
fact that the MWPM can only decrease if the valuation of a bidder decreases.

In the next claim we show that the regret at vi is larger than the regret at bi.

Claim 5.2. Ri(bi, b−i) ≤ Ri(vi, b−i)

We therefore conclude with the following:

Theorem 5.3. If SWOPT (v) ≥ 8SW (b) then
∑

iEi(vi, b−i) ≥
1
4SWL(b).

6 Using Envy as a Feature

In Sections 3 and 4 we showed that for reasonably large classes of mechanisms, IC-Regret can be
expressed in terms of IC-Envy and the two quantities are equal when all bids are different. In this
section we move beyond linear relationships between envy and regret, and show that using envy as
a feature can lead to better ML algorithms. In particular, we’ll show that we can predict regret
with reasonable accuracy in auction environments that are far more general than the ones discussed
on Section 3.

6.1 Sanity Check

Before we focus on using IC-Envyto predict IC-Regret, Figure 1 shows a sanity check to see if
IC-Envyis a proxy for IC-Regretfor auction mechanisms that aren’t explicitly covered by Theo-
rem 3.1. In Figure 1 we plot IC-Envyagainst IC-Regretfor approximately 1M auction bids from a
major online publisher (collected on February 20, 2019) in approximately 10K auctions. For each
set of bids, we simulate a GFP auction using 10 slots with geometric decaying discount curve. We
use GFP because it can be expressed as a Regular Mechanism (according to Def 3.1) but it does
not satisfy the payment condition in Theorem 3.1. While IC-Envydoes not equal IC-Regret, it is
an upper bound for it, and the bound is reasonably tight.

6.2 Using Envy to Predict Regret

We now go beyond the linear relationship of envy and regret and will use the former to predict the
latter.
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Figure 1: IC-Envy plotted against IC-Regret

6.2.1 Experimental Setup

Auction Environment. We look at auctions with 5 slots, where different bidders have different
monotonically decreasing discount curves over the slots (cf. the Ad Types model in Section 4). In
this setting, not all ads can target all slots (as a consequence of the different discount curves, not
by assumption), and the greedy allocation algorithm is no longer optimal. The auction mechanism
that we consider use the greedy allocation (for each slot from highest to lowest, assign the slot
to the unassigned ad with the highest discounted value). Using a greedy algorithm instead of the
max-weight bipartite matching algorithm means that the theoretical results from Section 4 do not
apply here. The goal is to show that IC-Envy is useful even outside the setting covered by the
theory. We consider 2 pricing rules:

• Generalized Second Price (GSP). The discounted value of the next highest bidder, i.e. during
the greedy algorithm, the next-highest value ad.

• Externality pricing.8 The social welfare loss of other buyers due to the presence of buyer i.

Datasets. We generate the datasets by drawing bids from a lognormal distribution9 and using
3 classes of bidders with geometric discount curves with parameters α1 = 0.9, α2 = 0.7, α3 = 0.5.
For each bidder in an auction, a datapoint corresponds to the envy profile (meaning for each of the
5 slots, the unclamped, possibly negative, envy) and the label is the regret.

Baseline. We compare the performance of the ML models trained on envy, with models that
were trained using the (value, price) profile (meaning for each slot, what is the discounted value,
and what is the current slot price).

Implementation. We use scikit-learn [36] to train the different models. In particular we use
support vector regression (SVR) with the RBF kernel; gradient-boosted regression trees (GBRT)
with least-squares loss function, learning rate of 0.1, and 100 trees; and neural nets (NN) with 2
hidden layers (of 100, and 20 nodes each) and Adam solver [29].

8If the allocation algorithm optimized social welfare, then externality pricing would be VCG pricing, and the
resulting auction would have 0 envy and 0 regret. Since greedy isn’t optimal, generally both envy and regret are
positive.

9Real-world bids in online auctions typically follow a log-normal distribution, see e.g. [35].
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Figure 2: The training and validation MSE of the GBDT model on GSP data as a function of the number
data points used to train the model.

