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Abstract

We propose a simple and computationally efficient method for dense subgraph discovery
in graph-structured data, which is a classic problem both in theory and in practice. It is well
known that dense subgraphs can have strong correlation with structures of interest in real-world
networks across various domains such as social networks, communication systems, financial
markets, and biological systems [16]. Consequently, this problem arises broadly in modern data
science applications, and it is of great interest to design algorithms with practical appeal.

For the densest subgraph problem, which asks to find a subgraph with maximum average
degree, Charikar’s greedy algorithm [3, 8] is guaranteed to find a 2-approximate optimal solution.
Charikar’s algorithm is very simple, and can typically find result of quality much better than
the provable factor 2-approximation, which makes it very popular in practice. However, it is
also known to give suboptimal output in many real-world examples. On the other hand, finding
the exact optimal solution requires the computation of maximum flow [17, 14, 22]. Despite the
existence of highly optimized maximum flow solvers, such computation still incurs prohibitive
computational costs for the massive graphs arising in modern data science applications.

We devise a simple iterative algorithm which naturally generalizes the greedy algorithm
of Charikar. Moreover, although our algorithm is fully combinatorial, it draws insights from
the iterative approaches from convex optimization, and also exploits the dual interpretation
of the densest subgraph problem. We have empirical evidence that our algorithm is much
more robust against the structural heterogeneities in real-world datasets, and converges to the
optimal subgraph density even when the simple greedy algorithm fails. On the other hand,
in instances where Charikar’s algorithm performs well, our algorithm is able to quickly verify
its optimality. Furthermore, we demonstrate that our method is significantly faster than the
maximum flow based exact optimal algorithm. We conduct experiments on real-world datasets
from broad domains, and our algorithm achieves ∼145× speedup on average to find subgraphs
whose density is at least 90% of the optimal value.

∗Work done when author was at Georgia Tech.
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1 Introduction

Finding dense components in graphs is a major topic in graph mining with diverse applications
including DNA motif detection, unsupervised detection of interesting stories from micro-blogging
streams in real time, indexing graphs for efficient distance query computation, and anomaly detec-
tion in financial networks, and social networks [16]. The densest subgraph problem (DSP) is one of
the major formulations for dense subgraph discovery, where, given an undirected weighted graph
G(V,E,w) we want to find a set of nodes S ⊆ V that maximizes the degree density w(S)/|S|, where
w(S) is the sum of the weights of the edges in the graph induced by S. When the weights are non-
negative, the problem is solvable in polynomial time using maximum flows [17]. Since maximum
flow computations are expensive despite the theoretical progress achieved over the recent years,
Charikar’s greedy peeling algorithm is frequently used in practice [8]. This algorithm iteratively
peels the lowest degree node from the graph, thus producing a sequence of subsets of nodes, of
which it outputs the densest one. This simple, linear time and linear space algorithm provides a
1/2-approximation for the DSP. However, when the edge weights are allowed to be negative, the
DSP becomes NP-hard [36].

Our work was originally motivated by a natural question: How can we quickly assess whether
the output of Charikar’s algorithm on a given graph instance is closer to optimality or to the
worst case 1

2 -approximation guarantee? However, we ended up answering the following intriguing
question that we state as the next problem:

Problem 1.1. Can we design an algorithm that performs (i) as well as Charikar’s greedy
algorithm in terms of efficiency, and (ii) as well as the maximum flow-based exact algorithm
in terms of output quality?

Contributions. The contributions of this paper are summarized as follows:
• We design a novel algorithm Greedy++ for the densest subgraph problem, a major dense

subgraph discovery primitive that “lies at the heart of large-scale data mining” [5]. Greedy++
combines the best of two different worlds, the accuracy of the exact maximum flow based algorithm
[17, 14], and the efficiency of Charikar’s greedy peeling algorithm [8].
• It is worth outlining that Charikar’s greedy algorithm typically performs better on real-world

graphs than the worse case 1/2-approximation; on a variety of datasets we have tried, the worst case
approximation was 0.8. Nonetheless, the only way to verify how close the output is to optimality
relies on computing the exact solution using maximum flow. Our proposed method Greedy++ can
be used to assess the accuracy of Charikar’s algorithm in practice. Specifically, we find empirically
that for all graph instances where Greedy++ after a couple of iterations does not significantly
improve the output density, the output of Charikar’s algorithm is near-optimal.
•We implement our proposed algorithm in C++ and apply it on a variety of real-world datasets.

We verify the practical value of Greedy++. Our empirical results indicate that Greedy++ is a
valuable addition to the toolbox of dense subgraph discovery; on real-world graphs, Greedy++ is
both fast in practice, and converges to a solution with an arbitrarily small approximation factor.

