
Field-aware Calibration: A Simple and Empirically Strong
Method for Reliable Probabilistic Predictions

Feiyang Pan
∗†

Institute of Computing Technology,

Chinese Academy of Sciences

Xiang Ao
†

Institute of Computing Technology,

Chinese Academy of Sciences

Pingzhong Tang

IIIS, Tsinghua University

Min Lu

Tencent

Dapeng Liu

Tencent

Lei Xiao

Tencent

Qing He
†

Institute of Computing Technology,

Chinese Academy of Sciences

ABSTRACT
It is often observed that the probabilistic predictions given by a

machine learning model can disagree with averaged actual out-

comes on specific subsets of data, which is also known as the issue

of miscalibration. It is responsible for the unreliability of practical

machine learning systems. For example, in online advertising, an

ad can receive a click-through rate prediction of 0.1 over some

population of users where its actual click rate is 0.15. In such cases,

the probabilistic predictions have to be fixed before the system can

be deployed.

In this paper, we first introduce a new evaluation metric named

field-level calibration error that measures the bias in predictions

over the sensitive input field that the decision-maker concerns. We

show that existing post-hoc calibration methods have limited im-

provements in the new field-level metric and other non-calibration

metrics such as the AUC score. To this end, we propose Neural

Calibration, a simple yet powerful post-hoc calibration method that

learns to calibrate by making full use of the field-aware information

over the validation set. We present extensive experiments on five

large-scale datasets. The results showed that Neural Calibration

significantly improves against uncalibrated predictions in common

metrics such as the negative log-likelihood, Brier score and AUC,

as well as the proposed field-level calibration error.
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1 INTRODUCTION
To make reliable decisions, it is at the heart of machine learning

models to provide accurate probabilistic predictions. Unfortunately,

recent studies have observed that many existing machine learning

methods, especially deep learning methods, can yield poorly cali-

brated probabilistic predictions [2, 10, 17, 26], which hurts reliability

of the decision-making systems.

A predictive machine learning model is said to be well-calibrated

if it makes probabilistic predictions or likelihood estimations that

agree with the actual outcomes [10, 23]. That is, when the model

makes predictions on an unseen dataset, in any subset of the data,

if the averaged likelihood estimation is p, the actual outcomes do

occur around p fraction of the times. For example, in online adver-

tising, when a well-calibrated machine learning model predicts a

click-through rate of 10% for an ad, the ad does being clicked at

10% of the times.

However, it is hard to obtain well-calibrated probabilistic pre-

dictions. Recent studies [3, 8, 10] reported that, in the fields of

computer vision and information retrieval, deep neural networks

are poorly calibrated, i.e., a model can “confidently” make mistakes.

Miscalibration not only affects the overall utility, but also under-

mines the reliability over certain groups of data, e.g., a model can

overestimate the click rate for one advertisement but underestimate

the click rate for another. In particular, machine learning models

especially those with deep and complex structures can make desir-

able predictions in terms of non-calibration performance measures,

but suffer from poor results in calibration-related measures [10].

Let us look at an example, the details of which are shown in

Section 5.3. We train a multi-layer perceptron (MLP) to predict

whether an issued loan would be in default over a public dataset
1
.

The trained neural network works nicely with a high AUC score

on the test set, which indicates that the model is probably “good”

1
Lending Club dataset: https://www.kaggle.com/wendykan/lending-club-loan-data
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to be used to make decisions. Unfortunately, when we look into

fine-grained results over borrowers in different states in the U.S., we

found the model unreliable: It overestimates the defaulter probabil-

ities for some states but underestimates the others. In this case, the

trained model seems “powerful” for certain utility functions such as

the AUC score, but is unreliable because of the large miscalibration

error on some specific subsets of data. Therefore, it is crucial to

calibrate the predictions so as not to mislead the decision-maker.

For this purpose, we first raise the following question.

Q1. Given probabilistic predictions on a test dataset, how to mea-
sure the calibration error?

Perhaps surprisingly, standard metrics are insufficient to evalu-

ate miscalibration errors. Negative Log-Likelihood and the Brier

score, arguably the two most popular metrics, can solely evaluate

the error on instance level, which is too fine-grained to measure

miscalibration on subsets. In particular, they cannot be used to

report biases over subsets of data. On the other hand, the reliability

diagram [6] can only visualize the averaged the error on probability

intervals, thus might be too coarse-grained at the subset level.

To answer Q1, we introduce a new class of evaluation metrics,

coined the Field-level Calibration Error. It can evaluate the averaged

bias of predictions over specific input fields, which is especially

useful on categorical data. Take the loan defaulter prediction task

as an example. The new metric can measure the field-level error

on input such as “state”. We observe that the proposed field-level

calibration error indeed measures the error ignored by previous

metrics. That is, a set of predictions can simultaneously get a high

AUC score, low Log-loss, but large field-level calibration error.

To fix miscalibration, various methods have been proposed, e.g.,

[1, 10, 23, 25, 30, 33]. A standard pipeline for calibration requires

a development (validation) dataset to learn a mapping function

that transforms raw model outputs into calibrated probabilities. By

using such post-hoc calibration, the error on the hold-out data can

then be reduced, while the order of outputs in the test set can keep

unchanged. However, it is reported [26] that these methods are

unreliable under dataset shift.

Further, machine learning practitioners might immediately find

suchmethods suboptimal: Recall that there is a development dataset,

we can directly train a model over the joint of the training set and

the development set, which may probably result in a better model.

So why do we bother splitting the data and doing the post-hoc cali-

bration? We observed that training a model over the whole dataset

can indeed reach a much higher AUC score than the mentioned

post-hoc calibration methods, but is unreliable because sometimes

the predictions can be poorly calibrated.

In light of these observations, a practical question arises:

Q2. Is there any way to simultaneously reduce the calibration error
and improve other non-calibration metrics such as the AUC score?

