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ABSTRACT
Modern graph or network datasets often contain rich structure that

goes beyond simple pairwise connections between nodes. This calls

for complex representations that can capture, for instance, edges of

different types as well as so-called “higher-order interactions” that

involve more than two nodes at a time. However, we have fewer rig-

orous methods that can provide insight from such representations.

Here, we develop a computational framework for the problem of

clustering hypergraphs with categorical edge labels — or different

interaction types — where clusters corresponds to groups of nodes

that frequently participate in the same type of interaction.

Our methodology is based on a combinatorial objective func-

tion that is related to correlation clustering on graphs but enables

the design of much more efficient algorithms that also seamlessly

generalize to hypergraphs. When there are only two label types,

our objective can be optimized in polynomial time, using an algo-

rithm based on minimum cuts. Minimizing our objective becomes

NP-hard with more than two label types, but we develop fast ap-

proximation algorithms based on linear programming relaxations

that have theoretical cluster quality guarantees. We demonstrate

the efficacy of our algorithms and the scope of the model through

problems in edge-label community detection, clustering with tem-

poral data, and exploratory data analysis.

1 INTRODUCTION
Representing data as a graph or network appears in numerous

application domains, including, for example, social network anal-

ysis, biological systems, the Web, and any discipline that focuses

on modeling interactions between entities [5, 25, 49]. The simple

model of nodes and edges provides a powerful and flexible abstrac-

tion, and over time, more expressive models have been developed

to incorporate richer structure in data. In one direction, models

now use more information about the nodes and edges: multilayer

networks capture nodes and edges of different types [36, 48], meta-

paths formalize heterogeneous relational structure [24, 60], and

graph convolutional networks use node features for prediction

tasks [35]. In another direction, group, higher-order, or multi-way
interactions between several nodes — as opposed to pairwise inter-

actions — are paramount to the model. In this space, interaction

data is modeled with hypergraphs [9, 66, 67], tensors [1, 7, 53],

affiliation networks [40], simplicial complexes [10, 51, 54, 56], and

motif representations [11, 55]. Designing methods that effectively

analyze the richer structure encoded by these expressive models is

an ongoing challenge in graph mining and machine learning.

In this work, we focus on the fundamental problem of clus-

tering, where the general idea is to group nodes based on some

similarity score. While graph clustering methods have a long his-

tory [26, 43, 47, 57], existing approaches for rich graph data do not

naturally handle networks with categorical edge labels. In these

settings, a categorical edge label encodes a type of discrete similar-

ity score — two nodes connected by an edge with category label c
are similar with respect to c . This structure arises in a variety of set-

tings: brain regions are connected by different types of connectivity

patterns [20]; edges in coauthorship networks are categorized by

publication venues, and copurchasing data can contain information

about the type of shopping trip. In the examples of coauthorship

and copurchasing, the interactions are also higher-order — publi-

cations can involve multiple authors and purchases can be made

up of several items. Thus, we would like a scalable approach to

clustering nodes using a similarity score based on categorical edge

labels that work well for higher-order interactions.

Here, we solve this problem with a novel clustering framework

for edge-labeled graphs. Given a network with k edge labels (cate-

gories or colors), we create k clusters of nodes, each corresponding

to one of the labels. As an objective function for cluster quality,

we seek to simultaneously minimize two quantities: (i) the num-

ber of edges that cross cluster boundaries, and (ii) the number of

intra-cluster “mistakes”, where an edge of one category is placed

inside the cluster corresponding to another category. This approach

results in a clustering of nodes that respects both the coloring in-

duced by the edge labels and the topology of the original network.

We develop this computational framework in a way that seam-

lessly generalizes to the case of hypergraphs to model higher-order

interactions, where hyperedges have categorical labels.

The style of our objective function is related to correlation clus-

tering in signed networks [8], as well as its generalization for dis-

crete labels (colors), chromatic correlation clustering [12, 13], which

are based on similar notions of mistake minimization. However, a

key difference is that our objective function does not penalize plac-

ing nodes not connected by an edge in the same cluster. This mod-

eling difference provides serious advantages in terms of tractability,

scalability, and the ability to generalize to higher-order interactions.

We first study the case of edge-labeled (edge-colored) graphs

with only two categories. We develop an algorithm that optimizes

our Categorical Edge Clustering objective function in polynomial

time by reducing the problem to a minimum s-t graph cut problem

on a related network. We then generalize this construction to facil-

itate quickly finding the optimal solution exactly for hypergraphs.

This is remarkable on two fronts. First, typical clustering objectives

such as minimum bisection, ratio cut, normalized cut, and modular-

ity are NP-hard to optimize even in the case of two clusters [17, 62].

And in correlation clustering, having two edge types is also NP-

hard [8]. In contrast, our setup admits a simple algorithm based on

minimum s-t cuts. Second, our approach seamlessly generalizes to

hypergraphs. Importantly, we do not approximate hyperedge cuts

with weighted graph cuts, which is a standard heuristic approach
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in hypergraph clustering [2, 45, 67]. Instead, our objective exactly

models the number of hyperedges that cross cluster boundaries and

the number of intra-cluster “mistake” hyperedges.

With more than two categories, we show that minimizing our

objective is NP-hard, and we proceed to construct several approxi-

mation algorithms. The first set of algorithms are based on practical

linear programming relaxations, achieving an approximation ratio

of min

{
2 − 1

k , 2 −
1

r+1

}
, where k is the number of categories and

r is the maximum hyperedge size (r = 2 for the graph case). The

second approach uses a reduction to multiway cut, where practi-

cal algorithms have a
r+1

2
approximation ratio and algorithms of

theoretical interest have a 2(1 − 1

k ) approximation ratio.

We test our methods on synthetic benchmarks as well as a variety

of real-world datasets coming from neuroscience, biomedicine, and

social and information networks; our methods work far better than

baseline approaches at minimizing our objective function. Surpris-

ingly, our linear programming relaxation often produces a rounded

solution that matches the lower bound, i.e., it exactly minimizes

our objective function. Furthermore, our algorithms are also fast in

practice, often taking under 30 seconds on large hypergraphs.

We examine an application to a variant of the community de-

tection problem where edge labels indicate that two nodes are in

the same cluster and find that our approach accurately recovers

ground truth clusters. We also show how our formulation can be

used for temporal community detection, in which one clusters the

graph based on topology and temporal consistency. In this case,

we treat binned edge timestamps as categories, and our approach

finds good clusters in terms of topological metrics and temporal

aggregation metrics. Finally, we provide a case study in exploratory

data analysis with our methods using cooking data, where a recipe’s

ingredients form a hyperedge and its edge label the cuisine type.

2 PRELIMINARIES AND RELATEDWORK
Let G = (V ,E,C, ℓ) be an edge-labeled (hyper)graph, where V is

a set of nodes, E is a set of (hyper)edges, C is a set of categories

(or colors), and ℓ : E → C is a function which labels every edge

with a category. Often, we just use C = {1, 2, . . . ,k}, and we can

think of ℓ as a coloring of the edges. We use “category”, “color”, and

“label” interchangeably, as these terms appear in different types of

literature (e.g., “color” is common for discrete labeling in graph

theory and combinatorics). We use k = |C | to denote the number of

categories, Ec ⊆ E for the set of edges having label c , and r for the
maximum hyperedge size (i.e., order), where the size of a hyperedge
is the number of nodes it contains (in the case of graphs, r = 2).

2.1 Categorical edge clustering objective
Given G, we consider the task of assigning a category (color) to

each node in such a way that nodes in category c tend to participate
in edges with label c; in this setup, we partition the nodes into k
clusters with one category per cluster. We encode the objective

function as minimizing the number of “mistakes” in a clustering,

where a mistake is an edge that either (i) contains nodes assigned

to different clusters or (ii) is placed in a cluster corresponding to

a category which is not the same as its label. In other words, the

objective is to minimize the number of edges that are not completely

contained in the cluster corresponding to the edge’s label.

