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ABSTRACT
Graphics Processing Units (GPUs) are massively parallel processors
offering performance acceleration and energy efficiency unmatched
by current processors (CPUs) in computers. These advantages along
with recent advances in the programmability of GPUs have made
them attractive for general-purpose computations. Despite the ad-
vances in programmability, GPU kernels are hard to code and anal-
yse due to the high complexity of memory sharing patterns, striding
patterns for memory accesses, implicit synchronisation, and combi-
natorial explosion of thread interleavings. Existing few techniques
for testing GPU kernels use symbolic execution for test genera-
tion that incur a high overhead, have limited scalability and do not
handle all data types.

We propose a test generation technique for OpenCL kernels that
combines mutation-based fuzzing and selective constraint solving
with the goal of being fast, effective and scalable. Fuzz testing for
GPU kernels has not been explored previously. Our approach for
fuzz testing randomly mutates input kernel argument values with
the goal of increasing branch coverage. When fuzz testing is unable
to increase branch coverage with random mutations, we gather
path constraints for uncovered branch conditions and invoke the
Z3 constraint solver to generate tests for them.

In addition to the test generator, we also present a schedule am-
plifier that simulates multiple work-group schedules, with which
to execute each of the generated tests. The schedule amplifier is
designed to help uncover inter work-group data races. We evaluate
the effectiveness of the generated tests and schedule amplifier using
217 kernels from open source projects and industry standard bench-
mark suites measuring branch coverage and fault finding. We find
our test generation technique achieves close to 100% coverage and
mutation score for majority of the kernels. Overhead incurred in
test generation is small (average of 0.8 seconds). We also confirmed
our technique scales easily to large kernels, and can support all
OpenCL data types, including complex data structures.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Massively parallel systems.
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1 INTRODUCTION
Recent advances in the programmability of GPUs, accompanied
by the advantages of massive parallelism, energy efficiency, low
management costs compared to a cluster of CPUs have made them
attractive for general-purpose computations across many appli-
cation domains [20]. However, writing correct GPU programs is
a challenge owing to many reasons [13]– a program may spawn
tens of thousands of threads, which are clustered in multi-level
hierarchies, making it difficult to analyse; programmer assumes
responsibility for ensuring concurrently executing threads do not
conflict by checking threads access disjoint parts of memory; com-
plex striding patterns of memory accesses are hard to reason about;
GPU work-group execution model and thread scheduling vary
platform to platform and the assumptions are not explicit. As a
consequence of these factors, GPU programs are difficult to analyse
and existing approaches [13] for verifying correctness are thwarted
by high complexity of sharing patterns, combinatorial explosion
of thread interleavings and space of possible data inputs. Existing
techniques for testing GPU kernels, GKLEE [15] and KLEE-CL [4],
incur a high overhead (from symbolic execution and constraint
solving), do not handle all data types and have limited scalability.

There is an urgent need for a fast, effective and scalable technique
to check correctness of GPU kernels. We seek to address this need
by proposing a testing technique that combines fuzz testing with
constraint solving. A fuzz tester (or fuzzer) is a tool that iteratively
and randomly generates inputs with which it tests a target pro-
gram. Fuzz testers were found to be surprisingly effective when
compared to more sophisticated tools involving SMT solvers, sym-
bolic execution, and static analysis of security applications. For
instance, the popular fuzzer AFL has been used to find hundreds of
bugs in popular programs [27][11] and found 76% more bugs when
compared to a symbolic executor (angr) in a 24 hour period [23].
Currently, there are no available fuzz testers for GPU kernels. The
first contribution in this paper is the development of a fuzz tester
for OpenCL kernels. We evaluate the effectiveness of the generated
inputs from the fuzzer by measuring branch coverage and fault
finding (using seeded mutaitons) over the OpenCL kernels. We use
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the coverage measurement tool developed by Peng et al. [18] for
this assessment.

It is well known that fuzzers, although fast and effective, can
struggle with determining specific inputs to pass complex checks
within programs. The second contribution in this paper addresses
this weakness. When our fuzzer is unable to reach full (or high)
coverage of the kernel, we complement it with a constraint solver1
that is tasked with generating inputs for uncovered branches. The
test inputs generated by the constraint solver combined with test
inputs from the fuzzer form the complete test suite achieving high
kernel code coverage.

A final contribution lies in the execution of the generated tests
with a work-group schedule amplifier. Existing GPU architecture
and simulators do not provide a means to control work-group
schedules. The OpenCL specification provides no execution model
for inter work-group interactions [21]. As a result, the ordering of
work-groups when a kernel is launched is non-deterministic and
there is, presently, no means for checking the effect of schedules
on test execution. We provide this monitoring capability. For a test
case Ti in test suite TS , instead of simply executing it once with
an arbitrary schedule of work-groups, we execute it many times
with a different work-group schedule in each execution. We build
a simulator that can force work-groups in a kernel execution to
execute in a certain order. This is done in an attempt to reveal
test executions that produce different outputs for different work-
group schedules which inevitably point to problems in inter work-
group interactions. Peng et al. [18] produced a partial scheduler
by only fixing the first work group in the schedule. Schedules
generated by the partial scheduler are not realistic, and resulted in
creating deadlocks in some kernel executions, as reported in [18].
In this paper, we provide a simulator that can provide complete
orderings over all the work groups, addressing limitations in the
partial scheduler.