Our answer is “Yes”. To achieve this, we propose a method based

on neural networks, coined Neural Calibration. Different from the

mentioned methods, Neural Calibration is a field-aware calibration

method. The training pipeline of Neural Calibration and compar-

isons with existing methods are demonstrated in Figure 1. Rather

than learning a mapping from the raw model output to a calibrated

probability, Neural Calibration trains a neural network over the

validation set by taking both the raw model output and all other

features as inputs.

x Uncalibrated model l Sigmoid / Softmax p

x l Platt / Temperature Scaling
trained on development set p

x l

Field-aware calibration 
trained on development set p

(a) Vanilla feed-forward model for classification

(b) Conventional post-hoc calibration

(c) Field-aware calibration (ours)

Uncalibrated model

Uncalibrated model

Figure 1: Comparison of existing pipelines and ours.

We also study the effect of dataset shift to various calibration

methods. We empirically find that common post-hoc calibration

methods, including Platt Scaling [25, 30] and Isotonic Regression [1,

25], can be unreliable under data shift. When the distribution of

development set is not similar to the test set, the calibrated proba-

bilities might be worse than the raw outputs. On the contrary, our

proposed Neural Calibration can be empirically robust and reliable,

even when the development set is not close to the test set.

We conducted extensive experiments over five large scale real-

world datasets to verify the effectiveness.We show that by using our

learning pipeline, the final predictions can not only achieve lower

calibration error than previous calibration methods but also reach

a comparable or better performance on non-calibration metrics

compared with the joint training pipeline.

Our contribution can be summarized as follows:

• We put forward Field-level Calibration Error, a new type of

metric for probabilistic predictions. It focuses on measuring

miscalibration on specific subsets of data that are overlooked

by existing metrics.

• We propose Neural Calibration, a parametric field-aware

calibration method, which makes a full use of the develop-

ment data. The proposed method is easy to implement yet

empirically powerful.

• It follows a pipeline for practitioners in machine learning

and data mining, which can improve the uncalibrated out-

puts in both calibration metrics and non-calibration metrics.

We observed through extensive experiments that Neural

Calibration could overcome several drawbacks of existing

methods and achieve significantly better performance.

2 PRELIMINARY
This paper focuses on calibrating probabilistic predictions on classi-

fication tasks with binary outcomes. The probabilistic prediction to

estimate is p(x) = Pr(Y = 1 | x)where x is the input and Y ∈ {0, 1}
is the random variable of the binary outcome. This probability can

be used to quantify the likelihood of data, the uncertainty on a data

point, or the model’s confidence on its prediction.

Modern deep learningmodels obtains the probabilistic prediction

by a base model with a sigmoid output

p̂(x) = σ (l) = σ (f (x)) (1)
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where σ (·) denotes the sigmoid function and l = f (x) is the uncal-
ibrated non-probabilistic output (also known as the logit) of the
discriminative model.

We denote a labeled dataset as D = {(xi ,yi )} |D |
i=1 . The training /

development (validation) / test set are denoted byDtrain,Ddev
,Dtest,

respectively. Note that we do not assume that the three datasets are

from the same distribution, that is, we allow for minor data-shift

among the datasets. For the simplicity of notations, we will use p̂i
to denote p̂(xi ).

2.1 Existing metrics for probabilistic
predictions

2.1.1 Instance-level calibration error. A straight-forward way to

measuremiscalibration is to average the errors over all the instances

in a dataset. For example, Negative Log-Likelihood (NLL), also

known as the Log-loss, is formulated as

LogLoss =
1

|D|

|D |∑
i=1

[
− yi log p̂i − (1 − yi ) log(1 − p̂i )

]
. (2)

The Brier score is the mean squared error over instances

BrierScore =
1

|D|

|D |∑
i=1

(
yi − p̂i

)
2

. (3)

Therefore, by minimizing these two metrics, the overall bias be-

comes smaller. However, a drawback for these two metrics is that

they cannot measure the bias in groups of instances. Their value is

not easy to interpret, e.g., by knowing a Log-loss of 0.2, one cannot

even guess the averaged bias of the predictions intuitively.

2.1.2 Probability-level calibration error. In many previous studies

[6, 10, 23], the calibration error is formulated by partitioning the

predictions into bins and summing up the errors over the bins.

Formally, we partition the [0, 1) interval into K partitions where

the kth interval is [ak ,bk ). Recall that we discuss the case of binary
classification, the error is

Prob-ECE =
1

|D|

K∑
k=1

�� |D |∑
i=1

(yi − p̂i )1[ak ,bk )(p̂i )
��, (4)

where 1[ak ,bk )(p̂i ) is an indicator function which equals to 1 if

p̂i ∈ [ak ,bk ). For this metric, the goal can be understood as “for

every subset of data where the predicted positive rate is p, the
real rate should be around p”. A reliability diagram showing the

probability-level error is shown on the left side of Figure 2.

However, this metric is somewhat rough for evaluating predic-

tions of specific tasks where the labels are highly imbalanced. Also,

it might be misleading for real-world applications such as click-

through rate prediction in online advertising. For example, if a

model predicts an averaged click-through rate over an advertising

platform at every query it sees, the system achieves perfect Prob-

ECE but is not so useful in practice. Therefore, this paper does not

include Prob-ECE as an evaluation metric.

2.1.3 Non-calibration metrics. Many non-calibration metrics can

also be used to evaluate probabilistic predictions, such as the clas-

sification accuracy, the precision/recall rate, the F-scores, and the

area under the receiver operating characteristic curve (AUC).

Among them, the classification accuracy, precision, recall, and

the F-scores all require a hard threshold to classify the predictions

into hard categorical outputs, while the AUC score does not require

a threshold and is more of a measure for the order of predictions.

Therefore, the former metrics are often suitable for tasks such as

image classification, where the ground-truth label for each instance

is explicitly known. On the other hand, the AUC score is preferred

in the tasks where the labels are noisy and imbalanced such as user

response prediction on the web. It does not require a threshold

and is irrelevant to the scale of the predictions, i.e., if we reduce

all predictions by 10%, the AUC score stays the same. Therefore,

in this paper, we use the AUC score as the main non-calibration

metric.

