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ABSTRACT

In this paper, we study the problem of early detection of fake user
accounts on social networks based solely on their network connec-
tivity with other users. Removing such accounts is a core task for
maintaining the integrity of social networks, and early detection
helps to reduce the harm that such accounts inflict. However, new
fake accounts are notoriously difficult to detect via graph-based
algorithms, as their small number of connections are unlikely to
reflect a significant structural difference from those of new real
accounts. We present the SybilEdge algorithm, which determines
whether a new user is a fake account (‘sybil’) by aggregating over
(I) her choices of friend request targets and (II) these targets’ respec-
tive responses. SybilEdge performs this aggregation giving more
weight to a user’s choices of targets to the extent that these targets
are preferred by other fakes versus real users, and also to the extent
that these targets respond differently to fakes versus real users. We
show that SybilEdge rapidly detects new fake users at scale on the
Facebook network and outperforms state-of-the-art algorithms. We
also show that SybilEdge is robust to label noise in the training
data, to different prevalences of fake accounts in the network, and
to several different ways fakes can select targets for their friend
requests. To our knowledge, this is the first time a graph-based
algorithm has been shown to achieve high performance (AUC>0.9)
on new users who have only sent a small number of friend requests.
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1 INTRODUCTION

Online social networks are frequently targeted by malicious actors
who create ‘fake’ or ‘sybil’ accounts for the purpose of carrying
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out abuse. Broadly, abuse is conducted in three phases: First, mali-
cious actors create accounts. These accounts then need to establish
connections with real users (e.g. by sending friend requests on Face-
book). Once they establish sufficient connections, fake accounts
can expose their social networks to a variety of malicious activities.

According to its latest Community Standards Enforcement Re-
port [8], Facebook disabled over 2.2 billion such accounts in the
first quarter of 2019. The vast majority of these accounts were
disabled during or within minutes of account creation, and 99.8%
were disabled before being reported by a Facebook user. Despite
these impressive figures, the fraction of such accounts that survives
registration-time classifiers and forms connections on Facebook
still constituted roughly 5% of monthly active users in 2019 [8].

In this paper, we focus on social-graph-based detection of new
fake accounts that manage to evade registration-time classifiers but
have not yet made sufficient connections to perpetrate abuse. We
define new accounts as those that are less than 7 days old or have
sent fewer than 50 friend requests.

While the general problem of using the social graph to detect
fake accounts is well-studied, existing algorithms typically do not
apply to new accounts. This is because mainstream graph-based al-
gorithms use a structural difference to detect fake accounts—namely,
that fake accounts tend to have lower connectivity to real users.
When popularized over a decade ago, this approach exhibited a
key advantage: it was assumed that online social network compa-
nies only knew the true {fake, real} labels for a handful of users,
and this handful was sufficient to seed a graph-based detection
algorithm based on this structural difference. Nonetheless, one dis-
advantage is that real and fake users will only tend to exhibit this
structural difference when they have made a reasonable fraction of
their connections, so these algorithms tend to exclude new users
from effective detection [1, 3, 19, 28].

However, both the resources available to online social networks
and the challenges they face have evolved in the 14 years since the
popularization of graph-based algorithms. For example, Facebook
now possesses high-confidence {fake, real} labels for a majority of
its active users—not just the handful assumed by existing graph-
based algorithms. It is therefore now possible to use these additional
labels to estimate not just structural differences, but also individual-
level differences in how different users interact with real and fake
accounts. Nonetheless, these labels are typically only available for
users who have been active for at least several weeks. Thus, it is
natural to consider whether today’s greater data availability can
inform algorithms capable of detecting new fake accounts.

Specifically, using Facebook’s data on friending activity and
known fake accounts, we observe that there are in fact important
individual-level differences in how fake accounts interact with real
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Figure 1: Top: Distribution of rates at which real and fake

Facebook users’ friend requests are rejected. Middle: Distri-
bution of Facebook users’ ratios of their accept rates for in-

coming requests from reals and fakes. Users right of the red

line at x=1 are more likely to accept a friend request from a

real account than a fake. Bottom: Distribution of the ratios

of the fraction of reals’ requests and the fraction of fakes’ re-

quests that target each Facebook user. Mass right of the red

line at x = 1 represents users who receive disproportionately

more of real users’ requests than fakes’ requests.

users, and how real users react to fake accounts. Observing these
differences requires looking beyond aggregate statistics such as
a user’s overall reject rate for the friend requests she sends. For
example, Fig. 1 top shows the distributions of reject rates for fake
and real accounts. As the figure shows, many fakes (like many real
accounts) either never or rarely have their friend requests rejected.

Disaggregating this data reveals two key differences: First, for
certain users (but not others), whether a request comes from a

fake/real account is highly determinative of her decision to accept
or reject. Fig. 1 (middle) plots the ratios of each Facebook user’s
rates at which she accepts friend requests from reals and fakes.
Mass at x = 1 represents Facebook users who accept/reject fakes
at the same rate as reals, which provides no information about the
sender’s {fake, real} label. Mass to the right of x = 1 represents
users who are more likely to accept a request from a real user
than one from a fake user by a factor corresponding to the x-axis.
Thus, an unknown user whose friend request is accepted by such a
recipient is more likely to be real. For example, the mass at x = 23
represents users who are 8 times more likely to accept a request
from a real user than a fake. In fact, over 1/3 of Facebook users are
at least 1.5 times as likely to accept either a real or a fake (i.e., mass
outside ( 1

1.5 , 1.5)), which provides a strong signal of their senders’
labels. Because the tails of this distribution are very wide, we round
all users with ratios outside ( 1

10 , 10) to these bounds in the plot.
Second, we observe a key difference in how some fake accounts

select targets for their friend requests differently than real accounts.
Specifically, certain users tend to be more or less frequently tar-
geted by friend requests from fakes compared to real users, such
that sending a request to such a target reveals information about
the sender’s label. Fig. 1 bottom plots the ratios of the fraction of
reals’ requests and the fraction of fakes’ requests that target each
Facebook user. Here, mass at x = 1 represents users who are equally
likely to be selected as the recipient for a fake sender’s friend re-
quest as for a real sender’s friend request. Note that some users
(mass to the left of x = 1) are preferred by fake senders, but many
users (mass to the right of x = 1) are disproportionately likely to
be selected by a real sender. Thus, an unknown user who sends a
request to such a target to the right of x = 1 is more likely to be real,
and vice versa. Here, 65% of users are at least 1.5 times as likely
to be selected by a real vs. a fake or vice versa (i.e., mass outside
( 1
1.5 , 1.5)), which provides a strong signal of their senders’ labels.
These two key individual-level differences suggest a new means

to detect new fake users despite their sparse connections: existing
users are unequal in how their acceptances of friend requests reflect
information about senders’ real/fake labels, and real/fake senders
deliberately target their requests to different sets of recipients.