Notation. Let G(V,E) be a undirected graph, where |V | = n, |E| = m. For a given subset of
nodes S ⊂ V , e[S] denotes the number of edges induced by S. When the graph is weighted, i.e.,
there exists a weight function w : E 7→ R+, and w(S) denotes the sum of the weights of the edges
induced by S. We use N(u) to define the set of neighbors of u, and deg(u) = |N(u)|. We use
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degS(u) to denote u’s degree in S, i.e., the number of neighbors of u within the set of nodes S. We
use degmax to denote the maximum degree in G. Finally, the degree density ρ(S) of a vertex set

S ⊆ V is defined as e[S]
|S| , or w(S)

|S| when the graph is weighted.

2 Related Work

Dense subgraph discovery. Detecting dense components is a major problem in graph mining.
It is not surprising that many different notions of a dense subgraph are used in practice. The
prototypical dense subgraph is a clique. However, the maximum clique problem is not only NP-
hard, but also strongly inapproximable, see [19]. The notion of optimal quasi-cliques has been
developed to detect subgraphs that are not necessarily fully interconnected but very dense [35].
However, finding optimal quasi-cliques is also NP-hard [21, 34]. Another popular and scalable
approach to finding dense components is based on k-cores [12]. Recently, k-cores have also been
used to detect anomalies in large-scale networks [15, 29].

The interested reader may refer to the recent survey by Gionis and Tsourakakis on the more
broad topic of dense subgraph discovery [16]. In the following, we only provide a brief overview of
work related to the densest subgraph problem.

Densest subgraph problem (DSP). The goal of the densest subgraph problem (DSP) is to find
the set of nodes S which maximizes the degree density ρ(S). The densest subgraph can be identified
in polynomial time by solving a maximum flow problem [14, 22, 17]. Charikar [8] proved that the
greedy algorithm proposed by Asashiro et al.1 [3] produces a 1/2-approximation of the densest
subgraph in linear time. To obtain fast algorithms with better approximation factors, McGregor
et. al. [25], and Mitzenmacher et. al. [26] uniformly sparsified the input graph, and computed the
densest subgraph in the resulting sparse graph. The first near-linear time algorithm for the DSP,
given by Bahmani et. al. [4], relies on approximately solving the LP dual of the DSP. It is worth
mentioning that Kannan and Vinay [20] gave a spectral O(log n) approximation algorithm for a
related notion of density.

Charikar’s greedy peeling algorithm. Since our algorithm Greedy++ is an improvement
over Charikar’s greedy algorithm, we discuss the latter algorithm in greater detail. The algorithm
removes in each iteration, the node with the smallest degree. This process creates a nested sequence
of sets of nodes V = Sn ⊃ Sn−1 ⊃ Sn−2 ⊃ . . . ⊃ S1 ⊃ ∅. The algorithm outputs the graph G[Sj ]
that maximizes the degree density among j = 1, . . . , n. The pseudocode is shown in Algorithm 1.

Fast numerical approximation algorithms for DSP. Bahmani et. al. [4] approached the DSP
via its dual problem, which in turn they reduced to O(log n) instances of solving a positive linear
program. To solve these LPs, they employed the multiplicative weights update framework [2, 27]
to achieve an ε-approximation in O(log n/ε2) iterations, where each iteration requires O(m) work.

Notable extensions of the DSP. The DSP has been studied in weighted graphs, as well as
directed graphs. When the edge weights are non-negative, both the maximum flow algorithm and
Charikar’s greedy algorithm maintain their theoretical guarantees. In the presence of negative
weights, the DSP in general becomes NP-hard [36]. For directed graphs Charikar [8] provided a
linear programming approach which requires the computation of n2 linear programs and a 1/2-
approximation algorithm which runs in O(n3 + n2m) time. Khuller and Saha have provided more

1Despite the fact that the greedy algorithm was originally proposed in [3], it is widely known as Charikar’s greedy
algorithm.
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Algorithm 1 Greedy

Input: Undirected graph G
Output: A dense subgraph of G: Gdensest.

1: Gdensest ← G
2: H ← G;
3: while H 6= ∅ do
4: Find the vertex u ∈ H with minimum degH(u);
5: Remove u and all its adjacent edges uv from H;
6: if ρ(H) > ρ(Gdensest) then
7: Gdensest ← H
8: end if
9: end while

10: Return Gdensest.

efficient implementations of the exact and approximation algorithms for the undirected and directed
versions of the DSP [22]. Furthermore, Tsourakakis et al. recently extended the DSP to the k-
clique, and the (p, q)-biclique densest subgraph problems [33, 26]. These extensions can be used
for finding large near-cliques in general graphs and bipartite graphs respectively. The DSP has
also been studied in the dynamic setting [7, 10, 28], the streaming setting [5, 7, 25, 11], and in the
MapReduce computational model [5]. Bahmani, Goel, and Munagala use the multiplicative weights
update framework [2, 27] to design an improved MapReduce algorithm [4]. We discuss this method
in greater detail in Section 3. Tatti and Gionis [32] introduced a novel graph decomposition known
as locally-dense, that imposes certain insightful constraints on the k-core decomposition. Further,
efficient algorithms to find locally-dense subgraphs were developed by Danisch et al. [9].