2.2 Related work
Many applications rely on good estimates of predictive uncertainty

or data likelihood, including active learning [7], no-regret online

learning [27, 32], and reinforcement learning [4, 28]. Generally

speaking, people observe miscalibration when using a model to

make inferences on an unseen dataset, which then becomes a devel-

opment dataset that can be used to calibrate the model. Therefore,

it is necessary to fix the error by learning a calibration function

using the new development set. Such a two-step method is named

post-hoc calibration.

Existing post-hoc calibration methods can be categorized into

non-parametric and parametric methods based on the type of map-

ping functions. Non-parametric methods include binning meth-

ods [23, 33] and Isotonic Regression [1, 25]. Binning methods parti-

tion the raw prediction into bins, each assigned with the averaged

outcomes of validation instances in this bin. If the partitions are

predefined, the method is known as Histogram Binning [33]. How-

ever, such a mapping cannot keep the order of predictions, thus

cannot be used for applications, including advertising. So Isotonic

Regression [1], which requires the mapping to be non-decreasing,

is widely used in real-world industry [3, 21]. Parametric methods,

on the other hand, use parameterized functions as the mapping

function. The most common choice, Platt Scaling [25, 30], is equiv-

alent to a univariate logistic regression that transforms the model

output (the logit) into calibrated probabilities. Because of the simple

form, Platt scaling can extend to multi-class classification for image

and text classification [10]. However, such oversimplified mapping

tends to under-fit the data and might be sub-optimal.

In the industry, calibration is a basic component in large-scale

information retrieval systems. For example, in the click-through

rate prediction systems of advertising [9, 11, 21] and search [3],

calibration plays a critical role. Platt Scaling [9, 21] and Isotonic

Regression [3, 11] are commonly used. Our paper introduces a

simple novel method that is more powerful than these baselines.

Other related work includes calibration with more detailed map-

ping functions or in different problem settings. To name some, [23]

extends Histogram Binning to a Bayes ensemble; [10] extends Platt

scaling to Temperature scaling; [24] extends Isotonic Regression

to Bayesian, [18] generalizes it in an online setting, [3] uses it for

calibrating click models; and [19] uses model ensemble to reduce

the bias of predictions of deep learning models. The most related
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Figure 2: A sketch of evaluation metrics of the calibration
error on the test set. Left: A reliability diagram, which vi-
sualizes the probability-level calibration error. The gaps be-
tween the red line (actual outcome) and the dashed line (pre-
dictions) are the calibration errors in the intervals. Right:
Field-level calibration errors on two fields: user-field and
item-field, in a recommender systemwhere one needs to pre-
dict the probability of a user likes an item. The numbers in
the blocks are the difference between the predicted likeli-
hood and the real response.

concept of previous work is group-wise calibration [5], which con-

siders fixing the error across various groups of data. However, their

method is solely a linear model over the considered groups and

cannot be applied to large-scale problems. The field-level evaluation

criteria proposed in this paper is also discussed in [12, 16]. However,

[16] does not give an explicit formulation of the evaluation metric

or a method to fix the error, and the method of [12] is computation-

ally expensive that needs to iterate every subset of data. Different

from the previous work, we give explicit formulation for the metric

as well as an efficient algorithm to calibrate it.

There is another line of work studying the reasons why miscali-

bration occurs, or how to alleviate miscalibration during training

the base model [6, 10, 13, 19, 20]. This paper studies the metrics to

evaluate miscalibration and a practical method to fix it. The term

“calibration” is also often used in the literature of fairness-aware

classification [12, 14, 16, 22, 31, 34]. In fairness literature, it aims to

give fair predictions for specific features, e.g., a fair model should

predict the same acceptance rates for female and male applicants,

which is different from the target of this paper.

3 FIELD-LEVEL CALIBRATION ERROR
We put forward the field-level calibration error as a new metric to

evaluate the reliability of probabilistic predictions. In particular, it

measures the biases of predictions in different subsets of the dataset,

which is especially vital in applications on the web. A sketch for

our field-level metrics is shown on the right side of Figure 2.

Consider the input of the classification problem is a d + 1 dimen-

sional vector x = (z,x1, . . . ,xd ) including one specific categorical
field z ∈ Z that the decision-maker especially cares about. Given

that z is a categorical feature, we can partition the input space into

|Z| disjoint subsets. For example, in the loan defaulter prediction

task mentioned previously, this particular field is the “address state”

feature with 51 levels, i.e., z ∈ Z = {1, . . . , 51}. Thus the data can
be partitioned into 51 disjoint subsets.

Now we use these subsets to formulate field-level calibration

errors. We denote the event of an instance belongs to a subset by

1[zi=z] whose value is either 0 or 1. We then formulate the field-

level expected calibration error (Field-ECE or F-ECE) as a weighted

sum of the averaged bias of predictions in each subset

Field-ECE =
1

|D|

|Z |∑
z=1

�� |D |∑
i=1

(yi − p̂i )1[zi=z]
��, (5)

which is straight-forward: “for every subset of data categorized by

the field z, the averaged prediction should agree with the averaged

outcome”. Therefore, if a set of predictions gets a large Field-ECE,

it indicates that the predictions are biased on some part of the data.

Although this formulation has a similar form to Prob-ECE, there

is a crucial difference. In Prob-ECE, the partition is determined by

the prediction p̂ itself so that the result can be misleading, e.g., it

can get nearly perfect Prob-ECE by predicting a constant because

all the instances go into one bin. But in our Field-ECE, the partition

is determined by the input feature z, so the resultant metric can be

consistent without being affected.

Further, we can have the field-level relative calibration error for-

mulated as the averaged rate of errors divided by the true outcomes,

Field-RCE =
1

|D|

|Z |∑
z=1

Nz

�� ∑ |D |
i=1 (yi − p̂i )1[zi=z]

��∑ |D |
i=1 (yi + ϵ)1[zi=z]

, (6)

where Nz is the number of instance in each subset, i.e.,

∑ |Z |
z=1 Nz =

|D|, and ϵ is a small positive number to prevent division by zero,

e.g., ϵ = 0.01. We suggest not to set ϵ too small in order to reduce

the variance of the result.

