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ABSTRACT
Clique is one of themost fundamental models for cohesive subgraph

mining in network analysis. Existing clique model mainly focuses

on unsigned networks. In real world, however, many applications

are modeled as signed networks with positive and negative edges.

As the signed networks hold their own properties different from

the unsigned networks, the existing clique model is inapplicable for

the signed networks. Motivated by this, we propose the balanced

clique model that considers the most fundamental and dominant

theory, structural balance theory, for signed networks, and study

the maximal balanced clique enumeration problem which computes

all the maximal balanced cliques in a given signed network. We

show that the maximal balanced clique enumeration problem is

NP-Hard. A straightforward solution for the maximal balanced

clique enumeration problem is to treat the signed network as two

unsigned networks and leverage the off-the-shelf techniques for

unsigned networks. However, such a solution is inefficient for large

signed networks. To address this problem, in this paper, we first

propose a new maximal balanced clique enumeration algorithm

by exploiting the unique properties of signed networks. Based on

the new proposed algorithm, we devise two optimization strategies

to further improve the efficiency of the enumeration. We conduct

extensive experiments on large real and synthetic datasets. The

experimental results demonstrate the efficiency, effectiveness and

scalability of our proposed algorithms.
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Figure 1: Imbalanced Graph and Balanced Graph

1 INTRODUCTION
With the proliferation of graph applications, research efforts have

been devoted to many fundamental problems in analyzing graph

data [15, 28, 36, 37, 39, 49, 53, 55]. Clique is one of the most funda-

mental cohesive subgraph models in graph analysis, which requires

each pair of vertices has an edge. Due to the completeness require-

ment, clique model owns many interesting cohesiveness properties,

such as the distance of any two vertices in a clique is one, every one

vertex in a clique forms a dominate set of the clique and the diameter

of a clique is one [38]. As a result, clique model has wide application

scenarios in social network mining, financial analysis and compu-

tational biology and has been extensively investigated for decades.

Existing studies on clique mainly focus on the unsigned networks,

i.e., all the edges in the graph share the same property [4, 12, 13, 51].

Unfortunately, relationships between two entities in many real-

world applications have completely opposite properties, such as

friend-foe relationships between users in social networks [11, 23],

support-dissent opinions in opinion networks [25], trust-distrust

relationships in trust networks [26] and partnership-antagonism in

protein-protein interaction networks [35]. Modelling these applica-

tions as signed networks with positive and negative edges allows

them to capture more sophisticated semantics than unsigned net-

works [1, 5, 10, 26, 32, 33]. Consequently, existing studies on clique

ignoring the sign associated with each edge may be inappropriate

to characterize the cohesive subgraphs in a signed network and

there is an urgent need to define an exclusive clique model tailored

for the signed networks.

For the signed networks, the most fundamental and dominant

theory revealing the dynamics and construction of the signed net-

works is the structural balance theory [1, 5, 10, 11, 18, 19, 26, 32, 33].

The intuition underlying the structural balance theory can be de-

scribed as the aphorisms: “The friend (resp. enemy) of my friend

(resp. enemy) is my friend, the friend (resp. enemy) of my enemy
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(resp. friend) is my enemy”. Specifically, a signed network G is

structural balanced if G can be split into two subgraphs such that

the edges in the same subgraph are positive and the edges between

subgraphs are negative [18]. In a signed network, an imbalanced

sub-structure is unstable and tends to evolve into a balanced state.

Consider the graph G shown in Figure 1 (a). The negative edge be-

tween v1 and v2 makesG imbalanced. Closely observingG , we can
find that v1 and v2 have a mutual “friend” v3 and mutual “enemies”

v4,v5 andv6. It meansv1 andv2 share more common grounds than

differences. According to structural balance theory, v1 and v2 tend
to be allies as time goes by. G ′ shown in Figure 1 (b) is the evolved

balanced counterpart of G. In G ′, the sign of the edge between

v1 and v2 becomes positive. {v1,v2,v3} and {v4,v5,v6} form two

alliances and the edges in the same alliance are positive and the

edges connecting different alliances are negative. As illustrated in

this example, structural balance reflects the key characteristics of

the signed networks.

According to the above analysis, clique model is a fundamental

cohesive subgraph model in graph analysis and can be used in

many applications, but there is no appropriate counterpart in the

signed networks. Meanwhile, the structure of the signed networks

is expected to be balanced based on the structure balance theory.

Motivated by this, we propose a maximal balanced clique model in

this paper. Formally, given a signed networkG , a maximal balanced

clique C is a maximal subgraph of G such that (1) C is complete,

i.e., every pair of vertices in C has an edge. (2) C is balanced, i.e.,

C can be divided into two parts such that the edges in the same

part are positive and the edges connecting two parts are negative.

This definition not only catches the essence of the clique model in

the unsigned networks but also guarantees that a detected clique

is stable in the signed networks. In this paper, we aim to devise

efficient algorithms to enumerate all maximal balanced cliques in a

given signed network.

Applications. Maximal balanced clique enumeration can be used

in many applications, for example:

(1) Opinion leaders detection in opinion networks. Opinion leaders

are people who are active in a community capturing the most rep-

resentative opinions in the social networks [44]. Maximal balanced

clique enumeration can be used to detect opinion leaders in the

opinion networks. In an opinion network, each vertex represents a

user and there is a positive/negative edge between two vertices if

one user support/dissent another user. A maximal balanced clique

in an opinion network represents a group of users that any two

of them have an opinion with each other and can be further di-

vided into two subgroups such that the intra-group users support

each other and the inter-group users dissent each other. Since these

users actively involve in the opinion networks (every two of them

have an opinion with each other) and have their clear standpoints

(support everyone in the same group and dissent everyone in the

opposite group), the users in the maximal balanced cliques are good

candidates of opinion leaders in the opinion network.

(2) Finding international alliances-rivalries groups. The international
relationships between nations can be modeled as a signed network,

where each vertex represents a nation, positive and negative edges

indicate alliances and rivalries, respectively. Computing the max-

imal balanced cliques in such networks reveals hostile groups of

allied forces, such as the Allied and Axis power during World War

II or the North Atlantic Treaty Organization and the Warsaw Pact

during the Cold War [3, 11]. We can extend it to find the alliances-

rivalries commercial groups among business organizations simi-

larly, such as {Pepsi, KFC} vs {Coke, McDonald}[21].

(3) Synonym and antonym groups discovery. In a word network, each
vertex represents a word and there is a positive edge between two

synonyms and a negative edge between two antonyms[34]. In such

signed networks, our model can discover synonym groups that are

antonymous with each other, such as, {interior, internal, intimate}

and {away, foreign, outer, outside, remote}. These discovered groups

may be further used in applications such as automatic question

generation [24] and semantic expansion [22].

Contributions. In this paper, we make the following contributions:

(1) The first work to study the maximal balanced clique model.We

formalize the balanced clique model in signed networks based on

the structural balance theory. To the best of our knowledge, this is

the first work considering the structural balance of the cliques in

signed networks. We also prove the NP-Hardness of the problem.