Main contribution. In this paper we present SybilEdge, an algo-
rithm to identify new fake accounts on social networks. SybilEdge
returns the probability that each new user is a fake by aggregating
over (I) her choices of friend request targets and (II) these targets’
corresponding accepts/rejects. We show that this algorithm rapidly
detects new fake users at scale on the Facebook network and out-
performs state-of-the-art benchmark algorithms. We also show that
SybilEdge is robust to label noise in the training data, to greater
prevalence of fake accounts in the network, and to several differ-
ent ways fakes can select targets for their friend requests. To our
knowledge, this is the first time a graph-based algorithm has been
shown to achieve high performance (AUC>0.9) on new users who
have sent only a small number of friend requests.

Technical overview. SybilEdge classifies new users by combin-
ing three key components: First, SybilEdge estimates whether a
new user is a fake by aggregating over her choices of friend request
targets, giving more weight to targets to the extent they are pre-
ferred by other fakes vs. real users. Second, SybilEdge aggregates
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over these targets’ responses (accept/reject) to the user’s friend re-
quests, giving more weight to targets to the extent they respond
differently to fakes versus real users. Finally, during these aggrega-
tions, SybilEdge gives more weight to choices of targets and their
responses when we are more confident that they distinguish fakes
from real users. Together, these three components give SybilEdge
a natural means to elicit the information about a new user’s {fake,
real} identity from each of her friendship edges.

1.1 Related work

A variety of work has proposed graph-based algorithms to detect
fake accounts [1–3, 5, 7, 10, 13, 14, 16–18, 21–32]. Mainstream graph-
based algorithms typically proceed from the homophily assumption,
which assumes that a pair of connected users shares the same
{fake, real} label with high probability, such that fakes tend to be
poorly connected to real users overall [1, 13, 24, 28, 30, 31]. Based
on this assumption, a variety of graph-based algorithms attempt to
propagate trust out from a small known set of trusted real users to
unknown ones based on their connectivity to the known set.

More specifically, these algorithms typically propagate trust out-
wards via either random walks or Markov random fields (i.e. loopy
belief propagation methods). Random walk based methods proceed
on the basis of the assumption that unknown real users will be
reachable in relatively few hops from the known set of real users,
whereas reaching fake accounts requires additional hops on aver-
age. These algorithms therefore typically proceed via a series of
short random walks on the network to partition nodes into real
and fake sets on this basis. Random walk based methods include
the seminal SybilGuard algorithm [31], as well as SybilLimit [30],
SybilInfer [7], SybilWalk [14], Integro [3], and SybilRank [28].
Importantly, while random walk based approaches require either
a known set of real users or a known set of fakes, they cannot
leverage both at the same time. They are also considered less robust
to misclassification (i.e. label noise) in the set of known users [24].

In contrast to random walk based methods, loopy belief propaga-
tion methods take a probabilistic view. These methods use Markov
random fields to capture network structure and define a joint prob-
ability distribution over each node’s label, which is iteratively up-
dated to propagate labels from known fake or real nodes to un-
known ones. Algorithms of this type include the seminal Sybil-
Belief [13], Sybilfuse [11], and GANG [22]. Such algorithms are
able to incorporate information about both known real and known
fake nodes, and they are also robust to some noise in this set of
known labels. Recently, Wang et al. proposed a hybrid algorithm,
SybilSCAR [24], based on this approach. SybilSCAR iteratively
propagates probabilistic estimates of unknown nodes’ labels based
on a known set of users of each type.

Importantly, both types of algorithm require that all users have
had sufficient ‘stabilization time’ to make the majority of their
connections such that they will exhibit the homophily assump-
tion [1, 3, 19, 28]. Due to these requirements, evaluations of fake
detection algorithms have often excluded users with less than e.g., 1
to 6 months of tenure on the social network [3, 28], which provides
an ample ‘grace period’ for fake accounts to perpetrate abuse.

One partial exception is VoteTrust [26]. VoteTrust assumes
that a majority of users (including those with known real labels)

will be long-tenured, but this long-tenured set can be leveraged to
classify a new user. For VoteTrust, however, this advantage comes
at a cost: VoteTrust requires the additional dataset of (ideally) all
historical friendship requests in the history of the social network,
or at very least, sufficient historical requests such that the directed
graph of requests is connected [26]. We note that data on old friend-
ship requests is typically not among the datasets considered to be
readily accessible for analysis in the current generation of online
social networks.

The homophily assumption may also cause these algorithms
to misclassify when some ‘successful’ fake accounts succeed in
connecting to many real accounts. Recent research [9, 12] suggests
that this phenomenon is relatively prevalent on social networks.
For the same reason, the homophily assumption renders these
algorithms vulnerable to sampling attacks whereby a malicious user
defeats these algorithms by instructing some of her fake accounts
to send many friend requests to real users (knowing that many of
these accounts may be detected), then instructing her remaining
fake accounts to send requests only to the subset of real users who
were willing to accept requests from fakes. By generating fake
users who are densely connected to real accounts, the attacker may
succeed in convincing an algorithm that fake users are real [6, 26].

Paper organization. We present the SybilEdge algorithm in Sec-
tion 2. We evaluate the performance of SybilEdge on the Facebook
network in Section 3. We study SybilEdge’s robustness to label
noise in Section 4 and its robustness to the prevalence of fake
accounts in Section 5. We conclude the paper in Section 6.