Note that these measures are proposed as evaluation metrics

on test data. It is not proper to use them as loss functions on the

training set. Also, we suggest to use them along with other common

metrics such as the Log-loss and the Brier score, because the field-

level and instance-level metrics measure errors at different scales.

We also want to emphasize that although field-level calibration

errors are formulated upon a categorical input field z, they can be

easily extended to non-categorical fields by discretizing them into

disjoint subsets.

4 NEURAL CALIBRATION
We are motivated to design a new method that can improve both

calibration and non-calibration metrics. Our proposed solution is

named Neural Calibration. It consists of two modules: 1) a paramet-

ric univariate mapping function to transform the original model

output into a calibrated one, and 2) an auxiliary neural network

to fully exploit the development set. The overall architecture of

Neural Calibration is shown on the right-hand side of Figure 3.

The basic formulation is written as follows

q(l ,x) = σ
(
η(l) + д(x)

)
(7)

where σ (·) denotes for a sigmoid function. The input of the sig-

moid function is the sum of two sub-modules: η(l) transforms the

uncalibrated logit l = f (x) given by the original model into a cali-

brated one, and д(x) is an auxiliary neural network for field-aware

calibration that takes the raw features x as inputs.
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Neural Calibration model trained on development set

Isotonic Line-Plot Scaling

x l

p

Feed-forward neural network

g(x)
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Histogram binning
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η(l)
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Figure 3: (a) Traditional calibration methods that take only the uncalibrated logit l as input. (b) Neural Calibration that takes
the original inputs x and the uncalibrated logit l as inputs and outputs the calibrated probability. The calibration model on
the right-hand side can be trained in an end-to-end manner because the functions are differentiable almost everywhere.

Therefore, there are two functions η(·) and д(·) to learn, which

are parametrized with trainable parameters ϕ and θ , respectively.
They need to be trained simultaneously over the validation set.

The objective for training Neural Calibration is to minimize the

Log-loss over the validation set, i.e.,

min

ϕ,θ

1

|D
dev

|

|Ddev |∑
i=1

[
− yi logqi − (1 − yi ) log(1 − qi )

]
. (8)

Therefore, Neural Calibration can be trained by stochastic gradient

descent, just like any other deep learning models.

Such a parametric method has many benefits. It can be updated

by mini-batch gradient descent, so it is easy to deal with streaming

data in an online setting. Also, it is flexible that can extend to

multi-class classification without much difficulty.

Now we introduce the detailed function structure of the two

modules η(l) and д(x).

4.1 Isotonic Line-Plot Scaling (ILPS)
We are interested in finding a stronger η(·) that achieves high fitting
power as well as some nice properties. To enhance stronger fitting

power, we borrow the spirit of binning from non-parametric meth-

ods. To enable efficient online training, we make it a parametric

function so that the whole model can be updated by gradient de-

scent. To make it reliable and interpretable, we use a sophisticated

structure and constraints to make it an isotonic (non-decreasing)

continuous piece-wise linear function. The difference between ILPS

from conventional methods is demonstrated in Figure 3.

We first partition a support set (M1,M2) ⊂ R into several inter-

vals with fixed splits M1 = a1 < a2 < · · · < aK+1 = M2 where

M1,M2 are two pre-specified numbers. Then we design the scaling

function as

η(l) = b +
K∑
k=1

wk min

{
(l − ak )+,ak+1 − ak

}
, (9)

where (l − ak )+ is short for max{l − ak , 0}, and b,w1, . . . ,wK are

the trainable parameters to learn. This formulation is easy to un-

derstand since it is also known as a continuous piece-wise linear

function, where b is the bias term andw1, . . . ,wK are the slope rate

of each piece of linear functions. In this way, the scaling function

is continuous, and the total number of parameters is K + 1 which
makes the function both expressive and robust.

However, this parameterized function is not easy to tune by

gradient descent because every instance that lies in the kth interval

involves k + 1 parameters during back-propagation. To make the

optimization problem easier to solve, we further re-parameterize it

η(l) =
K∑
k=1

[
bk + (l − ak )

bk+1 − bk
ak+1 − ak

]
1[ak ,ak+1)(l), (10)

where 1[ak ,ak+1)(l) is an indicator function whose value is 1 if

l ∈ [ak ,ak+1) and is 0 otherwise, bk is the bias term at the left

point of the kth interval, and
bk+1−bk
ak+1−ak is the slope rate of the

same interval. In this way, for each instance that lies in the kth

interval, it only involves two parameters bk and bk+1 during back-

propagation which makes the optimization much easier. This map-

ping function looks just like a line-plot, as it connects the points

(a1,b1), . . . , (aK+1,bK+1) one by one. The total number in parame-

ters b = (b1, . . . ,bK+1) is still K + 1.
Further, we would like to restrict the function to be isotonic (non-

decreasing) as a calibration mapping should keep the order of non-

calibrated outputs. To achieve this, we put a constraint on the
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parameters, i.e., bk ≤ bk+1, ∀1 ≤ k ≤ K . In the actual implementa-

tion, the constraint is realized by the Lagrange method, i.e., adding a

regularization term on the loss function so the overall optimization

problem can be solved by gradient descent.

Now we get a novel parametric calibration mapping η(·) named

Isotonic Line-Plot Scaling (ILPS), because it is a non-decreasing,

continuous piece-wise linear function - that looks like a line-plot.

A sketch of such a mapping function is shown in the red dashed

box in Figure 3. Overall, the training objective for ILPS is as follows

LILPS(b;y, l) = LogLoss

(
η(l),y

)
+ λ

K∑
k=1

(bk − bk+1)+ (11)

where the first part evaluates the fitting of the mapping function

and the second part is the regularization term to ensure themapping

is non-decreasing. The regularization gets activated only if there

exists some interval where bk > bk+1.
In practice, we set K = 100 and the splits s.t. σ (ak ) = k/(K +

1) for k = 1, . . . ,K . We will show in the ablation study (Section

5.4) that this mapping can significantly outperform the traditional

parametric method Platt scaling and also be comparable or better

than common non-parametric methods.