We notice that in the DSP there are no restrictions on the size of the output. When restrictions
on the size of S are imposed the problem becomes NP-hard. The densest-k-subgraph problem asks
for find the subgraph S with maximum degree density among all possible sets S such that |S| = k.
The state-of-the art algorithm is due to Bhaskara et al. [6], and provides a O(n1/4+ε) approximation
in O(n1/ε) time. A long standing question is closing the gap between this upper bound and the
lower bound. Other versions where |S| ≥ k, |S| ≤ k have also been considered in the literature see
[1].

3 Proposed Method

3.1 The Greedy++ algorithm

As we discussed earlier, Charikar’s peeling algorithm greedily removes the node of smallest degree
from the graph, and returns the densest subgraph among the sequence of n subgraphs created by
this procedure. While ties may exist, and are broken arbitrarily, for the moment it is useful to
think as if Charikar’s greedy algorithm produces a single permutation of the nodes, that naturally
defines a nested sequence of subgraphs.

Algorithm description. Our proposed algorithm Greedy++ iteratively runs Charikar’s peeling
algorithm, while keeping some information about the past runs. This information is crucial, as it
results in different permutations, that naturally yield higher quality outputs. The pseudocode for
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Greedy++ is shown in Algorithm 2. It takes as input the graph G, and a parameter T of the
number of passes to be performed, and runs an iterative, weighted peeling procedure. In each round
the load of each node is a function of its induced degree and the load from the previous rounds.
It is worth outlining that the algorithm is easy to implement, as it is essentially T instances of
Charikar’s algorithm. What is less obvious perhaps, is why this algorithm makes sense, and works
well. We answer this question in detail in Section 3.2.

Algorithm 2 Greedy++

Input: Undirected graph G, iteration count T
Output: An approximately densest subgraph of G: Gdensest.

1: Gdensest ← G
2: Initialize the vertex load vector `(0) ← 0 ∈ Zn;
3: for i : 1→ T do
4: H ← G;
5: while H 6= ∅ do
6: Find the vertex u ∈ H with minimum `

(i−1)
u + degH(u);

7: `
(i)
u ← `

(i−1)
u + degH(u);

8: Remove u and all its adjacent edges uv from H;
9: if ρ(H) > ρ(Gdensest) then

10: Gdensest ← H
11: end if
12: end while
13: end for
14: Return Gdensest.

Example. We provide a graph instance that clearly illustrates why Greedy++ is a significant
improvement over the classical greedy algorithm. We discuss the first two rounds of Greedy++.
Consider the following graph G = B

⋃(
∪ki=1Hi

)
where B = Kd,D and Hi = Kd+2. Namely G is a

disjoint union of a complete d×D bipartite graph B, and of k (d+ 2)-cliques H1, . . . ,Hk. Consider
the case where d� D, k → +∞. G is pictured in Figure 1(a). The density of G is

2dD + (d+ 1)(d+ 2)k

2d+ 2D + 2k(d+ 2)
→ d+ 1

2
.

Notice that this is precisely the density of any (d+ 2)-clique. However, the density of B is dD
d+D ≈

d, which is in fact the optimal solution. Charikar’s algorithm outputs G itself, since it starts
eliminating nodes of degree d from B, and by doing this, it never sees a subgraph with higher density.
This example illustrates that the 1

2 approximation is tight. Consider now a run of Greedy++.
In its first iteration, it simply emulates Charikar’s algorithm. The D − d vertices of B which

were eliminated first - each have load d. At this stage, our input is the disjoint union of k cliques
and a d× d bipartite graph. Of the remaining 2d vertices in B, one vertex is charged with load d,
two vertices each with loads (d− 1), (d− 2), . . . , 1, and one vertex with load 0. On the other hand,
vertices in Hi are charged with loads d + 1, d, . . . , 0. Figure 1(b) shows the cumulative degrees of
vertices in G after one iteration of Greedy++.

Without any loss of generality let us assume the vertex from B that got charged 0 originally
had degree d. This vertex in the second iteration will get deleted first, and the vertex whose sum
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of load and degree is d + 1 will get deleted second. But after these two, all the cliques get peeled
away by the algorithm. This leaves us with a d × D − 2 bipartite graph as the output after the
second iteration, whose density is almost optimal.

B = Kd,D

...
...

...

(D) a1

(D) a2

(D) a3

(D) ad

b1 (d)

b2 (d)

b3 (d)

bd (d)

bd+1 (d)

bD (d)

Hi = Kd+2

...

c1
(d+ 1)

c2
(d+ 1)

c3
(d+ 1)

(d+ 1)
c4

c5
(d+ 1)

cd+2

(d+ 1)

(a) Initial degrees of G

B = Kd,D

...
...

...