We empirically evaluate our test generation technique using
217 GPU kernels from open source projects and industry standard
benchmark suites. Tests generated by the fuzzer achieves more
than 90% branch coverage and mutation score in 86% and 51% of
the subject kernels, respectively. For the 31 kernels with uncov-
ered branches, we augmented tests from the constraint solver to
achieve full branch coverage. Average mutation score improved
significantly (54% to 73%) with the combined approach for these
kernels. We found most of the survivng mutants to be arithmetic
operator mutants that are hard to kill with control flow adequate
tests. We plan to explore data flow guided test generation to kill
such mutations in the future. Our schedule amplifier was able to
uncover data races in 21 kernels. Overhead of our test generation
technique is very small (average of 0.8 seconds over all kernels).
Overall, we find our test generation framework, CLFuzz, provides
a fast, effective and scalable means for testing OpenCL kernels.

In summary, the main contributions in this paper are:
(1) Fuzz tester that automatically generates tests using random

mutations.
(2) Constraint-solver based test generation to complement the

fuzz tester for uncovered kernel code.

1We invoke an SMT solver to generate inputs satisfying constraints for uncovered
paths. We refer to the SMT solver as a constraint solver throughout the paper.
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Figure 1: Memory and thread hierarchy on GPUs

(3) Schedule amplification to evaluate test executions using dif-
ferent work-group schedules.

(4) Empirical evaluation on a collection of 217 publicly available
GPU kernels, examining coverage, fault finding and inter
work-group interactions.

2 BACKGROUND
The success of GPUs in general purpose applications in recent
years has been due to the ease of programming using the CUDA [1]
and OpenCL [10] parallel programming models, which abstract
away details of the architecture. CUDA and OpenCL use a similar
abstraction of the memory and execution model of GPU programs
(typically referred to as GPU kernels), as shown in Figure 1, and
differences between them are mostly syntactic. We choose to focus
our test generation approach on OpenCL kernels since it is more
widely supported by GPU manufacturers.

OpenCL is a programming framework and standard set from
Khronos, for heterogeneous parallel computing on cross-vendor
and cross-platform hardware. In the OpenCL architecture, CPU-
based Host controls multiple Compute Devices (for instance CPUs
and GPUs are different compute devices). Each of these coarse
grained compute devices consists of multiple Compute Units which
in turn contain one or more processing elements (a.k.a streaming
processors). The processing elements execute groups of individual
threads, referred to as work-groups, concurrently. The functions
executed by the GPU threads are called kernels, parameterised by
thread and group id variables. OpenCL has four types of memory
regions: global and constant memory shared by all threads in all
work-groups, local memory shared by threads within the same
work-group and private memory for each thread. Kernels cannot
write to the constant memory.

GPUs have SIMT (single instruction, multiple thread) execu-
tion model that executes batches of threads (warps) in lock-step,
i.e all threads in a work-group execute the same instruction but
on different data. If the control flow of threads within the same
work-group diverges, the different execution paths are scheduled
sequentially until the control flows reconverge and lock-step execu-
tion resumes. Sequential scheduling caused by divergence results
in a performance penalty, slowing down execution of the kernel.

62



Automated Test Generation for OpenCL Kernels using Fuzzing and Constraint SolvingGPGPU ’20, February 23, 2020, San Diego, CA, USA

The following listing presents a GPU kernel written usingOpenCL
that squares the contents of an array and then writes each array ele-
ment as the sum of neighbouring elements. This example is derived
from an application which detects edges in grayscale images. Each
Thread in the original kernel computes the summation of values
held by its neighbouring threads minus its own value and divides
the result by 4. We simplify this kernel into a 1 dimensional version
for illustrating purpose.

Listing 1: Example OpenCL Kernel

__kernel void foo(__global float *p) {

int id = get_global_id (0);

p[id] = p[id] * p[id];

if (id != 0 && id != get_global_size (0) - 1) {

barrier ();

float result = (p[id - 1] + p[id + 1] - p[id]) /

2;

p[id] = result;

}

}

In this example, the built-in function get_global_id() returns
thread_id and the barrier() function synchronises execution among
threads. The example code, however, contains two types of bugs:
barrier divergence and data race. We briefly describe the bug types
before discussing them in the example. Inter work-group data race
can occur when a global memory location is written by one or more
threads from one work-group and accessed by one or more threads
from another work-group. Intra work-group data race can occur
when a global or local memory location is written by one thread
and accessed by another from the same work-group. Barrier is a
synchronisation mechanism for threads within a work-group in
OpenCL and is used to prevent intra work-group data race errors.
Barrier divergence occurs if threads in the same group reach dif-
ferent barriers, in which case kernel behaviour is undefined [3]
and may lead to intra work-group data race. Data races and barrier
divergence, according to Betts et al. [3], make GPU kernels harder
for verification than sequential code.

In the example, barrier divergence occurs because the barrier
within the if statement is not executed by all the threads. Addition-
ally, the purpose of the barrier is to ensure the summation of array
elements happens after the squaring operation. However, thread
synchronisation is only enforced within a work-group. There is no
mechanism provided by the GPU vendor or the OpenCL program-
ming model to synchronise threads from across different work-
groups. For instance, if we assume the work-group size to be 32
in this example, there is no way to ensure thread 31 (from a cer-
tain work-group) uses the correct p[32] value (after squaring) in
the summation operation, as p[32] is controlled by a thread in a
different work-group. As a result, inter work-group data races may
occur in this kernel.