4.2 The auxiliary neural network
for field-aware calibration

The previous part designed a univariate mapping from the original

model output to a calibrated one. We further learn to use the whole

development data to train an auxiliary neural network.

The neural network д(x) learns to fix the field-level miscalibra-

tion or biases by using all necessary features from the development

set. Our intuition is simple: if we observe a field-level calibration

error over the validation set on a specific field z, then we should

find a way to fix it by learning a function of both the model output

and the field z. In practice, a decision-maker probably cares about

the biases in more than one field, for example, an advertising sys-

tem should have a low bias on the user-level, the ad-level, and the

advertiser-level. Considering that in many cases, z is a part of the
input x , we can directly learn a function of x .

We do not restrict the form of neural network for д(x). For
example, one can use a multi-layered perceptron for general data

mining task, a convolution neural network for image inputs, or a

recurrent neural network for sequential data.

4.3 Learning pipeline
Now we would like to describe how to use Neural Calibration to

improve the performance in real-world machine-learning-powered

applications. Suppose that we want to train a model with a set of

labeled binary classification data, and the target is to make reliable

probabilistic predictions during inference on the unseen data. We

put forward the following pipeline of Neural Calibration:

Step 1. Split the dataset at hand into a training set Dtrain and a

development (validation) set D
dev

.

Step 2. Train a base model f (x) over the training set Dtrain.

If necessary, select the model and tune the hyper-parameters by

evaluating on the validation set.

Step 3. Make (uncalibrated) predictions on the development set

to get a supervised dataset for calibration {xi , li ,yi }. Train a Neural

Calibration model q(l ,x) = σ (η(l) + д(x)) over this data set.
Step 4. Do inference on the hold-out data with two-step predic-

tions: when a query x comes, first predict the uncalibrated logit

l = f (x), then calibrate it p̂ = q(l ,x) = σ (η(l) + д(x)).
Here we give a brief explanation.

To begin with, Step 1 and Step 2 are the common processes

in supervised learning. With the uncalibrated deep model f (x),
one might observe instance-level, probability-level, or field-level

miscalibration by examining the predictions on the validation set.

Next, we train the calibration model in Step 3, which can be viewed

as training a classification neural network with inputs (xi , li ) to fit

the label yi by minimizing the Log-loss, as shown in Eq. (8). Finally,

during inference on an unseen query with input x , we can get the

final prediction by two steps: first, compute the logit by the original

model l = f (x), and then compute the calibrated prediction by

Neural Calibration q = σ (η(l) + д(x)).

Comparison with existing offline supervised learning pipelines. Gen-
erally, machine learning or data mining pipelines do not consider

the miscalibration problem. That is, to directly make inference after

Step 1 and Step 2, which results in Model-1 as mentioned in the

previous section. In such a case, the validation set is merely used

for model selection.

Often, one prefers to making full use of the labeled data at hand,

including the validation set. So after training f (x) on the training

set, one can further update the model according to the validation

set, which results in the Model-2 as mentioned. Such a training

pipeline is useful, especially when the data is chronologically ar-

ranged because the validation set contains samples that are closer

to the current time. However, this pipeline does not consider the

calibration error.

The pipeline of calibration has the same procedure as ours. How-

ever, conventional calibration methods solely learn a mapping from

uncalibrated outputs to calibrated predictions at Step 3. Our Neu-
ral Calibration is more flexible and powerful because it can fully

exploit the validation data.

5 EXPERIMENTS
5.1 Experimental setup
Through experiments, we seek to answer the following questions:

1. What is the drawback of existing post-hoc calibration meth-

ods? What is the drawback of training an uncalibrated model over

the joint of training and development set?

2. Can Neural Calibration achieve better performance?

3. How much does η(l) and д(x) helps, respectively? Why using

all input features x instead of z?
4. Is Neural Calibration more robust to dataset shift comparing

to existing methods?

To answer these questions, we set up experiments with five

binary classification datasets for data mining. All the datasets were

split into three parts: the training set, the development (validation)

set, and the test set. Note that the supervised examples were not

i.i.d. in the three datasets. In fact, we allow for data shift among

them. The reason is that in real-world applications on the web,
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there is always a distribution shift. For example, in any e-commerce

or advertising platform, the popularity of items, the distribution of

users, the averaged click-through rate, and the conversion rate all

change over time. Also, we do not assume that the test set is more

similar to the development set against the training set or vice versa,

because we simply do not know it in practice. So in our experiments,

we split the datasets by date if there is an explicit “date” column or

by sample index otherwise.

The base model of f (x) and д(x) are neural networks with the

same structure which follows [29]. Each column of the raw inputs

is first embedded into a 256-dimensional dense embedding vector,

which is then concatenated together and fed into a multi-layer

perceptron with two 200-dimensional ReLU layers.

For all the tested tasks, we split the datasets into three parts: 60%

for training, 20% for validation, and the other 20% for testing.

The experiment pipeline goes like follows. Firstly we train the

base model using Adam optimizer [15] to minimize the Log-loss

with a fixed learning rate of 0.001 for one epoch. This trained

model is called Model-1. Next, on the one hand, we train common

calibration models as well as our proposed Neural Calibration on

the development set based on the logits predicted by Model-1. For

readability, we denote the calibration pipelines as Dtrain → D
dev

.

On the other hand, we incrementally update Model-1 over the

samples from the development set for an epoch, which is called

Model-2. To ensure the same learning rate with the calibration

methods, we restart the Adam optimizer for Model-2 before the

incremental training. We denote the training set for Model-2 as

Dtrain ∪ D
dev

.

For testing, we collect the uncalibrated probabilistic predictions

directly fromModel-1 andModel-2, and the calibrated predictions in

two steps by first make inference using Model-1 and then calibrate

by the post-hoc methods. We evaluate the predictions with common

metrics, including the Log-loss (negative log-likelihood), the Brier

score, the AUC score, as well as our proposed field-level calibration

errors Field-ECE and Field-RCE.

