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Abstract. We present challenges faced in making a domain-specific lan-
guage (DSL) for graph algorithms adapt to varying requirements to gen-
erate a spectrum of efficient parallel codes. Graph algorithms are at the
heart of several applications, and achieving high performance with them
has become critical due to the tremendous growth of irregular data.
However, irregular algorithms are quite challenging to parallelize auto-
matically, due to access patterns influenced by the input graph — which is
unavailable until execution. Former research has addressed this issue by
designing DSLs for graph algorithms, which restrict generality but allow
efficient code-generation for various backends. Such DSLs are, however,
too rigid, and do not adapt to changes in backends or to input graph
properties or to both. We narrate our experiences in making an existing
DSL, named Falcon, adaptive. The biggest challenge in the process is to
not change the DSL code for specifying the algorithm. We illustrate the
effectiveness of our proposal by auto-generating codes for vertex-based
versus edge-based graph processing, synchronous versus asynchronous
execution, and CPU versus GPU backends from the same specification.

1 Introduction

Graphs model several real-world phenomena such as friendship, molecular inter-
action and co-authorship. Several graph algorithms have been designed across
domains to compute such relationships between entities. Performance of these
graph algorithms has become critical today due to the explosive growth of un-
structured data. For instance, to simulate a simple physical phenomenon, an
algorithm may have to work with billions of particles.

On the other side, computer hardware is witnessing rapid changes with new
architectural innovations. Exploiting these architectures demands complex cod-
ing and good compiler support. The demand intensifies in the presence of par-
allelization. It is not uncommon to see a twenty-line textbook graph algorithm
implemented using several hundred lines of optimized parallel code.

It would be ideal if a graph algorithm can be programmed at a high-level
without worrying about the nuances of the hardware. Domain-specific languages
(DSLs) for graph data analytics allow programmers to write complex algorith-
mic codes with minimal hardware knowledge and less programming effort. The
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code generator of the DSL compiler emits efficient parallel code [8120/2]. Such
DSLs often disallow writing arbitrary programs, trading off generality for per-
formance. This makes programming parallel hardware easy, and adapting to
changes manageable.

In this work, we focus on a recent graph DSL named Falcon [2[1], which
supports a wide variety of backends: CPU, GPU, multi-GPU, and distributed
systems with CPU and GPU. It extends C language to allow graph process-
ing being specified at a high-level. Falcon provides special data types (such as
worklist and set) as well as constructs (such as foreach and reduction)
for simplifying algorithm specification and aiding efficient code generation. Ta-
ble [l compares various graph processing frameworks.

Graph algorithms are challenging to parallelize due to their inherent irreg-
ularity, which makes their data-access, control-flow, and communication pat-
terns data-dependent. For instance, vertex-based processing works well for road
networks, but social networks demand an edge-based processing. Social net-
works have a skewed degree distribution and road networks have a large diame-
ter. Sequential processing of parallel loops demands synchronous execution, but
independent loops can be more efficient with asynchronous processing. Dense
subgraphs can be efficiently processed using a topology-driven approach [16],
whereas a data-driven worklist-based approach is better suited for sparse sub-
graphs. Similarly, backend optimizations are quite different for different targets
such as CPU and GPU.

Falcon, and other graph DSLs, allow writing code for a particular kind of
processing. The code written in Falcon DSL needs modifications for an alter-
native way of processing. Various syntactic elements in the program need to be
changed for the alternative way. Thus, the code needs to be written separately
for vertex-based and edge-based processing, for instance. It would be ideal if one
could generate different kind of code from the same DSL specification. Such a
setup greatly simplifies the algorithmic specification, and also allows generating
code for various situations / backends / graph types from the same specification.

In this paper, we highlight the challenges faced in building such a versatile
compiler. In particular, we make the following contributions:

— We present a compiler which generates different implementations for the
same DSL program for a graph algorithm. In particular, the compiler can
generate vertex-based or edge-based processing, synchronous or asynchronous

Hardware Support Iterators
Tool DSL|CPU GPU multi-GPU |Edge Vertex Worklist

GreenMarl [9]| / | / X X N Vv Vv
Galois [I8]| x | / X X X X v
FaleonPl| v | v v v |V vV

Totem [6]| x [ / Vv V4 X X X
Gunrock [24]| x X Vv X X x v
LonestarGPU [I7]| x | x Vv X 4 4 Vv

Table 1: Comparison of different graph frameworks



codes, topology-driven versus data-driven processing, and CPU or GPU or
multi-GPU codes.