It is worth noting that there is no means to control or restrict the
work-group scheduler in GPUs. The scheduler is free to produce
any order of work groups to be executed on the available compute
units. For the above example, different work-group schedules can
produce different kernel outputs indicating the presence of a data
race.

In this paper, we propose techniques for generating test inputs for
OpenCl kernels that are effective in uncovering barrier divergence
and inter work group data races.

3 RELATEDWORK
We discuss related work in the context of work-group synchronisa-
tion, verification and testing of GPU kernels.

Inter Work-group Synchronisation for OpenCL Kernels. Barrier
functions in the OpenCL specification [10] help synchronise threads
within the same work-group. As mentioned earlier, there is no
mechanism, however, to synchronise threads belonging to different
work-groups. Xiao et al. [26] proposed an implementation of inter
work-group barrier that relies on information on the number of
work-groups. Thismethod is not portable as the number of launched
work-groups depends on the device. Sorensen et al. [22] extended it
to be portable by discovering work-group occupancy dynamically.
Their implementation of inter work-group barrier synchronisation
is useful when the developer knows there is interaction between
work-groups that needs to be synchronised. Our contribution is in
detecting undesired inter work-group interactions, not intended by
the developer.

GPU Kernel Analysis for Data Races. Verification of GPU kernels
to detect data races has been explored in the past. Li et al. [14] intro-
duced a Satisfiability Modulo Theories (SMT) based approach for
analysing GPU kernels and developed a tool called Prover of User
GPU (PUG). The main drawback of this approach is scalability. With
an increasing number of threads, the number of possible thread
interleavings grows exponentially, making the analysis infeasible
for large number of threads. GRace [28] and GMRace [29] were
developed for CUDA programs to detect data races using both static
and dynamic analysis. However, they do not support detection of
inter work-group data races.

GKLEE [15] and KLEE-CL [4], based on dynamic symbolic exe-
cution, provides data race checks for CUDA and OpenCL kernels,
respectively. Both tools are restricted by the need to specify a certain
number of threads, and the lack of support for custom synchronisa-
tion constructs. Scalability and general applicability is a challenge
with these tools.

Leung et al. [13] present a flow-based test amplification technique
for verifying race freedom and determinism of CUDA kernels. For a
single test input under a particular thread interleaving, they log the
behaviour of the kernel and check the property. They then amplify
the result of the test to hold over all the inputs that have the same
values for the property integrity-inputs. The test amplification ap-
proach in [13] can check the absence of data-races, not the presence.
Additionally, their approach amplifies across the space of test in-
puts, not work-group schedules as done in our schedule amplifier.
GPUVerify [3] is a static analysis tool that transforms a parallel
GPU kernel into a two-threaded predicated program with lock-step
execution and checks data races over this transformed model. The
drawback of GPUVerify is that it may report false alarms and has
limited support for atomic operations.

Test Effectiveness Measurement. Measuring test quality in terms
of code coverage and fault finding is common for CPU programs [7,
19]. GKLEE is able to measure code coverage achieved by the tests
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it generated by translating the GPU code to its sequential version
using Perl scripts and applying the Gcov utility, which disregards
the GPU programming model. It can also report coverage achieved
in the bytecode level as their execution depends on the bytecode
virtual machine, but it is hard to map the coverage to the source
code level for the developer’s reference.

Peng et al. [18] presented the CLTestCheck framework that mea-
sures test effectiveness over OpenCL kernels with respect to branch,
loop boundary, barrier coverage and mutation coverage using code
instrumentation. The framework also provides limited work-group
schedule amplification to check for the presence of inter work-
group data races. This is done by executing each test with different
work group schedules, where each schedule is generated by fixing
the first work-group with the remaining work groups in default
order. In this paper, we extend the schedule amplification technique
by generating schedules that control the order of all the work-
groups rather than only the first one, thus making the schedules
more realistic.

Test Input Generation for GPUs . GKLEE [15] and KLEE-CL [4]
are the only techniques in literature that provide test generation
capability for GPU kernels. Both tools use symbolic constraint solv-
ing for test generation. GKLEE has the disadvantage that it does not
support floating-point data types which are widely used in scientific
computation GPU kernels. Additionally, test inputs generated by
both GKLEE and KLEE-CL are in the form of hexadecimal values
that are meant to run on KLEE virtual machine. They cannot be used
directly to execute the original kernels and are not human readable.
Finally, both GKLEE and KLEE-CL suffer from high overhead in
test generation as they rely on symbolic execution and constraint
solvers. Scalability to large kernels is also an issue because of the
high overhead and the path explosion problem associated with
symbolic execution. It is worth noting that KLEE-CL is currently
not maintained and we could not get it to run on current OpenCL
versions and GKLEE is only applicable to CUDA kernels.

