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Abstract
Request latency is a critical metric in determining the usability of
online services, such as web applications and databases. Most exist-
ing approaches to improve application latency start by detecting
bottlenecks in the application deployment; this typically entails de-
termining stages of processing where the application spends most
of its time. Inspired by queueing theory, we present an alternative
approach to detect and mitigate bottlenecks âĂŞ using variability of
processing time as a guiding principle when designing applications.
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Introduction
Web applications provide important services, such as online retail,
messaging, and search, to end-users on a daily basis [1–3, 5]. A
critical metric for determining the usability of suchweb applications
is the latency of user requests; different service providers employ
different measures of latency, such as mean, median, 95%ile, and
99%ile [4, 17, 22]. A delay of even a few milliseconds in request
latency can lead to significant revenue loss for service providers
due to user abandonment [19, 26].

Conceptually, request latency can be broken down into two
distinct components, service time and waiting time [27]. Service
time is defined as the time during which the request is being actively
serviced. Waiting time is then defined as the remaining time during
which the request is waiting to be served. To maintain acceptable
latencies, service providers often optimize their web servers to
reduce the mean service time of requests, that is, shorten the critical
path of request processing. For example, Chronos [12] uses user-
level networking with NIC-level request dispatch to reduce lock
contention and lower the latency of web applications; Jose et al. [24]
make Memcached RDMA-capable to shorten the critical path; Li
et al. [15] advocate using a real-time scheduler to reduce request
scheduling delay.

An alternative approach to reducing web latencies that we ex-
plore in this tutorial is to minimize the variability in request pro-
cessing. Queuing models show that, in addition to mean service
time, the variability of the service time is also important when try-
ing to reduce latency. Surprisingly, there has been very little work
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on actually reducing the variability in the system [4, 10, 23]. While
much of the variability is intrinsic to the workload (e.g., burstiness
in customer traffic), some of the variability is due to the application
and software design (e.g., garbage collection, context switches, CPU
scheduling policies, etc.), and can be regulated by making subtle
changes to the system.

In this work, we investigate the following system design question
– “is it worth reducing variability in request processing times at the
potential expense of lengthening its critical path?”. While theoretical
analysis suggests that this is indeed the case, especially for heavy-
tailed distributions (see Section 3), evaluating this idea in practice
for web applications is challenging for several reasons:
• Web applications have a complex processing lifetime, going through
several paths of processing in the kernel, including the TCP stack,
parsing of requests, and scheduling of the request on server cores.
Identifying the most likely culprit(s) that contributes to service
time variability will require low-overhead yet accurate and fine-
grained request tracing in the user and kernel space.
• There are several control knobs within a web server that can be
tuned to reduce service time variability, such as the OS sched-
uler, page allocation strategy, etc. Prior work has also shown
that new application-specific control knobs can be dynamically
generated [7]. Given the numerous choices, efficiently finding
the right control knob to mitigate variability is challenging, espe-
cially since the choice of the optimal control knob may depend on
the server and web application configuration. Worse, employing
the wrong control knob can hurt request latency.
• Most control knobs within the system that can be tuned to reduce
service time variability invariably hurt mean service time. For
example, prior work has shown that admission control can reduce
service time variability by preventing server overload [11]. But
this reduction comes at the expense of lengthening the critical
path (since requests are held back), and possibly hurting latency.
It is thus important to carefully tune the control knob to balance
the trade-off between variability and mean service time.