LetY be a categorical clustering, or equivalently, a coloring of the

nodes, where Y [i] denotes the color of node i . LetmY : E → {0, 1}
be the category-mistake function, defined for an edge e ∈ E by

mY (e) =
{

1 if Y [i] , ℓ(e) for any node i ∈ e ,
0 otherwise.

(1)

Then, the Categorical Edge Label Clustering objective score for the

clustering Y is simply the number of mistakes:

CatEdgeClus(Y ) = ∑
e ∈EmY (e). (2)

This form applies equally to hypergraphs; a mistake is a hyperedge

with a node placed in a category different from the edge’s label.

Our objective can easily be modified for weighted (hyper)graphs.

If a hyperedge e has weightwe , then the category mistake function

simply becomesmY (e) = we if Y [i] , ℓ(e) for any node i in e and
is 0 otherwise. Our results easily generalize to this setting, but we

present results in the unweighted case for ease of notation.

2.2 Relation to Correlation Clustering
Our objective function is related to chromatic correlation cluster-

ing [12], in which one clusters an edge-colored graph into any

number of clusters, and a penalty is incurred for any one of three

types of mistakes: (i) an edge of color c is placed in a cluster of a

different color; (ii) an edge of any color has nodes of two different

colors; or (iii) a pair of nodes not connected by an edge is placed in-

side a cluster. This objective is a strict generalization of the classical

correlation clustering objective [8].

Our Categorical Edge Clustering objective is similar, except we

remove the penalty for placing non-adjacent nodes in the same

cluster (mistakes of type (iii)). The chromatic correlation clustering

objective treats the absence of an edge between nodes i and j as a
strong indication that these nodes should not share the same label.

We instead interpret a non-edge simply as missing information:

the absence of an edge may be an indication that i and j do not

belong together, but it may also be the case that they have a re-

lationship that simply has not been measured. This is a natural

assumption with large, sparse real-world graphs, where we rarely

have information on all pairs of entities. Another key difference

between chromatic correlation clustering and our objective is that

in the former, one may form several clusters for the same color. For

our objective, merging two separate clusters for the same color can

only improve the objective.

Our formulation also leads to several differences in computa-

tional tractability. Chromatic correlation clustering is NP-hard in

general, and there are several approximation algorithms [6, 12, 13].

The tightest of these is a 4-approximation, though the algorithm is

mostly of theoretical interest, as it involves solving an incredibly

large linear program. Moreover, the higher-order generalization

of simple correlation clustering (without colors) to hypergraphs is

more complicated to solve and approximate than standard corre-

lation clustering [28, 32, 44, 46]. We will show that our Categor-

ical Edge Clustering objective can be solved in polynomial time

for graphs and hypergraphs with two categories. The problem be-

comes NP-hard for more than two categories, but we are able to

obtain practical 2-approximation algorithms for both graphs and

hypergraphs. Our approaches are based on linear programming

relaxations that are small enough to be solved quickly in practice.
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2.3 Additional related work
There are several methods for clustering general data points that

have categorical features [14, 29, 31], but these methods are not

designed for clustering graph data. There are also methods for clus-

tering in graphs with attributes [4, 15, 63, 68]; these focus on vertex

features and do not connect categorical features to cluster indica-

tors. Finally, there are several clustering approaches for multilayer

networks modeling edge types [23, 39, 48], but the edge types are

not meant to be indicative of a cluster type.

3 THE CASE OF TWO CATEGORIES
In this section we design algorithms to solve the Categorical Edge

Clustering problem when there are only two categories. In this

case, both the graph and hypergraph problem can be reduced to a

minimum s-t cut problem, which can be efficiently solved.

3.1 An algorithm for graphs
To solve the two-category problem on graphs, we first convert it

to an instance of a weighted minimum s-t cut problem on a graph

with no edge labels. Recall that Ec is the set of edges with category

label c . Given the edge-labeled graph G = (V ,E,C, ℓ), we construct
a new graph G ′ = (V ′,E ′) as follows:
• Introduce a terminal nodevc for each of the two labels c ∈ L,
so that V ′ = V ∪Vt where Vt = {vc | c ∈ L}.
• For each label c and each (i, j) ∈ Ec , introduce edges (i, j),
(vc , i) and (vc , j), all of which have weight

1

2
.

Since there are only two categories c1 and c2, let s = vc1
be treated

as a source node and t = vc2
be treated as a sink node. Theminimum

s-t cut problem in G ′ is defined by

minimize

S ⊆V
cut(S ∪ s), (3)

where cut(T ) is the weight of edges crossing from nodes inT ⊂ V ′
to its complement set T̄ = V ′\T . This classical problem that can be

efficiently solved in polynomial time, and we have an equivalence

with the original two-category edge clustering objective.

Proposition 3.1. For any S ⊆ V , the value of cut(S ∪ s) in G ′

is equal to the value of CatEdgeClus({S, S̄}), where S and S̄ are the
clusters for categories c1 and c2.

Proof. Let edge e = (i, j) be a “mistake” in the clustering (mY (e) =
1) and without loss of generality have color c1. If i and j are as-

signed to c2, then the half-weight edges (i,vc1
) and (j,vc1

) are cut.
Otherwise, exactly one of i and j is assigned to c2. Without loss of

generality, let it be i . Then (i,vc1
) and (i, j) are cut. □

Thus, a minimizer for the s-t cut in G ′ directly gives us a mini-

mizer for our Categorical Edge Clustering objective. We next pro-

vide a similar reduction for the case of hypergraphs.

3.2 An algorithm for hypergraphs
We now develop a method to exactly solve our objective in the

two-color case with arbitrary order-r hypergraphs, and we again

proceed by reducing to an s-t cut problem. Our approach is to

construct a subgraph for every hyperedge and paste these subgraphs

together to create a new graph G ′ = (V ′,E ′), where minimum

s-t cuts produce partitions that minimize the Categorical Edge

. . . . .

v1 v2 vr−1 vr

uα

s
. . . . .

v1 v2 vr−1 vr

uβ

t

Figure 1: Subgraphs used for the s-t cut reduction of two-
color Categorical Edge Clustering in hypergraphs. Here, α
and β are hyperedges in the original hypergraph with col-
ors c1 (orange, left) and c2 (blue, right).

Clustering objective. A similar construction has been used for a Pr
Potts model in computer vision [37], and our reduction is the first

direct application of this approach to network analysis.

We start by adding terminal nodes s = vc1
and t = vc2

(corre-

sponding to categories c1 and c2) as well as all nodes in V to V ′.
For each hyperedge e = (v1, . . . ,vr ) of G, we add a node ue to V

′

and add the following directed edges to E ′ (see also Figure 1):

• If e has label c1, add (s,ue ), (ue ,v1), . . . , (ue ,vr ) to E ′.
• If e has label c2, add (ue , t), (v1,ue ), . . . , (vr ,ue ) to E ′.

Again, the minimum s-t cut on G ′ produces a partition that also

minimizes the categorical edge clustering objective, as shown below.

Theorem 3.2. Let S∗ be the solution to the minimum cut problem.
Then the label assignment Y defined by Y [i] = c1 if i ∈ S∗ and Y [i] =
c2 if i ∈ S̄∗ minimizes the Categorical Edge Clustering objective.

Proof. Consider a hyperedge e = (v1, . . . ,vr ) with label c2. We

show thatmY (e) precisely corresponds to an s-t cut on the subgraph
of G ′ induced by e (Figure 1, right). If Y [v1] = . . . = Y [vr ] = c2,

then v1, . . . ,vr ∈ S̄∗ and the cost of the minimum s-t-cut is 0 (via
placing s by itself). Now suppose at least one of Y [v1], . . . ,Y [vr ]
equals c1. Without loss of generality, say thatY [v1] = c1, sov1 ∈ S∗.
If ue ∈ S∗, we cut (ue , t) and none of the edges (vi ,ue ) contribute
to the cut. If ue ∈ S̄∗, we cut (v1,ue ); and it cannot be the case that

(vi ,ue ) is cut for i , 1 (otherwise, we could have reduced the cost

of the minimum cut by placing ue ∈ S∗).
To summarize, if edge e with label c2 induces a mistake in the

clustering, then the cut contribution is 1; otherwise, it is 0. A sym-

metric argument holds if e has label c1, using the graph in Figure 1

(left). By additivity, minimizing the s-t cut inG ′ minimizes the num-

ber of mistakes in the Categorical Edge Clustering objective. □

This procedure also works for the special case of graphs. How-

ever, G ′ has more nodes and directed edges in the more general

reduction, which can increase running time in practice.