R2 Price and Value R2 Envy

SVR 55.9% 78.4%

GBRT 46.8% 84.4%

NN 77.1% 86.2%

Table 1: Comparing using price and value as features vs. using envy as features across a range of models
trained on 100K datapoints.

6.2.2 Results

Figure 2 shows the training and cross-validation mean-squared error (MSE) as a function of the
number of training samples for the GBDT. The MSE quickly decreases to about 0.02 after 30K
iterations and remains relatively stable after that.

So using envy, we can construct a model that accurately predicts regret. To show that envy
uniquely does this compared to reasonable benchmarks, we compare it against models that were
trained using price and discounted value for each slot as features; the results are in Table 1. The
models here are trained using 100K datapoints, the point being not to train as accurate as possible
of a model, but rather to compare the performance of models trained on different features given
an equal amount of data. Across all 3 models, the regressor trained on the envy feature alone does
better than one that is trained on both the values and prices for slots. This remains qualitatively
true for smaller training data sets as well. None of the regressors in the table are necessarily great,
but the goal here is not to tweak a regressor to perform well; rather it is to show that using envy
as a feature gives better results across a wide variety of models without tuning the model for this
particular case.
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7 Conclusions

In this paper we proposed to use IC-Envy to give insight in an ad auction in four ways. First,
we defined a class of auction mechanisms for position auctions—which includes VCG, GSP, and
GFP—where IC-Envy and IC-Regret are tightly related. For this class we gave necessary and
sufficient conditions for IC-Envy to upperbound IC-Regret and mild supplementary conditions
under which they are exactly equal. Secondly, we consider the Ad Types setting, with multiple
discount curves, and show that a suitable generalization of GSP (as well as VCG) continue to have
IC-Envy ≥ IC-Regret. Thirdly, we upperbounded the social welfare loss in terms of IC-Envyfor
the same sets of mechanisms. We show that the social welfare loss is at most 4 · IC-Envy (under a
technical condition we introduce in the section). Finally, we used bidding data from a major online
publisher to show that IC-Envycan be used as a feature to learn an estimator for IC-Regret. The
estimator has low MSE, and performs better than comparable estimators that are trained using
other features from the auction like values and prices for different slots. For future work, we plan
to extend our study of the relationship between IC-Envyand IC-Regretto the case of bidders with
different ad types. Most importantly, we plan to investigate the existence of a mechanism with
monotonic anonymous prices such that IC-Envy ≥ IC-Regret. On the more practical side, we plan
to use IC-Envyas a feature to learn an estimator of the social welfare of the auction.
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A Handling Unbalanced Graphs and Ties

We conclude the section by showing how to handle unbalanced graphs and ties. If the number of
advertisers n > m the number of ties, we add n −m slots, and for all slots j ∈ J let αi,j = 0 for
each new slot j. Note that we again have a complete bipartite graph, and that the value of the
max-weight bipartite matching hasn’t changed. If the number of slots m > n, we can remove the
lowest m−n slots. Due to monotonicity of the discount curves, the lowest m−n slots go unassigned
in the max-weight matching, hence they can be safely removed.

Finally, we handle ties in the MWPM (including any ties we introduced by adding new slots).
We do that by perturbing by suitable small values the quality values αi,j and then computing the
unique MWPM on the perturbed values. The returned MWPM is also maximum on the original
values. The computed payments differ only by small values from the payment computed on the
original quality values. However, we obtain the exact same payments on the original quality values
by rounding to the closest multiple of the minimum difference between two viαi,j values.