Fuzz Testing. To mitigate the overhead and scalability problems
associated with symbolic execution, we use fuzz testing in our test
generation approach. Fuzz testing is based on randomly generat-
ing or mutating test inputs and has been shown to be fast and
surprisingly effective [6, 24]. However, fuzzing based on random
mutations, typically finds it hard to reach program parts protected
by complex checks. Other techniques including constraint solving
and search-based testing have been proposed to guide fuzzing in
finding inputs that are capable of reaching these program parts. The
combination of constraint solving and fuzzing has been effective in
detecting security bugs in CPU, mobile and web applications [8, 9].
Sapienz [16] utilises search-based exploration and random fuzzing
for testing Android applications and uncovered 558 previously un-
known crashes in the top 1,000 Google Play apps. A comprehensive
overview of fuzz testing techniques over the last decade can be
found in [17, 25].

Fuzz testing for GPU kernels has not been explored previously. In
the next Section, we discuss how we combine the fast and scalable
nature of fuzz testing with the rigor of constraint solving to produce
an effective test generator for GPU kernels.

4 OUR APPROACH
In this section, we present the CLFuzz framework that provides
automated test input generation using 1. Mutation-based fuzzing
and 2. Selective constraint solving for control conditions that remain
uncovered with fuzz-based tests. The framework also provides a
Schedule amplifier that generates several work-group schedules and
executes the generated tests with the numerous schedules to detect
potential data races. We discuss each of these capabilities in the
rest of this section.

4.1 Mutation-based Fuzzing
Our technique for mutation-based fuzzing has the following steps,

(1) Generate a random seed with values for each argument (ad-
hering to its data type) of a given kernel.

(2) Execute the seed and record branch coverage achieved over
the kernel code. Add the seed to the test suite.

(3) Pick a test from the test suite, generate another test by mutat-
ing the value of one of the arguments of the kernel, keeping
the other argument values unchanged.

(4) Execute the new test and measure branch coverage achieved.
(5) If the new tests results in additional branches being covered,

add it to the test suite and go to Step 3.
(6) If no new branches are covered, discard the test and go to

Step 3.
Our approach for mutation-based fuzzing supports all data types in
OpenCL, as seen in Table 1. We use CLTestCheck [18] to measure
branch coverage of test executions (used in Steps 2 and 4 above).
We enhanced the CLTestCheck framework to check if tests cover
additional branches (Steps 5 and 6 above).

Fuzzer Limitation. Since our mutation-based fuzzer randomly
mutates inputs, albeit with the goal of increasing branch coverage,
the generation of a “specific” input required to pass complex checks
in the kernel (i.e., condition checks that require inputs to have a
particular value or very few values) is extremely unlikely. Consider
the example kernel code snippet in the listing below.

Listing 2: Example OpenCL Kernel

__kernel void complexCheck(__global int x) {

...

if (x == -2987) {

specialCalc ();

}

...

}

The above kernel function checks if the kernel argument x matches
−2987. If a match occurs then a special calculation is done. However,
due to the nature of fuzzing, it is extremely unlikely that a fuzzerwill
ever satisfy the predicate. The mutation-based fuzzing technique
will cover the false predicate easily and apply random mutations
on the existing path with a very small chance of setting x to the
specific value of −2987 (likelihood of 1 out of 232).

4.2 Selective Constraint Solving
We address the limitation of mutation-based fuzzing in determining
specific inputs to pass complex checks using selective constraint
solving. When the fuzzer is unable to increase branch coverage after
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Category OpenCL API Type Description

Scalar

cl_char Signed, 8-bit
cl_uchar Unsigned, 8-bit
cl_short Signed, 16-bit
cl_ushort Unsigned, 16-bit
cl_int Signed, 32-bit
cl_uint Unsigned, 32-bit
cl_long Signed, 64-bit
cl_ulong Unsigned, 64-bit
cl_float Floating point, 32-bit
cl_double Floating point, 64-bit
cl_half Floating point, 16-bit

Vector scalarn A vector of n scalar values, e.g., int2, float16
Struct struct A struct comprised of scalar and vector values
Image imagend_t An nD image, e.g., image2d_t

Table 1: Summary of kernel argument data types

going through a predetermined amount of mutations (proportional
to number of kernel arguments), we consider the fuzzer to have
reached its limit. We then invoke selective constraint solving to
generate tests for uncovered branches in the kernel.

For each uncovered branch, selective constraint solving first
gathers path constraints to reach the uncovered code location. This
is done with the aid of a control flow graph built from the ab-
stract syntax tree (AST) of the kernel code 2. We traverse the CFG,
recording path constraints, until the uncovered branch condition is
reached. We then feed the path constraints to the Z3 [5] constraint
solver to determine an input that will satisfy the constraints. If such
an input can be found then it is added to the test suite as a test
exercising the uncovered branch. We repeat this for all uncovered
branches.

Constraint solvers incur high overhead, proportional to the
number and complexity of path constraints. The advantage with
selective constraint solving is that we keep the number of path
constraints given to the constraint solver to a reasonable number.
Mutation-based fuzzing complemented by selective constraint solv-
ing, thus, helps achieve fast, effective and scalable test generation.
This is in contrast to existing approaches like, GKLEE and KLEE-
CL, that use symbolic constraint solving to generate all the tests,
incurring high overhead with limited scalability.