5.2 Datasets
We tested the methods on five large-scale real-world binary classifi-

cation datasets. For each data, we arbitrarily choose one categorical

field as the field z.

1. Lending Club loan data
1
, to predict whether an issued loan

will be in default, with 2.26 million samples. The data is split

by index as we suppose that the data is arranged by time.

The categorical field z is set as the “address state” with
51 possible values.

2. Criteo display advertising data
2
, a click-through rate (CTR)

prediction dataset to predict the probability that the user

clicks on a given ad. It consists of 45.8 million samples over 10

days and is split by index. The field z is set as an anonymous

feature “C11” with 5683 possible values.

3. Avazu click-through rate prediction data
3
. We used the data

of the first 10 days with 40.4 million samples. The data is

split by date, i.e., 6 days for training, 2 days for development,

2
https://www.kaggle.com/c/criteo-display-ad-challenge

3
https://www.kaggle.com/c/avazu-ctr-prediction

and 2 days for testing. The field z is set as the “site ID”
with 4737 possible values.

4. Porto Seguro’s safe driver prediction data
4
, to predict if a

driver will file an insurance claim next year. It has 0.6 million

samples and is split by index. The field z is an anonymous

categorical field “ps_ind_03” with 12 possible values.

5. Tencent click-through rate prediction data, which is subsam-

pled directly from the Tencent’s online advertising stream. It

consists of 100million samples of click data across 10 days. To

simulate a real application setting, we split the data by date,

i.e., 6 days for training, 2 days for development (validation),

and 2 days for testing. The field z is set as the advertisement

ID with 0.1 million possible values.

5.3 Observing miscalibration
Here we would like to show some observations to demonstrate the

issue of miscalibration, especially field-level miscalibration. These

observations show that existing methods indeed have certain draw-

backs in terms of specific metrics, which support the motivation

and insight of our work.

Observation 1: Adding more training data can help reach a higher
AUC score, but does not indicate a smaller calibration error.

It is observed in Table 1, the loan defaulter prediction task.We see

that Model-2 significantly outperforms Model-1 in AUC, which is

easy to understand as Model-2 is trained over more data. Amachine-

learning-powered decision-making system trained with more data

tends to be more accurate. However, surprisingly, Model-2 suffered

from higher calibration errors than Model-1 in all the calibration

related metrics. We do not know where the error comes from, but

we know that a model with such error is not reliable to use.

Observation 2: Lower instance-level calibration error does not
indicate lower field-level calibration error.

This observation indicates the importance of our proposed field-

level calibration errors. Table 2 shows an example. In this dataset,

Model-2 not only gets higher AUC but also lower Log-loss and Brier

score than the traditional post-hoc methods Isotonic Regression

and Platt scaling. If only looking at these three metrics, it seems

that Model-2 for this dataset is sufficient to use. However, when

looking at our proposed field-level calibration errors, we find that

Model-2 is worse in Field-ECE and Field-RCE, which means it is

more biased in certain subsets of data than the calibrated models.

Observation 3: Conventional calibration methods are sometimes
better than Model-2 in calibration metrics, but worse in AUC.

It can be observed across all the tested tasks. Particularly, Iso-

tonic Regression and Platt Scaling did help improve the calibration

metrics on dataset 1, 2, and 4, but failed on the third one and the

last one. On the other hand, these calibration methods cannot help

improving the AUC score over the base model, which is evident

because they rely on an order-keeping function, so the AUC scores

are always unchanged. Therefore, in AUC, traditional calibration

methods are always worse than Model-2.

Observation 4: Traditional post-hoc calibration methods are not
reliable under data shift.

For example, on the Avazu dataset in Table 3, the calibrated out-

puts of traditional methods get worse Field-RCE than the vanilla

4
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
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Table 1: Results on loan defaulter prediction

Method Training data Log-loss ↓ Brier score ↓ Field-ECE ↓ Field-RCE ↓ AUC ↑
Base (Model-1) Dtrain 1.255 0.082 0.077 49.2% 0.909

Base (Model-2) Dtrain ∪ D
dev

1.124 0.172 0.177 115.3% 0.985

Isotonic Reg. Dtrain → D
dev

0.268 0.082 0.021 13.8% 0.912

Platt Scaling Dtrain → D
dev

0.287 0.080 0.037 23.9% 0.909

Neural Calibration Dtrain → D
dev

0.066 0.016 0.018 12.0% 0.992

Table 2: Results on Criteo click-through rate prediction

Method Training data Log-loss ↓ Brier score ↓ Field-ECE ↓ Field-RCE ↓ AUC ↑
Base (Model-1) Dtrain 0.4547 0.1474 0.0160 7.46% 0.7967

Base (Model-2) Dtrain ∪ D
dev

0.4516 0.1464 0.0167 7.08% 0.8001

Isotonic Reg. Dtrain → D
dev

0.4539 0.1472 0.0134 6.09% 0.7967

Platt Scaling Dtrain → D
dev

0.4539 0.1472 0.0135 6.12% 0.7967

Neural Calibration Dtrain → D
dev

0.4513 0.1463 0.0094 4.59% 0.7996

Table 3: Results on Avazu click-through rate prediction

Method Training data Log-loss ↓ Brier score ↓ Field-ECE ↓ Field-RCE ↓ AUC ↑
Base (Model-1) Dtrain 0.3920 0.1215 0.0139 12.88% 0.7442

Base (Model-2) Dtrain ∪ D
dev

0.3875 0.1204 0.0120 11.17% 0.7496

Isotonic Reg. Dtrain → D
dev

0.3917 0.1216 0.0199 18.56% 0.7442

Platt Scaling Dtrain → D
dev

0.3921 0.1215 0.0165 15.18% 0.7442

Neural Calibration Dtrain → D
dev

0.3866 0.1202 0.0121 10.91% 0.7520

Table 4: Results on Porto Seguro’s safe driver prediction

Method Training data Log-loss ↓ Brier score ↓ Field-ECE ↓ Field-RCE ↓ AUC ↑
Base (Model-1) Dtrain 0.1552 0.0351 0.0133 28.55% 0.6244