More formally, let δ be the minimum difference between two quality values αi,j . Assume the

minimum valuation vi of a bidder to be equal to 1. Let us define ε = δ/2m
2+3 for a small constant

c. We order the quality values αi,j of the slots in any order and we increase the k-th quality value in
the order by ε2k. This ensures that any two subsets of edges have different total value and therefore
the MWPM is unique. The payments of the slots are computed as in Definition 8. The VCG price
pj is obtained by subtracting the values of two sets of edges and therefore the absolute difference
of the VCG price for a slot computed on the perturbed values and the VCG price computed on
the original values is less than ε × 2m

2+1. By summing up the perturbed value ti,j of an edge, we
increase the difference by at most the largest perturbation. In total, we have a difference that is
less than ε × 2m

2+2 < δ/2. Therefore, we recover the payments computed on the original quality
values by rounding to the closest multiple of δ.
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B Proofs Section 4

B.1 Proof Claim 4.1

To prove this claim, we first rename the bidders from 1 to m following the order of the items
matched to the bidders. Bidder i is therefore matched to item i. Denote by X≥i the restriction of
a set/vector I, J , p and q to elements [i + 1, . . . ,m]. For the proof of the claim we crucially use
the following fact.

Observation B.1. The alternating path Pi ⊆ E= that connects each bidder i to the item m with
price pm = 0 only traverses items from i to m.

Proof. We observe that vectors p≥i, q≥i form an optimal dual solution for the the problem restricted
to bidders I≥i and items J≥i given that the optimal primal solution is formed by a subset of the
MWPM computed on I and J . The optimality of the solution when restricted to bidders and items
≥ i yields the following fact:

We can now prove the claim.

Proof of Claim 4.1. For the base of the induction, the claim is clearly true for bidder m. Assume
it is true for all bidders I≥i+1, we prove it holds for bidder i. Observe that, by the inductive
hypothesis, bidder k is not tight with any item > k. Path Pk, k > i, is formed by the edge (k, k)
and then by a path from item k to item m that traverses only bidders I>k and items J>k. For the
inductive hypothesis, by contradiction, assume bidder i is matched with a slot i such that there
exists a lower slot k ≥ i such that (i, k) ∈ E=. That must mean that there exists two distinct
alternating paths Pi ⊆ E= and P ′i ⊆ E= from bidder i to item m. Pi is the path whose existence
is guaranteed by the execution of the Hungarian algorithm. P ′i is formed by the the edge (i, k)
followed by the path that connects item k to item m. Paths Pi and P ′i must form a cycle given that
Pi only traverses items ≥ i and P ′i only traverses items of ≥ k, i.e., path Pi is not a subset of path
Pk. Given a cycle of tight edges, we can include in the MWPM either the odd or the even edges of
the cycles while the dual variables p and q are unchanged. This contradicts the uniqueness of the
MWPM and therefore we have a contradiction.

B.2 Proof Claim 4.3

Proof. Given that the quality values αi,j are non increasing, we can move from bids bi,1, . . . , bi,m to
bids b̃i,1, . . . , b̃i,m by considering a sequence of small ε increases of the bids. We divide the process
in two phases. We first bring the values bi,1, . . . , bi,j̃ to the final values b̃i,1, . . . , b̃i,j̃ , and later, in a

second phase, we bring the values bi,j̃+1, . . . , bi,m to the final values b̃i,j̃+1, . . . , b̃i,m.
For the first phase, we increase by ε the first k values bi,1, . . . , bi,k for increasing values of

k ≤ j̃. We prove the claim by showing that the set E=
j̃

of tight edges does not contract after an ε

increase on the value of bidder i on the first k slots. If bidder i is not tight with any of the slots
in {1, . . . , k}, the proof follows immediately from the solution provided by the Hungarian method
since the increase of the bids by ε does not violate any constraint qi + pl ≥ bi,l, l = 1, . . . , k, if ε is
small enough. If bidder i is tight with at least one of the first k slots, we increase by ε the price
of all slots [1, . . . , k] while the utility qi is not modified. For any slot l ∈ [1, k] tight with i, it still
holds qi + pl = bi,l. For all other bidders, we reduce by ε the utility qi′ of each bidder i′ that is not
tight with any slot in [k + 1, . . . ,m]. We observe that all the tight edges for these bidders are still
tight. We do not reduce the utility of all bidders, i included, that are tight at least with a slot in
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[k + 1, . . . ,m] and therefore the set of tight edges in E=
j̃