(D + 1) a1

(D + 2) a2

(D + 3) a3

(D + d) ad

b1 (d)

b2 (d+ 1)

b3 (d+ 2)

bd (2d− 1)

bd+1 (2d)

bD (2d)

Hi = Kd+2

...

c1
(2d+ 2)

c2
(2d+ 1)

c3
(2d)

(2d− 1)
c4

c5
(2d− 2)

cd+2

(d+ 1)

(b) Cumulative degrees (degree + load) of G after one iteration

Figure 1: Illustration of two iterations of Greedy++ on G. The output after one iteration is G
itself (density ≈ (d+1)/2), whereas the output after the second iteration is B \{b1, b2} (density
≈ d).

Theoretical guarantees. Before we prove our theoretical properties for our proposed algorithm
Greedy++, it is worth outlining that experiments indicate that the performance of Greedy++
is significantly better than the worst-case analysis we perform. Furthermore, we conjecture that our
guarantees are not tight from a theoretical perspective; an interesting open question is to extend
our analysis in Section 3.2 for Greedy++ to prove that it provides asymptotically an optimal
solution for the DSP. We conjecture that our algorithm is a (1 + 1√

T
)-approximation algorithm for

the DSP. Our fist lemma states that Greedy++ is a 2-approximation algorithm for the DSP.

Lemma 3.1. Let Gdensest the output of Greedy++. Then, ρ(Gdensest) ≥ ρ∗G/2, where ρ∗G denotes
the optimum value of the problem.

Proof. Notice that the first iteration is identical to Charikar’s 2-approximation algorithm, and
Gdensest is at least as dense as the output of the first iteration.
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The next lemma provides bounds the quality of the dual solution, i.e., at each iteration the
average load (average over the algorithm’s iterations) assigned to any vertex is at most 2ρ∗G.

Lemma 3.2. The following invariant holds for Greedy++: for any vertex v and iteration i,

`
(i)
v ≤ 2i · ρ∗G.

Proof. First, let i = 1. The proof for this base case goes through identically as in [8].

`(1)
v = deg

G
(1)
v

(v) ≤ 1

|V (i)
v |

∑
u∈V (i)

v

deg
G

(i)
v

(u)

=
2|E(i)

v |
|V (i)
v |

= 2 · ρGv ≤ 2 · ρ∗G.

Now, assume that the statement is true for some iteration index i − 1. Consider the point at

which vertex v is chosen in iteration i. Denote the graph at that instant to be G
(i)
v =

〈
V

(i)
v , E

(i)
v

〉
.

For any vertex u at that point, the cumulative degree is `
(i−1)
u +deg

G
(i)
v

(u). Since v has the minimum

cumulative degree at that point,

`(i)v = `(i−1)
v + deg

G
(i)
v

(v) ≤ 1

|V (i)
v |

∑
u∈V (i)

v

(
`(i−1)
u + deg

G
(i)
v

(u)
)

≤ 2(i− 1)ρ∗G +
1

|V (i)
v |

∑
u∈V (i)

v

deg
G

(i)
v

(u)

≤ 2i · ρ∗G.

Running time. Finally, we bound the runtime of the algorithm as follows. The next lemma states
that our algorithm can be implemented to run in O((n+m) ·min(log n, T )).

Lemma 3.3. Each iteration of the above algorithm runs in time O((n+m) ·min(log n, T )).

Proof. The deletion operation, along with assigning edges to a vertex and updating degrees takes
O(m) time since every edge is assigned once. Finding the minimum degree vertex can be imple-
mented in two ways:

1. Since degrees in our algorithm can go from 0 to 2Tm, we can create lists for each separate
integer degree value. Now we need to scan each list from deg = 1 to deg = 2Tm. However,
after deleting a vertex of degree d, we only need to scan from d − 1 onwards. So the total
time taken is O(2Tm+ n) = O(mT ).

2. We can maintain a priority queue, which needs a total of O(m) update operations, each taking
O(log n) time.

Note that in the case of weighted graphs, we cannot maintain lists for each possible degree, and
hence, it is necessary to use a priority queue.
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3.2 Why does Greedy++ work well?

Explaining the intuition behind Greedy++ requires an understanding of the load balancing in-
terpretation of Charikar’s LP for the DSP [8], and the multiplicative weights update (MWU)
framework by Plotkin, Shmoys and Tardos [27] used for packing/covering LPs. In the context of
the DSP, the MWU framework was first used by Bahmani, Goel, and Munagala [4]. We include
a self-contained exposition of the required concepts from [4, 8] in this section, that has a natu-
ral flow and concludes with our algorithmic contributions. Intuitively, the additional passes that
Greedy++ performs, improve the load balancing.