Base (Model-2) Dtrain ∪ D
dev

0.1538 0.0349 0.0064 13.90% 0.6245

Isotonic Reg. Dtrain → D
dev

0.1544 0.0349 0.0021 4.47% 0.6244

Platt Scaling Dtrain → D
dev

0.1532 0.0349 0.0020 4.30% 0.6244

Neural Calibration Dtrain → D
dev

0.1531 0.0349 0.0018 3.66% 0.6269

Table 5: Results on Tencent click through-rate prediction

Method Training data Log-loss ↓ Brier score ↓ Field-ECE ↓ Field-RCE ↓ AUC ↑
Base (Model-1) Dtrain 0.1960 0.0522 0.0145 27.12% 0.7885

Base (Model-2) Dtrain ∪ D
dev

0.1953 0.0521 0.0128 24.58% 0.7907

Isotonic Reg. Dtrain → D
dev

0.1958 0.0522 0.0141 25.45% 0.7884

Platt Scaling Dtrain → D
dev

0.1958 0.0522 0.0142 25.72% 0.7885

Neural Calibration Dtrain → D
dev

0.1952 0.0521 0.0124 22.87% 0.7907



Field-aware Calibration: A Simple and Empirically Strong
Method for Reliable Probabilistic Predictions WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 6: Ablation studies. Field-RCE and AUC on the test set are reported.

Lending Club Criteo Avazu Porto Seguro Tencent

Method F-RCE AUC F-RCE AUC F-RCE AUC F-RCE AUC F-RCE AUC

Base (Dtrain) 49.2% 0.909 7.46% 0.7967 12.88% 0.7442 28.55% 0.6244 27.12% 0.7885

Hist. Bin (non-param) 4.1% 0.752 6.08% 0.7966 14.39% 0.7440 3.98% 0.6198 25.72% 0.7874

Isotonic Reg. (non-param) 13.8% 0.909 6.09% 0.7967 18.56% 0.7442 4.47% 0.6244 25.45% 0.7884

Platt Scaling (parametric) 23.9% 0.909 6.12% 0.7967 15.18% 0.7442 4.30% 0.6244 25.72% 0.7885

ILPS (parametric) 12.1% 0.909 6.05% 0.7967 14.25% 0.7442 3.82% 0.6244 25.72% 0.7885

Neural Cali. (ILPS & field z only) 11.9% 0.909 4.54% 0.7973 8.82% 0.7462 5.29% 0.6238 23.11% 0.7897

Base (D
dev

only) 127.5% 0.915 6.11% 0.7923 15.61% 0.7440 16.86% 0.6177 24.48% 0.7874

ILPS (D
dev

→ Dtrain) 8.3% 0.786 6.04% 0.7923 16.44% 0.7440 4.88% 0.6177 22.76% 0.7874

Neural Cali. (D
dev

→ Dtrain) 3.2% 0.986 4.65% 0.7976 14.51% 0.7482 4.42% 0.6246 22.92% 0.7892

Neural Cali. (Dtrain → D
dev

) 12.0% 0.992 4.59% 0.7996 10.91% 0.7520 3.66% 0.6269 22.87% 0.7907

output. On the Lending Club data, Histogram Binning gets almost

perfect Field-RCE but much worse AUC, indicating that it sacrifices

the isotonic property to reduce the calibration error. These results

show that when the data shift is undesirable, the univariate cali-

bration methods are not so reliable. It is also explained in a recent

study about uncertainty estimation under data shift [26] that these

methods rely on the assumption that the data distribution of the

development set is close to the test set. Otherwise, the calibrated

output can be even worse than the uncalibrated outputs.

Observation 5: Improvement in Field-level calibration errors is
easier to observe and more interpretable than in instance-level metrics.

We can see that the calibration methods often significantly re-

duce the field-level errors of Model-1. For example, in Table 2,

calibration methods provided relative reductions on Field-ECE of

about 20% to 40%, and when using Neural Calibration, there is a

significant Field-RCE reducuction from 7.46% to 4.59%. However,

the relative reduction in Log-loss and Brier score given by cali-

bration methods are no more than 0.2%, which is small enough

to be ignored. Therefore, without looking at the field-level errors,

one can neglect the miscalibration problem or underestimate the

performance boosting given by calibration techniques.

5.4 Main experimental results
The main results are shown in Table 1-5. In each table, we show

the base Model-1 as a baseline, Model-2 as a strong competitor

against the calibration methods, two traditional univariate calibra-

tion methods, and our proposed Neural Calibration. We leave the

results of Histogram Binning to Table 6 due to the space limitation.

From the four columns in the middle of the tables, we found

Neural Calibration the best in all calibration metrics, which is sig-

nificantly better than all other tested methods in all tested datasets.

Specifically, in our proposed metric Field-RCE, Neural Calibration is

an order of magnitude smaller than the baselineModel-1 andModel-

2 on the Lending Club dataset and the Porto Seguro dataset. These

results are evidence that Neural Calibration can indeed reduce the

error and make the probabilistic predictions more reliable.

Further, we see that Neural Calibration can get significantly

higher AUC than conventional calibration methods, and reach com-

parable AUC with Model-2. Standard post-hoc calibration methods

can not achieve such an improvement in AUC because they learn the

univariate order-keeping mappings solely. In this way, we remark

that Neural Calibration can make better use of the development

dataset than previous methods.

5.5 Ablation study: effectiveness of ILPS
We tested the Isotonic Line-Plot Scaling solely to see if it is stronger

than existing post-hoc methods that learn univariate mapping func-

tions. We run the calibration methods upon the logits provided

by the base Model-1. We tested two conventional non-parametric

methods, Histogram Binning and Isotonic Regression, and two para-

metric methods, Platt Scaling and our proposed ILPS. The results

are shown in the upper half of Table 6.