2 THE SYBILEDGE ALGORITHM

In this section we derive the SybilEdge (Expert Decision Given
Edges) algorithm and its three key components: target selection,
target response, and confidence weighting.
Preliminaries. Our goal is to determine the posterior probability
pi that a new user i is fake as a function of the set Ti of targets
(friend request recipients) to whom she sends friend requests and
their respective responses. Let δi ∈ {S,B} represent user i’s label
as a fake/sybil (S) or real/benign (B) account—that is, the label we
want to learn. Let xi j ∈ {0, 1} denote target j’s response to i’s friend
request (i.e. accept or reject), where xi j = 1 denotes that j accepted
i’s request, and let Xi ∈ {0, 1} |Ti | denote the binary vector of all
responses xi j to i’s requests from her set of targets Ti .

We denote by rSj (and rBj ) an arbitrary fake (and real) sender’s
probability of choosing user j as the target when she sends her first
friend request. We denote by RSi the vector of probabilities rSj for all
of i’s targetsTi , and by RBi the corresponding vector of probabilities
rBj for all of i’s targets. We denote the probability that j accepts
a request from a fake or a real sender as aSj and aBj , respectively.
Similarly, we denote by ASi the vector of accept probabilities aSj for
all of i’s targets, and by ABi the vector of accept probabilities aBj for
i’s targets.

Finally, suppose we know a labelled set L = LS ∪ LB of known
fake and real users, where LS is the set of known fakes and LB is
the set of known real users, and suppose we have prior knowledge
πi of i’s label.
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Notation Description

i The user whose label we infer;
δi ∈ {S,B} User i’s label: fake (S) i.e. sybil, or real (B) i.e. benign;

πi Prior on user i’s probability of being a fake;
pi Posterior probability that i is a fake;
Ti The set of targets i sends friend requests to;

rSj , r
B
j Probabilities that user j is the target of an arbitrary

fake and real sender’s first friend request, resp.;
RSi , R

B
i The vectors of probabilities rSj and rBj , respectively

for all targets j whom i sends requests to;
xi j ∈ {0, 1} Target j’s response to i’s request (1 = accept);

Xi Obs. responses [xi1, . . . ,xi |Ti |] of all i’s targets;
aSj , a

B
j Probabilities that target j accepts a friend request

from a fake and from a real sender, respectively;
ASi , A

B
i Vectors of probabilities aSj and aBj , respectively for

all targets j whom i sends requests to;
L, LS ,LB Sets of known (users, fakes, reals);
ρ j , ρ

S
j , ρ

B
j Counts of known (users, fakes, reals) who sent re-

quests to j;
fj , f

S
j , f

B
j Counts of known (users, fakes, reals) whose re-

quests j accepted;
σj ,ϕ j Priors on target j’s quality as a classifier of users

who send requests to j and are accepted by j, resp.
Table 1: Notation used in SybilEdge

2.1 Component I: a user’s selection of targets

Here, we derive the first component of SybilEdge, which updates
our estimate of whether user i is a fake based on whether she selects
targets for her friend requests that are preferred by known fake
versus known real senders. Specifically, we model that each new
user selects a target for her first friend request via a draw from a
multinomial distribution corresponding to her {fake, real} label:
Fake users select each target j with probability rSj , but real users
select j with probability rBj . We can then estimate the posterior
probability that a sender i is fake based on the relative probabilities
that a fake/real user would have selected i’s set Ti of targets:

Pr
[
δi=S |Ti , RSi , RBi , πi ] =

πiPr
[
Ti |δi=S, RSi

]
πiPr

[
Ti |δi=S, RSi

]
+ (1-πi )Pr

[
Ti |δi=B, RBi

]
(1)

Where RSi and RBi denote the vector of all probabilities rSj and rBj ,
respectively, for the targets j ∈ Ti to whom user i sends requests.

We assume that conditional on the sender’s label δi , the rela-
tive probability that a sender selects any target j is conditionally
independent1 of everything else, and that the count |Ti | of friend
requests the sender sends is independent of her label.2 Technically,
as a user i sends more friend requests, she reduces the remaining
set of possible targets for her next friend request, making each
1This is a standard assumption (see e.g. [20]). While not true in general (e.g. some
targets are more popular), this assumption is advantageous as it may limit the effect
any one observation has on model predictions, rendering it more adversarially robust.
2The assumption that a user’s count |Ti | of friend requests is independent of her label
is advantageous because is allows SybilEdge to apply equally to accounts that are e.g.
1 and 7 days old—that is, accounts that have sent fewer/more friend requests.

of them slightly more probable for the next request. However, be-
cause the network is very large compared to any user’s number of
friend requests, sampling targets with replacement is a very good
approximation of sampling without replacement.3

Thus, we can then compute this target selection component via:

pi =

prior︷︸︸︷
πi

∏
j ∈Ti

rSj

πi
∏
j ∈Ti

rSj + (1 − πi )
∏
j ∈Ti

rBj

(2)

Here, the numerator is the joint probability of sender i’s selec-
tions of friend request targets Ti given these targets’ probabilities
at which they are selected by fake accounts. The denominator then
gives the total probability of i’s selections of targets, which we
compute by adding the probability of these selections given that
the sender i was fake plus the probability that they occurred given
that sender i was real. Therefore, the entire expression gives the
relative probability that i is fake given her selections of targets,
scaled by πi , the prior probability that i is fake (for example, we
might set this the overall fraction of fake accounts at Facebook).

The key intuition is that eq. 2 only updates our posterior estimate
that i is fake to the extent her targets are selected by fake and real
users at different rates (i.e. to the extent that i sends requests to
targets who are further from x=1 in Fig. 1, bottom). In section 2.4,
we show how to estimate targets’ selection rates rSj and rBj .