Charikar’s LP and the load balancing interpretation. The following is a well-known LP
formulation of the densest subgraph problem, introduced in [8], which we denote by Primal(G).
The optimal objective value is known to be ρ∗G.

maximize
∑
e∈E

ye

subject to ye ≤ xu, ∀e = uv ∈ E
ye ≤ xv, ∀e = uv ∈ E∑

v∈V
xv ≤ 1,

ye ≥ 0, ∀e ∈ E
xv ≥ 0, ∀v ∈ V

We then construct the dual LP for the above problem. Let fe(u) be the dual variable associated
with the first 2m constraints of the form ye ≤ xu, and let D be associated with the last constraint.
We get the following LP, which we denote by Dual(G), and whose optimum is also ρ∗G.

minimize D
subject to fe(u)+fe(v) ≥ 1, ∀e = uv ∈ E

`v
def
=
∑
e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, ∀e = uv ∈ E
fe(v) ≥ 0, ∀e = uv ∈ E

This LP can be visualized as follows. Each edge e = uv has a load of 1, which it wants to send
to its end points: fe(u) and fe(v) such that the total load of any vertex v, `v, is at most D. The
objective is to find the minimum D for which such a load assignment is feasible.

For a fixed D, the above dual problem can be framed as a flow problem on a bipartite graph as
follows: Let the left side L represent V and the right side R represent E. Add a super-source s and
edges from s to all vertices in L with capacity D. Add edges from v ∈ V to e ∈ E if e is incident
on v in G. All vertices in R have demands of 1 unit. Although Goldberg’s initial reduction [17]
involved a different flow network, this graph can also be used to use maximum flow and use that to
find the exact optimum to our problem. From strong duality, we know that the optimal objective
values of both linear programs are equal, i.e., exactly ρ∗G. Let ρG be the objective of any feasible
solution to Primal(G). Similarly, let ρ̂G be the objective of any feasible solution to Dual(G).
Then, by optimality of ρ∗G and weak duality, we obtain the optimality result ρG ≤ ρ∗G ≤ ρ̂G.

Bahmani et al. [4] use the following covering LP formulation: decide the feasibility of constraints
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fe(u) + fe(v) ≥ 1 for each edge e = uv ∈ E subject to the polyhedral constraints:∑
e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, ∀e = uv ∈ E
fe(v) ≥ 0, ∀e = uv ∈ E

The width of this linear program is the maximum value of fe(u)+fe(v) provided that fe(u), fe(v)
satisfy the constraints of the program. Bahmani et al. in order to provably bound the width of the
above LP, they introduce another set of simple constraints as follows:∑

e3v
fe(v) ≤ D, ∀v ∈ V

q ≥ fe(u) ≥ 0, ∀e = uv ∈ E
q ≥ fe(v) ≥ 0, ∀e = uv ∈ E

where q ≥ 1 is a small constant. So, for a particular value of D, they verify the approximate
feasibility of the covering problem using the MWU framework. However, this necessitates running
a binary search over all possible values of D and finding the lowest value of D for which the LP is
feasible. Since the precision for D can be as low as ε, this binary search is inefficient in practice.
Furthermore, due to the added `∞ constraint to bound the width, extracting the primal solution
(i.e. an approximately densest subgraph) from the dual is no longer straightforward, and the
additional rounding step to overcome this incurs additional loss in the approximation factor.

In order to overcome these practical issues, we propose an alternate MWU formulation which
sacrifices the width bounds but escapes the binary search phase over D. Eliminating the artificial
width bound makes it straightforward to extract a primal solution. Moreover, our experiments
on real world graphs suggest that width is not a bottleneck for the running time of the MWU
algorithm. Even more importantly, our alternate formulation naturally yields Greedy++ as we
explain in the following.

Our MWU formulation. We can denote the LP Dual(G) succinctly as follows:

minimize D

subject to Bf ≤ D1

f ∈ P

where f is the vector representation of the all fe(v) variables, B ∈ Rn×2m is the matrix denoting

the left hand side of all constraints of the form
∑
e3v

fe(v) ≤ D. 1 denotes the vector of 1’s and P is

a polyhedral constraint set defined as follows:

fe(u) + fe(v) ≥ 1 ∀e = uv ∈ E
fe(u) ≥ 0 ∀e ∈ E, ∀v ∈ e.

Note that for any f ∈ P, we have that the minimum D satisfying Bf ≤ D1 is equal to ‖Bf‖∞.
This follows due to the non-negativity of Bf for any f ∈ P. Now a simple observation shows that
for any non-negative vector y, we can write

‖y‖∞ = max
x∈∆+

n

xTy

9



where ∆+
n := {x ≥ 0 : 1Tx ≤ 1}. Hence, we can now write Dual(G) as:

min
f∈P
‖Bf‖∞ = min

f∈P
max
x∈∆+

n

xTBf

= max
x∈∆+

n

min
f∈P

xTBf . (1)

Here the last equality follows due to strong duality of the convex optimization.
The “inner” minimization part of (1) can be performed easily. In particular, we need an oracle

which, given a vector x, solves

C(x) = min
f∈P

∑
e=uv

xufe(u) + xvfe(v).

Lemma 3.4. Given a vector x, C(x) can be computed in O(m) time.

Proof. For each edge e = uv, simply check which of xu and xv is smaller. WLOG, assume it is xu.
Then, set fe(u) = 1 and fe(v) = 0.

