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Various methods to deal with graph data have been proposed in
recent years. However, most of these methods focus on graph fea-
ture aggregation rather than graph pooling. Besides, the existing
top-k selection graph pooling methods have a few problems. First,
to construct the pooled graph topology, current top-k selection
methods evaluate the importance of the node from a single perspec-
tive only, which is simplistic and unobjective. Second, the feature
information of unselected nodes is directly lost during the pooling
process, which inevitably leads to a massive loss of graph feature
information. To solve these problems mentioned above, we propose
a novel graph self-adaptive pooling method with the following
objectives: (1) to construct a reasonable pooled graph topology,
structure and feature information of the graph are considered si-
multaneously, which provide additional veracity and objectivity in
node selection; and (2) to make the pooled nodes contain sufficiently
effective graph information, node feature information is aggregated
before discarding the unimportant nodes; thus, the selected nodes
contain information from neighbor nodes, which can enhance the
use of features of the unselected nodes. Experimental results on
four different datasets demonstrate that our method is effective in
graph classification and outperforms state-of-the-art graph pooling
methods.
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1 INTRODUCTION

In the computer vision field, convolutional neural network (CNN)
[8][1][13][2][18] is a powerful tool for refining the information
from images or videos for object recognition and relationship de-
tection. However, in the real world, numerous data are organized
graphically, such as protein-protein interaction and social networks
[6][17][12]. Although CNN is adaptive to process grid-structured
data, such as images, it cannot easily deal with the non-Euclidean
space data, such as graphs.

To date, many scholars have proposed graph convolution net-
works (GCNs) in the spectral perspective, such as GCN with Cheby-
shev expansion (ChebConv) [7] and semi-supervised classification
with GCN (GCNConv) [16]. Other non-spectral graph neural net-
works (GNNs) have also been proposed, such as GraphSAGE [10]
and Graph Attention Network (GAT) [28], which have a similar
function as GCN. However, all of these GCNs focus on the graph
information aggregation rather than the pooling mechanism.

Pooling (downsampling) [18][19] plays an important role in
CNN because it can reduce the amount of data and acceletare the
calculation, which facilitates the design of deep CNN and obtains
improved performance. In recent years, a few methods studied
graph pooling to utilize the pooling mechanism in GCN, which is
used to reduce the number of nodes and edges in the graph. Some
of the graph pooling methods use clusters of nodes to generate the
pooled graph topology, such as DiffPool [31] and EigenPooling [22],
where several nodes are combined to generate new nodes through
the assignment matrix. Others are top-k selection methods, such
as gPool [9] and SAGPool [20], in which node features and local
structural information are used to compute the importance of the
node, and then top-k nodes are selected as the pooling results. The
pooled graph topology is decided by the selected top-k graph nodes.
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However, the existing top-k selection graph pooling methods
face two problems. First, in generating the pooled graph topology,
these methods do not explicitly consider the graph structure and
node feature representation together. Second, regarding the fea-
ture representations of the pooled nodes, the original features of
the selected nodes are used as a new feature, and the features of
the unselected nodes are discarded. Therefore, substantial graph
information is lost in the pooling process, which may be important
information on the graph.

In this paper, we propose a graph self-adaptive pooling (GSAPool)
method to address these problems. Regarding the graph topology
generation, our method evaluates in multiple ways the importance
of nodes in accordance with the local structure and the feature
information of the nodes. Regarding the feature generation after
the pooling nodes are chosen, the feature aggregating process is
used to ensure that the feature representation of the pooled nodes
contain sufficiently effective information from the graph.

2 RELATED WORK

A graph is a data structure that can be represented by a set {V, E},
where V is the set of nodes and E is the set of edges. Generally, the
adjacency matrix A € RN*N indicates which nodes are connected
and which edges are attributed. Therefore, this matrix is used to
describe the structural information of the graph. In addition, the
feature matrix is used to represent the node feature representation
of the graph.

2.1 Graph Convolution

GCNs [4][29][30] can be divided into two domains: spectral and
non-spectral methods. Spectral methods utilize Laplacian matrix as
spectral operator to refine the convolution in Fourier field. Cheb-
Conv [7] uses the Laplacian matrix directly as a convolution oper-
ator. Without eigenvector decomposition, the number of parame-
ters is reduced and the calculation can be accelerated. GCNConv
[16] extends convolution to the data of graph structure, which can
obtain better graph representation and performs well in the semi-
supervised task. By contrast, non-spectral approaches are meant
to work directly on graphs in which the central node aggregates
features from the neighbor nodes layer by layer. GraphSAGE [10]
generates node embeddings by aggregating node feature informa-
tion in neighborhood. GAT [28] uses attention mechanism and
calculates the attention score of adjacent nodes as weight value for
feature information in the aggregation process.