2.2 Component II: targets’ responses

Here, we derive the second component of SybilEdge, which up-
dates our estimate of whether user i is fake based on her targets’
responses to her friend requests. Suppose (unlike above) that a target
is equally likely to receive a friend request from an arbitrary real
or fake account, such that receiving a friend request from a user
reveals no information about that user’s label.4 However, suppose
we observe the targets’ responses (acceptances/rejections) xi j of i’s
friend requests, and targets may accept fake senders’ requests at
different rates than real senders’ requests. If we know each target’s
probabilities aSj and aBj of accepting a request from a fake sender
and from a real sender, respectively, then we can use the sequence of
observed responsesXi to each of user i’s friend requests to estimate
the probability that she is fake. Denote byASi andABi the vectors of
probabilities aSj and aBj , respectively, for all targets j ∈ Ti to whom
i sends requests. Assume that conditional on the sender’s label δi ,
targets’ responses are conditionally independent of everything else.
We estimate the probability i is fake via:

Pr [δi=S |Xi , ASi , ABi , πi ] =
πiPr

[
Xi |δi=S, ASi

]
πiPr

[
Xi |δi=S, ASi

]
+ (1-πi )Pr

[
Xi |δi=B, ABi

]
(3)

We now show how to compute this probability. Because a target
may accept or reject a request, we first simplify notation by defining
3Absent this approximation, we would re-normalize r Sj and rBj after each subsequent
request, so e.g. the numerator in eq. 2 would become

∏
j∈Ti r

S
j /(

∑
k∈L\Ti [:j ] r

S
k ),

where Ti [: j] denotes the targets to whom she sent requests before j .
4In this case, r Sj = r

B
j , ∀j , so eq. 2 factors to the prior πi .
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a functionA(xi j ,δi ) that takes two inputs: target j’s accept or reject
xi j of i’s friend request, and the indicator δi of whether the source i
is fake or real.A(xi j ,δi ) returns the probability that target j accepts
i conditional on her {fake, real} label if we observe that i’s friend
request was accepted by j, or the complement of this probability if
we observe that i was rejected by j:

A(xi j ,δi ) =
{
aδj i f xi j = 1;
1 − aδj i f xi j = 0

Now we can compute this target response component via:

pi =

prior︷︸︸︷
πi

∏
j ∈Ti

A(xi j ,δi=S)

πi
∏
j ∈Ti

A(xi j ,δi=S) + (1 − πi )
∏
j ∈Ti

A(xi j ,δi=B)
(4)

Here, the product in the numerator is the probability of observing
sender i’s accepts and rejects conditional on her targets using the
probabilities at which they accept and reject fake accounts. The
denominator then gives the total probability of observing these
accepts and rejects. At a high level, the entire expression captures
the question ‘did source i’s accepts/rejects appear to be due to her
targets treating her as they treated fakes or as they treated reals?’.

The key aspect to note is that eq. 4 only updates the posterior
estimate that i is fake to the extent her targets respond differently
to requests from fakes vs. reals (i.e. to the extent that i’s targets are
further from x=1 in Fig. 1, middle). In section 2.4, we show how to
estimate targets’ accept rates aSj and aBj for each class of senders.

2.3 The SybilEdge equation

Here we show how to compute the key equation in the SybilEdge
algorithm, which combines these target selection and target re-
sponse components to aggregate the information about a user’s
{fake, real} label contained in each of her friendship edges. Specifi-
cally, we say that the probability of observing each of i’s accepted or
rejected edges can be decomposed as (I) the probability that i would
select the edge’s target conditional on i’s {fake, real} label, and (II)
the target’s response conditional on i’s selection of the target and
i’s label. We thus determine the posterior probability i is a fake by
aggregating over i’s edges via the SybilEdge equation:

pi =

prior︷︸︸︷
πi

∏
j ∈Ti

target response︷         ︸︸         ︷
A(xi j ,δi=S) ·

selection︷︸︸︷
rSj

πi
∏
j ∈Ti

A(xi j ,δi=S) · rSj + (1-πi )
∏
j ∈Ti

A(xi j ,δi=B) · rBj
(5)

Here, the products in the numerator give us the joint probability
that (I) i selects the set of targets to whom she sends friend requests
as a fake user would select targets; and (II) these targets respond
with the accepts and rejects we observe given that they treat i as a
fake when accepting/rejecting her. The products in the denomina-
tor then give the total probability that i selects these targets and

they respond with the accepts/rejects we observe. The SybilEdge
equation therefore gives us the relative probability that the i’s set
of requests, accepts, and rejects are those of a fake user.

The SybilEdge equation thus captures our intuitions that a user
i is more likely to be a fake to the extent that she selects targets who
are preferred by fakes (for whom rSj > rBj ), and also to the extent her
targets respond differently to her requests than they usually respond
to requests from reals (for whom A(xi j ,δi=S) > A(xi j ,δi=B)).

2.4 Component III: weighting target confidence

The discussion above assumes we know the true probabilities at
which fakes and reals each select each target (rSj and rBj ), and the
probabilities at which each target accepts a request from either
class (aSj and aBj ). In practice, we must estimate these parameters
from observed social graph data. Therefore, we introduce the final
component of the SybilEdge algorithm: SybilEdge gives more
weight to selections of targets and targets’ responses not only as a
function of the magnitude of the difference of targets’ request and
accept probabilities for fakes vs. real users (as above), but also as a
function of our confidence in these differences.

SybilEdge accomplishes this confidence weighting as follows.
First, consider how to compute aSj , a

B
j , that is, each target’s proba-

bility of accepting a friend request from an arbitrary fake or real
user. Suppose we know a set LS of existing fakes and a set LB of
existing real users. The maximum-likelihood estimate of aSj is just
target j’s count of accepts of the requests she received from known
fakes divided by the total count of these requests. However, if we
used this approach for all targets, then the SybilEdge equation
would give equal weight to a target who responded to only a few
requests (i.e. a target whose accept rates we know with low confi-
dence) and a target had responded to thousands of requests (whose
accept rates we know with high confidence).

Therefore, we instead use estimators for these rates that, in the
absence of data to the contrary, shrink aSj and aBj towards each other.
This is because in the case where aSj = aBj , we say target j is equally
likely to accept i’s friend request regardless of whether i is a fake
or a real, so the fact that j accepts i does not update i’s probability
of being a fake according to the target response component of the
SybilEdge equation above.