(2) A new framework tailored for maximal balanced clique enumer-
ation in signed networks. After investigating the drawbacks of the
straightforward approach, we propose a new framework for the

maximal balanced clique enumeration. Our new framework enu-

merates the maximal balanced cliques based on the signed network

directly and its memory consumption is linear to the size of the

input signed network.

(3) Two effective optimization strategies to further improve the enu-
meration performance.We explore two optimization strategies, in-

enumeration optimization and pre-enumeration optimization, to

further improve the enumeration performance. The in-enumeration

optimization can avoid the exploration for unpromising vertices

during the enumeration while the pre-enumeration techniques can

prune unpromising vertices and edges before enumeration.

(4) Extensive performance studies on real and synthetic datasets. We

conduct extensive experimental studies to evaluate the proposed

algorithms on real and synthetic datasets, one of which contains

3 million vertices and 105 million edges. As shown in our experi-

ments, the baseline approach only works on small datasets while

our approach can complete the enumeration efficiently on both

small and large datasets.

Outline. Section 2 reviews the related work. Section 3 provides

preliminaries including the definition of balanced clique model and

problem statement. Section 4 introduces the baseline algorithm.

Section 5 presents our new enumeration framework. Section 6

shows several optimization techniques. Section 7 reports the results

of experimental studies. Section 8 concludes our paper.

2 RELATEDWORK

Signed network analysis. Signed network analysis has attracted

much attention in the literature. In these works, the theories ex-

plaining the potential social dynamics process in signed networks

have been extensively studied. Among these theories, structural
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balance theory is the most fundamental and dominant one [58].

Structural balance theory is originally introduced in [19] and gen-

eralized in the graph formation in [5, 18]. After that, structural

balance theory is developed extensively [1, 10, 26, 32, 33]. In these

works, it is interesting to mention that the authors in [32] model

the evolving procedure of a signed network and theoretically prove

that the network would evolve into a balanced clique when the

mean value of the initial friendliness among the vertices µ ≤ 0. [58]

provides a comprehensive survey on structural balanced theory.

Besides theories on signed networks, a large body of literature

on mining signed networks has been emerged. Among them, the

most closely related work to ours is [27] in which an (α ,k)-clique
model is proposed. Given a signed network G, an (α ,k)-clique is
defined as a maximal cliqueC such that the negative degree for each

vertex in C is not greater than k and the positive degree for each

vertex in C is not less than αk . Compared with our model, (α ,k)-
clique model only considers the amount of positive and negative

edges in the clique and the structural balance of the clique is totally

ignored, which makes (α ,k)-clique model essentially different from

our model. In [17], a k-balanced trusted clique model is proposed. A

k-balanced trusted clique is defined as a clique with k vertices con-

sisting with positive edges only. Although the k-balanced trusted

clique model has a similar name with our model, it ignores the

negative edges in the clique, which means the information of the

negative edges are totally missed.

Community detection in signed networks is also related to our

work. For example, [8, 16, 29–31, 45] aim to find the antagonistic

communities in a signed network. These works mainly focus on

exploring several groups of dense subgraphs and most of them

don’t have a clear structural definition of their community model,

while our work aims to enumerate the clique structure in a signed

network. Moreover, these solutions generally involve a complicated

optimization procedure, thereby, they are hard to handle large

signed networks, while our proposed algorithm is scalable to enu-

merate all the maximal balanced cliques in large signed networks

with hundreds of millions of edges as verified in our experiments.

A survey on signed network mining can be found in [46].

Clique on unsigned networks. Clique model is one of the most

fundamental cohesive subgraph models. [4] proposes an efficient

algorithm for maximal clique enumeration based on backtracking

search.[2] first considers the memory consumption during the max-

imal clique enumeration. Based on [4], more efficient algorithms

for maximal clique enumeration are investigated [12, 13, 47].[12]

proposes a novel branch pruning strategy, pivot pruning, which can

efficiently reduce the search space by ignoring the search process

from the neighbors of the pivot. [57] studies the maximal biclique

enumeration problem on bipartite graphs.[57] keeps growing the

vertex set in one side and peeling the vertex set in another side to

enumerate the maximal biciques. It also utilizes some techniques

to further improve the enumeration performance, such as choosing

vertex with small degree from candidate set to reduce the search

tree depth and pruning vertices which may produce non-maximal

bicliques. These techniques for biclique enumeration inspire our

techniques presented in Section 6.1. [14] reviews recently advances

in maximal clique enumeration. Based on clique, other cohesive

subgraph models are also studied recently, such as k-core [43], k-
truss[9, 20], k-edge connected component[52, 54, 59], (r , s)-nuclei
[40, 41]. Note that our balanced clique model is different from the

existing cohesive subgraph models on unsigned networks and it

cannot be well solved by the existing works. If we just consider the

positive edge in the signed network and use the traditional methods

on unsigned networks for community detection, the found results

would ignore the negative edges and half meaningful information

in the signed network is lost.

3 PROBLEM STATEMENT
In this paper, we consider an undirected and unweighted signed

networkG = (V ,E+,E−), whereV denotes the set of vertices, E+ de-
notes the positive edges and E− denotes the negative edges connect-
ing the vertices inG . We denote the number of vertices and number

of edges by n andm, respectively, i.e., n = |V | andm = |E+ | + |E− |.
For each vertex v ∈ G, let N+G (v) represents the positive neighbors

of v , i.e, N+G (v) = {u |(v,u) ∈ E+,u,v ∈ V }, and let N−G (v) repre-
sents the negative neighbors ofv , i.e,N−G (v) = {u |(v,u) ∈ E

−,u,v ∈

V }. We use d+G (v) and d
−
G (v) to denote the positive and negative de-

gree of v , respectively, i.e., d+G (v) = |N
+
G (v)| and d

−
G (v) = |N

−
G (v)|.

We also use NG (v) and dG (v) to denote the neighbors and degree

of v , i.e., NG (v) = N−G (v) ∪ N
+
G (v) and dG (v) = d

+
G (v) + d

−
G (v). For

simplicity, we omit G in the notations if the context is self-evident.

Definition 3.1. (Balanced Network [18]) Given a signed net-

work G = (V ,E+,E−), it’s balanced iff it can be split into two

subgraphs GL and GR , s.t. ∀(u,v) ∈ E+ → u,v ∈ GL or u,v ∈ GR ,

and ∀(u,v) ∈ E− → u ∈ GL ,v ∈ GR or u ∈ GR ,v ∈ GL .

Definition 3.2. (Maximal Balanced Clique)Given a signed net-
work G = (V ,E+,E−), a maximal balanced clique C is a maximal

subgraph of G that satisfies the following constraints:

• Complete: C is complete, i.e, ∀u,v ∈ C → (u,v) ∈ E+ ∪ E−.
• Balanced: C is balanced, i.e, it can be split into two sub-

cliques CL and CR , s.t. ∀u,v ∈ CL or u,v ∈ CR → (u,v) ∈
E+, and ∀u ∈ CL ,v ∈ CR or u ∈ CR ,v ∈ CL → (u,v) ∈ E

−
.