2.2 Graph Pooling

Pooling can enable CNNs to decrease the amount of parameters
by scaling down the size of the input, which makes the training
process highly efficient. Similar to CNN, the pooling mechanism
can enable GNNs to reduce the parameters for better performance.
From our perspective, the current pooling methods can be divided
into two categories: cluster and top-k selection poolings.

Cluster Pooling: DiffPool [31] and EigenPooling [22] use cluster
algorithms to decide the pooled graph topology, i.e., to select the
new nodes in the pooling process. Assignment matrix is utilized
to generate node clusters. In the assignment matrix, each column
corresponds to the nodes of the graph before pooling, and the rows
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represent the nodes in the pooling results. The concrete expression
of the updating process for the adjacency and the feature matrices
are denoted as follows:

x+1) _ S(I)TGNN(A, X)(l) c anxd, (1)
AU+ = g0 Alg(D) ¢ grusixnie )

where S indicates the assignment matrix, A is the adjacency matrix,
and X is the feature matrix.

Similarly, in EigenPooling, the assignment matrix is used to up-
date the graph information. The difference is that a pooling operator
is utilized to refine the feature matrix. First, the graph is divided into
several subgraphs in accordance with the assignment matrix. Then,
the eigenvectors of the subgraphs are calculated by the Laplacian
matrix as the pooling operator.

Top-k Selection Pooling: SAGPool [20] is a top-k selection
pooling method in which the pooled graph topology is decided by
the selected nodes. In SAGPool, GCNConv [16] is used to evalu-
ate the importance of the nodes. Although GCNConv considers
structure and feature information simultaneously, it uses the infor-
mation implicitly. When obtaining the importance value of every
node, several nodes with high scores are selected as the pooled
graph.

In gPool [9], a learning vector maps the node feature into the
importance scores. Then, the nodes are selected in accordance with
the score. The following equation describes the calculation of the
score:

y=Xx"p/lIp' I, (3)
where y is the score vector that saves the feature scores of all
nodes. X! is the feature matrix and pl is the learning vector of layer
l. Compared with SAGPool, gPool does not consider the graph
structural information as a part of the importance score.

In cluster pooling algorithms, when generating the assignment
matrix, the structure and feature information are used implicitly,
thereby leading to the unreasonableness of the assignment matrix.
In top-k selection pooling methods, the importance of nodes is
considered from a single perspective, which is simplistic. Moreover,
the features of the pooled nodes are still the original features, and
the feature information of the unselected nodes is directly lost.
To address these problems, we consider that in generating
the pooled graph topology, the node selection approaches
should be diverse, and the feature information of the pooled
nodes should include features of the adjacent nodes. There-
fore, we use additional evaluation standards for each node to gen-
erate highly accurate pooled graph topology. Furthermore, we use
feature fusion method to enhance the feature representation abil-
ity of the pooled graph. As a result, our method of pooled graph
generation is considerably diverse, objective, and accurate.

3 PROPOSED METHODS

3.1 Pooling Topology Learning

The pooling topology learning method contains three parts: the
structure-based topology learning (SBTL), the feature-based topol-
ogy learning (FBTL), and the structure-feature topology learning
(SFTL). The details of the learning method are illustrated in Figure
1.
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Figure 1: The illustration of the proposed GSAPool, which includes two parts: the pooling topology learning and the node
feature fusion. The structure-based topology learning (SBTL) and the feature-based topology learning (FBTL) components in
the first part calculate the importance scores according to the structure and feature information respectively. The structure-
feature topology learning (SFTL) component fuses the scores to generate the final pooling topology. GAT-based node feature
fusion is used in the second part to aggregate the features of the unselected nodes around the selected nodes.

SBTL: In general, a graph contains numerous nodes and edges,
which indicate rich structural information. Therefore, it is effective
to evaluate the importance of each node in accordance with its struc-
tural information. Given that GCNConv [16] considers structural
information, this method is suitable for evaluating the importance
of a node. The expression of GCNConv is illustrated as follows:

Si = o(D"EAD"EXW), (4)

where S is the structural information score of a node calculated
by GCNConv, D is the sum of the degree and identity matrices of a
graph, A is composed of the adjency matrix and identity matrices,
X is the feature matrix and W is the weight vector. o is the activate
function often used in neural networks, such as tanh and sigmoid.