Computational considerations. Both algorithms solve a single

minimum cut problem on a graph with O(T ) vertices and O(T )
edges, where T =

∑
e ∈E |e | is the sum of hyperedge degrees (this

is bounded above by r |E |, where r is the order of the hypergraph).
In theory, this can be solved in O(T 2) time in the worst case [50].

However, practical performance is often much different than this

worst-case running time. That being said, we do find the maximum

flow formulations to often be slower than the linear programming

relaxations we develop in Section 4.We emphasize that being able to

solve the Categorical Edge Clustering objective in polynomial time
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Edge

u

v

3−color gadget

v

u

Figure 2: Gadget used for reducing maxcut to 3-color Cat-
egorical Edge Clustering. Each gadget has new auxiliary
nodes, but u and v may be a part of many 3-color gadgets.

for two colors is itself interesting, and that the algorithms we use

for experiments in Section 5 are able to scale to large hypergraphs.

Considerations for unlabeled edges. Our formulation assumed

that all of the (hyper)edges carry a unique label. However, in some

datasets, there may be edges with no label or both labels. In these

cases, the edge’s existence still signals that its constituent nodes

should be colored the same — just not with a particular color. A nat-

ural augmentation to our objective is then to penalize this edge only

when it is not entirely contained in some cluster. Our reductions
above handle this case by simply connecting the corresponding

nodes in V ′ to both terminals instead of just one.

4 MORE THAN TWO CATEGORIES
We now move to the general formulation of Categorical Edge Clus-

tering when there can be more than two categories or labels. We

first show that optimizing the objective in this setting is NP-hard.

After, we develop approximation algorithms based on linear pro-

gramming relaxations and multiway cut problems with theoretical

guarantees on solution quality. Many of these algorithms are prac-

tical, and we use them in numerical experiments in Section 5.

4.1 NP-hardness of Categorical Edge Clustering
We now prove that the Categorical Edge Clustering objective is NP-

hard for the case of three categories. Our proof follows the structure

of the NP-hardness reduction for 3-terminal multiway cut [21], and

the reduction is from the NP-hard maximum cut (maxcut) problem.

Written as a decision problem, this problem seeks to answer if there

exists a partition of the nodes of a graph into two sets such that the

number of edges cut by the partition is at least K .
Consider an unweighted instance of maxcut on a graph G =

(V ,E). To convert this into an instance of 3-color Categorical Edge

Clustering, we replace each edge (u,v) ∈ E with the 3-color gadget

in Figure 2. We will use the following lemma in our reduction.

Lemma 4.1. In any node coloring of the 3-color gadget (Figure 2),
the minimum number of edges whose color does not match both of its
nodes (i.e., number of mistakes in categorical edge clustering) is three.
This only occurs when one of {u,v} is red and the other is blue.

Proof. If v is blue and u is red, then we can achieve the min-

imum three mistakes by clustering each node in the gadget with

its horizontal neighbor in Figure 2 or alternatively by placing each

node with its vertical neighbor. If u and v are constrained to be in

the same cluster, then the optimal solution is to place all nodes in

the gadget together, which makes 4 mistakes. It is not hard to check

that all other color assignments yield a penalty of 4 or more. □

Now letG ′ be the instance of 3-color Categorical Edge Clustering
obtained by replacing each edge (u,v) ∈ E with a 3-color gadget.

Theorem 4.2. There exists a partition of the nodes in G into two
sets with K or more cut edges if and only if there is a 3-coloring of the
nodes in G ′ that makes 4|E | − K or fewer mistakes.

Proof. Consider first a cut in G = (V ,E) of size K ′ ≥ K . Let Sr
and Sb denote the two clusters in the corresponding bipartition

of G, mapping to red and blue clusters. Consider each (u,v) ∈ E
in turn along with its 3-color gadget. If (u,v) ∈ E is cut, cluster

all nodes in its gadget with their vertical neighbor if u ∈ Sb and

v ∈ Sr , and cluster them with their horizontal neighbor if u ∈ Sr
and v ∈ Sb . Either way, this makes exactly 3 mistakes. If (u,v) is
not cut, then label all nodes in the gadget red if u,v ∈ Sr , or blue
if u,v ∈ Sb , which makes exactly 4 mistakes. The total number of

mistakes in G ′ is then 3K ′ + 4(|E | − K ′) = 4|E | − K ′ ≤ 4|E | − K .
Now start with G ′ and consider a node coloring that makes

B′ ≤ B = 4|E | − K mistakes. There are |E | total 3-color gadgets in
G ′. We claim that there must be at least K of these gadgets at which

only three mistakes are made. If this were not the case, then assume

exactly H < K gadgets where 3 mistakes are made. By Lemma 4.1,

there are |E | − H gadgets where at least 4 mistakes are made, so

the total number of mistakes is B′ ≥ 3H + 4(|E | −H ) = 4|E | −H >
4|E | −K , contradicting our initial assumption. Thus, by Lemma 4.1,

there are at least K edges (u,v) ∈ E where one of {u,v} is red and

the other is blue, and the maximum cut in G is at least K . □

Consequently, if we can minimize Categorical Edge Clustering in

polynomial time, we can solve the maximum cut decision problem

in polynomial time, and Categorical Edge Clustering is thus NP-

hard. As a natural next step, we turn to approximation algorithms.

4.2 Algorithms based on LP relaxations
We now develop approximation algorithms by relaxing an integer

linear programming (ILP) formulation of our problem. We design

the algorithms for hypergraphs, with graphs as a special case. Sup-

pose we have an edge-labeled hypergraph G = (V ,E,C, ℓ) with
C = {1, . . . ,k}, where Ec = {e ∈ E | ℓ[e] = c}. The Categorical
Edge Clustering objective can be written as the following ILP:

min

∑
c ∈C

∑
e ∈Ec xe

s.t. for all v ∈ V :

∑k
c=1

xcv = k − 1

for all c ∈ C , e ∈ Ec : xcv ≤ xe for all v ∈ e
xcv ,xe ∈ {0, 1} for all c ∈ C , v ∈ V , e ∈ E.

(4)

In this ILP, xcv = 1 if node v is not assigned to category c , and
is zero otherwise. The first constraint in (4) ensures that xcv = 0

for exactly one category. The second constraint says that in any

minimizer, xe = 0 if and only if all nodes in e are colored the same

as e; otherwise, xe = 1. If we relax the binary constraints in (4):

0 ≤ xcv ≤ 1, 0 ≤ xe ≤ 1,

then the ILP is just a linear program (LP) that can be solved in

polynomial time.

When k = 2, the constraint matrix of the LP relaxation is totally

unimodular as it corresponds to the incidence matrix of a balanced

signed graph [65]. Thus, all basic feasible solutions for the LP satisfy

4



Algorithm 1: A simple 2-approximation for Categorical Edge

Clustering based on an LP relaxation. Algorithm 2 details a

more sophisticated rounding scheme.

1 Input: Labeled hypergraph G = (V ,E,C, ℓ).
2 Output: Label Y [i] for each node i ∈ V .

3 Solve the LP-relaxation of ILP (4).

4 for c ∈ C do
5 Sc ← {v ∈ V | xcv < 1/2}.
6 for i ∈ Sc do assign Y [i] ← c .

7 end
8 Assign unlabeled nodes to an arbitrary c ∈ C .

the binary constraints of the original ILP (4), which is another proof

that the two-category problem can be solved in polynomial time.