In this paper, we aim to enumerate all maximal balanced cliques

in a given signed network. Since many real applications require

that the number of vertices in CL and CR is not less than a fixed

threshold, we add a size constraint on |CL | and |CR | s.t. |CL | ≥ k
and |CR | ≥ k . With the size constraint, users can control the size

of the returned maximal balanced cliques based on their specific

requirements. We formalize the studied problem as follows:

Problem Statement. Given a signed network G and an integer k ,
maximal balanced clique enumeration (MBCE) computes all the

maximal balanced cliques C in G s.t. |CL | ≥ k and |CR | ≥ k for C .

Example 3.3. Consider the signed network G in Figure 2 in

which positive/negative edges are denoted by solid/dashed lines.

Assume k = 2, there are 4 maximal balanced cliques in G, namely,

C1 = {{v0,v1,v3}, {v5,v6,v7}}, C2 = {{v0,v1,v2,v3}, {v5,v6}},
C3 = {{v0,v1}, {v5,v6,v8}}, C4 = {{v0,v14}, {v13,v15}}, where
vertices in CL and CR are marked with different colors. Take C4 as

an example, it is complete as any two vertices inC4 have an edge. It

is balanced as it can be split into {v0,v14} and {v13,v15}, and two

positive edges (v0,v14) and (v13,v15) exist in E+. v0 has negative

341



WWW ’20, April 20–24, 2020, Taipei, Taiwan Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang

13

015

14

3

1

2

4

19 16

17 18

8
9

6

7

5

10 11

12

 C3

C1

C4

C2

Figure 2: Maximal Balanced Clique in G (k = 2)

edges to v13, v15 and similar negative edges exist for v13, v14 and
v15.C4 is maximal because no more vertices can be added into it to

make it complete and balanced.

ProblemHardness. TheMBCE problem is NP-Hard, which can be

proved following the NP-Hardness of maximal clique enumeration

problem [6, 42]. Given an unsigned network G = (V ,E), we can
transfer G to a signed network G ′ as follows: we first keep all the

vertices ofG inG ′ and all the edges ofG as positive edges inG ′; then,
we add a new vertex v to G ′ and connect v to all the remaining

vertices in G ′ with negative edges. It’s clear that each maximal

clique C in G corresponds a maximal balanced clique {{v},C} in
G ′ (assume k = 1), and vice versa, which means the maximal clique

enumeration problem inG can be reduced to theMBCE problem in

G ′. As the maximal clique enumeration problem is NP-Hard [6, 42],

our problem is also NP-Hard.

4 A BASELINE ALGORITHM
We first propose a baseline algorithm to address MBCE problem

based on existing methods for maximal clique enumeration [13]

and maximal biclique enumeration [57] in unsigned networks. For a

signed networkG = (V ,E+,E−), we can treat it as the combination

of two unsigned networks G+ = (V ,E+) and G− = (V ,E−). For
any maximal balanced clique C = {CL ,CR } in G, it is clear that CL
(resp. CR ) is a clique in G+ and the subgraph induced by vertices

in CL and CR in G− is a biclique. Therefore, we can enumerate

the maximal balanced cliques in G in two steps: 1) compute all the

maximal cliques in G+ with [13]; 2) for each pair of the computed

maximal cliques Ci and Cj in G
+
, compute the maximal bicliques

in the bipartite subgraph induced by the vertices inCi andCj inG
−

with [57]. The returned maximal bicliques in G− are the maximal

balanced cliques inG . The pseudocode ofBaseline solution is shown
in Algorithm 1. As the pseudocode is self-explained, we omit the

description. Note that although all the maximal cliques in G+ are
enumerated in line 1 of Algorithm 1, Algorithm 1 does not require

that the two component cliques of a maximal balanced clique are

maximal in G+. Algorithm 1 just considers all maximal cliques as

candidate subgraphs for further processing in step 2.

Example 4.1. ConsiderG in Figure 2, assume k = 2, Baseline first
enumerates all the maximal cliques in G+ with size not less than

2, such as {v0,v1,v2,v3}, {v5,v6,v7}, {v5,v6,v8}, {v0,v14}, {v13,
v15}. After that, for each pair of computed maximal cliques, com-

putes the maximal bicliques in the induced bipartite subgraph inG−.

Algorithm 1 Baseline(G = (V , E+, E−), k )

1: enumerate the maximal cliques inG+ = (V , E+) with size not less than

k by [13];

2: for each pair of computed maximal cliques Ci and Cj do
3: enumerate the maximal bicliques in the bipartite subgraph induced

byCi andCj inG− = (V , E−) with size not less than k for both two

parts by [57];

4: remove the duplicate bicliques computed in line 3;

Take {v0,v1,v2,v3} and {v5,v6,v7} as an example, the maximal

biclique in the induced bipartite subgraph in G− are {{v0,v1,v3
}, {v5,v6,v7}} and {{v0,v1,v2,v3}, {v5,v6}} which correspondC1

and C2 inG , respectively. The remaining maximal balanced cliques

can be enumerated similarly.

Theorem 4.2. Given a signed networkG , Baseline enumerates all
the maximal balanced cliques in G correctly.

Proof. We first prove that all the maximal balanced cliques in

G are found. Based on Definition 3.2, if there exists a maximal

balanced clique C = {CL ,CR } in G, the vertices in CL (resp. CR )
must be contained in a maximal cliques C ′L (resp. C ′R ) in G+. As

Baseline considers all the maximal cliques in G+, CL and CR are

not missed in step 1. Following Definition 3.2, CL and CR form

a maximal biclique in G−. In step 2, Baseline enumerates all the

maximal bicliques in the induced subgraph in G− by every pair

of enumerated maximal cliques in step 1. Thus, Baseline can find

all the maximal balanced cliques in G. Moreover, as a maximal

balanced clique maybe contained in multiple pairs of maximal

cliques, Baseline removes all the duplicates in line 4. Therefore,

Baseline outputs each maximal balanced clique once. The theorem

is proved. □

Drawbacks of baseline. SinceBaseline does not consider the unique-
ness of the signed networks and processes MBCE with the tech-

niques for the unsigned networks, it has two drawbacks:

• Memory consumption. Baseline has to store all the maximal

cliques in G+ in memory. The number of maximal cliques

could be exponential to the number of vertices [12], which

makes Baseline unable to handle large networks.

• Efficiency. In baseline, all the maximal cliques in G+ are

enumerated and every pair of maximal cliques are explored.

The time complexity of Baseline isO(TCli+η2 ·TBiCli), where
TBiCli/TCli represent the time complexity ofmaximal (bi)clique

enumeration, and η is the number of enumerated maximal

cliques inG+. Considering the maximal (bi)clique enumera-

tion is time-consuming and the number of maximal cliques

could be very large, it is inefficient forMBCE problem.