As a complement, the score function kernel can be easliy replaced
by other GNNs, such as ChebConv [7], GraphSAGE [10] and GAT
[28], which can be expressed as follows:

S1 = 0(GNN(A X)), (5)

FBTL: In graph data, nodes usually contain feature information.
Utilizing the node feature information for evaluation is important
because a node can be largely represented by its feature. The effect
of a node feature cannot be ignored.

We take a MLP [11] as the node feature extracting method be-
cause it is adaptive to aggregate feature information. The expression
is as follows:

Sz = o(MLP(X)), (6)

where X is the node feature matrix and o is the activate function.
Sz is the aggregation of node feature, which can be regarded as
node evaluation value. In accordance with the aggregation results,
it can reserve additional important nodes.

SFTL: GCNConv [16] is effective in refining the local structural
information of a graph. Moreover, MLP [11] focuses on the feature
information of a node. To make the standard of node evaluation
highly objective and robust, we use the two methods to calculate
the importance scores of the nodes. The diversity of the evaluation
effectively increased by considering two different node evaluation
methods synthetically, which reinforces the objectivity of the selec-
tion of final nodes. The combination is expressed as follows:

Sfinal =aS; + (1 - a)Sy, (7)

The weight « is a user-defined hyperparameter. We sort the nodes
in accordance with their scores, and use the top-k nodes as the
pooling results.

3.2 Pooled Node Feature Representation

In the top-k selection pooling methods, only parts of nodes are
selected as the pooling results. To use the information of the unse-
lected nodes, we have to aggregate the features of the nodes before
discarding them. The feature information of the nodes can be used
more sufficiently, which makes the final graph embedding vector
more representative. Figure 2 shows the details of the feature fusion.
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Figure 2: Different node feature fusion strategies: (a) the
pooled nodes only reserve their own features, (b) the pooled
nodes aggregate features within 1-hop neighbor nodes, (c)
the pooled nodes aggregate features within n-hop neighbor
nodes. The edge with arrow shows the direction of feature
information flow in the fusion process.

Two aggregation functions, i.e., the GCNConv [16] and GAT
[28], are evaluated in this study. The GAT is expressed as follows,

hi’ = ao( Z a5 Wh), (8)
JEN;
where h; is the feature vector of node i and h; represents the neigh-
bor nodes of node i. Nj is the number of the adjacent nodes of node
i.‘j is the attention value between h; and hj and W is the weight
matrix.

With the help of these fusion methods, the selected nodes can
carry the feature information from the neighbor nodes. In this
manner, the pooling result can highly represent the entire graph,
as proven by our experimental results.

i.a

3.3 Model Architecture

For a fair comparison, the model architecture of SAGPool [20] is
adopted in our experiments. All the comparative methods and our
method use the same architectures. Figure 3 shows the details of
the model architecture.

4 EXPERIMENTS
4.1 Datasets

To verify whether our proposed method is effective, four graph
datasets [14] are used in the experiments. DD [5][23] contains
graphs representing protein structures and the node is an amino
acid. The graph labels indicate whether the protein is an enzyme.
NCI-1 [24][23] and NCI-109 [24][23] are biological datasets used for
anticancer activity classification. Every graph represents a chemical
compound structure in which nodes and edges correspond to atoms
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Figure 3: The illustration of the model architecture [20] used
in the proposed GSAPool.

and chemical bonds. Mutagenicity [15][26] is a dataset that contains
compounds used for medicine. The label of the compound indicates
whether it has mutagenicity attributes. Table 1 summarizes the
statistics of the datasets.

4.2 Training Configurations

In our experiments, we uses 10-fold cross validation to evaluate the
pooling methods. And Nvidia Titan V is the version of GPU used
in our experiments. All the GSAPool models are implemented with
PyTorch[3] and the geometric deep learning extension library[21].