We see that ILPS consistently outperformed Platt scaling on all

the datasets, and is comparable or better than non-parametric meth-

ods on dataset 2-5. In detail, we observe that the non-parametric

methods outperform Platt Scaling in most tasks. The most straight-

forward method, Histogram Binning, is surprisingly good in cali-

bration, but it sometimes hurts the AUC score because the mapping

is not guaranteed to be non-decreasing. Isotonic Regression is ro-

bust in both Field-ECE and AUC across tasks, indicating that the

non-decreasing property is necessary. So it is more reliable than

Histogram Binning, although sometimes it is worse in the calibra-

tion metric. Overall, ILPS achieves considerably good results in

both Field-ECE and AUC. Considering that it is also as efficient as

any parametric methods if deployed in online learning, we think

ILPS can be a good alternative to Platt Scaling.

5.6 Ablation study: contribution of each part
Recall that our Neural Calibration model consists of two modules:

a univariate ILPS function η(l) and a neural network д(x). Now we

would like to check the contribution of each part in terms of the

two showed metrics, Field-RCE and AUC. The results related to this

part are shown in the following rows in Table 6: Base (Dtrain), ILPS

(parametric), Base (D
dev

only), and the last Neural Calibration row.
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First, the ILPS part can already reach a good Field-RCE score

stand-alone on all the data except for the Avazu dataset, even though

it is designed to perform calibration on the probability-level. It

seems that we do not necessarily need to use the field-aware cali-

bration. But when we add the field-aware part, in the last row of

the table, we see Neural Calibration achieved better field-level cali-

bration than ILPS over all the tests. So it indicates that introducing

the field-aware part does help calibration.

Second, ILPS itself cannot improve the AUC due to its order-

keeping property. On the other hand, when a base model is trained

on the development set only, it cannot reach a high AUC score

either because the amount of data in the development set is too

small. So both parts contribute to the high AUC scores of Neural

Calibration: the ILPS part provides a baseline AUC score, and the

auxiliary neural network improves upon it.

5.7 Ablation study: contribution of the features
Intuitively, when considering the field-level bias on a specific field z,
one might think of training a model on the field z. For example, if an

advertising system finds the actual click rate for an ad is 10% lower

than the system’s estimation, it can calibrate it by multiplying the

estimation by 90% for the next time. So now we want to answer the

following question: In Neural Calibration, why do we use all the

input features x , instead of using only the sensitive field z?
We conduct an experiment by training a bivariate Neural Calibra-

tion model by replacing x with z (so it only involves two variables,

l and z). The results are shown in the “Neural Cali (ILPS & field z
only)” row of Table 6.

It shows that this bivariate model is good at reducing the field-

level calibration error on z. However, the improvements in AUC

against the base model are limited, because the field z only provides
limited information. On the other hand, our Neural Calibration

model trained with all the features can also achieve low Field-ECE

comparable to the bivariate model and wins on the last two datasets.

It means that introducing the features other than z might not hurt

the calibration performance on field z. Moreover, it can be inferred

that Neural Calibration can also reduce the biases over other fields,

which cannot be done by the bivariate model. Also, the full model

is significantly better in AUC than the bivariate model. Therefore,

we conclude that a Neural Calibration model trained with all the

input features is empirically better than only using one field z.

5.8 Ablation study: robustness under data shift
From the observations mentioned previously, we notice that a key

drawback of traditional post-hoc calibration methods is that they

are not robust in the face of data shift. On the contrary, Neural

Calibration works fairly good by adding the auxiliary neural net

over all the datasets. For example, on the Avazu dataset, it reaches

lower Field-RCE than all competitors.

Now we would like to see if the good performance of Neural

Calibration is because the development set is closer to the test set.

To show it, we set-up an ablation study by altering the development

set and the training set, i.e., we first train the base model on the

development set and then calibrate on the training set. The results

are shown in the last 2 to 4 rows in Table 6.

In such an inverted setting, Neural Calibration is still surpris-

ingly good. Again, we observe that in the Lending Club dataset,

ILPS sacrifices AUC to fix miscalibration (note that the isotonic con-

straint in ILPS is softened). But when the field-aware information

is taken into account, both AUC and Field-RCE improved. It means

that maybe some field accounts for the conflict between calibration

and accuracy, so the field-aware module can fix it.

Moreover, from the experiment of inverted datasets, we see that

Neural Calibration achieved high sample efficiency because every

part of data is used to improve AUC or calibration. Even though it

was first trained over a small dataset and calibrated over a dataset

whose distribution is not so close to the test set, which seems

improper in some sense, the performance was still considerably

good. Thus we think our method is empirically reliable and robust.

6 CONCLUSION AND DISCUSSION
This paper studied the issue of miscalibration for probabilistic pre-

dictions in binary classification. We first put forward the Field-level

Calibration Error as a new class of metrics to measure miscalibra-

tion. It can report the biases on specific subsets of data, which

is often overlooked by common metrics. Then we observed that

existing post-hoc calibration methods have limited sample effi-

ciency on the labeled data of the development set because they

basically do probability-level calibration and cannot improve other

non-calibration metrics such as the AUC score. So we proposed

a simple yet powerful method based on neural networks, named

Neural Calibration, to address this issue. It consists of 1) a novel

parametric calibration mapping named Isotonic Line-Plot Scaling,

which is non-decreasing, continuous, and has strong fitting power,

and 2) an auxiliary neural network for field-aware calibration. We

tested our method on five large-scale datasets. By using the pipeline

of Neural Calibration, we achieved significant improvements over

conventional methods. Specifically, the parametric ILPS alone out-

performed Platt Scaling on all the calibration metrics, and Neural

Calibration can further improve the AUC score. Also, we found our

method robust in the face of dataset shift. Thus we conclude that

the proposed field-aware calibration can achieve high performance

on both calibration and non-calibration metrics simultaneously and

is reliable for practical use in real-world applications.

We think it is a promising direction for the future work to un-

derstand the source of miscalibration error in modern machine

learning, especially in deep learning and information retrieval sys-

tems. By considering other types of problem settings, future work

includes extending field-aware calibration into regression andmulti-

class classification, or extending the supervised learning setting to

more general settings online learning and reinforcement learning.
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