5 A NEW ENUMERATION FRAMEWORK
Revisiting baseline, the root leading to its drawbacks discussed

above is that it treats the signed network as a specific combination

of two unsigned networks and utilizes the existing techniques de-

signed for the unsigned networks. Therefore, we have to explore

new techniques by considering the uniqueness of signed networks

to overcome the drawbacks of Baseline and improve the efficiency
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Algorithm 2 MBCEnum(G = (V , E+, E−), k )

1: Flag← true;
2: for each vi ∈ {v0, v1, · · · , vn−1 } ∈ V do
3: CL ← {vi }, CR ← ∅
4: PL ← N +G (vi ) ∩ {vi+1, · · · , vn−1 };
5: PR ← N −G (vi ) ∩ {vi+1, · · · , vn−1 };
6: QL ← N +G (vi ) ∩ {v0, · · · , vi−1 };
7: QR ← N −G (vi ) ∩ {v0, · · · , vi−1 };
8: MBCEnumUtil(CL, CR, PL, PR, QL, QR );

9: Procedure MBCEnumUtil(CL, CR, PL, PR, QL, QR )

10: if PL = ∅ and PR = ∅ and QL = ∅ and QR = ∅ then
11: if |CL | ≥ k and |CR | ≥ k then
12: output C = {CL, CR };
13: return
14: Flag←!Flag;
15: if Flag then
16: for each v ∈ PL do
17: MBCEnumUtil(CL ∪ {v }, CR, N +G (v) ∩ PL, N −G (v) ∩

PR, N +G (v) ∩QL, N −G (v) ∩QR );

18: PL ← PL \ {v }; QL ← QL ∪ {v };
19: for each v ∈ PR do
20: MBCEnumUtil(CL, CR ∪ {v }, N −G (v) ∩ PL, N +G (v) ∩

PR, N −G (v) ∩QL, N +G (v) ∩QR );

21: PR ← PR \ {v }; QR ← QR ∪ {v };
22: else
23: line 19-21; line 16-18;

of the enumeration. In this section, we present a new enumera-

tion framework which aims to address the memory consumption

problem. In next section, we further optimize the enumeration

framework to improve the efficiency.

Lemma 5.1. Given a signed network G, for a balanced clique C =
{CL ,CR } in G, if there is a vertex v in G such that ∀u ∈ CL →
(v,u) ∈ E+ and ∀w ∈ CR → (v,w) ∈ E−, thenC ′ = {CL ∪ {v},CR }
is also a balanced clique in G.

Proof. It can be proved following Definition 3.2 directly. □

According to Lemma 5.1, if we maintain a balanced clique C =
{CL ,CR }, let PL be the set of vertices that are positive neighbors of

all the vertices in CL and negative neighbors of all the vertices in

CR , let PR be the set of vertices that are positive neighbors of all

the vertices in CR and negative neighbors of all the vertices in CL ,
we can enlarge C by adding vertices from PL and PR into CL and

CR , respectively. Furthermore, if we update the PL and PR based on

the new CL and CR accordingly and repeat the above enlargement

procedure, we can obtain a maximal balanced clique when no more

vertices can be added into CL or CR .

Algorithm. Following the above idea, our algorithm for MBCE is

shown in Algorithm 2. For each vertexvi inG (line 2), we enumerate

all the maximal balanced cliques containing vi (line 3-8). Note that
v0,v1, . . . ,vn are in the degeneracy order [48] ofG . We useCL and

CR to maintain the balanced clique, which are initialized with vi
and ∅, respectively (line 3). Similarly, we also initialize PL and PR as

discussed above (line 4-5). Moreover, we use QL and QR to record

the vertices that have been processed to avoid outputting duplicate

maximal balanced cliques (line 6-7). After initializing these six sets,
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Figure 3: Search Tree forMBCEnum
we invoke procedure MBCEnumUtil to enumerate all the maximal

balanced cliques containing vi (line 8).
ProcedureMBCEnumUtil performs the maximal balanced clique

enumeration based on the given six sets. If PL , PR , QL and QR are

empty, which means current balanced clique C = {CL ,CR } cannot
be enlarged and it is a maximal balanced clique, MBCEnumUtil
checks whether CL and CR satisfy the size constraint. If the size

constraint is satisfied, it outputs the maximal balanced clique C
(line 11-12). Otherwise, MBCEnumUtil adds a vertex from PL to

CL , updates the corresponding PL , PR , QL and QR , and recursively

invokes itself to further enlarge the balanced clique (line 17). When

v ∈ PL is processed,v is removed from PL and added inQL (line 18).

Similar processing steps are applied on vertices in PR (line 19-21).

Variable Flag (line 1) is used to control the order of adding new

vertex into CL or CR . With the switch operation in line 14, we can

guarantee that we add vertex into CL , then into CR , recursively.

Correctness of Algorithm 2. We show the correctness of Algo-

rithm 2 from three aspects: (1) the balanced clique outputted in line

12 is maximal. Assume that a balanced clique C outputted in line

12 is not maximal, then based on the vertices maintained in PL and

PR regarding C , at lease PL or PR is not empty, which contradicts

with the outputting condition in line 10. Therefore, the balanced

clique outputted in line 12 is maximal. A special case that needs to

note is the balanced clique exploration caused by the initialization

of PL and PR . For a vertex vi , its positive (negative) neighbors in
v0, · · · ,vi−1 are not added into PL (PR ). As a result, for a maximal

balanced clique C containing vi and other vertices in v0, · · · ,vi−1,
due to the initialization of PL and PR , the vertices in v0, · · · ,vi−1
are not contained in C in Algorithm 2, and PL and PR are empty

regardingC in line 10. However, in this case,QL orQR is not empty

andC still cannot be outputted based on the condition in line 10. (2)

Algorithm 2 outputs all the maximal balanced cliques inG . In line 2,

Algorithm 2 visits each vertex vi . Based on the recursive structure

ofMBCEnumUtil, all the maximal balanced cliques containing vi
are explored. Therefore, it can be proved. (3) No duplicate maximal

balanced cliques are outputted in Algorithm 2. During the recur-

sive enumeration procedure, when we finish the maximal balanced

clique enumeration containing a vertexv , we add the vertex intoQL
(line 6, line 18) or QR (line 7, line 21). Therefore, when we explore

a maximal balanced cliqueC containing a vertex vi andC has been

outputted when processing vj (j < i). Then, vj will be in QL or QR
in line 10 andC will not be outputted duplicately. Combining above

three aspects together, the correctness of Algorithm 2 is proved.

Example 5.2. The enumeration procedure of MBCEnum can be

illustrated as a search tree. Figure 3 shows part of the search tree

when we conduct the MBCE on G in Figure 2 through MBCEnum.
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S1, S2, . . . represent different search states during the enumera-

tion. At S1, we assume that we have a balanced clique C = {CL =
{v0,v1},CR = {v5,v6}}, PL={v2,v3}, PR={v7,v8} at this state. We

first grow search branch by adding v2 from PL into CL . Since v7
and v8 are not v2’s negative neighbors, they are removed from PR
at S2. Because PR is empty at S2, we keep expending CL by adding

v3 from PL . At S3, PL , RL , QL and QR are empty, we obtain a maxi-

mal balanced cliqueC2 = {{v0,v1,v2,v3}, {v5,v6}} and this search
branch starting from v2 finishes. We return back to S1 and v2 is
moved to QL . Then, we add v3 into CL at S4 and add v7 into CR at

S5 and obtain C1 = {{0, 1, 3}, {5, 6, 7}}. The search continues in a

similar way until all the vertices in PL and PR at S1 are explored.