— We illustrate the effectiveness of the proposed compiler using several graph
algorithms and several graphs of various types. The performance of the code
generated with the proposed compiler is compared against other hand-tuned
as well as generated codes.

2 Falcon

Falcon [2] is a Graph DSL which supports CPU, GPU and multi-GPU machines.
It supports various data types, parallelization and synchronization constructs,
and reduction operations. This makes programming graph analytic algorithms
easy for heterogeneous targets. Falcon also supports dynamic graph algorithms.

Falcon Graph DSL has data types Graph, Point, Edge, Set and Collection.
Graph stores a graph object, which consist of points and edges. Each Point is
stored as a union of int and float. Edge consists of source and destination
points, and weight. Set is a static collection and implemented as a Union-Find
data structure. The Collection data type is dynamic and its size can vary
at runtime. Elements can be added to and deleted from a collection object at
runtime.

The foreach statement is the parallelization construct of Falcon. It can
be used to iterate in different ways on different elements of graph object as
shown in Table 2l Parallel Sections statement of Falcon is used to write
programs which use multiple devices of a machine at the same time. Falcon
also supports reduction operations such as add (RADD) and mul (RMUL). Tt
has atomic library functions MIN, MAX etc., which are necessary for graph
algorithms as they are irregular. The synchronization primitive of Falcon DSL is
single statement. It is a non-blocking lock and can be used to lock one element
or a collection of elements, as shown in Table Bl

Data Tterator |Description

Type

Graph points Iterate over all points in graph

Graph edges Iterate over all edges in graph

Point nbrs Iterate over all neighboring points (Undirected
Graph)

Point innbrs Iterate over all src point of incoming edges

Point outnbrs |Iterate over dst point of outgoing edges

Set Iterate over all items in a Set

Collection| Iterate over all items in a Collection

Table 2: foreach statement iterators in Falcon

The thread that gets a lock on item t1
single(t1) {stmt blockl} |executes stmt blockl and other threads
else {stmt block2} execute stmt block2.
The thread that gets a lock on all elements
single(coll) {stmt blockl}| in the collection executes stmt blockl
else {stmt block2} and others execute stmt block2.

Table 3: single statement (synchronization) in Falcon



Algorithm 1: SSSP: iterating over Points in Falcon

int changed = 0; // Global variable
relaxgraph(Point p, Graph graph) {
foreach (t In p.outnbrs)
MIN(t.dist, p.dist + graph.getweight(p, t), changed);

main(int arge, char *argv

Gg"aph g%aph; wll) £
graph.addPointProperty(dist, int);
graph.read(argv[1]);

10 //make dist infinity for all points.

11 foreach (t In graph.points)t.dist=MAX_INT;
12 graph.points[0].dist = 0; // source has dist 0

13 while( (1()3(1){

1
2
3
4
5
6
7
8
9

14 chang

15 foreach (t In graph.points) relaxgraph(t,graph);
16 if (changed == 0) break; //reached fix point

17

18 }

A graph object can be processed in multiple ways in Falcon. This leads to
the flexibility of the same algorithm being specified in different ways. A pro-
grammer can iterate over edges of a graph object and then extract the source
(src) and the destination (dst) points of each edge. Another method is to it-
erate over all points of the graph object. Then for each point, the processing
can iterate over outnbrs or innbrs. This is illustrated in Algorithms [0l and

Algorithm 2: SSSP: iterating over Edges in Falcon

int changed = 0; // Global variable
relaxgraph(Edges e, Graph graph) {

Point (graph)p, (graph)

p=e€.SIC;

t=e.dst;

MIN(t.dist7 p.dist + e.weight, changed);

}
main(int arge, char *argv

Gg"aph g%aph; wll) £
graph.addPointProperty(dist, int);
graph.read(argv[1]);

//make dist infinity for all points.

foreach (t In graph.points)t.dist=MAX_INT;
graph.points[0].dist = 0; // source has dist 0

whlle( (l)d)
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16 change
17 foreach (e In graph.edges) relaxgraph(e,graph);
18 if (changed == 0) break; //reached fix point

o
©

}

N
[=]