4.3 Ablation Study

Hyperparameter Analysis: Two hyperparameters are used in
our experiments: pooling ratio and combination weight a. For the
pooling ratio, there are three value used: 0.25, 0.5 and 0.75. When
the pooling ratio is 0.25, the pooling method performs not so well
because the selected feature information is little. And the perfor-
mance is not good when pooling ratio is 0.75, for the graph retaining
too much redundant information. Therefore, 0.5 is finally taken as
the pooling ratio. « is an empirical value, and several values are
tested to find the best. Finally, we find that when the dataset is DD
[5][23], the best value of « is 0.6, and for the other three datasets, 0.4
is the best value. Table 2 and Table 3 show all the hyperparameters
used in this study, respectively.
Topology Learning Strategy Analysis: We compare GCNConv
[16], ChebConv [7], GraphSAGE [10] and GAT [28] in GSAPool
as graph pooling topology learning methods on four datasets (DD
[5][23], NCI-1 [24][23], NCI-109 [24][23], and Mutagenicity [15][26]).
The average accuracies of graph classification and corresponding
standard deviations are expressed in percentages. Table 4 shows
that GCNConv and ChebConv are better than GraphSAGE and
GAT. MLP [11] is excellent on NCI-1, NCI-109, and Mutagenicity.
GCNConv and ChebConv consider structural information when
calculating the node importance score, whereas GAT and SAGE do
not. Therefore, GCNConv can use additional graph information to
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Table 1: Statistics of the experimental datasets.

Datasets Number of Graphs Number of Classes Average Number of Nodes Average Number of Edges
DD 1178 2 284.32 715.66
NCI-1 4110 2 29.87 32.30
NCI-109 4127 2 29.68 32.13
Mutagenicity 4337 2 30.32 30.77

Table 2: The evaluation of different pooling ratios based on the GSAPoolGcNConv+Fusiongar architecture.

Pooling Ratio Datasets
& DD NCI-1 NCI-109 _ Mutagenicity
0.25 76.84+1.55 67.06+2.38 74.35+0.99  76.49 + 0.49
0.5 7731+ 1.54 69.14+1.45 7631+1.22 78.28+1.35
0.75 77.10£0.98 68.48+1.86 75.90+1.13  77.41+1.33

Table 3: The evaluation of different weight o based on the GSAPoolGcNConv&MLP+Fusiongar architecture.

Weight o Datasets
DD NCI-1 NCI-109 Mutagenicity
0 75.92+1.13 72.84+1.89 73.02+2.15 78.17 £ 1.16
0.2 77.26 £1.85 74.87+£1.32 75.73 £2.06 80.13 £ 1.15
0.4 78.40 £1.33  75.20+1.55 77.43+1.35 81.99 +1.20
0.6 80.84 +1.17 72.77+1.50 77.15+1.10 79.24 £ 0.89
0.8 79.28+£0.85 71.78 £1.39 76.83 +£1.88 78.73 £ 1.14
1 77.31+1.54 69.14+1.45 76.31+1.22 78.28 +1.35

Table 4: Performance of different node evaluation functions used in the proposed GSAPool.

. . Type Datasets
Evaluation Functions Structure Feature DD NCI-1 NCI-109 Mutagenicity Average Accuracy
GraphSAGE[10] X v 72.60 £3.84 65.93+2.10 70.32+1.77 70.19+3.10 69.76
GAT([28] X v 75.37+1.09 64.61+£0.88 67.85+2.10 75.56 +=1.20 70.85
GCNConv[16] v v 77.05+0.75 61.05+0.28 70.18 +4.32  76.14 +1.58 71.11
ChebConv(7] v v 77.35+1.39 71.45+£1.92 7426+2.14 77.65%+1.24 75.18
MLP[11] X v 74.03 £1.32 72.60+1.38 75.55+£1.58 79.12%1.05 75.33
GCNConv&MLP v v 78.27 £0.96 72.84+1.15 77.07+1.89 79.90 + 0.80 77.02

create more representative graph vectors. As a result, GCNs per-
form best on graph classification task. MLP performs well on NCI-1
, NCI-109 and Mutagenicity but not so well on DD. For example,
the average number of nodes and edges in each graph of DD is
more than that in NCI-1, which means that the graph structure in
DD is highly complex. MLP focuses on feature information rather
than structural information, so it can get better performance in
NCI-1, of which the graph structure is simpler than that of DD.
NCI-109 and Mutagenicity are similar. However, when combining
GCNConv and other GNNs, such as GAT, the result is not as good
as the combination with MLP. From our perspective, GCNConv is
more similar with GAT than MLP; thus, the area of overlap in the
learning space of GCNConv and GAT is larger than that of GCN-
Conv and MLP. Therefore, the combination of GCNConv and MLP

can learn more features than that of GCNConv and GAT, which is
why MLP is better than GAT as a feature mode selection.