With more than two categories, the LP solution can be fractional,

and we cannot directly determine a node assignment from the LP

solution. Nevertheless, solving the LP provides a lower bound on the

optimal solution, and we show how to round the result to produce a

clustering within a bounded factor of the lower bound. Algorithm 1

contains our rounding scheme, and the following theorem shows

that it provides a clustering within a factor of 2 from optimal.

Theorem 4.3. Algorithm 1 returns at worst a 2-approximation to
the Categorical Edge Clustering objective.

Proof. First, for any v ∈ V , xcv < 1/2 for at most one category

c ∈ C in the solution. If this were not the case, there would exist

two colors a and b such that xav < 1/2 and xbv < 1/2 and∑k
c=1

xcv = xav + x
b
v +

∑
c ′∈C\{a,b } x

c ′
v < 1 + k − 2 = k − 1,

which violates the first constraint of the LP relaxation. Therefore,

each node will be assigned to at most one category. Consider any

e ∈ Ec for which all nodes are not assigned to c . This means that

there exists at least one node v ∈ e such that xcv ≥ 1/2. Thus,
the Algorithm incurs a penalty of one for this edge, but the LP

relaxation pays a penalty of xe ≥ xcv ≥ 1/2. Therefore, every edge

mistake will be accounted for within a factor of 2. □

We can get better approximations in expectation with a more

sophisticated randomized rounding algorithm (Algorithm 2). In this

approach, we form sets Stc based on a threshold parameter t so that
each node may be included in more than one set. To produce a

valid clustering, we first generate a random permutation of colors

to indicate an (arbitrary) priority of one color over another. For

any v ∈ V contained in more than one set Stc , we assign v to the

cluster with highest priority. By carefully setting the parameter t ,
this approach has better guarantees than Algorithm 1.

Theorem 4.4. If t = k/(2k − 1), Algorithm 2 returns an at worst
(2 − 1/k)-approximation for Categorical Edge Clustering in expec-
tation. And if t = (r + 1)/(2r + 1), Algorithm 2 returns an at worst
(2 − 1/(1 + r ))-approximation in expectation.

Proof. For the choices of t listed in the statement of the theorem,

t ∈ [1/2, 2/3] as long as r ≥ 2 and k ≥ 2, which is always true.

We say that color c wants node v if v ∈ Sc , but this does not
automatically mean thatv will be colored as c . For anyv ∈ V , there

exist at most two colors that want v . If v were wanted by more

Algorithm 2: LP relaxation for Categorical Edge Clustering

with a randomized rounding scheme. Theorem 4.4 gives ap-

proximation guarantees based on t .

1 Input: Labeled hypergraph G = (V ,E,C = {1, 2, . . . ,k}, ℓ);
rounding parameter t ∈ [1/2, 2/3].

2 Output: Label Y [i] for each node i ∈ V .

3 Solve the LP-relaxation of ILP (4).

4 π ← uniform random permutation of {1, 2, . . . ,k}.
5 for c = π1, . . . ,πk do
6 Sc ← {v ∈ V | xcv < t}.
7 for i ∈ Sc do Y [i] ← π (c).
8 end
9 Assign unlabeled nodes to an arbitrary c ∈ C .

than two colors, this would meanv ∈ Sa ∩Sb ∩Sc for three distinct
colors a,b, c . This leads to a violation of the first constraint in (4):

xav + x
b
v + x

c
v +

∑
i :i<{a,b,c }

x iv < 3t + (k − 3) ≤ 2 + (k − 3) = (k − 1).

Consider an arbitrary t ∈ (1/2, 2/3). We can bound the expected

number of mistakes made by Algorithm 2 and pay for them indi-

vidually in terms of the LP lower bound. To do this, we consider a

single hyperedge e ∈ Ec with color c and bound the probability of

making a mistake and the LP cost of this hyperedge.

Case 1: xe ≥ t . In this case, we are guaranteed to make a mistake

at edge e , since xe ≥ t implies there is some node v ∈ e such that

xcv ≥ t , and so v < Sc . However, because the LP value at this edge

is xe ≥ t , we pay for our mistake within a factor 1/t .
Case 2: xe < t . Now, color c wants every node in the hyperedge

e ∈ Ec . If no other colors want any node v ∈ e , then Algorithm 2

will not make a mistake at e , and we have no mistake to account for.

Assume then that there is some node v ∈ e and a color c ′ , c such
that c ′ wants v . This implies that xc

′
v < t , from which we have that

xcv ≥ 1 − xc ′v > 1 − t (to satisfy the first inequality in (4)). Thus,

xe ≥ xc
′

v > 1 − t . (5)

This gives a lower bound of 1 − t on the contribution of the LP

objective at edge e .
In the worst case, eachv ∈ e may be wanted by a different c ′ , c ,

and the number of colors other than c that want some node in e is
bounded above by B1 = k − 1 and B2 = r . We avoid a mistake at e
if and only if c has higher priority than all of the alternative colors,

where priority is established by the random permutation π . Thus,

Pr[mistake at e | xe < t] ≤ Bi
Bi+1

= min

{
r

r+1
, k−1

k

}
. (6)

Recall from (5) that the LP paysxe > 1−t . Therefore, the expected
cost at a hyperedge e ∈ Ec satisfying xe < t is at most

Bi
(1−t )(Bi+1) in

expectation. Taking the worst approximation factor fromCase 1 and

Case 2, Algorithm 2 will in expectation provide an approximation

factor of max

{
1

t ,
Bi

(1−t )(Bi+1)

}
. This will be minimized when the

approximation bounds from Cases 1 and 2 are equal, which occurs

when t = Bi+1

2Bi+1
. If Bi = k − 1, then t = k−1

2k−1
and the expected

approximation factor is 2 − 1/k . And if Bi = r , then t = r
2r+1

and

the expected approximation factor is 2 − 1/(r + 1). □
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For the graph case (r = 2), this theorem implies a
5

3
-approximation

for Categorical Edge Clustering with any number of categories.

Computational considerations. The linear program has O(|E |)
variables and sparse constraints, which written as a matrix in-

equality would have O(T ) non-zeros, where T is again the sum of

hyperedge degrees. Improving the best theoretical running times

for solving linear programs is an active area of research [19, 41],

but practical performance of solving linear programs is often much

different than worst-case guarantees. In Section 5, we show that a

high-performance LP solver from Gurobi is extremely efficient in

practice, finding solutions in seconds on hypergraphs with several

categories and tens of thousands of hyperedges in tens of seconds.

4.3 Algorithms based on multiway cut
We now provide alternative approximations based on multiway cut,

similar to the reductions from Section 3. Again, we develop this

technique for general hypergraphs and graphs are a special case.

Suppose we have an edge-labeled hypergraph G = (V ,E,C, ℓ).
We construct a new graphG ′ = (V ′,E ′) as follows. First, introduce a
terminal nodevc for each category c ∈ C , so thatV ′ = V ∪{vc | c ∈
C}. Second, for each hyperedge e = {v1, . . . ,vr } ∈ E, add a clique

on nodes v1, . . . ,vr ,vℓ[e] to E
′
, where each edge in the clique has

weight 1/r . (Overlapping cliques are just additive on the weights.)

The multiway cut objective is the number of cut edges in any

partition of the nodes into k clusters such that each cluster con-

tains exactly one of the terminal nodes. We can associate each

cluster with a category, and any clustering Y of nodes in Categori-

cal Edge Clustering forG can be mapped to a candidate partition

for multiway cut in G ′. LetMultiwayCut(Y ) denote the value of
the multiway cut objective for the clustering Y . The next result

relates multiway cut to Categorical Edge Clustering.

Theorem 4.5. For any clustering Y ,

CatEdgeClus(Y ) ≤ MultiwayCut(Y ) ≤ r + 1

2

CatEdgeClus(Y ).