Specifically, let fj denote the count of j’s acceptances of friend
requests from users with known labels, and let f Sj and f Bj denote
the counts accepted from known fakes and known reals, respec-
tively. Let ρ j denote the count of all friend requests that known
users sent to target j, and let ρSj and ρBj denote j’s count of friend
requests from just known fake senders and just known real senders,
respectively. We use estimators that reweight target accept rates

based on our confidence via:

âoverallj =
fj

ρ j
; âSj =

f Sj + ϕ j · â
overall
j

ρSj + ϕ j
; âBj =

f Bj + ϕ j · â
overall
j

ρBj + ϕ j
(6)

Where ϕ j : ϕ j ≥ 0 is a ‘confidence’ prior on target j for the target
response component of SybilEdge. Setting ϕ j = 0,∀j recovers the
maximum likelihood estimators for âSj and âBj , which compel the
SybilEdge equation to place equal weight on targets for whom we
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have observed more or less acceptance data.5 In contrast, as we
increaseϕ j , we shrink âSj and â

B
j together to a degree that is inversely

proportional to the count of friend requests j responded to, which
compels SybilEdge to place less weight on targets who have only
accepted/rejected a small number of reals or fakes in the past. In this
case, the SybilEdge equation will tend to learn only from targets
whom we have repeatedly observed accepting reals at a different
rate than fakes (i.e. targets whose acceptance rates are known with
high confidence). Similarly, by increasing ϕ j for a particular target
j but not others, we can selectively downweight the influence of
target j’s accepts/rejects on the model’s predictions, which may
be advantageous if we suspect target j of being a malicious or
adversarial user.

SybilEdge uses a similar approach to place more weight in the
target selection component on targets when we are more confident
(i.e. have observed more data) about how they are selected by fakes
vs. reals. Similarly to above, we could imagine maximum likelihood
estimators for the probability rSj (or rBj ) that a fake (or real) user
will send her first friend request to target j by computing target
j’s count of requests received from known fakes (or reals) divided
by the count of all requests sent by known fakes (or reals). But, as
above, this approach would cause SybilEdge to give equal weight
to a target who received only a few requests (i.e. a target whose
rates we know with low confidence) and a target who received
thousands of requests (whose rates we know with high confidence).

Therefore, we instead reweight target selection rates based on
our confidence. Specifically, let ρL denote the count of all friend re-
quests sent by known users, and let ρLS and ρLB denote the counts
sent by known fakes and reals, respectively. Instead of the maxi-
mum likelihood estimators described above, we use the following
to reweight target selection rates:

r̂overallj =
ρ j

ρL
; r̂Sj =

ρSj + σj · r̂
overall
j

ρLS + σj
; r̂Bj =

ρBj + σj · r̂
overall
j

ρLB + σj
(7)

Here, σj : σj ≥ 0 is our ‘confidence’ prior on target j for the
target selection component of the SybilEdge equation: if we set
σj = 0,∀j, the SybilEdge equation places equal weight on friend
requests sent to targets for whom we have observed more/less data;
increasing σj > 0,∀j causes the SybilEdge equation to place more
weight on targets for whom we have observed more data. More
specifically σj = 0 recovers the maximum likelihood estimators for
rSj and rBj , whereas increasing σj > 0 shrinks r̂Sj and r̂Bj towards
each other to a degree that is inversely proportional to the overall
count of friend requests j received from fakes or reals. This in turn
causes the SybilEdge equation to place less weight on learning from
targets for whom we have observed fewer friend requests (recall
that the target selection component only updates the probability
that a user is fake to the extent that fake users send requests to her
targets at different rates than real users). Similarly, by setting σj
higher for a particular target j compared to others, we downweight
the influence of the selection of target j compared to other targets
in the SybilEdge equation.

5There is a mathematical equivalence between these estimators and the Beta conjugate
model in Bayesian inference.

2.5 The SybilEdge algorithm

These target selection, target response, and confidence weighting
components form the SybilEdge algorithm:

Algorithm 1 SybilEdge
input Gr equests (V ,E),Gaccepts (V ,E ′),L,π ,σ ,ϕ

for known user j ∈ L
compute weighted request rates r̂Sj and r̂Bj per eq. 7
compute weighted accept rates âSj and âBj per eq. 6

for new user i ∈ V \L
compute pi per eq. 5

return pi for all i

2.6 Choosing tuning parameters ϕ and σ
A key property of tuning parameters ϕ j and σj is that, by increasing
one relative to the other, we can tune SybilEdge to place more
emphasis on learning from the set of targets a user chooses to send
requests to relative to learning from whether those targets accept
or reject. Specifically, as we increase σj → ∞,∀j, SybilEdge sets
r̂Sj ≈ r̂Bj , ∀j. The algorithm then ceases to update its estimate of
i’s label based on the set of targets i chooses, and we recover the
target response component from the full SybilEdge algorithm. This
in turn makes SybilEdge more robust to attack, as a fake user
cannot ‘appear real’ by sending requests to recipients who typically
are not targeted by fakes. However, this robustness comes at a cost
in terms of SybilEdge’s recall. Consider, for example, that when
all σj are large, we will be less likely to detect a fake account that
sends requests to targets who receive proportionally many requests
from fakes, but who accept fakes at the same rate they accept reals.