is not contracted. We have also proved

that the value of pj̃ cannot decrease for each ε increase in the values of the bids.
Let us now consider the second phase in which we increase by ε for values bi,j̃+1, . . . , bi,j̃+k for

increasing values of k till we reach the final values of the bids. We know by Claim 4.1 that bidder
i is not tight with any slot k > j̃ for the final values b̃i,1, . . . , b̃i,m. The increase by ε of the k values
bi,j̃+1, . . . , bi,j̃+k will therefore not make any additional edge tight, and the set E=

j̃
and the VCG

clearing price pj will stay unchanged.

B.3 Proof Claim 4.4

Proof. The proof is symmetric to the one of Claim 4.3. We first bring the values bi,j̃+1, . . . , bi,m

to the final values b̃i,j̃+1, . . . , b̃i,m. By Claim 4.1, bidder i is not tight with any of the slots in

[j̃ + 1, . . . ,m] and therefore the decrease of the values of b̃i,j̃+1, . . . , b̃i,m will not affect the values

of E=
j̃

and pj̃ . In the second phase, we bring the values bi,1, . . . , bi,j̃ to the final values b̃i,1, . . . , b̃i,j̃ .

This second operation will preserve the set Ej̃ of tight edges for all bidders that are tight with some

slots k > j̃ and will not decrease the GSP clearing price pj̃ .

C Proofs Section 5

C.1 Proof Claim 5.1

Proof. We consider two cases for the proof:

1. In a first case, by switching his bid from bi to vi/2, player i wins some slot k ≤ X(v, i). In
this case ui(vi/2, b−i) ≥ 1/2αi,X(v,i)vi.

2. Otherwise, by switching his bid from bi to b′i = vi/2, player i wins some slot k ≤ X(v, i).
Given that the mechanism computes a MWPM, the player who wins slot j = X(v, i) under
bidding profile (vi/2, b−i) is such that assigning slot j to bidder π((vi/2, b−i), j) and slot
X((vi/2, b−i), i) to bidder i gives a reward that is strictly larger than assigning slot X(v, i)
to bidder i with bid b′i = vi/2. In this second case we have

ui(vi/2, b−i) + απ((vi/2,b−i),j),jvπ((vi/2,b−i),j) ≥ vi/2× αi,X((vi/2,b−i),i)

+απ((vi/2,b−i),j),jvπ((vi/2,b−i),j

≥ 1/2αi,X(v,i)vi.

C.2 Proof Claim 5.2

Proof. By definition,
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Ri(vi, b−i) = max
b′i∈R≥0

{ri(b′i, b−i, vi)}

= max
b′i∈R≥0

max{0, ui(A(b′i, b−i),P(b′i, b−i))

−ui(A(vi, b−i),P(vi, b−i))}
= max

b′i∈R≥0

max{0, ui(A(b′i, b−i),P(b′i, b−i))}

−ui(A(vi, b−i),P(vi, b−i))

≥ max
b′i∈R≥0

max{0, ui(A(b′i, b−i),P(b′i, b−i))}

−ui(A(bi, b−i),P(bi, b−i))

= Ri(bi, b−i) (10)

where the last inequality follows from ui(A(bi, b−i),P(bi, b−i)) ≥ ui(A(vi, b−i),P(vi, b−i)) that
stems for the fact that bid bi has a regret smaller that truthful strategy vi.

C.3 Proof Theorem 5.3

Proof. The proof follows since by Theorem 3.1 and Claim 5.2, we obtain Ei(vi, b−i) ≥ Ri(vi, b−i) ≥
Ri(bi, b−i). Therefore:

∑
i

Ei(vi, b−i) ≥
∑
i

Ri(bi, b−i)

≥ 1

2
SWOPT (v)− 2SW (b)

≥ 1

4
SWOPT (v)

≥ 1

4
SWL(b),

with the second to last inequality following from SWOPT (v) ≥ 8SW (b).
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