Proof. Let e = {v1, . . . ,vr } with label c = ℓ[e] be a hyperedge
in G. We can show that the bounds hold when considering the

associated clique in G ′ and then apply additivity. First, if e is not a
mistake in the Categorical Edge Clustering, then no edges are cut

in the clique. If e is a mistake in the Categorical Edge Clustering,

then there are some edges cut in the associated clique. The smallest

possible contribution to the multiway cut objective occurs when all

but one node is assigned to c . Without loss of generality, consider

this to be v1, which is in r cut edges: (r − 1) corresponding to the

edges from v1 to other nodes in the hyperedge, plus one for the

edge from v1 to the terminal vc . Each of the r cut edges has weight
1/r , so the multiway cut contribution is 1.

The largest possible cut occurs when all nodes in e are colored
differently from e . In this case, the edges incident to each node in

the clique are all cut. For any one of these nodes, the sum of edge

weights incident to that node equals 1 by the same arguments as

above. This cost is incurred for each of the r nodes in the hyperedge

plus the terminal node vc , for a total weight of r + 1. Since each

edge is counted twice, the actual penalty is (r + 1)/2. □

Computational considerations. Minimizing the multiway cut

objective is NP-hard [21], but there are many approximation algo-

rithms. Theorem 4.5 implies that any p-approximation for multiway

cut provides a p(r + 1)/2-approximation for Categorical Edge Clus-

tering. For example, the simple isolating cuts heuristic yields a

r+1

2
(2 − 2

k )-approximation, and more sophisticated algorithms pro-

vide a
r+1

2
( 3

2
− 1

k )-approximation [18]. For our experiments, we

use the isolating cut approach, which solves O(k) maximum flow

problems on a graph withO(r |E |) vertices andO(r2 |E |) edges. This
can be expensive in practice. We will find that the LP relaxation

performs better in terms of solution quality and running time.

A node-weighted multiway cut reduction. We also provide an

approximation based on a direct reduction to a node-weighted mul-

tiway cut (NWMC) problem that is of theoretical interest. As above,

suppose we have an edge-labeled hypergraph G = (V ,E,C, ℓ). We

construct a new graphG ′ = (V ′,E ′) as follows. First, introduce a ter-
minal nodevc for each category c ∈ C , so thatV ′ = V∪{vc | c ∈ C}.
Assign infinite weights to all nodes inV ′. Next, for each hyperedge

e = {v1, . . . ,vr } ∈ E, add an auxiliary nodeve with weight 1. Next,

append edges (ve ,v1), . . . , (ve ,vr ) as well as (vc ,ve ) for ℓ(e) = c
to E ′. It straightforward to check that deleting ve corresponds to
making a mistake at hyperedge e . Thus an optimizer of NWMC on

G ′ is also an optimizer of Categorical Edge Clustering on G.
Solving NWMC is also NP-hard [30], and there are again well-

known approximation algorithms. The above discussion implies

anyp-approximation to NWMC also provides ap-approximation for

Categorical Edge Clustering. For example, an LP-based algorithm

has a 2(1 − 1/k)-approximation [30]. This approximation is better

but the LPs are too large to be practical; however, the improvement

of a direct algorithm suggests room for better theoretical results.

4.4 Approximation through a linear objective
The Categorical Edge Clustering objective assigns a penalty of 1

regardless of the proportion of the nodes in a hyperedge which are

clustered away from hyperedge’s color. Although useful, we might

consider alternative penalties that value the extent to which each

hyperedge is satisfied in the final clustering. One natural penalty for

a hyperedge of color c is the number of nodes within that hyperedge

that are not clustered into that color. With such a “linear” mistake

function, we define the Categorical Node Clustering Objective as

CatNodeClus(Y ) = ∑
e ∈Em

′
Y (e), wherem

′
Y (e) =

∑
i ∈e IY [i],ℓ(e).

It turns out that this objective is optimized with a simple majority

vote algorithm that assigns a node to the majority color of all

hyperedges that conatin it.

Theorem 4.6. The majority vote algorithm yields an optimizer of
the Categorical Node Clustering (linear) objective.

Proof. Suppose node u is contained in Ji hyperedges of color
i . Without loss of generality, assume J1 ≥ . . . ≥ Jk . The cost of
assigning u to c is Cc =

∑
j,c Jj , which is minimized for c = 1. □

In Section 5, we will see that the majority vote solution provides

a good approximation to the optimizer of the Categorical Edge

Clustering objective. The reason is that the cost of a hyperedge
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under the linear objective is at most r while that cost under the Cat-
egorical Edge Clustering objective is just 1, which makes majority

vote an r -approximation algorithm.

Theorem 4.7. The majority vote algorithm provides an
r -approximation for Categorical Edge Clustering.

5 EXPERIMENTS
We now run four types of numerical experiments to demonstrate

our methodology. First, we show that our algorithms indeed work

well on a broad range of datasets at optimizing our objective func-

tion and discover that our LP relaxation tends be extremely effective

in practice, often finding an optimal solution (i.e., matching the

lower bound). After, we show that our approach is superior to

competing baselines in categorical community detection experi-

ments where edges are colored to signal same-community mem-

bership. Next, we show how to use timestamped edge informa-

tion as a categorical edge label, and demonstrate that our method

can find clusters that preserve temporal information better than

methods that only look at graph topology, without sacrificing per-

formance on topological metrics. Finally, we present a case study

on a network of cooking ingredients and recipes to show that

our methods can also be used for exploratory data analysis. Our

code and datasets are available at https://github.com/nveldt/
CategoricalEdgeClustering.

5.1 Analysis on Real Graphs and Hypergraphs
We first evaluate our methods on several real-world edge-labeled

graphs and hypergraphs in terms of Categorical Edge Clustering.

The purpose of these experiments is to show that our methods can

optimize the objective quickly and accurately and to demonstrate

that our methods find global categorical clustering structure better

than natural baseline algorithms. All experiments ran on a laptop

with a 2.2 GHz Intel Core i7 processor and 8 GB of RAM. We

implemented our algorithms in Julia, using Gurobi software to

solve the linear programs.

Datasets. Table 1 provides summary statistics of the datasets we

use, and we briefly describe them. Brain [20] is a graph where

nodes represent brain regions from an MRI. There are two edge

categories: one for connecting regions with high fMRI correlation

and one for connecting regions with similar activation patterns. In

the Drug Abuse Warning Network (DAWN ) [59], nodes are drugs,

hyperedges are combinations of drugs taken by a patient prior to

an emergency room visit, and edge categories indicate the patient

disposition (e.g., “sent home” or “surgery”). The MAG-10 network
is a subset of the Microsoft Academic Graph [58] where nodes are

authors, hyperedges correspond to a publication from those authors,

and there are 10 edge categories which denote the computer science

conference publication venue (e.g., “WWW” or “KDD”). If the same

set of authors published at more than one conference, we used the

most common venue as the category, discarding cases where there

is a tie. In the Cooking dataset [34], nodes are food ingredients,

hyperedges are recipes made from combining multiple ingredients,

and categories indicate cuisine (e.g., “Southern-US” or “Indian”).

Finally, theWalmart-Trips dataset is made up of products (nodes),

groups of products purchased in a single shopping trip (hyperedges),

and categories are 44 unique “trip types” classified by Walmart [33].

Algorithms. Weuse two algorithms that we developed in Section 4.

The first is the simple 2-approximation rounding scheme outlined

in Algorithm 1, which we refer to as LP-round (LP) (in practice, this

performs as well as the more sophisticated algorithm in Algorithm 2

and has the added benefit of being deterministic). The second is

Cat-IsoCut (IC), which runs the standard isolating cut heuristic [21]

on an instance of multiway cut derived from the Categorical Edge

Clustering problem, as outlined in Section 4.3.

The first baseline we compare against is Majority Vote (MV )
discussed in Section 4.4: node i is assigned to category c if c is the
most common edge type in which i participates. The MV result

is also the default cluster assignment for IC, since in practice this

method leaves some nodes unattached from all terminal nodes.