2.7 SybilEdge properties

In addition to its strong performance on real and simulated Face-
book data, SybilEdge exhibits six advantageous properties:
Rapid classification of new users. Previous methods typically
require a lengthy ‘stabilization period’ before a new account can
be classified, and are generally less likely to correctly classify a
fake account that succeeds in making many friends with real users
(even if those users are not discriminating). In contrast, SybilEdge
becomes increasingly likely to identify a fake as she (1) sends more
friend requests; (2) sends requests to more discriminating targets
who accept fakes at a different rate than they accept reals (increasing
the difference between aSj and aBj for i’s targets); (3) sends requests
to targets who are more often victimized by requests from fake
accounts (increasing the difference between rSj and rBj ); and (4)
sends requests to targets who are more active users (for whom we
have greater confidence in aSj and aBj ).
Robustness to sampling attacks. A key property of SybilEdge
is that targets only carry weight in the model to the extent that they
receive and accept friend requests from real and fake users at dif-
ferent rates. Thus, a fake account cannot improve the SybilEdge’s
estimate of her probability of being fake even if she identifies and
connects to many real users who accept e.g. all requests indiscrimi-
nately. Note that an indiscriminately accepting target has aSj = aBj ,
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which causes the target’s accept or reject to appear on both the
numerator and denominator of the target response component of
the SybilEdge equation. This target’s response then factors out
and has no effect on our posterior estimate pi of i’s label.
Low complexity. SybilEdge has complexity O(|E |) where E is
the set of friend requests. Because social networks are typically
sparse [13, 15], we have O(|E |) = O(|V |). This compares favorably
to state-of-the-art algorithms such as SybilBelief and SybilSCAR,
which requireO(k |E ′ |), where k is the number of iterations (at least
O(log(|V |)) and E ′ is the set of accepted friend requests [13, 24].
Interpretability. Unlike mainstream sybil detection algorithms,
SybilEdge is interpretable. For example, SybilEdge might classify a
user as fake with high probability because her friend requests were
rejected by specific users who tend to accept all requests from real
users and reject those from fakes, and because she also sent requests
to other users who are preferred targets of fakes. Such interpretabil-
ity enables researchers to audit the model’s classifications—an im-
portant precondition for disabling fake accounts.
Probabilistically labelled training data. SybilEdge accepts prob-
abilistically labelled training data rather than binary { f ake, real}
labelled data if desired. For example, an acceptance of a request
from a user that data suggests is fake with probability 0.25 can be
input as an acceptance of 0.25 fake users and 0.75 real users.
Robustness to label noise in the training data. In Section 4
below, we show that SybilEdge is robust to the presence of mis-
classified users in the training dataset L of known fake/real users.

3 EVALUATIONS

Our goal in this section is to show that SybilEdge achieves high
performance (AUC>0.9) on new users at scale on the Facebook net-
work, and that it significantly outperforms state-of-the-art bench-
mark algorithms. In subsequent sectionswe also show that SybilEdge
is robust (i) to label noise in the training data, (ii) to greater preva-
lence of fake accounts in the network, and (iii) to several different
ways fakes can select targets for their friend requests.

3.1 Evaluation on the Facebook network

We implemented SybilEdge at scale at Facebook, and we ran it
in an offline evaluation setting on the global Facebook network.
Specifically, we trained SybilEdge using just a three-month period
of historical friending data from the last year. To train the model,
we also used the historical set of real/fake labels from Facebook’s
internal fake classifiers from these three months. These labels in-
clude a highly calibrated real/fake label for all accounts that are >30
days old, which provided a label for all users in our three months of
training data. We then tested SybilEdge by attempting to classify
new users who joined Facebook anytime in the week immediately
following these three months using only this one week of data on
their friending activity. That is, we test SybilEdge’s ability to detect
new accounts who are each between 0 and 7 days old.6 Because
significant additional time has now passed since these users joined
Facebook, they have since been labeled via our same set of fake
classifiers. We compare SybilEdge’s output to these known labels.
6To ensure fairness in this evaluation, for all new users i we set a prior πi equal to
the overall fraction of fakes among new Facebook users, and for all known targets j
we set confidence priors σj = ϕj = const.
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Figure 2: Performance of SybilEdge (blue) and

SybilEdgeTR (red) on new global Facebook users par-

titioned by the number of friend requests they sent:

[[0, 5], [6, 10], . . . , [41, 45], [46,∞]].

Comparisonmetrics and benchmarks. Due to imbalance in the
classes of fakes and real nodes (guessing ‘all real’ yields 95% ac-
curacy), we adopt the standard approach and use ROC AUC to
measure SybilEdge’s performance [4, 24]. Recall that an AUC of
0.5 means a classifier is no better than random on the test set.

For comparison, we also include two benchmarks: RejectRate
and SybilEdgeTR (Section 3.2 below adds additional benchmarks).
RejectRate. RejectRate just computes the AUC of each new
user’s fraction of sent friend requests that are rejected by her targets.
SybilEdgeTR. SybilEdgeTR is a simplified version of SybilEdge
that uses only the target response component (eq. 4), and not the
target selection component, so a new user’s choice of targets does
not affect the posterior probability she is fake (i.e., SybilEdgeTR is
SybilEdge with σ→∞, see Section 2.6). SybilEdgeTR probes how
much of SybilEdge’s performance is due to target response alone.
Results. Fig. 2 plots AUC for groups of these new users parti-
tioned by the number of friend requests they sent. SybilEdge and
SybilEdgeTR improve in AUC as new users send more friend re-
quests and converge to AUC’s of 0.91 and 0.80, respectively, for
all users who send more than 15 friend requests. We note that
SybilEdge’s high AUC values here mean that it successfully de-
tected even those new users who joined Facebook on the last of
the 7 days in the test set (i.e. who were only 1-day old at detection
time). This evaluation is (to our knowledge) the first demonstration
that a graph-based algorithm can detect fakes given just the small
set of friend requests they attempt in their first days of activity.

We also manually inspected SybilEdge’s errors, and we found
that similarly to [26], the class of ‘false positives’ among new users
who sent more than 15 requests reveals many ‘real-but-spammy’
users who abused friend recommendations by sending many un-
wanted requests. Thus, as in [26], we conclude that SybilEdge’s
‘false positives’ can actually be desirable outputs.

We also note that, in contrast to some previous evaluations of
graph-based algorithms on other social networks, the class of new
fake Facebook accounts detected by SybilEdge cannot easily be
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Figure 3: Performance of SybilEdge (dark blue) vs.

state-of-the-art benchmarks on new Facebook users par-

titioned by the number of friend requests they sent:

[[0, 10], [11, 20], [21, 45], [46,∞]].

distinguished by basic network statistics such as reject rates. For ex-
ample, the authors of VoteTrust note that during their evaluation
on the Renren network, fakes were distinguishable by their low
average acceptance rate of 0.2 versus 0.8 for real users [26]. In con-
trast, reject rates yield AUC generally under 0.7 for the class of new
users on Facebook. Thus, we conclude that SybilEdge was able to
elicit much more information from a new user’s sparse friendships
by leveraging the differences in targets’ selections and responses.

3.2 SybilEdge vs. state-of-the-art algorithms

We also compare SybilEdge to state-of-the-art benchmark algo-
rithms on a Facebook network. Because benchmark algorithms have
greater computational complexity than SybilEdge (see Section 2.7),
we restrict the Facebook network in this evaluation to all users in
a single country with roughly 1 million users. This restriction im-
proves computational feasibility of the benchmarks, and it enables
us to use their authors’ publicly available code implementations
for the sake of experimental transparency (see [13, 23, 24]).