4.3 Schedule Amplification
As mentioned earlier in Section 2, no mechanism is provided by
GPU vendors to manipulate and set work-group schedules. Work-
group schedule used in kernel executions is non-deterministic and
can cause data races. To allow monitoring for such data races,
the schedule amplifier provides the following two capabilities, 1.
Generates multiple work-group schedules, and 2. Executes kernels
with different work group schedules and checks for discrepanies in
outputs. We built the schedule amplifier as an extra layer over the
standard OpenCL built-in functions.

To better understand our approach for generating multiple work-
group schedules, we first present how work-groups are typically

2Our implementation of CFGs for OpenCL kernels is available at https://github.com/
chao-peng/CLFuzz

launched on GPUs. Consider the example in Figure 2 that illustrates
8 work groups required for the execution of a kernel. Assume there
are only 4 available physical processing elements on the GPU. As a
result, at any given time, at most 4 work groups can be running in
parallel. The default schedule will pick four work-groups to execute
on the 4 processing elements. We assume the default schedule
chooses work-groups 0 to 3 to go first. Once one of them finishes, it
will launch the next work-group. This is repeated until all the work-
groups finish execution. When a work-group is running, threads
in this work-group acquire thread IDs and the work-group ID by
calling built-in functions get_global_id() and get_group_id(). These
IDs are then typically used by the threads to locate the region of
input data to process.

To generate different work-group schedules, the schedule ampli-
fier manipulates the values returned by the built-in functions. To do
this, we maintain an array new_id storing a sequence of numbers
from 0 to the number o f дroups − 1 in a shuffled order. When
the kernel function asks for its work-group ID, the modified func-
tion gives the value of new_id[global_id] rather than the global_id.
The modification of global_id does not affect the semantics of the
kernel code and is used solely to launch work-groups in different
orders on the compute units. An example of shuffled work-group
order is shown in blue in Figure 2 where work-groups 3, 5, 2, 6 are
launched first, followed by 4, 1, 0, 7. Although the example shows a
1-dimenional work-group schedule execution model, our schedule
amplifier is capable of supporting multi-dimensional work-group
schedules.

Kernels usually launch hundereds of work-groups, this makes it
impractical to generate all possible work-group schedules. In this
paper, we randomly generate 10 different work-group schedules
for every test execution over every kernel in our experiment. Our
schedule amplifier allows the user to specify the number of work-
group schedules to be generated.

The schedule amplifier launches every kernel execution with
each of the generated work-group schedules and checks if there
are any discrepancies in kernel output. Differences in kernel output
indicate problems in inter work-group interactions. Thus, with
little extra cost, we are able to check significantly more number of
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Figure 2: Schedule controlled by the enhanced scheduler

schedules than is currently possible, achieving better coverage of
the work-group schedule space.

The partial schedule generator in CLtestCheck [18] generates
work-group schedules by only manipulating and fixing the first
work-group while using the default schedule (set by the GPU) for
the remaining work-groups. This technique for partial scheduling
is not effective as it results in unrealistic schedules that causes
deadlocks from launching work group ids that exceed the number
of available compute units. We avoid this problem in our approach
with complete work-group scheduling that ensures work groups
launched match available compute units and produces valid sched-
ules with no deadlocks for the subject kernels in our experiment.
The kernel developer also has better control over work-group sched-
ules with our schedule amplifier.

4.4 Host Code Generation
GPU kernels are only responsible for computation over input data
residing in the GPUmemory. Other tasks, such as reading data from
a file, transferring data to and from the GPU memory, executing the
kernel and validating the output are implemented in the host code
that runs on a CPU by the developer. Writing host code to do these
tasks can be laborious and time consuming. To ease the burden on
the developer, we automatically generate host code by analysing
the kernel interface and allocating GPU memory as needed.

Generated test inputs and work group schedules are stored in
a file adhering to a pre-defined format. The host code generator
then reads the input data from this file, allocates GPU memory and
sends the data to the allocated memory according to data types and
sizes, compiles and executes the kernel, reads the output from the
GPU and stores the output in another file.

4.5 Implementation of the Framework
The CLFuzz framework is implemented using Clang LibTooling [2].
Building a CFG from AST, gathering path constraints, extracting
kernel interface are all implemented within this framework. The
kernel interface comprising kernel arguments, their data type and
scope is stored on a data file, shown in Table 2. The developer can
modify this data file to specify attributes, such as desired size of
arrays and if the argument is an input or output parameter. The
framework is written in Python and uses PyOpenCL API [12] for
kernel execution and PyZ3 [5] for constraint solving. We use the
CLCov and CLMT tools from the CLTestCheck framework [18] to
measure code coverage and fault finding achieved by the generated
tests. The implementation of our CLFuzz framework is available at
https://github.com/chao-peng/CLFuzz.

Property of an argument Description

cl_scope
The address apace qualifier of para-
meters which can be global, local,
private, and constant.

cl_type Data type of the parameter.
pointer True if the parameter is an array.
size Desired size of an array.

fuzzing True by default indicating it needs
random input.

init_file The user can specify an initial
value or provide a file to initialise
the parameter if needed.

initial_value

result True if it is used to store the output
of the kernel.

pos The position of the parameter in the
interface. .