}

Both the algorithms are for Single Source Shortest Path (SSSP) computa-
tion. It computes the shortest path from source point (point zero) to all other
points in the graph object. In Algorithm [l the processing is done using points
(Line [[A) and outnbrs (Line ) iterators. In Algorithm [2] the computation is
performed using edges (Line [[7) iterator. In both the algorithms all the edges
t — p in the graph object are considered. Then dist value of point ¢ is reduced




to Min(t.dist, p.dist+ weight(p — t)) using the atomic function MIN. If there is
any change in the value of t.dist, the variable changed is set to one. The compu-
tation stops when the value of dist does not change for any point in the graph
object. Performance of an algorithm depends on the graph structure, hardware
architecture, etc. Algorithm [[l may perform well over Algorithm 2] for one input
graph, but may not for another, on the same hardware architecture. This de-
pends upon several properties such as the degree of vertices and diameter of the
graph object etc. Similary the worklist (Collection) based code also needs to
be coded separately in Falcon.

Such a flexible processing is an artifact of irregular algorithms (such as graph
algorithms) wherein the data-access pattern, the control-flow pattern, as well as
the communication pattern is unknown at compile time, as all are dependent on
the graph input. Thus, it is difficult to identify which method would be suitable
for an algorithm: it depends on the graph object.

The random graphs (Erdés Rényi model) typically perform well with iterat-
ing over points. The social and rmat graphs which follow power-law degree distri-
bution [6] are benefited mostly by iterating over edges, especially on GPU devices.
Power-law degree distribution indicates huge variance in degree distribution of
the vertices. This can result in thread-divergence in GPU, when parallelized over
points and iterated over their outnbrs or innbrs. Road networks benefits with
worklist based processing on CPU.

Our goal in this work is to bridge the gap between easy DSL specification
and versatility in generating various kinds of codes. Thus, from the same Falcon
specification, we want to generate vertex-based or edge-based OpenMP or CUDA
codes.

3 Owur Approach

Algorithm Blshows the Falcon DSL code for Breadth First Search (BFS) compu-
tation. The algorithm is vertex-based and uses points (graph nodes) and outnbrs
(of each node) iterators. The above Falcon program is for CPU. A programmer has
to write separate programs for GPU which will have <GPU > in the DSL code [2].
Similarly, different programs need to be written for edge-based or worklist-based
codes. It would be ideal if the programmer simply specifies what rather than
how, and the DSL compiler takes care of the appropriate code generation. We
support it in this work. In our proposal, the programmer needs to specify sim-
ply different compile-time arguments. This triggers generation of parallel C++
(CUDA) code matching the output of the edge, vertex or worklist based BFS,
targeting CPU (GPU respectively), from a single DSL code. We explain each of
these transformations in the subsections below.

3.1 Vertex-based versus Edge-based

Edge-based processing improves load-balance, while vertex-based codes improve
propagation of information across the graph and can also reduce synchronization



Algorithm 3: BFS Algorithm in Falcon for CPU

1 int changed = 0, lev = 0;

2 void BFS(Point p, Graph graph, int lev) {
3 foreach( ¢ In p.outnbrs ){

4 if( t.dist > lev + 1 ){

5 t.dist = lev + 1;

6 changed = 1;

7 }

s | }

9 }

10 int main(int arge, char *argvf]) {

11 Graph graph;

12 graph.addPointProperty (dist, int);

13 graph.read(argv(3]);

14 foreach(t In graph.points) t.dist=1234567890;
15 graph.points[0].dist = 0;

16 while( 1 ){

17 changed = 0;

18 foreach(t In graph.points)(t.dist == lev) BFS(t, graph, lev);
19 if (changed == 0) break;

20 lev++;

21 }

22 }

requirements. Conversion of vertex-based to edge-based and vice-versa are done
completely at the abstract-syntax tree (AST) level by traversing the AST and
modifying its eligible parts. An important conversion non-triviality stems from
the edge-based processing being a single loop, while the corresponding vertex-
based processing is a nested loop (outer loop over vertices, and inner loop over
all the neighbors of each vertex). Pseudo-code for the vertex-based to edge-based
transformation is presented in Algorithm [l The other way is similar.