The other baselines are Chromatic Balls (CB) and Lazy Chromatic
Balls (LCB) — two algorithms for chromatic correlation cluster-

ing [12]. These methods repeatedly select an unclustered edge and

greedily grow a cluster around it by adding nodes that share edges

with the same label. Unlike our methods, CB and LCB distinguish

between category (color) assignment and cluster assignment: two

nodes may be colored the same but placed in different clusters. To

provide a uniform comparison among methods, we merge distinct

clusters of the same category into one larger cluster. These methods

are not designed for hypergraph clustering, but we still use them

for comparison by reducing a hypergraph to an edge-labeled graph,

where nodes i and j share an edge in category c if they appear

together in more hyperedges of category c than any other.

Results. Table 1 reports how well each algorithm solves the Cat-

egorical Edge Clustering objective. We report the approximation

guarantee (the ratio between each algorithm’s output and the LP

lower bound), as well as the edge satisfaction, which is the fraction

of hyperedges that end up inside a cluster with the correct label.

Maximizing edge satisfaction is equivalent to minimizing the num-

ber of edge label mistakes but provides an intuitive way to interpret

and analyze our results. High edge satisfaction scores imply that a

dataset is indeed characterized by large groups of objects that tend

to interact in a certain way with other members of the same group.

A low satisfaction score indicates that a single label for each node

may be insufficient to capture the intricacies of the data.

In all cases, the LP solution is integral or nearly integral, indicat-

ing that LP does an extremely good job solving the original NP-hard

objective, often finding an exactly-optimal solution. As a result, it

outperforms all other methods on all datasets. Furthermore, on

nearly all datasets, we can solve the LP within a few seconds or a

few minutes. Walmart is the exception–given the large number of

categories, the LP contains nearly 4 million variables, and far more

constraints. Other baseline algorithms can be faster, but they do

not perform as well in solving the objective.

The high edge satisfaction scores indicate that our method does

the best job identifying sets of nodes which as a group tend to

participate in one specific type of interaction. In contrast, the MV
algorithm identifies nodes that individually exhibit a certain be-

havior, but the method does not necessarily form clusters of nodes

that as a group interact in a similar way. Because our LP method

outperforms our IC approach on all datasets in terms of both speed

7

https://github.com/nveldt/CategoricalEdgeClustering
https://github.com/nveldt/CategoricalEdgeClustering


Table 1: Summary statistics of datasets — number of nodes |V |, number of (hyper)edges |E |, maximum hyperedge size r , and
number of categories k — along with Categorical Edge Clustering performance for the algorithms LP-round (LP),Majority Vote
(MV), Cat-IsoCut (IC), ChromaticBalls (CB) and LazyChromaticBalls (LCB). Performance is listed in terms of the approxima-
tion guarantee given by the LP lower bound (lower is better) and in terms of the edge satisfaction, which is the fraction of
edges that are not mistakes (higher is better; see Eq. (2)). Our LPmethod performs the best overall and can even find exactly (or
nearly) optimal solutions to the NP-hard objective by matching the lower bound. We also report the running times for rough
comparison, though our implementations are not optimized for efficiency. Due to its simplicity, MV is extremely fast.

Approx. Guarantee Edge Satisfaction Runtime (in seconds)

Dataset |V | |E | r k LP MV IC CB LCB LP MV IC CB LCB LP MV IC CB LCB

Brain 638 21180 2 2 1.0 1.01 1.27 1.56 1.41 0.64 0.64 0.55 0.44 0.5 1.8 0.0 1.9 0.4 0.8

MAG-10 80198 51889 25 10 1.0 1.18 1.37 1.44 1.35 0.62 0.55 0.48 0.45 0.49 51 0.1 203 333 699

Cooking 6714 39774 65 20 1.0 1.21 1.21 1.23 1.24 0.2 0.03 0.03 0.01 0.01 72 0.0 1223 4.6 6.7

DAWN 2109 87104 22 10 1.0 1.09 1.0 1.31 1.15 0.53 0.48 0.53 0.38 0.46 13 0.0 190 0.3 0.4

Walmart-Trips 88837 65898 25 44 1.0 1.2 1.19 1.26 1.26 0.24 0.09 0.09 0.04 0.05 7686 0.2 68801 493 1503

and accuracy, in the remaining experiments we focus only on com-

paring LP against other competing algorithms.

5.2 Categorical Edge Community Detection
Next we demonstrate the superiority of LP in detecting communi-

ties of nodes with the same node labels (i.e., categorical communi-
ties), based on labeled edges between nodes. We perform experi-

ments on synthetic edge-labeled graphs, as well as two real-world

datasets, where we reveal edge labels indicative of the ground truth

node labels and see how well we can recover the node labels.

Synthetic Model. We use the synthetic random graph model of

Bonchi et al. for chromatic correlation clustering [12]. A user speci-

fies the number of nodes n, colors L, and clusters K , as well as edge
parameters p, q, and w . The model first assigns nodes to clusters

uniformly at random, and then assigns clusters to colors uniformly

at random. (Due to the random assignment, some clusters and col-

ors may not be sampled. Thus, K and L are upper bounds on the

number of distinct clusters and unique colors.) For nodes i and j
in the same cluster, the model connects them with an edge with

probability p. With probability 1 −w , the edge is the same color

as i and j. Otherwise, it is a uniform random color. If i and j are in
different clusters, an edge is drawn with probability q and given

a uniform random color. We will also use a generalization of this

model to synthetic r -uniform hypergraphs. The difference is that

we assign colored hyperedges to r -tuples of the n nodes, rather

than just pairs, and we assign each cluster to a unique color.

Synthetic Graph Results. We set up two experiments, where

performance is measured by the fraction of nodes placed in the

correct cluster (node label accuracy). In the first, we form graphs

with n = 1000, p = 0.05, and q = 0.01, fixing L = K = 15 (which

in practice leads to graphs with 15 clusters and typically between

8 and 12 distinct edge and cluster colors). We then vary the noise

parameterw from 0 to 0.75 in increments of 0.05. Figure 3a reports

the median accuracy over 5 trials of each method for each value of

w . In the second, we fixw = 0.2, and vary the number of clusters

K from 5 to 50 in increments of 5 with L = K . Figure 3b reports the
median accuracy over 5 trials for each value of K .

For our first two experiments, we additionally found that our

LP algorithm similarly outperformed other methods in terms of
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(d) Hypergraphs: Varying # Clusters

Figure 3: (a)–(b): Performance of algorithms on a syn-
thetic graphmodel for chromatic correlation clustering [12].
Across a range of parameters, our LP method outperforms
competing methods in predicting the ground truth label of
the nodes. (c)–(d): In experiments on synthetic 3-uniform
hypergraphs, LP performs well for most parameter regimes
but there is some sensitivity to the very noisy setting.

cluster identification scores such as Adjusted Rand Index and F-

score, followed in performance by MV. Cluster identification scores

for LCB and CB were particularly low (ARI scores always below

0.02), as these methods tended to form far too many clusters.

The CB and LCB algorithms, as well as the synthetic graph

model itself, explicitly distinguish between ground truth node labels

and ground truth clusters. Thus, our third experiment explores a

parameter regime tailored more towards the strengths of CB and

LCB. We fix L = 20, and vary the number of clusters from K = 50 to

K = 200 in increments of 25. Following the experiments of Bonchi

et al. [12] we set p = w = 0.5, and set q = 0.03. Even in this setting,
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Figure 4: LCB and CB are primarily designed for settings
where K is much larger than L. Despite this, our LP method
always obtains better label assignment scores, and often ob-
tains better ARI cluster identification scores, when we fix
L = 20 and let K vary from 50 to 500.

we find that our algorithms maintain an advantage. For all values

of K , our LP algorithm outperforms other methods in terms of node

label accuracy, and also obtains higher ARI scores whenK is a small

multiple of L. We note that LCB and CB only obtain better cluster

identification scores in parameter regimes where all algorithms

obtain ARI scores below 0.1.