Based on Algorithm 2, it is clear that the memory consumption of

our enumeration framework is linear to the size of the input signed

network. Therefore, the drawback of large memory consumption

in Baseline is avoided.

6 OPTIMIZATION STRATEGIES
Although Algorithm 2 addresses the memory consumption prob-

lem in MBCE, the efficiency of Algorithm 2 is disappointing. In

this section, we present two optimization strategies, namely in-

enumeration optimization and pre-enumeration optimization, to

further improve the efficiency of the enumeration.

6.1 In-Enumeration Optimization

Branch Pruning. Branch pruning aims to prune the unfruitful

branches in the search tree of Algorithm 2 to improve the perfor-

mance.

Pivot Choosing. Consider the maximal balanced clique search

procedure of Algorithm 2, assume that we currently have CL , CR ,
PL and PR , and we add a vertex v from PL to CL in line 17. After

finishing the search starting from v , we do not need to further

explore the positive neighbors ofv in the for loop of line 16 and the

negative neighbors ofv in the for loop of line 19. The reasons are as

follows: w.o.l.g, let v ′ be a positive neighbor of v , although we skip

the maximal balanced clique search starting fromv ′, these maximal

balanced cliques containing v ′ must be explored by the searching

branches starting v or neighbors of v ′. Therefore skipping the

search starting from v’s neighbors does not affect the correctness
of Algorithm 2.

In this paper, to maximum the benefits of pivot technology, we

define the local degree for a vertexv ∈ PL∪QL(PR ∪QR ) as dl (v) =

|N+(−)(v) ∩ PL | + |N
−(+)(v) ∩ PR |, and we choose the vertex v that

satisfiesmaxv ∈V ′{dl (v)} as the pivot, whereV
′ = PL∪PR∪QL∪QR .

Candidate Selection. In the search procedure of Algorithm 2,

heuristically, search starting from a vertex with small local degree

will have a short and narrow search branch, whichmeans the search

starting from the vertex will be finished very fast. Moreover, due

to the search finish of the vertex, the vertex will be added into

the excluded set and it can be used to further prune other search

branches. Therefore, instead of adding vertices from PL and PR
into CL and CR randomly in line 16 and 19 of Algorithm 2, we add

vertices in the increasing order of their local degrees.

Algorithm 3 MBCEnum∗(G = (V , E+, E−), k )

1: line 1-7 of Algorithm 2;

2: MBCEnumUtil∗(CL, CR, PL, PR, QL, QR );

3: Procedure MBCEnumUtil∗(CL, CR, PL, PR, QL, QR )

4: line 10-13 of Algorithm 2;

5: if |CL | + |PL | < k or |CR | + |PR | < k then
6: return; // ET Rule 1
7: if ∃v ∈ QL , s.t., PL ⊆ N +G (v) and PR ⊆ N −G (v) or ∃v ∈ QR , s.t.,

PR ⊆ N +G (v) and PL ⊆ N −G (v) then
8: return ; // ET Rule 2
9: if ∀pl ∈ PL , s.t., PL ⊆ {{pl } ∪ N +G (pl )} and PR ⊆ N −G (pl ) and∀pr ∈ PR , s.t., PR ⊆ {{pr } ∪ N +G (pr )} and PL ⊆ N −G (pr ) then
10: output C = {CL ∪ PL, CR ∪ PR };
11: return ; // ET Rule 3
12: Flag←!Flag;
13: p ← argmaxv∈PL∪PR∪QL∪QR

{dl (v)}; // Pivot Choosing
14: /* assume p from PL ∪QL */

15: newPL ← PL \ N +G (p);
16: newPR← PR \ N −G (p);
17: sort(newPL); sort(newPR); // Candidate Selection
18: if Flag then
19: for each v ∈ newPL
20: line 17-18 replacing MBCEnumUtil with MBCEnumUtil∗;
21: for each v ∈ newPR
22: line 20-23 replacing MBCEnumUtil with MBCEnumUtil∗;

Early Termination. We consider different conditions that we can

terminate the search early in Algorithm 2. For a balanced clique

C = {CL ,CR }, the maximal possible size of CL (CR ) for the final
maximal balanced clique is |CL | + |PL | (|CR | + |PR |). Based on the

size constraint of k , we have the following rule:

• ET Rule 1: If |CL | + |PL | < k or |CR | + |PR | < k , we can
terminate current search directly.

In Algorithm 2, we useQL andQR to store such vertices that the

maximal balanced cliques containing them have been enumerated.

Therefore, during the enumeration, if there exists a vertex v ∈
QL(QR ) such that PL(PR ) ⊆ N+G (v) and PR (PL) ⊆ N−G (v), then
we can conclude that the maximal balanced cliques have been

enumerated. Following this, we have our second rule:

• ET Rule 2: If ∃v ∈ QL , s.t., PL ⊆ N+G (v) and PR ⊆ N−G (v)

or ∃v ∈ QR , s.t., PR ⊆ N+G (v) and PL ⊆ N−G (v), then we can

terminate current search directly.

In a certain search of Algorithm 2, if all the vertices in PL (PR )
consist a clique formed by positive edges and every vertex in PL
(PR ) has negative edges to all the vertices in PR (PL), then PL and

PR consist a balanced clique. Then, based on Definition 3.2,CL ∪PL
andCR ∪PR consist a maximal balanced clique. Therefore, we have

our third early termination rule:

• ET Rule 3: If ∀pl ∈ PL , s.t., PL ⊆ {{pl } ∪ N+G (pl )} and

PR ⊆ N−G (pl ) and ∀pr ∈ PR , s.t., PR ⊆ {{pr } ∪ N+G (pr )} and
PL ⊆ N−G (pr ), we can output C = (CL ∪ PL ,CR ∪ PR ) and
terminate current search directly.

Note that, in order to avoid outputting duplicate maximal bal-

anced cliques, ET Rule 3 must be applied after ET Rule 2.
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Algorithm. The maximal balanced clique enumeration algorithm

with in-enumeration optimization strategies is shown in Algo-

rithm 3. Since the pseudocode is self-explained, we omit the detailed

description here.

Theorem 6.1. Given a signed network G, the time complexity
of Algorithm 3 to enumerate the maximal balanced cliques in G is
O(σn · 3σ /3), where σ is the degeneracy number of G.