In vertex-based to edge-based conversion, the subtree is eligible for conversion
if: (i) the subtree is rooted at a function node whose only child is a node for a
foreach which iterates through a point’s neighbors, and (ii) the function is the
only statement in the body of a foreach which iterates through the graph-
points. Once the eligible parts are found, we switch the points iterator of the
foreach statement from which the function is called to edge iterator, and then
remove the foreach statement in the function. The conversion also requires
change in the function’s signature as its argument was earlier a point, while now
it is an edge. It also necessitates defining two new variables at the beginning
of the function corresponding to the source and the destination of the edge.
The name of one of the two variables is the name of the point which was the
former parameter of the function. The other variable’s name is derived from the
iterator of the foreach statement removed from the function earlier. The order
in which these names are mapped to the variables depends on the iterator used



Algorithm 4: Code transformation for vertex based code

Input: Falcon vertex-based DSL code
Output: C++/CUDA edge-based code based on the command-line
begin Stepl:- Mark outermost foreach statement (Done by Falcon Parser).
if statement.type == foreach &€ level == 0 then t.outer = true ;
if statement.type == foreach &€ level == 1 then t.outer = false ;
end Stepl
begin Step2:- Convert vertex code to edge code
forall foreach statement f1 in program do
if fl.outer == true & fl.iterator == points then
forall foreach statement f2 in program do
if f2.def.fun == fl.call. fun &€ f2.itr == outbrs||f2.itr == innbrs then
10 modify iterator of f1 to edges

© XN MR ®N R

11 modify 1% argument to Edge in f2.def.fun

12 create f2.itr and fl.itr in f2.def.fun using Edge
13 remove foreach in f2.def.fun

14 // generate code (Done by Falcon)

15 end

16 end

17 end
18 end
19 end Step2

in the removed foreach. If the iterator is over out-neighbors, the name of the
iterator is mapped to the destination vertex of the edge. Otherwise, we map it
to the source vertex. Such an implementation allows the rest of the processing in
the iteration to be arbitrary, and reduces the number of alterations the compiler
needs to perform to the underlying code.

An important artifact of this processing conversion is that it affects the way
graph is stored in memory. In vertex-based code, Falcon (and other frameworks)
store the graph in compressed sparse-row (CSR) format. Compared to edge-list
representation, CSR format reduces the storage requirement and allows quick
access to a vertex’s out-neighbors. In edge-based codes, on the other hand, the
graph is stored in edge-list format (source destination weight) which enables quick
retrieval of the source and the destination points of an edge.

3.2 Synchronous versus Asynchronous

By default, Falcon generates BSP-style synchronous code, that is, it inserts a
barrier at the end of a parallel construct. While this works well in several codes
and eases arguing about the correctness (due to data-races restricted to within-
iteration processing across threads), synchronous processing may be overly pro-
hibitive in certain contexts. Especially, in cases where processing across iterations
is independent and the hardware does not necessarily demand single-instruction
multiple data (SIMD) execution, asynchronous processing may improve perfor-
mance. Arguing about the correctness-guarantees gets so involved with asyn-
chrony, that some DSLs enforce synchronous-only code generation.

Our proposal is to allow the programmer to generate synchronous or asyn-
chronous code without having to change the algorithm specification code in the
DSL. Achieving this necessitates identifying independent processing in the code.



Algorithm 5: Driver code to generate asynchronous code

Input: CFG of the function where kernels are launched.
Output: None
foreach( Node nd in cfg ){

nd.visited = 0

nd.barrier = False

nd.predecessor_count = 0

NO 0w N

}
BFS_Mod(cfg.root)// set predecesor_count of nodes by running bfs from root of the CFG
parallelize(cfg.root, None) // Algorithm [6]

Towards this, we maintain read and write sets of global variables and the graph
attributes used in each target function separately. A target function is a function
which is being called in the body of a foreach statement and the function call
is the only statement inside the body of the foreach. On CPU, it is the parallel
loop body, while on GPU, this function becomes the kernel.