We address the above challenges in the context of web services
and demonstrate the benefits of using service time variability as
a guiding principle to improve request latency. We employ light-
weight, fine-grained request profiling to track service time variabil-
ity; this allows us to identify components on the critical path of
the request-response cycle that exacerbate service time variability.
Using variability as our guiding principle, we then determine con-
trol knobs in the system and/or application that can be tuned to
mitigate service time variability in the identified components. We
evaluate our approach by investigating variability in Memcached, a
popular in-memory (key-value store) caching service used to speed
up web applications [25], and the Apache web server [29], a widely
deployed http server application.
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Tutorial Overview
The objective in this tutorial is to demonstrate the applicability of
queuing models to reducing latency in web applications. We will
start with a queueing theory primer, focusing on how to employ a
queueing model for real-world applications. In particular, we will
focus on key lessons learned from queueing theory and how these
lessons can be applied to real-world settings. We will then explain
how we use these lessons, along with OS profiling, to detect and
mitigate bottlenecks in online applications. Our approach will fo-
cus on measuring the variability in processing times of a request
as it traverses software layers within the user and kernel space,
and then identifying the most critical stages of request processing.
We will then present three use cases to illustrate our approach
and its latency improvement benefits: (i) a Memcached server (two
different settings), and (ii) the Apache web server. We will con-
clude with thoughts on how the approach can be extended to other
applications, including emerging computing paradigms, such as
microservice architectures.

List of Topics:

• Basics of queueing theory: arrivals, departures, queues
• Queueing models: M/M/1, M/M/k, M/G/1, M/G/k
• Useful lessons: latency vs. load, heavy-tail distributions, im-
pact of variability
• Shortcomings: limiting assumptions, practical applicability
• Using queueing theory to detect application bottlenecks
• Application profiling: OS-level profiling, service time, stages,
root cause analysis
• Finding the right control knobs in the OS and the application
• Case studies: Memcached, Apache web server

Background and Motivation
Tomotivate our approach of focusing on service time variability, we
leverage queueing theory to analyze request latency for a server as a
function of variability. Although models are only approximations of
today’s complex applications, the resulting analysis is instructive [9,
14, 16, 21], and guides our system design in later sections.

Request latency versus variability
Recent studies at Bing [8, 10], Google [12, 13, 18], and Facebook [1],
suggest that modern web applications often experience high vari-
ability in inter-arrival time (IAT) and service time (ST). Variability
in IAT represents workload variability, such as bursty arrivals. ST
variability represents variability in processing times due to differ-
ences in work requirements (e.g., reads vs. writes) or differences
in the request path (e.g., due to batching or TLB misses), or due to
misconfigurations at the server that lead to anomalous behavior or
“jitters” [15]. Note that ST is the amount of service required by a
request to complete processing; alternatively, ST is the minimum
possible request latency, assuming no delays.

To investigate the impact of variability on request latency, we
consider a web server with a given inter-arrival time (IAT) distri-
bution and a given service time (ST) distribution. To parameterize
variability, we use the squared coefficient of variation (C2), defined

as the ratio of variance and square of the mean. Then, we have:

C2
IAT = Var (IAT )/E2[IAT ], and (1)

C2
ST = Var (ST )/E2[ST ], (2)

where E[] is the mean andVar () is the variance of the random vari-
able. To examine the full range of variability ([0,∞)), we consider
the following distributions:
• D (Deterministic), with C2 = 0, is the ideal case of no variability.
• M (Exponential), with C2 = 1, represents nominal variability.
• H2 (Hyper-exponential), with C2 > 1 (customizable), represents
the case of high variability.
TheM/G/1 queueing model, with Exponential IAT and generic

ST distributions, allows us to analyze mean request latency, E[T ],
as a function of ST variability, Var (ST ), and mean ST, E[ST ], via
the Pollaczek-Khinchin (P-K) formula [27]:

E[T ] = Var (ST ) ·
λ

2(1 − ρ)
+ E[ST ] ·

2 − ρ
2(1 − ρ)

, (3)

where λ = 1/E[IAT ] is the mean request arrival rate and ρ =
λ · E[ST ] is the normalized system load [27]. Clearly, both E[T ] and
Var (ST ) impact request latency.