We denote the optimal f for a given x as f(x). Now, using the above oracle, we can apply the
MWU algorithm to the “outer” problem of (1), i.e., maxx∈∆+

n
C(x). Additionally, to apply the

MWU framework, we need to estimate the width of this linear program. The width for (1) can be
bounded by largest degree, dmax of the graph G. Indeed, we see in Lemma 3.4 that f(x) is a 0/1
vector. In that case, ‖Bf(x)‖∞ ≤ dmax.

We conclude our analysis of this alternative dual formulation of the DSP with the following
theorem.

Theorem 3.5. Our alternative dual formulation admits a MWU algorithm that outputs an f ∈ P
such that ‖Bf‖∞ ≤ (1 + ε)ρ∗G.

For the sake of completeness, we detail the MWU algorithm and the proof of Theorem 3.5 in
Appendix A.

Let us now view Charikar’s peeling algorithm in the context of this dual problem. In a sense, the
greedy peeling algorithm resembles one “inner” iteration of the MWU algorithm, where whenever a
vertex is removed, its edges assign their load to it. Keeping this in mind, we designed Greedy++ to
add “outer” iterations to the peeling algorithm, thus improving the approximation factor arbitrarily
with increase in iteration count. By weighting vertices using their load from previous iterations,
Greedy++ implicitly performs a form of load balancing on the graph, thus arriving at a better
dual solution.

4 Experiments

4.1 Experimental setup

The experiments were performed on a single machine, with an Intel(R) Core(TM) i7-2600 CPU at
3.40GHz (4 cores), 8MB cache size, and 8GB of main memory. We find densest subgraphs on the
samples using binary search and maximum flow computations. The flow computations were done
using C++ implementations of the push-relabel algorithm [18], HiPR2. We have implemented our

2HiPR is available at http://www.avglab.com/andrew/soft/hipr.tar
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Name n m

web-trackers [23] 40 421 974 140 613 762
orkut [23] 3 072 441 117 184 899
livejournal-affiliations [23] 10 690 276 112 307 385
wiki-topcats 1 791 489 25 447 873
cit-Patents 3 774 768 16 518 948
actor-collaborations [23] 382 219 15 038 083
ego-gplus 107 614 12 238 285
dblp-author 5 425 963 8 649 016
web-BerkStan 685 230 6 649 470
flickr [37] 80 513 5 899 882
wiki-Talk 2 394 385 4 659 565
web-Google 875 713 4 322 051
com-youtube 1 134 890 2 987 624
roadNet-CA 1 965 206 2 766 607
web-Stanford 281 903 1 992 636
roadNet-TX 1 379 917 1 921 660
roadNet-PA 1 088 092 1 54 898
Ego-twitter 81 306 1 342 296
com-dblp 317 080 1 049 866
com-Amazon 334 863 925 872
soc-slashdot0902 82 168 504 230
soc-slashdot0811 77 360 469 180
soc-Epinions 75 879 405 740
blogcatalog [37] 10,312 333 983
email-Enron 36 692 183 831
ego-facebook 4 039 88 234
ppi [31] 3 890 37 845

twitter-retweet [30] 316 662 1 122 070
twitter-favorite [30] 226 516 1 210 041
twitter-mention [30] 571 157 1 895 094
twitter-reply [30] 196 697 296 194

soc-sign-slashdot081106 77 350 468 554
soc-sign-slashdot090216 81 867 497 672
soc-sign-slashdot090221 82 140 500 481
soc-sign-epinions 131 828 711 210

Table 1: Datasets used in our experiments.

algorithm Greedy++ and Charikar’s greedy algorithm C++. Our implementations are efficient
and our code is available publicly3.

3Our code for Greedy++ and the exact algorithm is available at the anonymous link https://www.dropbox.

com/s/jzouo9fjoytyqg3/code-greedy%2B%2B.zip?dl=0
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Figure 2: Number of iterations for Greedy++. Histograms of number of iterations to reach
(a) 99% of the optimum degree density, (b) the optimum degree density.
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Figure 3: Scalability. (a) Running time in seconds of each iteration of Greedy++ versus
the number of edges. (b) Speedup achieved by Greedy++ vs. number of edges in the graph.
Specifically, the y-axis is the ratio of the run time of the exact max flow algorithm divided by the
run time of Greedy++ that finds 90% of the optimal solution.

We use a variety of datasets obtained from the Stanford’s SNAP database [24], ASU’s Social
Computing Data Repository [37], BioGRID [31] and from the Koblenz Network Collection [23],
that are shown in table Table 1. A majority of the datasets are from SNAP, and hence we mark
only the rest with their sources. Multiple edges, self-loops are removed, and directionality is ignored
for directed graphs. The first cluster of datasets are unweighted graphs. The largest unweighted
graph is the web-trackers graph with roughly 141M edges, while the smallest unweighted graph has
roughly 25K edges. For weighted graphs, we use a set of Twitter graphs that were crawled during
the first week of February 2018 [30]. Finally, we use a set of signed networks (slashdot, epinions).
We remind the reader that while the DSP is NP-hard on signed graphs, Charikar’s algorithm does
provide certain theoretical guarantees, see Theorem 2 in [36].
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4.2 Experimental results

Before we delve in detail into our experimental findings, we summarize our key findings here:

• Our algorithm Greedy++ when given enough number of iterations always finds the optimal
value, and the densest subgraph. This agrees with our conjecture that running T iterations
of Greedy++ gives a 1 +O(1/

√
T) approximation to the DSP.