The code conversion has two steps, as shown in Algorithms Bl and [6l In Step
1, we mark nodes in the control-flow graph (CFG); and in Step 2, we generate
the appropriate code. In Step 1, we construct the CFG of the target function call.
Using the read and the write sets corresponding to each of the target functions,
we mark each node of the CFG as barrier-free or not. A barrier-free node signifies
that the target function corresponding to the barrier-free node can be executed
concurrently with the children of this node. A node is barrier-free if: (i) there is
no dependency between the node and each of its children in CFG. (ii) there is no
dependency between the node and the codes between the node and its children.

If a node is barrier-free, we pass the read and the write sets of the node to
its children. We do this so that the grand-child should not have any dependency
with the grand-parent node to declare its parent barrier-free (and so on). We
follow this process to mark all the CFG nodes in breadth-first search order.

In Step 2, based on the target code the programmer wants, different proce-
dures are followed to make the code asynchronous. If the target is GPU, all the
nodes marked as barrier-free do not contain a barrier cudaDeviceSynchronize()
after the kernel launch. Also, each of the barrier-free kernels is launched in dif-
ferent streams of the same GPU. On the other hand, if the target is CPU, the
target function call corresponding to the barrier-free node is put in a section
of an OpenMP parallel region, and its children and the code between the node
and its children in another section. The compiler then recursively checks if the
child nodes are barrier-free or not. If they are, then a new OpenMP parallel
sections construct is introduced inside the section where the child was put
in earlier, because of its barrier-free parent node. This recursive introduction of
parallel sections continues until a non-barrier-free node is found, or until the pro-
cessing reaches the end of the function where these target functions are called.
The introduction of OpenMP constructs is done by adding new nodes in the
AST. For a parallel region, two nodes are added: one each for the start and the
end of the construct. In a similar manner, for each section, a node for the start
and another node for the end is added. Adding these nodes is easy if both the



Algorithm 6: Mark node as barrier /barrier-free
parallelize(Node node, Node knode) {

1
2 if node.stmt.type == KERNEL_.LAUNCH then
3 rset = get_read_set_from_function(node.stmt.function)
4 wset = get_write_set_from_function(node.stmt.function)
5 if knode != None then
6 if rset N knode.wset '= EMPTY || wset N knode.rset = EMPTY | wset N
knode.wset != EMPTY then
7 |  knode.barrier = True
8 else
9 node.rset = node.rset U knode.rset
10 node.wset = node.wset U knode.wset
11 end
12 end
13 knode = node
14 else
15 if knode != None then
16 rset = get_read-set_from_statement(node.stmt)
17 wset = get_write_set_from_statement(node.stmt)
18 if rset N knode.wset '= EMPTY || wset N knode.rset |= EMPTY | wset N
knode.wset != EMPTY then
19 knode.barrier = True
20 knode = None
21 end
22 end
23 end
24 node.visited += 1
25 if node.predecessor_count == 0 || node.visited == node.predecesor_count then
26 | foreach( Node nd in node.successors ){ parallelize(nd, knode) ;
27 end
28 }

node and its children in the CFG lie in the same scope. We can then simply add a
node prior to and another node right after the barrier-free node. The processing
gets involved when a node and its children are in different scopes. In such cases,
we need to find the predecessors of these nodes which lie in the same scope.

3.3 Data-driven versus Topology-driven Processing

It is a two step process. In step one, each kernel is checked if it can be converted
into worklist-based and in step two, AST is modified such that code generation
module generates worklist based code. The primary program analysis required
in this transformation is to identify where point attributes are getting modified
(e.g., distance of nodes in SSSP) and push such points (vertices) into the worklist.
Our method goes through the AST of foreach and checks for such attribute
updates and checks. Based on the target architecture, code generation module
generates worklist based code for the particular target. In case of CPU, Falcon
generates Galois worklist based code. In case of GPU, Falcon library provides a
worklist interface.

3.4 CPU, GPU and Multi-GPU Codes

Falcon [2] requires a programmer to write different DSL code for different back-
ends. It uses <GPU> tag to specify a GPU variable. Falcon compiler generates



GPU code if there exists a GPU variable in the program and converts function to
GPU kernel if one of the parameters is a GPU variable. We modified the Falcon
grammar so that compiler does not need a GPU tag. It recognizes a device-
independent version of the DSL code. Based on the command-line argument,
our compiler generates code for an appropriate target device.