Proof. Given a graphG , the degeneracy number ofG is σ 1
. Let

P = PL ∪ PR , Q = QL ∪ QR , we first prove the size constraint

for P . In line 2 of Algorithm 2, we iterates vi in the degeneracy

order of G and vertices with a lower order than vi are not in-

cluded in P . Therefore, for P regarding vi , we have |P | ≤ σ . Then,
we analyse the time complexity of MBCEnumUtil∗. In detail, ET

Rule 1 can be done in O(1) time. For ET Rule 2, we need to get

local neighbors (within P ) for each vertex in Q , it costs O(|Q | |P |)
time. Similarly, for ET Rule 3, the time complexity for getting local

neighbors for vertices in P isO(|P |2). Moreover, pivot selection and

candidates sort consumeO(|P |+ |Q |) time andO(|P | log |P |) time, re-

spectively, based on above computation. So far, the time complexity

isO(|P |(|P |+ |Q |)). And because each recursion forMBCEnumUtil∗

can invoke at most |P | further recursion, so the further time com-

plexity is O(|P |2(|P | + |Q |)). Now, we formulate the time com-

plexity function forMBCEnumUtil∗ with parameters |P | and |Q |,
namely T (|P |, |Q |) = maxs {

∑s
i=1[T (|P

′
i |, |Q |)]} + |P |

2(|P | + |Q |),
note that P ′i is the new candidates reduced by neighbors of i-th
vertex in the rest candidates. As we choose a vertex with max-

imum pruning size as pivot, we get |P ′i | < |P | − s where s is

the size of the rest candidates after pivot pruning. Hence we get

T (|P |, |Q |) ≤ maxs {sT (|P | − s, |Q |)} + |P |
2(|P | + |Q |), it’s proved

that T (|P |, |Q |) can be bounded by O((σ + |Q |) · 3 |P |/3)[12]. Sum
the time of T (|P |, |Q |) for n vertices, the finally time complexity is∑n
i=1[(σ + |Qi |) · 3

|Pi |/3] = O((σn +m) · 3σ /3) = O(σn · 3σ /3) due
to the size constraint of P . □

6.2 Pre-Enumeration Optimization
In pre-enumeration optimization, we aim to remove the unpromis-

ing vertices and edges that not contained in any maximal balanced

cliques based on their structural information. We explore two op-

timization strategies based on the neighbors of a vertex and the

common neighbors of an edge.

Vertex Reduction. To reduce the size of a signed network, we first
consider the neighbors of each vertex v , i.e., N+G (v) and N−G (v) to
remove the unpromising vertices. We first define:

Definition 6.2. ((l , r )-signed core) Given a signed network G =
(V ,E+,E−), two integers l and r , a (l , r )-signed core is a maximal

subgraph C of G, s.t., minv ∈C{d
+
C
(v)} = l , minv ∈C{d

−
C
(v)} = r .

Lemma 6.3. Given a signed networkG and threshold k , a maximal
balanced clique satisfying the size constraint with k is contained in a
(k − 1,k)-signed core.

Proof. We can prove it by contradiction. Assume there is a

vertexv in a maximal balancedC satisfying the size constraint with

1
Given a graph G , its degeneracy number, namely σ , is the least d such that the

vertices of G can be arranged in a sequence so that each vertex is adjacent to at most

d of the vertices that follow it in the sequence [48].

Algorithm 4 VertexReduction(G = (V , E+, E−), k )

1: while ∃v ∈ V , s.t. d+G (v) < k − 1 or d−G (v) < k do
2: for each u ∈ N +G (v) do
3: d+G (u) ← d+G (u) − 1;
4: for each u ∈ N −G (v) do
5: d−G (u) ← d−G (u) − 1;
6: G ← G \ v ;
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Figure 4: Vertex Reduction and Edge Reduction
k but not in a (k − 1,k)-signed core. Based on Definition 3.2, the

positive degree ofv inC is not less thank−1 and the negative degree
of v in C is not less than k . This contradicts with our assumption.

Thus, the lemma holds. □

Therefore, in order to compute the maximal balanced cliques in

a given signed networkG with integer k , we only need to compute

the maximal balanced cliques in the corresponding (k −1,k)-signed
core of G. The remaining problem is how to efficiently compute

the (k − 1,k)-signed core. We propose a linear algorithm to address

this problem, which is shown in Algorithm 4.

Algorithm. Based on Definition 6.2, to compute the (k − 1,k)-
signed core in the signed network G, we only need to identify the

vertices like v with d+G (v) < k − 1 or d−G (v) < k and remove them

from G. Due to the removal of such vertices, more vertices will be

with positive degree less than k − 1 or negative degree less than k ,
we can further remove these vertices until no such kind of vertices

exist in G. Following this idea, in Algorithm 4, we first identify a

vertex v with d+G (v) < k − 1 or d−G (v) < k (line 1). Since v will

be removed from G, we decrease the positive degree by 1 for each

positive neighbor of v (line 2-3) and decrease the negative degree

by 1 for each negative neighbor of v (line 4-5). Then, we remove

v from G (line 6). The algorithm terminates when no vertex with

d+G (v) < k − 1 or d−G (v) < k exists in G (line 1). It is clear that

Algorithm 4 correctly computes the (k − 1,k)-signed core ofG . And
we have the following theorem regarding its efficiency.

Theorem 6.4. Given a signed network G and an integer k , the
time complexity of Algorithm 4 is O(n +m).

Proof. In Algorithm 4, we use a queue to store vertices that

should be removed in line 6. Since every vertex is pushed in and

popped from the queue at most once, the total processing time for

this part is O(n). Moreover, when a vertex is removed, we have to

update the degrees for their neighbors once, the total time cost is

O(m). Therefore, the time complexity of Algorithm 4 isO(n+m). □

Example 6.5. Let k = 2, Figure 4 shows an example of vertex

reduction by Algorithm 4 on the signed network G in Figure 2.
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Figure 5: Different types of common neighbors for (u,v)
v4,v12,v16,v17,v18,v19 are pruned, because they are not contained
in the (1, 2)-signed core.

Edge Reduction. In this part, we explore the opportunities to re-

move unpromising edges with respect toMBCE by considering the

common neighbors of an edge formed by different types of edges.

Specifically, for a positive/negative edge (u,v), we define the edge
common neighbor number:

Definition 6.6. (Edge Common Neighbor Number) Given a

signed network G = (V ,E+,E−), for a positive edge (u,v), we
define:

• δ++G (u,v) = |{w |(u,w) ∈ E
+ ∧ (v,w) ∈ E+}|

• δ−−G (u,v) = |{w |(u,w) ∈ E
− ∧ (v,w) ∈ E−}|

for a negative edge (u,v), we define:

• δ+−G (u,v) = |{w |(u,w) ∈ E
+ ∧ (v,w) ∈ E−}|

• δ−+G (u,v) = |{w |(u,w) ∈ E
− ∧ (v,w) ∈ E+}|

Figure 5 shows the different types of common neighbors used

in Definition 6.6. For a positive edge (u,v), Figure 5 (a) and (b)

show the common neighbor w used in δ++G (u,v) and δ−−G (u,v),
respectively. For a negative edge (u,v), Figure 5 (c) and (d) show the

common neighborw used in δ+−G (u,v) and δ
−+
G (u,v), respectively.