• Experimentally, Charikar’s greedy algorithm always achieves at least 80% accuracy, and oc-
casionally finds the optimum.

• For graphs on which the performance of Charikar’s greedy algorithm is optimal, the first
couple of iterations of Greedy++ suffice to deduce convergence safely, and thus act in
practice as a certificate of optimality. This is the first method to the best of our knowledge
that can be used to infer quickly the actual approximation of Charikar’s algorithm on a given
graph instance.

• When Charikar’s algorithm does not yield an optimal solution, then Greedy++ within few
iterations is able to increase the accuracy to 99% of the optimum density, and by adding a
few more iterations is able to find the optimal density and extract and optimal output.

• When we are able to run the exact algorithm (for graphs with more than 8M edges, the
maximum flow code crashes) on our machine, the average speedup that our algorithm provides
to reach the optimum is 144.6× on average, with a standard deviation equal to 57.4. The
smallest speedup observed was 67.9×, and the largest speedup 290×. Additionally, we remark
that the exact algorithm is only able to find solutions up to an accuracy of 10−3 on most
graphs.

• The speedup typically increases as the size of the graph increases. In fact, the maximum flow
exact algorithm cannot complete on the largest graphs we use.

• The maximum number of iterations needed to reach 90% of the optimum is at most 3, i.e., by
running two more passes compared to Charikar’s algorithm, we are able to boost the accuracy
by 10%.

• The same remarks hold for both weighted and unweighted graphs.

Number of iterations. We first measure how many iterations we need to reach 99% of the opti-
mum, or even the optimum. Figures 2(a), (b) answer these questions respectively. We observe the
impressive performance of Charikar’s greedy algorithm; for the majority of the graph instances we
observe that it finds a near-optimal densest subgraph. Nonetheless, even for those graph instances
–as we have emphasized earlier– our algorithm Greedy++ acts as a certificate of optimality.
Namely, we observe that the objective remains the same after a couple of iterations if and only
if the algorithm has reached the optimum. For the rest of the graphs where Charikar’s greedy
algorithm outputs an approximation greater than 80% but less than 99%, we observe the following:
for five datasets it takes at most 3 iterations, for one graph it takes nine iterations, and then there
exist three graphs for which Greedy++ requires 10, 22, and 29 iterations respectively. If we insist
on finding the optimum densest subgraph, we observe that the maximum number of iterations can
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Figure 4: Convergence to optimum as a function of the number of iterations of Greedy++. (a)
roadNet-CA, (b) roadNet-PA, (c) roadNet-TX, (d) com-Amazon, (e) dblp-author, (f) ego-twitter,

(g) twitter-favorite, (h) twitter-reply. Here, the accuracy is given by ρ(Hi)
ρ∗G

, where Hi is the output

of Greedy++ after i iterations. 14



go up to 100. On average, Greedy++ requires 12.69 iterations to reach the optimum densest
subgraph.

Scalability. Our experiments verify the intuitive facts that (i) each iteration of the greedy algo-
rithm runs fast, and (ii) the exact algorithm that uses maximum flows is comparatively slow. We
constrain ourselves on the set of data for which we were able to run the exact algorithm. Figure 3(a)
shows the time that each iteration of the Greedy++ takes on average (runtimes are well concen-
trated around the average) over the iterations performed to reach the optimal densest subgraph.
Figure 3(b) shows the speedup achieved by our algorithm when we condition on obtaining at least
90% (notice that frequently the actual accuracy is greater than 95%) of the optimal solution versus
the exact max-flow based algorithm. Specifically, we plot the ratio of the running times of the exact
algorithm by the time of Greedy++ versus the number of edges. Notice that for small graphs,
the speedups are very large, then they drop, and they exhibit an increasing trend as the graph
size grows. For the largest graphs in our collection, the exact algorithm is infeasible to run on our
machine.
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102
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Figure 5: Log-log plot of optimal degree density ρ∗ versus the number of edges in the graph.