Feature Fusion Strategy Analysis: The GCNConv-based [16] fu-
sion performs well on DD [5][23], while GAT-based fusion [28]
performs well on NCI-1 [24][23], NCI-109 [24][23] and Mutagenic-
ity [15][26] (see Table 5). The reason for the success of the fusion
mechanism is that the use rate of the node feature information
increases. As a result, the fusion mechanism creates a highly rep-
resentative graph vector; thus, it has a high accuracy on graph
classification. In addition, GCNConv considers the structural in-
formation when aggregating the information of the nodes while
structure is not considered by GAT. Thus, the GCNConv performs
well highly intricate structure while GAT is effective on the simple
datasets.



WWW °20, April 20-24, 2020, Taipei, Taiwan

Table 5: Performance of different feature fusion functions used in GSAPool.
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Fusion Functions DD NCI-1 NCI-109 Mutagenicity ‘ Average

No Fusion 77.05+0.75 61.05+0.28 70.18 +4.32 76.14 £ 1.58 71.11

GCNConv-based Fusion | 77.94 £2.00 67.95+1.91 72.98 +1.85 76.89 £1.12 73.94

GAT-based Fusion 77.31+£1.54 69.14+1.45 76.31+1.22 78.28+1.35 75.26

Table 6: Comparison with the state-of-the-art graph pooling methods.

Methods DD NCI-1 NCI-109  Mutagenicity ‘ Average
gPool[9] 75.01 £0.86 67.02£2.25 66.12 £ 1.60 67.44 £ 2.78 68.90
SAGPool[20] 76.45+£0.97 67.45+1.11 67.86+1.41 76.89 + 1.12 72.16
SET2SET[25] 74.50 71.50 68.60 76.40 72.75
DiffPool[31] 78.00 76.00 74.10 80.60 77.18
EigenPooling[22] 78.60 77.00 74.90 79.50 77.50
GSAP0OlGEN Conv& MLP 78.27 +£0.96 72.84+1.15 77.07+1.89  79.90  0.80 77.02
GSAP0OLGCN Conv+ Fusiongar 77.31£2.00 69.14+1.45 76.31+1.22  78.28 £ 1.35 75.26
GSAP0OLGCON ConvsMLP+Fusiongay | 80-84 % 1.17 7520 £1.55 77.43 £1.35  81.99 # 1.20 78.87

s
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Figure 4: The t-SNE [27] visualization of the features of the pooling graph results on DD, NCI-1, NCI-109, and Mutagenicity.
The features of the proposed GSAPool (in the second line) are more distinguishable than the features of SAGPool [20] (in the

first line).

4.4 State-of-the-art

Table 6 shows that graph pooling topology generation and node
feature fusion measure perform better when combined than when
each method is used alone. Moreover, our proposed method is
higher than the best one of the current pooling methods on DD
[5][23], NCI-109 [24][23] and Mutagenicity [15][26]. Our method
is not as good as DiffPool [31] and EigenPooling [22] only on NCI-1
[24][23]. However, our method has the highest average accuracy.
Table 6 demonstrates that our method reaches state-of-the-art level.
Figure 4 shows the t-SNE [27] visual comparison results of SAGPool
[20] and the proposed GSAPool on the graph classification task.
Graphs can be easily separated by a horizontal or vertical line and
the gap between the two categories is highly evident in GSAPool.
Compared with DiffPool and EigenPooling, the proposed GSAPool
used structure and feature information explicitly at the same time.
Therefore, GSAPool can use additional graph information to con-
struct the pooled graph. GSAPool outperforms gPool and SAGPool
because GSAPool considers the information of the node syntheti-
cally and uses feature fusion mechanism, which enables the pooled

graph to represent the original graph reasonably and accurately.
Thus, GSAPool can obtain an improved performance.

5 CONCLUSION

In this study, we proposed GSAPool to solve the problems in the top-
k selection graph pooling. On the one hand, our method used three
graph pooling topology generation strategies. On the other hand,
node feature fusion was adopted before the unimportant nodes were
discarded so that the node information could be used efficiently.
Lastly, we combined the two approaches and compared them with
the current approaches. The experimental results demonstrated that
our proposed method achieved state-of-the-art graph classification
performance on the benchmark datasets. Our GSAPool method can
be easily integrated into other deep GNN architectures.
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