The compiler generates the GPU code in the following manner. First, it marks
all the target functions as kernels. Second, it marks the global variables used in
the target functions as GPU variables. Third, it makes a GPU copy of each of
the variables of type graph, set and collection. Fourth, it replaces the CPU copy
of a graph, set or collection with its corresponding GPU copy.

To generate multi-GPU code, the programmer has to use parallel sections
construct of Falcon. The Falcon compiler assumes that each of the sections is in-
dependent of each other. We identify the number of sections in a parallel sections
construct and map each of the sections to a different GPU. For each graph, set
and collection used in a particular section, a GPU copy is created in the mapped
GPU. It may happen that the programmer has used a single graph and used
that graph in multiple sections. In such cases, the graph needs to be copied to
each GPU. For each of those GPU copies, we keep track of the attributes of the
graph or its points/edges used in the target functions where the graph is passed
as an argument. This helps us to replace the graph whose attribute is accessed
in CPU by the appropriate GPU copies where the accessing attribute is present.
Now if an attribute of a GPU graph is accessed in the CPU, the Falcon com-
piler generates a call to cudaMemcpy to copy the attribute from GPU to CPU
or from CPU to GPU based on whether the programmer has read or written
to the attribute. One advantage of assuming independent sections is that the
attributes accessed in CPU can be changed on maximum one GPU, which eases
our analysis and code generation.

4 Experimental Evaluation

We modified Falcon’s [2] abstract syntax tree (AST) processing and code gener-
ation to generate various types of codes presented in the last section. For CPUs,
it generates parallel code with OpenMP for vertex and edge based processing,
while Galois worklist code for worklist based processing. For GPU and multi-
GPU targets, it generates CUDA code.

4.1 Experimental Setup

We used a range of graph types to assess the effectiveness of our proposal.
The dataset graphs in our experimental setup and their characteristics are pre-
sented in Table [dl We used four graph algorithms in our testbed: Breadth-First
Search (BFS), Connected Components (CC), Minimum Spanning Tree compu-
tation (MST) and Single-Source Shortest Paths computation (SSSP). All these
algorithms are fundamental in graph theory and form building blocks in vari-
ous application domains. We compare the generated codes against the following



frameworks: Galois [I8], Totem [6], Green-Marl [9], LonestarGPU [I7] and Gun-
rock [24]. Our auto-generated codes perform similar to hand-optimized Falcon
codes. Therefore, in the sequel, we discuss directly our proposed techniques em-
bedded into existing Falcon, unless otherwise stated.

The CPU benchmarks for OpenMP are run on an Intel XeonE5-2650 v2
machine with 32 cores clocked at 2.6 GHz with 100GB RAM, 32KB of L1 data
cache, 256KB of L2 cache and 20MB of L3 cache. The machine runs CentOS 6.5
and 2.6.32-431 kernel, with GCC version 4.4.7 and OpenMP version 4.0. The
CUDA code is run on Tesla K40C devices each having 2880 cores clocked at 745
MHz with 12GB of global memory. Eight similar GPU devices are connected to
the same CPU device.

Graph #nodes|#edges| max- Graph BFS| CC| MST| SSSP

x10°| x10°%| degree USA-CTR/| 3456(14103]  727] 30299
USA-CTR 14 34 9 USA-full 9113|24061 779 72857
USA-full 24 58 9 orkut 269 623| 5509 267
orkut 3 234| 33313 sinaweibo | 1234| 1955| 30556 1151
sinaweibo 21 261278491 rand-25M 131 411 2832 561
rand-25M 25 100 17 rand-50M 270| 823| 6665 1142
rand-50M 50 200 18 rand-75M 414| 1416| 11265 1796
rand-75M 75 300 18 rand-100M| 583| 2192| 15860 2413
rand-100M 100 400 18 rand-125M| 756| 2909| 25973 3194
rand-125M 125 500 19 rmat-10M 133 387 2770 536
rmat-10M 10 100| 1873 rmat-20M 266| 789 6240 1169
rmat-20M 20 200 2525 rmat-40M 542| 1601| 13232| 2405
rmat-40M 40 400 3333 rmat-50M 707 2026| 16825| 3808
rmat-50M 50 500 4132 Total 17874153296 (139233121598
Table 4: Benchmark character- Table 5: Baseline times (ms) of Falcon
istics on GPU

4.2 Baselines and Comparison with Other Frameworks

The baseline execution times of Falcon on GPU are listed in Table[Bl We observe
that the execution times on road networks are particularly high for propagation
based algorithms such as BFS, SSSP and CC. This occurs because unlike other
graphs, road networks have large diameters, leading to many iterations of the
algorithm with parallelism not enough for GPU. The opposite occurs for MST.