Convergence. Figure 4 illustrates the convergence of Greedy++ for various datasets. Specifi-
cally, each figure plots the accuracy of Greedy++ after T iterations versus T . The accuracy is
measured as the ratio of the degree density achieved by Greedy++ by the optimal degree den-
sity. Figures 4(a),(b),(c),(d),(e),(f),(g),(h) correspond to the convergence behavior of roadNet-CA,
roadNet-PA, roadNet-TX, com-Amazon, dblp-author, ego-twitter, twitter-favorite, twitter-reply re-
spectively. These plots illustrate various interesting properties of Greedy++ in practice. Observe
Figure 4(e). Notice how Greedy++ keeps outputting the same subgraph for few consecutive iter-
ations, but then suddenly around the 10th iteration it “jumps” and finds an even denser subgraph.
Recall that on average over our collection of datasets for which we can run the exact algorithm
(i.e., datasets with less than 8M edges), Greedy++ requires roughly 12 iterations to reach the
optimum densest subgraph. For this reason we suggest running Greedy++ for that many itera-
tions in practice. Furthermore, we typically observe an improvement over the first pass, with the
exception of the weighted graph twitter-reply, where the “jump” happens at the end of the third
iteration.

Anomaly detection. It is worth outlining that Greedy++ provides a way to compute the
densest subgraph in graphs where the maximum flow approach does not scale. For example, for
graphs with more than 8 million edges, the exact method does not run on our machine. By running
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Greedy++ for enough iterations we can compute a near-optimal or the optimal solution. This
allows us to compute a proxy of ρ∗ for the largest graphs, like orkut and trackers. We examined
to what extent there exists a pattern between the size of the graph and the optimal density. In
contrast to the power law relationship between the k-cores and the graph size claimed in [29], we do
not observe a similar power law when we plot ρ∗ (the exact optimal value or the proxy value found
by Greedy++ after 100 iterations for the largest graphs) versus the number of edges in the graph.
This is shown in Figure 5. Part of the reason why we do not observe such a law are anomalies in
graphs. For instance, we observe that small graphs may contain extremely dense subgraphs, thus
resulting in significant outliers.

5 Conclusion

In this paper we provide a powerful algorithm for the densest subgraph problem, a popular and
important objective for discovering dense components in graphs. The main practical value of
our Greedy++ algorithm is two-fold. First, by running few more iterations of Charikar’s greedy
algorithm we obtain (near-)optimal results that can be obtained using only maximum flows. Second,
Greedy++ can be used to answer for first time the question “Is the approximation of Charikar’s
algorithm on this graph instance closer to 1/2 or to 1?” without computing the optimal density using
maximum flows. Empirically, we have verified that Greedy++ combines the best of “two worlds”
on real data, i.e., the efficiency of the greedy peeling algorithm, and the accuracy of the exact
maximum flow algorithm. We believe that Greedy++ is a valuable addition to the algorithmic
toolbox for dense subgraph discovery that combines the best of two worlds, i.e., the accuracy of
maximum flows, and the time and space efficiency of Charikar’s greedy algorithm.

We conclude our work with the following intriguing open question stated as a conjecture:

Conjecture 5.1. Greedy++ is a 1+O(1/
√
T) approximation algorithm for the DSP, where

T is the number of iterations it performs.
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A Multiplicative Weights Update Algorithm

In this section, we give an algorithm to solve the zero-sum game maxx∈∆n minf∈P x
TBf , which

corresponds to solving the dual of the densest subgraph problem, as described in Section 3.2.
Given that we have an oracle access to minf∈P x

TBf , we can use the multiplicative weights update
framework to get an ε-approximation of the game [13].

The pseudocode for the MWU algorithm is shown in Algorithm 3.

Algorithm 3 Multiplicative Weight Update Algorithm

Input: Matrix B, approximation factor ε.
Output: An approximate solution to the zero-sum game.

1: Initialize the weight vector as w
(1)
i ← 1 for all i ∈ [n]

2: Initialize η ← ε/2 degmax

3: for t : 1→ T do
4: x

(t)
i ← w

(t)
i /‖w(t)‖1 for all i ∈ [n].

5: Find f(x(t)) using Oracle(x(t)).
6: Set C(x(t))← (x(t))TBf(x(t))
7: Let bTi f(x

(t)) be the i-th element in Bx(t).
8: Update the weights as

w
(t+1)
i ← w

(t)
i (1 + ηbTi f(x

(t))).

9: end for

10: Return
1

T

∑
t∈[T ]C(x(t)) as the solution.

To prove the convergence of Algorithm 3, we use the following theorem from [2]. We modify it
slightly to accommodate for the fact that the width of the DSP, ||Bf(x)||∞, can be at most degmax.
In other words, the oracle can assign at most degmax edges to any particular vertex.

Lemma A.1 (Theorem 3.1 from [2]). Given an error parameter ε, there is an algorithm which
solves the zero-sum game up to an additive factor of ε using O(W log n/ε2) calls to Oracle, with
an additional processing time of O(n) per call, where W is the width of the problem.

Using the fact that our Oracle runs in O(m) time (from Lemma 3.4), and using W = degmax,
we get the following corollary.

Corollary A.2. The Multiplicative Weight Update algorithm (Algorithm 3) outputs a (1 + ε) ap-
proximate solution to the densest subgraph problem in time O(mdegmax log n/ε2).
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