We compare SybilEdge to:

SybilRank. SybilRank [28] is a state-of-the-art randomwalk based
algorithm. Unlike SybilEdge, SybilRank uses only the graph of
accepted friend requests and a set of known real users (nodes). As
in [28], we run SybilRank for log2(|V |) iterations.

SybilBelief. SybilBelief [13] is a state-of-the-art loopy belief prop-
agation algorithm. SybilBelief uses the friendship graph of ac-
cepted friend requests and both known real users and known fakes.
As in [13], we run SybilBelief with edge weights set to 0.9.

SybilSCAR. SybilSCAR [23, 24] is a recent probabilistic algorithm.
SybilSCAR uses the graph of accepted friend requests and both
known real users and known fakes. We run both versions of this
algorithm: SybilSCAR-Cwith all weights equal to half the inverse of
the average degree as in [23], and user-degree weighted SybilSCAR-
D. Each point in Fig. 3 reports the higher of their two AUC’s.
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Figure 4: SybilEdge performance under 0%, 10%, 20%, and
30% label noise on new global Facebook users parti-

tioned by the number of friend requests they sent:

[[0, 5], [6, 10], . . . , [41, 45], [46,∞]].

Results. Fig. 3 plots each algorithm’s AUC for groups of new users
partitioned by the number of friend requests they sent.7 Overall,
SybilEdge consistently outperforms all benchmarks regardless of
the number of friend requests new users sent. Specifically, whereas
SybilEdge achieves AUC>0.91 on all new users who have sentmore
than 10 friend requests, the best performing benchmark, Sybil-
Belief, achieves a maximum AUC of 0.77, and its performance
degrades to no-better-than-random for new users who send >45
friend requests. Further investigation suggests that benchmarks’
poor performance is largely due to the fact that some new fake
users violate the homophily assumption and connect to many indis-
criminately accepting real users, and the subset of new fake users
who send the most friend requests (for whom the benchmarks’ per-
formance is lowest—see rightmost points in Fig. 3) are particularly
likely to do so. In these cases, SybilRank tends to rank these fake
users in particular as more likely to be real than low-degree real
users (resulting in a low or even negative AUC), and SybilBelief
and SybilSCAR tend to ‘over-propagate’ known real users’ labels
via these connections such that the majority of new users converge
to identical ‘100% real’ posteriors, resulting in AUC of 0.5.

4 ROBUSTNESS: LABEL NOISE

Robustness to label noise in the training data is a desirable and well-
studied property of sybil detection algorithms [13, 24]. To test the
robustness of SybilEdge to noise in a realistic setting, we repeat the
evaluation of SybilEdge on the global Facebook network dataset
(Fig. 2), but randomly flip up to 30% of known real and fake users’
{fake, real} labels in the training data we use to compute each
target’s rates. Fig. 4 plots SybilEdge’s performance on the global
Facebook network with various levels of added label noise. Note
that even with 30% of added label noise, SybilEdge still converges
to >0.80 AUC on new users who have sent more than 20 friend
requests. We therefore conclude that SybilEdge applies well even to

7We note that Fig. 3 uses fewer partitions than Fig. 2 to ensure each partition still has
sufficient new fake accounts for evaluation on this one-country Facebook network.
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social networks where training labels are known with significantly
less confidence than they are at Facebook.

5 ROBUSTNESS: BEHAVIORS & PREVALENCE

Our goal in this section is to show that SybilEdge’s performance
advantage is also robust to conditions that differ from the cur-
rent Facebook network—specifically, to (i) several different ways
fakes can select targets for their friend requests, and (ii) greater
prevalence of fake accounts in the network. To accomplish this, we
designed a variety of synthetic friend request networks to capture
a variety of ways fake users can choose targets for their requests.
For each synthetic network, we then used real Facebook user data
to realistically simulate how Facebook users would respond (ac-
cept/reject). Across these simulations, SybilEdge still rapidly con-
verged to detect fakes after they sent only a small number of friend
requests regardless of how they selected targets for these requests
or their overall prevalence in the network. In all cases, SybilEdge
outperformed state-of-the-art graph-based algorithms, whose per-
formance changed markedly depending on how fake users chose
targets, and who struggled to detect both low-degree fakes and
fakes who succeed in friending less discriminating real users.

5.1 Robustness simulations setup

In each simulation, we set n = 10000 nodes (users) and randomly
select 5% of them to be fakes, which matches Facebook’s global
fraction [8] of fake users (we later increase this to 10% to probe
robustness to a greater prevalence of fake accounts). We randomly
select 80% of nodes to have known fake/real labels and 20% to
have unknown labels. This reflects a realistic ‘difficult case’ of a
community where a full 20% of users are new. We then generate
synthetic digraphs of friend requests using a variety of random
graph models parameterized by Facebook data. This set of synthetic
digraphs is selected to encompass a variety of possible strategies
that fakes may deploy ranging from randomly targeting real users
to preferentially targeting high-degree users or even users who
have previously accepted friend requests from other fakes. For
each friend request, we then draw an ‘accept’ or ‘reject’ based
on mapping the simulated recipient to an actual Facebook user’s
accept rates for fakes/reals, which ensures that our simulated users’
behaviors are consistent with actual Facebook users.
Benchmark algorithms We run SybilEdge and each benchmark
algorithm from Section 3 on these graphs to classify the ‘unknown’
20% of users (test set). We also include an additional benchmark:
VoteTrust. While we did not run VoteTrust [26] on the Face-
book network (Section 3.2) because it requires significant additional
data8, we include it in our simulations. VoteTrust is an interesting
benchmark because it is a random walk based algorithm, but like
SybilEdge, VoteTrust uses the directed graph of friend requests,
accepts, and rejects. VoteTrust detects fakes by propagating trust
from known real nodes via random walks, then aggregating ac-
cepts/rejects of unknown users’ requests weighted by their targets’
trust scores.

8Specifically, as described in Section 1.1, aside from the friendship graph and 3-month
sample of users’ friend requests we use to train SybilEdge and other benchmarks,
VoteTrust also requires complete older historical data on friend requests, which is
not among the data that is considered readily accessible for analysis.