Note thatG is undirected and every edge is stored once inG . Based
on Definition 6.6, we have the following lemma:

Lemma 6.7. Given a signed network G and an integer k , let G ′ be
the maximal sub-network of G s.t.,

(1) ∀(u,v) ∈ E+G′ → δ++G′ (u,v) ≥ k − 2 ∧ δ−−G′ (u,v) ≥ k ;
(2) ∀(u,v) ∈ E−G′ → δ+−G′ (u,v) ≥ k − 1 ∧ δ−+G′ (u,v) ≥ k − 1;

then, every maximal balanced clique C = {CL ,CR } in G satisfying
the size constraint with k is contained in G ′.

Proof. This lemma can be proved similarly as Lemma 6.3. □

Algorithm.With Lemma 6.7, in order to enumerate the maximal

balanced cliques in a given signed network G with respect k , we
only need to keep the edges in G ′ shown in Lemma 6.7 and the

positive/negative edges not in G ′ can be safely pruned. Now we

focus on efficiently computing G ′ and our algorithm is shown in

Algorithm 5. We first compute δ++G (u,v) and δ−−G (u,v) for each

positive edge of G (line 1-2) and δ+−G (u,v) and δ
−+
G (u,v) for each

negative edge of G (line 3-4). Following Lemma 6.7, for each pos-

itive edge (u,v) such that δ++G (u,v) < k − 2 or δ−−G (u,v) < k , we
remove (u,v) (line 9). After that, we decrease the corresponding
edge common neighbor numbers that have been changed due to the

removal of (u,v) for the edge incident to (u,v) (line 10-15) based on
Definition 6.6. Similarly, for each negative edge not satisfying the

conditions in Lemma 6.7, we remove it and decrease the correspond-

ing edge common neighbor numbers (line 17-24). The algorithm

terminates when all the edges satisfy conditions in Lemma 6.7.

Algorithm 5 EdgeReduction(G = (V , E+, E−), k )

1: for each (u, v) ∈ E+ do
2: compute δ++G (u, v) and δ

−−
G (u, v);

3: for each (u, v) ∈ E− do
4: compute δ+−G (u, v) and δ

−+
G (u, v);

5: Stop← false;
6: while Stop = false do
7: Stop← true;
8: if ∃(u, v) ∈ E+, s.t δ++G (u, v) < k − 2 or δ−−G (u, v) < k then
9: G ← G \ (u, v);
10: for each w s.t. (u, w ) ∈ E+ and (v, w ) ∈ E+ do
11: δ++G (u, w ) ← δ++G (u, w ) − 1;
12: δ++G (v, w ) ← δ++G (v, w ) − 1;
13: for each w s.t.(u, w ) ∈ E− and (v, w ) ∈ E− do
14: δ+−G (u, w ) ← δ+−G (u, w ) − 1;
15: δ+−G (v, w ) ← δ+−G (v, w ) − 1;
16: Stop← false;
17: if ∃(u, v) ∈ E− s.t. δ+−G (u, v) < k − 1 or δ−+G (u, v) < k − 1 then
18: G ← G \ (u, v);
19: for each w s.t. (u, w ) ∈ E+ and (v, w ) ∈ E− do
20: δ−−G (u, w ) ← δ−−G (u, w ) − 1;
21: δ−+G (v, w ) ← δ−+G (v, w ) − 1;
22: for each w s.t. (u, w ) ∈ E− and (v, w ) ∈ E+ do
23: δ−+G (u, w ) ← δ−+G (u, w ) − 1;
24: δ−−G (v, w ) ← δ−−G (v, w ) − 1;
25: Stop← false;

Theorem 6.8. Given a signed networkG = (V ,E+,E−), an integer
k , the time complexity of Algorithm 5 is O(m1.5).

Proof. We first prove that the time complexity of line 1-2 of

Algorithm 5 can be bounded by O(m1.5), which follows the idea

in [7]. Let dG (v) = d
+
G (v) + d

−
G (v) and assume that dG (u) < dG (v).

To compute the δ++G (u,v), we can do it as follows: for each w ∈

N+G (u), we check whether (v,w) ∈ E
+
. If (v,w) ∈ E+ then δ++G (u,v)

increases by 1. Otherwise, δ++G (u,v) keep the same. In this way, the

time complexity of line 1-2 to compute δ++G (u,v) isO(
∑
u ∈V (d

+(u) ·

|N+≥u |)), where |N
+
≥u | is the number of positive neighbors v of u

s. t. dG (u) < dG (v). Obviously, O(
∑
u ∈V (d

+(u) · |N+≥u |)) can be

bounded by O(
∑
u ∈V (d(u) · |N≥u |)), where |N≥u | is the number of

neighbors v of u s. t. dG (u) < dG (v). O(
∑
u ∈V (d(u) · |N≥u |)) can

be bounded by O(m1.5). This is because if dG (u) ≤
√
m, |N≥u | ≤

dG (u) ≤
√
m and

∑
u ∈V (dG (u) · |N≥u |) ≤ 2m1.5

. If dG (u) >
√
m,

|N≥u | ≤
√
m as well for dG (u) · |N≥u | ≤

∑
v ∈ |N≥u | dG (v) < 2m,

and

∑
u ∈V (dG (u) · |N≥u |) ≤ 2m1.5

. Similarly, we can prove that

line 3-4 can be bounded by O(m1.5). And similar to line 6-25. So,

the time complexity of Algorithm 5 is O(m1.5). □

Example 6.9. Let k = 2, Figure 4 shows the result of edge re-

duction on G in Figure 2. As shown in Figure 4, {v9,v10,v11}
cannot be pruned by vertex reduction directly, as they are con-

tained in a (1, 2)-signed core. However, with edge reduction, as

δ−−G (v8,v9)=1<2, (v8,v9) is removed. Then, (v6,v9) and (v7,v9)

are removed as δ−+G (v6,v9)=0<1 and δ−+G (v7,v9)=0<1. As v9 has
no edges afterwards, it is pruned. v10 and v11 are pruned similarly.
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Table 1: Statistic for the real datasets
Dataset n m |E+ | |E− |

AdjWordNet 21,247 426,896 378,993 47,903

Slashdot 77,357 516,575 396,378 120,197

Epinions 131,828 841,372 717,667 123,705

DBLP 1,314,050 5,179,945 1,471,903 3,708,042

Douban 1,588,565 13,918,375 9,034,537 4,883,838
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Figure 6: Running time of different algorithms varying k

7 PERFORMANCE STUDIES
In this section, we present our experimental results. All the exper-

iments are performed on a machine with two Intel Xeon 2.2GHz

CPUs and 64GB RAM running CentOS 7.

Algorithms. We compare three algorithms: Baseline , MBCEnum
and MBCEnum∗. Baseline is the baseline solution shown in Sec-

tion 4.MBCEnum is our algorithm shown in Section 5.MBCEnum∗

is the algorithm with the in-enumeration optimization shown in

Section 6.1. Note that the pre-enumeration optimization strategies

can be also used in Baseline and MBCEnum, thus, we apply them

for all three algorithms for fairness.