Consider the M/G/1 model where all parameters, including
E[ST ], are fixed, and only Var (ST ) is varied. Let the workload
have a mean ST, E[ST ], of 1 millisecond, and system load of, say,
60%; thus, request rate, λ = 0.6 · E[ST ] = 600 req/s. Using Eq. (3),
we find that E[T ] = 1.7ms under Deterministic ST (C2

ST = 0). For
comparison, for a system with Deterministic IAT and ST, we get
E[T ] = 1ms . Thus, the added variability due to an Exponential IAT
already increases mean latency by 70%. For theM/G/1 system, if
we now consider Exponential ST (C2

ST = 1), we get E[T ] = 2.5ms , a
250% increase over the baseline. If we further increase the variabil-
ity in ST to C2

ST = 2 using a H2 distribution, we get E[T ] = 3.3ms ,
a 330% increase! The increase in request latency with variability is
even more pronounced at higher loads.

While the above results highlight the importance of reducing
variability in ST, we note that making changes to a system to reduce
variability may lead to other performance overheads, resulting in
higher E[ST ]. For example, the OS scheduler may opportunistically
move threads between cores to leverage idle cores. However, this
introduces ST variability due to the associated state migration and
context switches. Disabling this opportunistic behavior canmitigate
variability, but may lead to scenarios where threads are waiting
on a busy core even though other cores are idle. There is thus a
trade-off between reducing Var (ST ) and increasing E[ST ], which
is captured by Eq. (3).

Figure 1 illustrates the impact on mean request latency of the
trade-off between E[ST ] andVar (ST ) for theM/G/1model. We set
λ = 100 req/s, and use anH2 distributed ST whose variability can be
controlled. To highlight the trade-off, we show the equi-latency line
of 5ms in black. Point B on this line has a higher E[ST ] but lower
Var (ST ) compared to point A; nonetheless, both have the same
5ms latency. Thus, we can afford some overhead in E[ST ] when
reducing Var (ST ) of a system. Finally, point C has the same E[ST ]
as A, but has much lower Var (ST ); as a result, the mean request
latency for C is almost 30% lower than that for A.
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Figure 1: Heatmap of mean latency as a function of mean
service time (E[ST ]) and variability in service time (Var (ST )).
The black diagonal line denotes the equi-latency line of 5ms.

Key takeaways: (i) Reducing service time variability can signifi-
cantly lower request latency (by 2× or higher), and (ii) It is beneficial
to reduce variability even if doing so increases the mean service time.

Objective and scope of this work
The design of today’s web server systems is primarily driven by
the intent to shorten the critical path of requests, that is, reducing
the mean ST. However, our analytical results above suggest an
alternative solution to improving request latencies in systems –
reducing variability. Variability is often assumed to be intrinsic to
the hardware and the workload, and thus not easily controllable.
However, this is not always true. While variability in IAT depends
on customer request behavior, variability in ST can be regulated
to some extent by modifying the application and software stack.
The objective of our work is to demonstrate that this alternative
viewpoint of “focusing on ST variability for designing web servers”
can reveal viable solutions to reduce latency. Note, however, that
we are not arguing against solutions that focus on reducing ST.

Solution Overview
Given a web application, our goal is to improve its latency by tar-
geting a reduction in service time (ST) variability. However, web
applications can be complex, consisting of several processes and
threads that work asynchronously. Further, web requests typically
pass through several software layers before completing service.
Thus, we must first identify the potential software layers or com-
ponents that significantly contribute to ST variability, and then
determine control knobs that can be tuned to reduce ST variability
in the identified software layers. Some control knobs are readily
available, such as OS thread scheduler, TCP congestion control, etc.
However, in some software layers, effective control knobs may not
be available, necessitating modifications to existing software.
We use the following methodology to achieve our goal:
(1) Fine-grained, unobtrusive request tracing: We employ low-over-

head tracing for the web requests. Our tracing encompasses all
layers of the software stack that a request goes through during
its processing lifetime, including the OS and network stack.

(2) Identifying the source(s) of service time variability: We aggregate
the tracing information across all requests using low-overhead

histograms to identify the software layers with the highest
variability that are amenable to modification.