Table 2: Kernel interface information

5 EXPERIMENT
In our experiment, we evaluate the feasibility and effectiveness
of mutation-based fuzz testing, selective constraint solving and
schedule amplification proposed in Section 4 using 217 OpenCL
kernels from open source projects and industry standard benchmark
suites. We investigate the following questions:
Q1. Effectiveness of Fuzz Testing: What is the branch coverage

and fault finding achieved by test inputs generated by the
fuzzer? We measure branch coverage using the coverage
measurement tool, CLTestCheck [18]. For fault finding, we
generate mutants by analysing the kernel source code and
applying mutation operators provided by CLTestCheck to
eligible locations. We then assess number of mutants killed
by the generated tests for each benchmark. To check if a
mutant is killed, we compared execution results between the
original kernel and mutant.

Q2. Effectiveness of Selective Constraint Solving: Can selec-
tive constraint solving generate tests that enhance coverage
and fault finding achieved by fuzz tests? For kernels over
which fuzz tests do not achieve 100% branch coverage, we
augment the test suite with tests from selective constraint
solving and check if there is an improvement in coverage
and/or mutation score.

Q3. Effectiveness of Schedule Amplification: Is the schedule
amplifier able to detect inter work-group data races ? Inter
work-group data races occur when test executions produce
different outputs for different work-group schedules. For
each test, we generate 10 different work-group schedules
with the schedule amplifier. The kernel is then executed with
the test using each of the 10 different work-group schedules,
and we check if the outputs from the executions differ.

Subject Kernels. We use 217 kernels collected from the following
benchmark suites for our experiments:

• 24 kernels collected from open source projects bilateral, cl-
practical, DeepCL and gaussian-blur,

• 38 kernels from the OpenDwarfs benchmark suite,
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• 25 kernels from the Parboil benchmark suite,
• 47 kernels from the Polybench benchmark suite,
• 45 kernels from the Rodinia benchmark suite and,
• 38 kernels from the SHOC benchmark suite.

Our subject kernels span a wide range of application domains
including scientific computing, image processing, biomolecular
simulation, linear algebra, data mining, heterogeneous computing,
stencil computations, among others. The large and diverse set of
subject kernels varying in size and complexity, ranging from 12
to 2235 lines of code, containing all OpenCL supported data types,
allows us to evaluate feasibility, overhead and scalability of our test
generation approach.

Our experiments are performed on a desktop with an Intel Core
i5-6500 3.2GHz quad-core CPU and an Intel HD Graphics 530 GPU
using the Intel OpenCL SDK 2.1.

6 RESULTS AND ANALYSIS
For each of the 217 subject kernels in our experiment, we generated
test inputs using CLFuzz and report results in terms of coverage
achieved, fault finding and overhead incurred. We executed the test
suites 20 times for each measurement. Our results in the context of
the questions in Section 5 is presented below.

6.1 Effectiveness of Fuzz Testing
Figure 3 presents a frequency plot with number of kernels for which
fuzz testing achieved branch coverage and mutation score in the
ranges specified on the x-axis. We stop fuzz testing when branch
coverage achieved does not increase after 50 mutation attempts.
The average number of generated tests across all subject kernels is
45 andmedian is 29. The kernel with most generated tests is MD from
SHOC with 143 tests. The maximum time taken for generating tests
is 2 seconds (for the MD kernel). On average, test inputs generated
by the random fuzzer achieved 91.5% branch coverage and 74.9%
mutation score across all subject kernels.

As seen in Figure 3, fuzz testing is able to achieve full coverage
for 186 out of 217 kernels, and 92% for one of the other kernels.
With respect to mutation score, fuzz testing achieves 100% for 70
kernels and over 90% for 40 kernels. In the subsequent paragraphs,
we analyse why fuzz testing was not as effective in achieving high
branch coverage and mutation scores for some of the other kernels.

Branch coverage. For 31 out of 217 kernels, fuzz testing does not
achieve full branch coverage with the generated test inputs. Upon
investigation, we found the following main reasons for uncovered
branches with the fuzzer.

1. Requiring a specific value for one or some of the array
elements is the main limitation for fuzzers, and appears in 17
kernels. As inputs are generated and mutated randomly, if a branch
condition requires a specific input value for its satisfaction, there
is a very low likelihood of the fuzzer being able to satisfy such
a condition. The following listing illustrates a code snippet from
a subject kernel (Hidden Markov Model) from the OpenDwarfs
benchmark suite to exemplify this issue.

Listing 3: The acc_b_dec kernel from bwa_hmm_opencl_11

__kernel void acc_b_dev( int obs_t , // current observation

other arguments ...) {

unsigned int idx = get_group_id (0) * get_local_size

(0) + get_local_id (0);

unsigned int idy = get_group_id (1) * get_local_size

(1) + get_local_id (1);

if (other conditions && obs_t == idy) {

// Computations using idx and idy

}

}

In Listing 3, variable idy represents the ID in the y-axis of the
current thread whose maximum value is the number of threads
(1024 in our experiment). When generating a value for integer
variable obs_t which is used in the branch condition, the probability
that it will match the exact value of idy is very low.

2. Boundary check before accessing elements of input ar-
rays results in low coverage among 6 subject kernels (kmean_2
in the OpenDwarfs benchmark, sad2, convs, tpacf, bfs in Parboil,
srad_6, leukocyte_find_ellipse_kernel_1 and leukocyte_find_ellipse_
kernel_2 in Rodinia). The following code listing extracted from the
bfs kernel illustrates this issue.