Figures[d 2 Bl present the performance benefit of our modified Falcon against
other frameworks. The GPU-baseline used for this comparison is Totem, whose
speedup is assumed to be 1.0 (hence not shown in the plots). On CPU, the base-
line is Galois with one thread. For GPU-SSSP, we observe that Falcon-generated
code provides consistently better speedups compared to LonestarGPU and Gun-
rock, except on the two social networks (orkut and sinaweibo). Totem performs



better on the social networks as well as on RMAT graphs due to its inbuilt edge-
based processing and other optimizations to improve load-balancing across GPU
threads. For BFS, the results are mixed across various frameworks and there is
no clear winner, but there are interesting patterns based on the graph types.
Gunrock performs quite well on the road networks (USA-full and USA-CTR),
primarily due to its work-efficient worklist-based processing. Totem outperforms
again on social networks due to edge-based processing and better load-balancing.
Performance of almost all the frameworks on RMAT graphs is quite similar, with
LonestarGPU performing poorly. Our Falcon stands out on random graphs with
speedups close to 2x over all other frameworks. On CPU, Galois outperforms
other frameworks for SSSP, but Green-Marl is a close second. Note that Ga-
lois uses hand-crafted libraries, while Green-Marl is auto-generated, similar to
Falcon. Totem performs quite poorly for SSSP, but bounces back for BFS out-
performing all the other frameworks. Galois outperforms other frameworks on
road networks because it uses a different algorithm (delta-stepping). For CC,
Falcon does not perform well on road inputs. Performance of MST on GPU is
shown in Figure

0 Galois | 4
1 Totem
4r 1 Falcon
12} 1Green-Marl | 3b [] Lonestar-GPU B

§  Falcon
I Gunrock

S NS
SiFS
§ § 55
F &L
(a) SSSP Speedup over Galois single thread
in CPU (b) GPU: Speedup over Totem

Fig.1: SSSP comparison

4.3 Effect of Vertex-based versus Edge-based

Figures dal and HL presents results of edge-based versus vertex-based process-
ing of Falcon across various graphs for CC, BFS and SSSP. We observe that
edge-based processing performs better in social-networks (orkut and sinaweibo)
and RMAT graphs. Both these kinds of graphs have skewed (power-law) degree-
distribution resulting in large load-imbalance with vertex-based processing. These
graphs follow small-world property due to this peculiar (and natural) degree dis-
tribution. On GPUs, this load-imbalance manifests itself as thread-divergence as
the number of iterations (based on the number of neighbors) of each thread has
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high variance. In other words, threads mapped to vertices having few neighbors
have to wait for others mapped to high-degree vertices. This inhibits parallelism
for SIMT style of processing. In contrast, in edge-based processing, since threads
are mapped to (a group of) edges, the load-imbalance is relatively negligible. This
results in better thread-divergence among warp-threads, leading to improved ex-
ecution time. Road networks and random graphs, on the other hand, have quite
uniform degree-distribution. Therefore, edge-based processing is not very help-
ful. In fact, for uniform degree-distributions, edge-based processing may lead to
inferior results (as seen in our experiments), due to increased synchronization re-
quirement. Different outgoing edges of a vertex are processed sequentially by the
same thread in vertex-based processing; whereas, those are processed in parallel
by different threads. Thus, edge-based processing necessitates more coordination
among threads with respect to reading and updating attribute values of vertices.
The worklist based code does not benefit on GPU. Speedup of A-Stepping work-
list [I5] based code is much faster than OpenMP library based vertex-based code
as shown in figure @d

We observe that, unlike on GPUs, edge-based processing is not helpful on
CPUs. This is primarily due to CPUs not having enough resources to utilize
the additional parallelism exposed by edge-based processing. Thus, a few tens
of threads perform in a similar manner in the presence of a million vertices or
multi-million edges. The only exception is sinaweibo graph which witnesses over
3x speedup for CC on CPU due to edge-based processing. The improvements on
this graph are also high for other algorithms as well (BFS and SSSP) compared
to other graphs. This occurs due to higher average degree in this social net-
work.Higher average degree adds sequentiality in vertex-based processing, while
edge-based processing is not amenable to degree-distribution or average degree.
The overall effect gets pronounced for such dense graphs.
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4.4 Effect of Synchronous versus Asynchronous Processing