Synthetic Hypergraph Results. We ran similar experiments on

synthetic 3-uniform hypergraphs. We again set n = 1000 and used

p = 0.005 and q = 0.0001 for intra-cluster and inter-cluster hyper-

edge probabilities. In one experiment, we fixed L = 15 and variedw ,

and in another we fixedw = 0.2 and varied the number of clusters

L. Figures 3c and 3d shows the accuracies. Again, LP tends to have

the best performance. When L = 15, our method achieves nearly

perfect accuracy for w ≤ 0.6. However, we observe performance

sensitivity when the noise is too large: whenw increases from 0.6

to 0.65, the output of LP no longer tracks the ground truth cluster

assignment. This occurs despite the fact that the LP solution is

integral, and we are in fact optimally solving the Categorical Edge

Clustering objective. We conjecture this sharp change in accuracy

is due to an information theoretic detectability threshold, which

depends on parameters of the synthetic model.

Academic Department Labels in an Email Network. To test

the algorithms on real-world data, we use the Email-Eu-core net-
work [42, 64]. Nodes in the graph represent researchers at a Euro-

pean institution, edges indicate email correspondence (we consider

the edges as undirected), and nodes are labeled by the departmental

affiliation of each researcher. We wish to test how well each method

can identify node labels, if we assume we have access to a (perhaps

noisy and imperfect) mechanism for associating emails with la-

bels for inter-department and intra-department communication. To

model such a mechanism, we generate edge categories in a manner

similar to the synthetic above. An edge inside of a cluster (i.e., an

email within the same department) is given the correct department

label with probability 1−w , and a random label with probabilityw .

An edge between two members of different departments is given

a uniform random label. Figure 5a reports each algorithm’s abil-

ity to detect department labels whenw varies from 0 to 0.75. Our

LP method returns the best results in all cases, and is robust in

detecting department labels even in the high-noise regime.
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(b) Walmart-Products

Figure 5: Accuracy in clustering nodes in real-world datasets
when edge labels are a noisy signal for ground truth node
cluster membership. For both an email graph (a) and a prod-
uct co-purchasing hypergraph (b), our LP-Round method
consistently outperforms other methods.

Product Categories. The Walmart-Trips dataset from Section 5.1

also has product information. We assigned products to one of ten

broad departments in which they appear on walmart.com (e.g.,

“Clothing, Shoes, and Accessories”) to construct aWalmart-Products
hypergraph with ground truth node labels. Recall that hyperedges

are sets of co-purchased products. We generate noisy hyperedge

labels as before, with 1−w as the probability that a hyperedge with

nodes from a single department will have the correct label. Results

are reported in Figure 5b, and our LP-round method can detect true

departments at a much higher rate than the other methods.

5.3 Temporal Community Detection
In the next experiment, we show how our framework can be used

to identify communities of nodes in a temporal network, where

we use timestamps on edges as a type of categorical label that two

nodes should be clustered together. For data, we use the CollegeMsg
network [52], which records private messages (time-stamped edges)

between 1899 users (nodes) of a social media platform at UC-Irvine.

Removing timestamps and applying a standard graph clustering

algorithm would be a standard approach to identify communities

of users. However, this loses the explicit relationship with time. As

an alternative, we convert timestamps into discrete edge labels by

ordering edges with respect to time and separating them into k
equal-sized bins representing time windows. Optimizing Categori-

cal Edge Clustering then corresponds to clustering users into time

windows, in order to maximize the number of private messages

that occur between users in the same time window. In this way, our

framework can identify temporal communities in a social network,

i.e., groups of users that are highly active in sending each other

messages within a short period of time.
We construct edge-labeled graphs for different values of k , and

compare LP against clusterings obtained by discarding time stamps

and running Graclus [22], a standard graph clustering algorithm.

Graclus seeks to cluster the nodes into k disjoint clusters S1, . . . , Sk
to minimize the normalized cut objective:

Ncut(S1, S2, . . . , Sk ) =
∑k
i=1

cut(Si )
vol(Si ) ,

where cut(S) is the number of edges leaving S , and vol(S) is the
volume of S , i.e., the number of edge end points in S . Figure 6a shows
that LP is in fact competitive with Graclus in finding clusterings

9

walmart.com


0 10 20 30 40

0.65

0.70

0.75

0.80

0.85

0.90

k = number of clusters

1/
k 

*(
N

or
m

. C
ut

) 

LP-round
Graclus

(a) Normalized Cut

10 20 30 40

100

200

300

400

500

k = number of clusters
A

vg
 T

im
e 

D
iff

er
en

ce
 (

hr
s)

LP-round
Graclus

(b) Inner edge time difference

Figure 6: Results for LP and Graclus in clustering a tempo-
ral network. Our LP method is competitive for Graclus’s ob-
jective (normalized cut; left), while preserving the temporal
structure of network much better (right).

with small normalized cut scores, even though LP is designed for a

different objective. However, LP still avoids cutting edges, and it

finds clusterings that also have small normalized cut values. The

other goal of LP is to place few edges in a cluster with the wrong

label, which in this scenario corresponds to clustering messages

together if they were sent close in time. We therefore also measure

the average difference between timestamps of interior edges and

the average time stamp in each clustering, i.e.,

AvgTimeDiff(S1, . . . , Sk ) = 1

|Eint |
∑k
i=1

∑
e ∈Ei |timestamp(e) − µi |,

where Eint is the set of interior edges completely contained in some

cluster, Ei is the set of interior edges of cluster Si , and µi is the
average time stamp in Ei . Not surprisingly, this value tends to be

large for Graclus, since this method ignores timestamps. However,

Figure 6b shows that this value tends to be small for LP, indicting
that it is indeed detecting clusters of users that are highly interactive

within a specific short period of time.

5.4 Analysis of the Cooking Hypergraph
Finally, we apply our framework and LP-round algorithm to gain

insights into the Cooking hypergraph dataset from Section 5.1,

demonstrating our methodology for exploratory data analysis. An

edge in this hypergraph is a set of ingredients for a recipe, and each

recipe is categorized according to cuisine. Categorical Edge Clus-

tering thus corresponds to separating ingredients among cuisines,

in a way that maximizes the number of recipes whose ingredients

are all in the same cluster (see Ahn et al. [3] for related analyses).

Table 1 shows that only 20% of the recipes can be made (i.e., a

0.2 edge satisfaction) after partitioning ingredients among cuisine

types. This is due to the large number of common ingredients such

as salt and olive oil that are shared across many cuisines (a problem

in other recipe network analyses [61]). We negate the negative

effect of high-degree nodes as follows. For an ingredient i , let dci be

the number of recipes of cuisine c containing i . LetMi = maxc d
c
i

measure majority degree and Ti =
∑
t d

c
i the total degree. Note that

Bi = Ti −Mi is a lower bound on the number of hyperedge mistakes

we will make at edges incident to node i . We can refine the original

dataset by removing all nodes with Bi greater than some β .

Making recipes or wasting ingredients. Figure 7a shows edge
satisfaction scores for LP and MV when we cluster for different β .
When β = 10, edge satisfaction is above 0.64 with LP. As β increases,
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Figure 7: As β increases, we discard fewer high-degree in-
gredients before clustering the rest. Our method always
“makes”more recipes (higher edge satisfaction) and “wastes”
fewer ingredients (smaller number of unused ingredients).

Table 2: Examples of ingredients and recipes from special
clusters identified by LP, but notMajority Vote.

French Fruit-Based Desserts (β = 70)

Ingredients: ruby red grapefruit, strawberry ice cream, dry hard

cider, icing, prunes, tangerine juice, sour cherries.

Recipes: 1. {almond extract, bittersweet chocolate, sugar, sour cher-

ries, brioche, heavy cream, unsalted butter, kirsch}, 2. {large egg

yolks, ruby red grapefruit, dessert wine, sugar}

Brazilian Caipirinha Recipes (β = 170)

Ingredients: simple syrup, light rum, ice, superfine sugar, key lime,

coco, kumquats, liquor, mango nectar, vanilla essence

Recipes: {cachaca, ice} + 1. { lime juice, kumquats, sugar}, 2. {lime,

fruit puree, simple syrup}, 3. { superfine sugar, lime juice, passion

fruit juice}, 4. { sugar, liquor, mango nectar, lime, mango}

edge satisfaction decreases, but LP outperformsMV in all cases. We

also consider a measure of “ingredient waste” for each method. An

ingredient is unused if we cannot make any recipes by combining

the ingredient with other ingredients in its cluster. A low number

of unused ingredients indicates that a method forms clusters where

ingredients combine together well. Figure 7b shows the number of

unused ingredients as β varies. Again, LP outperforms MV.
Specific ingredient and recipe clusters. We finally highlight

specific ingredient clusters that LP identifies but MV does not.