Listing 4: Example boundary check of OpenCL kernel

__kernel void BFS_kernel( int no_of_nodes , // number of

array elements

other arguments ...) {

int tid = get_global_id (0);

if (tid < no_of_nodes) {

int pid = q1[tid]; //the current frontier node

// Computations on the frontier node

}

}

For this kernel, the fuzzer generates values for no_of_nodes that
sets the branch condition to true. However, it is unable to find
values that can set the condition to false, leaving the false branch
uncovered.

3. Nested control flows with strict conditions is challenging
for mutation-based fuzz tests to satisfy and this issue appears in 6
kernels. This is because the likelihood of random inputs satisfying
conditions with specific value checks further reduces when the
checks are nested.

Fault Finding. for the subject kernels is assessed with the help
of the mutant generation component in the CLTestCheck frame-
work [18]. The framework produces kernel mutants by mutating
arithmetic, relational, logical, bitwise, assignment operators and
barriers. The mutation score, percentage of mutants killed, is used
to estimate fault finding capability of test inputs with the subject
kernels. Each kernel is run 20 times to determine the killed mutants.
A mutant is considered killed if the test suite generates different
outputs on the mutant and original kernel on all 20 repeated runs
of the test suite.

In general, we find that fuzz-based test suites achieving high
branch coverage also achieve high mutation score. For 110 kernels,
tests suites achieving full branch coverage achieved more than 90%
mutation score. However, for 66 kernels with full branch coverage,
mutation score achieved is not very high, between 60% and 89%.
This is because control flow adequate tests are not designed to be
effective in killing mutations that do not affect the control flow,
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Figure 3: Frequency of branch coverage and mutation score across subject kernels

like many of the arithmetic operation mutants. Relational operator
mutations also survive in our evaluation. Most of the surviving
relational operator mutations made slight changes to operators,
such as < to <=, or > to >= and vice versa. The test inputs generated
by the fuzzer missed these boundary mutations. Data flow coverage
adequate tests may be better suited at killing such mutations.

A smaller fraction of kernels (44 out of 217) have low mutation
scores, less than 50%. Many of the surviving mutants are arithmetic
operator mutants and boundary mutations. It is worth noting that
31 kernels in our evaluation do not have full branch coverage with
fuzzer tests. In the next section we check if increasing branch
coverage with tests generated by constraint solving helps increase
the mutation score for these kernels.

6.2 Effectiveness of Constraint Solving
For the 31 kernels that do not have full branch coverage with fuzz
tests, we run the constraint solver to generate tests for uncovered
branches. We find all the path constraints generated for uncovered
branches could be satisfied for all 31 kernels. As a result, fuzz tests
combined with the tests generated by the Z3 solver achieved 100%
branch coverage over all 31 kernels. We did not use the constraint
solver over the remaining kernels as they were fully covered using
just fuzz tests.

More specifically, the 17+6 kernels involving uncovered branches
with conditions checking a specific value or boundary before access-
ing elements of arrays, as described in Section 6.1 are easily covered
by the constraint solver by assigning the desired value indicated in
the constraint. The overhead in solving such constraints is small,
and only takes 0.2 seconds. With the constraint solver tests, the
average mutation score of these kernels increases from 60.9% to
77.3%.

Among the 6 kernels with nested control flows and strict condi-
tions, the hotspot kernel from Rodinia takes least time (1 second)
for generating tests satisfying the path constraints for an uncovered
branch condition that requires a variable to be within range for
entering the true branch and out of range for entering the false
branch. It is also worth noticing that the nqueens1 kernel from the
OpenDwarf benchmark has a deep nested control flow of 5 levels
but only takes 1.3 second for the constraint solver to reach the
deepest path. This is because the constraints for the control flow

conditions were quite simple, only requiring an array element to
be within different ranges.

The most time-consuming constraint solving happens in the
mergesort kernel from Rodinia that takes 1 minute. The implemen-
tation of the mergesort algorithm handles 4 different possibilities
that check the presence of elements in array A and array B. When
both arrays have elements, an additional branch compares the el-
ements and stores them in the correct location within the result
array. Solving these different possibilities along with values for all
array elements and their data dependencies takes longer than other
kernels with simpler path constraints. Mutation score of this kernel
is increased from 53% to 95% with the constraint solver tests.

Figure 4 illustrates a comparison of mutation score achieved by
fuzz tests versus fuzz + constraint solver tests for the 31 kernels that
used the constraint solver. The average mutation score for the 31
kernels increases from 54.3% to 73.3% with the combined approach.
We find including tests from the constraint solver improves the
mutation score significantly for 14 out of the 31 kernels. Among
the remaining kernels with unchanged mutation score, for 8 of
them the constraint solver generates tests to cover false branches
of conditions. There is no kernel code within the false branch. As
a result, no new mutations are exercised. Surviving mutants in
all 17 kernels, as with fuzz tests, are either arithmetic operator
mutations or boundary mutations. We will explore augmenting
our test generation technique with data flow coverage to kill these
mutant types.