Synch-| Asyn- 18t 0Galois |
Graph |ronous|chronous 16 1Falcon | |
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Table 6: BFS and SSSP (CPU) Sync.

versus Async. Fig.5: MST Speedup over Galois Single

Table [0 presents the effect of asynchronous processing for various graphs
on CPU. We used a combination of BFS and SSSP to perform independent
processing on the same graph. We observe that asynchronous version improves
execution time by 38%. This occurs because threads do not have to wait for
other threads. This is primarily true on CPUs as threads are monolithically
working on different parts of the graph and seldom require synchronization. In
our experiments, since all the GPU resources were utilized by a single kernel,
asynchronous processing performed similar to synchronous exeuction.

4.5 Effect of Code Generation for Multiple Targets

multi- multi-
Graphs CPU-16|GPU| GPU Graphs CPU-16/GPU| GPU
rand-25M + USA-CTR +
rand50M 3866 1234 826 USA-full 25363|12569| 9138
rmat-I0M + sinaweibo +
rmat20M 3024| 1176 792 orkut 4845 1503| 1259
Table 7: Connected Components Table 8: Breadth First Search

Fig. 6: Execution time (in ms) of BFS and CC for various targets

Our approach can seamlessly generate code for CPU or GPU or multi-GPU.
The multi-GPU code works with different graphs for the same algorithm, or with
the same graph for different algorithms. Table [7] presents results for the former
with CC as the algorithm generating code for CPU with 16 threads, single GPU
and two GPUs, while Table[§] presents those for BFS. We observe that multi-GPU
version took much less time as compared to other backends. In both CPU and
single-GPU versions, the graphs are processed one after another. On the other
hand, in multi-GPU version, both the graphs are processed simultaneously in
different GPUs; so the overall execution time is the larger of the two.



5 Related Work

Green-Marl [9] is a graph DSL for implementing parallel graph algorithms on
multi-core CPUs. Green-Marl was extended for GPUs [20] and CPU clusters [10].
Falcon [2] is a DSL for graph analytics on single machine with one or more GPUs.
Falcon is extended for distributed systems with CPU and GPU [I], [22]. Ga-
lois [I8] is a C++ framework for graph analytics on multi-core CPUs. Ligra [21]
is a framework for writing graph traversal algorithms for multi-core shared mem-
ory systems.

There are efficient implementations different graph algorithms [T4/T9/13] on
GPU. Worklist-based graph algorithms do not benefit much on GPU [5]. The
Lonestar-GPU [17] framework supports dynamic graph algorithms on GPU. The
Gunrock [24] framework provides a data-centric abstraction for graph operations
with GPU-specific optimizations. Totem [6] is a heterogeneous framework for
graph processing for a multi-GPU machine.

Large graphs require processing on computer cluster. GraphLab [11], Pow-
erGraph [7], Pregel [12] and Giraph [3] are popular distributed graph analytics
framework. Bulk Synchronous Parallel (BSP) Model [23] of execution and asyn-
chronous executions are popular models of executions. Gluon [4] uses Galois and
Ligra and generates distributed-memory versions of these systems.

6 Conclusion

Irregular codes have data-dependent access patterns. Therefore, compilers need
to make pessimistic assumptions leading to very conservative code. While DSLs
for irregular codes allow us the flexibility to make more informed decisions about
the domain, existing DSLs lack adaptability. Different graphs expect different
kinds of processing to achieve the best performance. While existing DSLs do
allow changing the algorithm specification to suit a purpose, it would be ideal
if the specification remains intact and the compiler judiciously generates the
necessary efficient code. We presented our experiences in achieving the same, for
a graph DSL, Falcon. In particular, we auto-generated codes for vertex-based
and edge-based, for synchronous versus asynchronous, for worklist-driven versus
topology-driven, and for CPU versus GPU versus multi-GPU processing. We
illustrated the effectiveness of our techniques using a variety of algorithms and
several real-world graphs.
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