5.2 Generating friend request graphs

First, we generate synthetic friend request graphs using various
models, each parameterized by Facebook data, which capture var-
ious ways fakes can choose their targets. For each graph model,
we vary the input parameters to produce a range of graphs with
various average out-degrees (number of friend requests sent) from
1 to 50.
Erdős Rényi (n=10000). We generate friend request graphs using
the directed Erdős Rényi model. We vary the probability p of an
edge to yield a range of graphs where nodes’ expected number of
friend requests varies from 1 to 50 (i.e. 1

n−1 ≤ p ≤ 50
n−1 ). These

graphs capture a scenario where nodes send friend requests to
targets chosen uniformly at random, but targets accept requests as
in observed Facebook behavior (see Section 5.3 below).
FB-parameterized configuration model (n=10000). In practice,
some users receive many more friend requests than others. To
capture this in a realistic manner, we design directed configuration
graphs by mapping each node uniformly at random to an observed
Facebook user’s count of actual friend requests. We then use each
user’s count as both her in-degree and out-degree distributions.
The resulting graphs capture the scenario where we see a realistic
distribution of friend requests, but fakes are careful not to betray
their identities by sending many more requests than they receive.
FB-parameterized stochastic block model (n=10000). In prac-
tice, real users are much more likely to send requests to other real
users than to fakes. We capture this by generating directed SBM
graphs of friend requests with two clusters: one of fakes and one of
reals. We set the probability of a friend request within- or across-
clusters (the edge probability matrix P2,2) to the observed ratios at
which fakes/reals send requests to fakes/reals on Facebook.
FB-parameterized preferential attachment (n=10000). In prac-
tice, we observe that many fakes preferentially target users who
have already been targeted by other fakes (see Fig. 1). To capture
this, we design preferential attachment graphs of friend requests.
First, we randomly map each simulated fake user uniformly at ran-
dom to an actual observed fake Facebook user’s receive counts
from fake/real senders, and we map each simulated real user to
corresponding data from a real Facebook user. We these counts as
the preferential attachment process weights αf ake, j and αr eal, j ,
i.e., the a priori probability that each fake or real user, respectively,
will send a friend request to target j. We then run the classic k-
out preferential attachment algorithm until all nodes send k friend
requests, and we generate a range of graphs with k = 1 to 50.

5.3 Modeling request acceptances/rejections

After generating a friend request digraph in each simulation, we
generate the corresponding ‘accept’ or ‘reject’ for each request
as follows: First, we map each simulated target node to a tuple
of Facebook data describing a randomly selected Facebook user’s
historical rates at which she accepted requests from real users and
fakes, respectively.9 Here, we are careful to map each simulated
fake to an actual fake Facebook user’s rates and each simulated real

9Wenote that, due to the fact that millions of users have identical rates, this information
is not identifying.
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Figure 5: Performance of SybilEdge (blue) and SybilEdgeTR (red) versus benchmarks on random graphs with 5% fakes (top

row) or 10% fakes (bottom row). Each point represents the AUC of one algorithm on a graph generated with one parameter

combination. Different combinations yield graphs with different avg. number of friend requests sent by each user.

user to an actual real Facebook users’ rates.10 We use these rates
as Bernoulli weights to draw ‘accepts’ or ‘rejects’ for her simulated
friend requests from real users and fakes, respectively. This pro-
cess synthesizes realistic ‘accepts’ and ‘rejects’ that match actual
Facebook user-level distributions from fake and real accounts.

5.4 Robustness simulation results

Fig. 5 plots each algorithm’s AUC versus the average user’s count
of friend requests sent (i.e. out-degree) for each graph model. Note
that regardless of how fake users selected their targets, SybilEdge
consistently achieved near-perfect classification after observing an
average of 20 friend requests from each user (of which ∼4 were
sent by unknown users and thus excluded from training). Thus,
after training on ∼16 edges per known user, SybilEdge classified
new fakes almost perfectly, including those who sent only a couple
of requests, across all graph models. This suggests that SybilEdge’s
strong performance on the real Facebook network (Section 3.1) is
quite robust to different ways fakes can select targets.

SybilEdge also reaped an additional performance advantage
over SybilEdgeTR in preferential attachment graphs, as in these
graphs fakes chose targets differently than real users. Per Section
3.1 and Fig. 2, this is consistent with SybilEdge’s performance
advantage on the real Facebook network.

In contrast, the performance of all benchmark algorithms was
markedly inconsistent across the different graph models, and none
matched the performance of SybilEdge on any graph model. We
inspected their errors and found that, as with evaluations on real

10For the preferential attachment graphs, we are careful to maintain the same mapping
as during graph synthesis.

data (Section 3.2), benchmarks’ poor performance was largely due
to the fact that new (simulated) users’ sparse connections were
insufficient to realize the homophily assumption. Also, as in the
evaluations on real data, some real users accepted requests indis-
criminately from many fakes, causing SybilSCAR and SybilBelief
to ‘over-propagate’ known real users’ labels out to other fakes,
which resulted in many misclassifications. Additionally, all bench-
marks struggled to distinguish fakes from low-degree real users.

Finally, SybilEdge’s performance actually improved slightly
when we increased the fraction of fake accounts in the data from
5% (Fig. 5 top row) to 10% (bottom row). This is because the increase
in the fraction of fake users improves balance such that a greater
fraction of targets in the training data receive requests from known
fake users, so SybilEdge can better estimate targets’ receive rates
and accept rates for fakes when there have been fewer requests
overall. This suggests that SybilEdge’s performance is quite robust
to even a marked increase in the current fraction of fake accounts.

6 CONCLUSION

We presented SybilEdge, a social-graph-based algorithm for the
detection of new fake accounts on social networks. The class of
new fakes has traditionally been overlooked by social-graph-based
algorithms, which leverage network-structural differences to iden-
tify long-tenured fakes. However, we have shown it is possible to
detect new fakes by leveraging small individual-level differences
in how new fakes interact with other users, and how these users
in turn react to new fakes. Because early detection limits the harm
that such accounts can inflict, the development of such techniques
is a promising new area for impactful research.
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