6.3 Effectiveness of Schedule Amplification
Each test generated by the fuzzer and selective constraint solver
is executed with 10 different schedules generated by the schedule
amplifier. It is worth noting that the schedules generated by our
schedule amplifier were all valid – there were no instances of kernel
deadlock resulting from launching work group ids that exceed the
number of available compute units. On the other hand, work-group
schedules generated by the partial scheduler in CLTestCheck had
several instances of kernel deadlock due to unrealistic work-group
schedules. 3

3Our experiment includes all 82 kernels used in the evaluation of CLTestCheck and
also 135 additional ones.
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Figure 4: Mutation score achieved over the 31 kernels using “Only Fuzzing” versus “Fuzzing + constraint solving”.

Data Races. Our schedule amplification technique was able to
detect data races in 21 kernels, as shown in Table 3. Tests executed
on these kernels produced different outputs on at least 2 out of
10 different work-group schedules. Each work-group schedule is
additionally executed 20 times.

19 out of the 21 kernels with data races, produce the same output
when the kernel is repeatedly executed with a fixed work-group
schedule and test but the outputs across different work-group sched-
ules is inconsistent. This observations confirms inter work-group
data race that occurs when threads from different work-groups
make read/write or write/write access to the same global memory
location.

2 out of the 21 kernels (cdf_1 and swat_2 from the OpenDwarf
benchmark suite) produce inconsistent output across repeated exe-
cutions with a fixed work-group schedule and test. This indicates
intra work-group data race that occurs when threads within the
same work-group have memory access conflicts.

6.4 Scalability and Overhead
The largest kernel in our data set is the heartwall kernel from the
Rodinia benchmark suite with 2235 Lines of Code. Our technique for
test generation easily scales to this kernel, only taking 51 seconds
to achieve full branch coverage. The kernels in our data set cover
all the basic data types supported by OpenCL and include complex
data structures. We were able to verify that CLFuzz was able to
generate tests efficiently for all the kernels supporting all data types
and constructs.

Time consumed by fuzz testing ranges from 0.01 seconds (reduce_1
kernel from SHOCwith 1 test) to 2 seconds (MD kernel from SHOC
with 143 tests) for the 217 kernels. Factors affecting the overhead of
the fuzzer are the number of tests generated and the data structure
of the kernel input. The MD kernel uses a OpenCL-specific data
type, double4, which is a vector of 4 double values. Additional time
is needed by CLFuzz for converting and storing the test inputs for
such special types.

Constraint solving takes between 0.2 seconds to 1 minute across
the 31 kernels to generate tests for uncovered branches. Since we
only use the constraint solver selectively, for uncovered branches,
the overhead incurred is not considerable.

The schedule amplifier does not introduce noticeable overhead
as our framework for manipulating schedules is implemented at
the OpenCL interface level. The schedule amplifier ensures there is
no idle computing resource when executing the generated work-
group schedules. In contrast, the partial schedules generated by
Peng et al. [18] does not make efficient use of the compute units.
When the first work-group is executing, their approach requires
other work-groups to wait till execution of the first one is finished,
making kernel execution slower.

7 CONCLUSION
We present a test generation technique for OpenCL kernels that
combines mutation-based fuzzing and selective constraint solv-
ing aimed at achieving high branch coverage. Our mutation-based
fuzzer generates tests by randomly mutating kernel argument val-
ues with the goal of increasing branch coverage. Our fuzzer sup-
ports all OpenCL data types. When the fuzzer is unable to increase
coverage, we gather path constraints for uncovered branches and
use the Z3 constraint solver to generate tests for them. We also
provide a schedule amplifier, that generates multiple work-group
schedules with which to execute each of the generated tests. The
schedule amplifier helps uncover inter work-group data races.

We evaluated our test generation and schedule amplification
technique using 217 OpenCL kernels, varying in size and com-
plexity. We find mutation-based fuzzing on its own produces 100%
branch coverage for 186 of the 217 kernels. For 31 kernels that
did not have full coverage, we augmented the fuzz tests with tests
generated by the constraint solver to achieve 100% branch cover-
age. Fault finding for 110 (out of 217) kernels with mutation-based
fuzzing was > 90%. Average fault finding achieved with fuzz-based
tests across all kernels was 74.9%. For the 31 kernels that were
augmented with constraint solver tests, the average mutation score
increased from 61% to 77%. Mutations that were not killed by the
generated tests were primarily arithmetic operator mutations and
boundary value mutations. Control-flow adequate tests are not ef-
fective in catching such mutations. In the future, we will explore
test generation techniques that also target data flow in kernels. We
were able to uncover data races in 21 kernels with our schedule
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Benchmark Kernel Type of Data Race
SHOC MD, rdwdot, reduce1, spmv3 Inter work-group
Rodinia cdf_4 Inter work-group

Polybench 2mm_1, 3mm_1, 3mm_2, 3mm_3,
adi_2, covariance_1, mat_2, syrk, syr2k Inter work-group

Parboil sgemm Inter work-group

OpenDwarf cfd_1, swat_2 Intra work-group
hmm_3, hmm_15, sad_1 Inter work-group

Open Source Project deepcl_forward_1 Inter work-group
Table 3: Kernels with data races

amplifier. The overhead of our test generation technique was negli-
gible (average 0.8 second). In summary, we find our test generation
technique combining fuzzing with constraint solving, and schedule
amplification is fast, effective and scalable.
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