All algorithms are implemented in C++, using g++ complier with

-O3. The time cost is measured as the amount of wall-clock time

elapsed during the program’s execution. If an algorithm cannot fin-

ish in 12 hours, we denote the processing time as INF. We evaluate

our algorithms on real and synthetic signed networks.

Real datasets.Wefirst evaluate our algorithms on five real datasets.

Slashdot and Epinions are signed networks in real world. Adj-

WordNet, DBLP and Douban are signed networks used in [8],

[27] and [50], respectively. Slashdot and Epinioins are downloaded
from SNAP (http://snap.stanford.edu). Douban is from authors in

[50]. AdjWordNet is downloaded from WordNet (https://wordnet.

princeton.edu/).DBLP is downloaded from KONECT (http://konect.

uni-koblenz.de/) and processed the same as shown in [27]. The

details of each dataset are shown in Table 1.

Exp-1: Efficiency when varying k . In this experiment, we evalu-

ate the efficiency of three algorithms when varying k from 4 to 10

and the results are shown in Figure 6.

As shown in Figure 6, Baseline consumes the most time among

three algorithms on all datasets when we vary k and it can only

handle the small datasets. For example, on Slashdot (Figure 6 (a)),
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Figure 7: Pruned edges by pre-enumeration optimizations
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Figure 8: Running time of pre-enumeration optimizations

MBCEnum andMBCEnum∗ are at least two orders of magnitude

faster than Baseline . OnDouban (Figure 6 (d)), Baseline cannot fin-
ish the enumeration in 12 hours. This is because Baseline does not
consider the uniqueness of the signed networks and lots of unnec-

essary computations are involved in the enumeration of Baseline
. MBCEnum is faster than Baseline on most of the test cases as

MBCEnum takes the uniqueness of the signed networks into con-

sideration and enumerates the maximal balanced cliques based on

the signed network directly. MBCEnum∗ is the most efficient al-

gorithm on all datasets when varying k due to the utilization of

in-enumeration optimization strategies, which reveals the effective-

ness of in-enumeration optimization strategies. Another phenom-

ena shown in Figure 6 is that the running time of all algorithms

decreases as k increases. This is because as k increases, the prun-

ing power of the optimization strategies proposed in Section 6

strengthens.

Exp-2: Evaluation of the pre-enumeration optimization. In
this experiment, we evaluate the effectiveness and efficiency of the

pre-enumeration optimization strategies proposed in Section 6.2.

We report the number of pruned edges for VertexReduction and

the sum of pruned edges for VertexReduction and EdgeReduction
when varying k in Figure 7. Figure 8 shows the running time.
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Figure 9: Scalability ofMBCEnum andMBCEnum∗

As shown in Figure 7, for VertexReduction, as k increases, the

number of pruned edges increases as well. This is because as k in-

creases, more vertices are not contained in the corresponding (k −
1,k)-signed core. These vertices together with their incident edges

are pruned. Figure 7 also reveals that EdgeReduction prunes much

more edges than VertexReduction. This is because EdgeReduction
adopts a more restrict pruning condition. Figure 8 shows that as k
increases, the running time of VertexReduction increases. Since as

k increases, more vertices are explored by VertexReduction. On the

other hand, the running time of them together decreases. This is be-

cause as k increases, more vertices are pruned by VertexReduction.
As a result, EdgeReduction takes less time to conduct the prun-

ing. Meanwhile, EdgeReduction is more time-consuming compared

with VertexReduction. Thus, the running time together decreases.

Exp-3: Scalability testing. In this experiment, we test the scala-

bility ofMBCEnum andMBCEnum∗ on two large datasets DBLP
and Douban by varying their vertices from 20% to 100%. Figure 9

shows the results.

As shown in Figure 9, when n increases, the running time of

both algorithms increases as well, but MBCEnum∗ outperforms

MBCEnum for all cases on both datasets. For example, on DBLP,
when we sample 20% vertices, the running time of MBCEnum and

MBCEnum∗ is 0.6 seconds and 0.5 seconds, respectively, while

when sampling 80% vertices, their running times are 770.6 seconds

and 4.0 seconds, respectively. It shows thatMBCEnum∗ has a good
scalability in practice.

Exp-4: Case study on AdjWordNet. In this experiment, we per-

form a case study on the real dateset AdjWordNet. In this dataset,

two synonyms have a positive edge and two antonyms have a nega-

tive edge, and Table 2 shows some results obtained by our algorithm.

As shown in Table 2, words inCL orCR have similar meaning while

each word from CL is an antonym to all words in CR . This case
study verifies that maximal balanced clique enumeration can be

applied in the applications to find synonym and antonym groups

on dictionary data.

Exp-5: Efficiency on synthetic datasets. In this experiment, we

evaluate our algorithms on synthetic datasets. We use the synthetic

signed network generator, SRN, to generate the synthetic datasets

with default settings [45, 56]. We generate four synthetic signed

networks SN1-4 (details in Table 3) in different sizes and evaluate

the efficiency of MBCEnum∗ and MBCEnum on SN1-4 similarly

as Exp-1. The results are shown in Figure 10.

As shown in Figure 10, the trends on the synthetic datasets

are similar to that on the real datasets. MBCEnum∗ outperforms

MBCEnum when we vary k , especially when k is small.

Table 2: Case study on AdjWordNet
CL CR
raw, rough, rude refined, smooth, suave

relaxing, reposeful, restful restless,uneasy, ungratified,

unsatisfied

interior, internal, intimate away, foreign, outer, outside,

remote

assumed, false, fictitious, fic-

tive, mistaken, off-key, pre-

tended, put-on, sham, sour, un-

true

actual, existent, existing, fac-

tual, genuine, literal, real, tan-

gible, touchable, true, truthful,

unfeigned, veridical

active, animated, combat-

ready, dynamic, dynamical,

fighting, participating, alive,

live

adynamic, asthenic, debili-

tated, enervated, undynamic,

stagnant, light

following, undermentioned,

next

ahead, in-the-lead, leading,

preeminent, prima, star, star-

ring, stellar

undesirable, unsuitable, un-

wanted

cherished, treasured, wanted,

precious

Table 3: Statistic for the synthetic datasets
Dataset n m |E+ | |E− |
SN1 500,000 17,535,536 10,192,418 7,343,118

SN2 1,000,000 35,054,718 20,373,721 14,680,997

SN3 2,000,000 70,156,704 40,776,222 29,380,482

SN4 3,000,000 105,218,600 61,159,457 44,059,143
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Figure 10: Running time of different algorithms varying k

8 CONCLUSIONS
In this paper, we study the maximal balanced clique enumeration

problem in signed networks. We propose a new enumeration algo-

rithm tailored for signed networks. Based on the new enumeration

algorithm, we explore two optimization strategies to further im-

prove the efficiency of the enumeration algorithm. The experimen-

tal results on real and synthetic datasets demonstrate the efficiency,

effectiveness and scalability of our solution.
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