When β = 170, LP places 10 ingredients with the Brazilian cuisine

which MV does not, leading to 23 extra recipes that are unique to

LP. Of these, 21 correspond to variants of the Caipirinha, a popular

Brazilian cocktail. When β = 70, 24 ingredients and 24 recipes are

unique to the French cuisine cluster of LP. Of these, 18 correspond
to desserts, and 14 have a significant fruit component. Table 2 has

examples of ingredients and recipes from both these clusters.

6 DISCUSSION
We have developed a computational framework for clustering nodes

of hypergraphs when edges have categorical labels that signal node

similarity. With two categories, our clustering objective can be

solved in polynomial time. For general problems, our linear pro-

gramming relaxations provide 2-approximation or even better guar-

antees, which are far tighter than what is seen in the related lit-

erature on correlation clustering. This method is also extremely

10



effective in practice. Amazingly, our LP-round algorithm often ac-

tually minimizes our NP-hard objective (certified through integral

solutions) on hypergraphs with tens of thousands of edges in just

tens of seconds. The approach also works well in problems when

performance is measured in terms of some sort of ground truth

labeling, outperforming baselines by a substantial margin.

For the special cases of two-category graphs and rank-3 hy-

pergraphs, the Categorical Edge Clustering objective is a “regular

energy function” within the energy minimization framework of

computer vision [38]. This provides alternative polynomial time

algorithms in these cases (see Appendix A). However, these ap-

proaches do not work for two important regimes: more than two

categories, or in general hypergraphs (in the latter, the penalties

are no longer a semi-metric, which is needed for approximation

algorithms [16]).
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A CONNECTION TO ENERGY MINIMIZATION
Special cases of our Categorical Edge Clustering framework fit

within the paradigm of energy function minimization in computer

vision [16, 27, 38]. The energy minimization approach uses mini-

mum s-t cut algorithms for functions of binary and ternary vari-

ables which satisfy a certain regularity property. In this appendix

we show that our objective induces a regular energy function in

both the graph and rank-3 hypergraph case when there are two

categories. This connection implies that in addition to the algo-

rithms we developed above, we may use the tools developed for

energy minimization to facilitate solving these special instances of

our problem exactly in polynomial time.

A.1 Graphs with two categories
To show the connection to energy minimization, we cast our ob-

jective as a so-called energy function. With two categories, we can

encode our coloring C of the n nodes in the graph as a vector of

1s and 2s corresponding to which color each node takes. For this,

we write C = (x1, ....,xn ) where xi = 1 if node i is assigned color 1

and xi = 2 if node i is assigned a color 2. Now the Categorical Edge

Clustering objective can be written as an energy function as

CatEdgeClus(C) =
∑

i<j s.t. (i, j)∈E
Ei, j (xi ,x j ),

where [
Ei, j (1, 1) Ei, j (1, 2)
Ei, j (2, 1) Ei, j (2, 2)

]
=

[
0 1

1 1

]
if (i, j) is of color 1 and[

Ei, j (1, 1) Ei, j (1, 2)
Ei, j (2, 1) Ei, j (2, 2)

]
=

[
1 1

1 0

]
if (i, j) is of color 2. We will show that this energy function satisfies

a regularity property, which enables a reduction of our objective to

a minimum s-t graph cut [38].

Definition A.1. A function of two binary variables is regular if
each term satisfies the following inequality

Ei, j (0, 0) + Ei, j (1, 1) ≤ Ei, j (0, 1) + Ei, j (1, 0).

It is easy to see that our energy function is indeed regular. We

formalize this observation in the following theorem.

TheoremA.2. The Categorical Edge Clustering objective for graphs
with two categories induces a regular energy function.

Proof. Regardless of whether (i, j) is an edge of color 1 or of

color 2, the off-diagonal terms in the energy function sum to 2

while the diagonal terms sum to 1. This ensures that the regularity

property is satisfied. □

Having established the regularity of our energy function, the

results of Kolmogorov and Zabih [38, Theorem 4.1] say that we

can cast the energy minimization problem as an s-t-cut problem
on a directed graph. In particular, following their construction, we

would create a directed graph G ′ = (V ′,E ′) from G = (V ,E,C, ℓ)
as follows, which is similar to the reduction we used in Section 3.1.

• Append nodes s and t to E ′

• For every undirected edge (i, j) with i < j in G, if (i, j) has
color 1, create a directed edge (i, j) and a directed edge (j, t)
in E ′, while if (i, j) has color 2 inG , append the directed edge
(i, j) and the directed edge (s, i) to E ′

This construction guarantees that the energy function Ei, j of every
edge (i, j) in G is exactly represented by the corresponding cut on

the subgraph inG ′ which the edge induced. The following theorem

is then a result of the additivity theorem from Kolmogorov and

Zabih [38].
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Theorem A.3. Let C∗ be a two-colored clustering that is the so-
lution of the s-t-mincut problem on the graph G ′ constructed using
the procedure above. Then C∗ also optimizes the Categorical Edge
Clustering objective for the original graph G.

A.2 Rank-3 hypergraphs with two categories
The energy minimization framework also allows us to handle the

case of rank-3 hypergraphs. Adopting the conventions of the previ-

ous subsection, we can write the clustering objective as follows.

CatEdgeClus(C) =∑
i<j : (i, j)∈E

Ei, j (xi ,x j ) +
∑

i<j<k : (i, j,k)∈E
Ei, j,k (xi ,x j ,xk ),

where Ei, j (xi ,x j ) is the same as in the previous section and the

higher-order energy for hyperedges is
Ei, j,k (1, 1, 1) Ei, j,k (1, 1, 2)
Ei, j,k (1, 2, 1) Ei, j,k (1, 2, 2)
Ei, j,k (2, 1, 1) Ei, j,k (2, 1, 2)
Ei, j,k (2, 2, 1) Ei, j,k (2, 2, 2)


=


0 1

1 1

1 1

1 0

 + I(C[i] = C[j] = C[k] = 2)


1 0

0 0

0 0

0 0


+ I(C[i] = C[j] = C[k] = 1)


0 0

0 0

0 0

0 1

 .
The energy function defined this way is regular, in the sense that

all projections into two variables are regular. We formalize this

observation in the theorem below.

Theorem A.4. The Categorical Edge Clustering objective for rank-
3 hypergraphs with two categories induces a regular energy function.

We proceed to construct a graph G ′ in a manner similar to that

described in the preceding subsection which will allow us to opti-

mize the Categorical Edge Clustering objective through a minimum

s-t-cut on G ′. After appending the source and sink nodes s and
t to G ′, we perform the procedure of the previous section for all

edges e ∈ E. For the remaining hyperedges of rank 3, we follow

the procedure outlined by Kolmogorov and Zabih [38, Section 4.1].

This is a special case of the more general approach we present in

Section 3. In particular, depending on the hyperedge color, we use

one of the two directed tree structures in Figure 1. The fact that

the minimum s-t cut on G ′ thus constructed induces a partition of

the nodes in E which minimizes the Categorical Edge Clustering

objective follows from a proof similar to that presented in the graph

case. The actual proof is the special r = 3 case of the main proof in

Section 3. Finally, we can establish the following theorem.

Theorem A.5. Let C∗ be a two-colored clustering that is the so-
lution of the s-t-mincut problem on the graph G ′ constructed using
the procedure above. Then C∗ also optimizes the Categorical Edge
Clustering objective for the original hypergraph G.
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