(3) Modifying the system software to mitigate variability and reduce
request latency:We explore available control knobs in the system
that can reduce the observed ST variability in the target software
layer, even if this reduction comes at the expense of an increase
in mean ST (see Section 3.1). Once the knob is determined, we
investigate its optimal setting to minimize end-to-end request
latency.

Request Tracing
Our request tracing works by timestamping the request through
several layers starting from when it arrives at the host from the
server’s NIC until immediately before the application transfers the
response packet back to the OS. Given our focus on variability in
service times, we only trace the request at the host server, and not
the client.

To store the timestamps, we append an empty 64-byte buffer
to the original request packet, similar to prior works [15]. Then,
as the request goes through different stages of processing on the
client and the server, timestamps are recorded at appropriate offsets
for the stage of processing by writing the system clock time into
the buffer; we use the system clock with nanosecond precision
to record timestamps within the server. By appending the small
buffer to the request, we can record multiple timestamps and track
the request to which they correspond without requiring any addi-
tional post-processing. The above tracing implementation required
modification to the Linux kernel source, network drivers, and the
application protocols to write timestamps into the appended buffer
at the right offset. The overhead on request latency through all lay-
ers is low, about 5%; this overhead is incurred by both the baseline
and our approach.

To choose the timestamping locations, we consider all possible
components within the host server that may contribute to service
time variability; these are locations where significant request pro-
cessing may occur. For this study, we timestamp at the following
locations/events at the host server:

e1: In the host network driver when the packet arrives at the NIC.
e2: At the end of TCP processing.
e3: When the application drains the requests from the socket.
e4: When the application starts processing an individual request.
e5: When the application hands off the response to the kernel.
e6: When the response is dispatched from the host server’s NIC.

Timestamping at these different event boundaries provides us an
opportunity to analyze the time spent by the requests at different
stages, Tei , for i = 1, 2, . . . 6, as shown in Figure 2. However, other
fine grained events can be used when required.

• driver-to-tcp: (Te2 −Te1) is the time spent by the request from
driver to TCP layer, representing the network stack processing
delay.
• tcp-to-socket: (Te3 − Te2) is the time spent between the TCP
layers and the socket, and represents the wakeup/scheduling
delay.
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Figure 2: Timestamping locations in our request tracing.

• socket-to-parse: (Te4 − Te3) is the time between application
processing and socket, and represents the queuing delay at the
application level caused by batching of requests.
• parse-to-response: (Te5 − Te4) is the user-space application
processing time.
• response-to-send: (Te6 −Te5) is the network stack processing
time to dispatch the response from the host server.

To efficiently compute variability at each stage, we maintain a
running sum (across requests) of X and X 2, where X is the time
spent in a stage. At the end of an experiment, we compute the
sample moments E[X ] and E[X 2] by dividing the running sums by
the number of requests. Finally, we compute Var (X ) = E[X 2] −
(E[X ])2.

In our evaluation, we find that the most significant stages, in
terms of variability, are the tcp-to-socket, socket-to-parse, and parse-
to-response. We will discuss their role in request processing in
detail in the evaluation sections. We also traced the request on the
outgoing send path (server socket to driver), but the variability on
this path is much smaller, only about 20% of the variability on the
incoming path from client to server. Unless otherwise noted, we
report (Te6 −Te1) as the latency of a given request. This definition
only includes the server-side latency, which is the focus of our
current work.

Evaluation
We explore the methodology presented in Sections 4 and 5 in the
following use cases:

(1) Request batching at the Memcached client at high throughput:
Using our profiling approach, we find that the socket-to-parse
stage of processing exhibits the highest service time variability.
To reduce the network overhead of sending short packets, the
Linux kernel at the client batches incoming requests until it
gets a response back from the server saying it has received
the previous batch (Nagle’s algorithm [28]). However, since
network conditions can be variable, this default batching be-
havior leads to bursts of processing at the server, followed by
idle times, resulting in significant service time variability. We
modify this default batching behavior to closely regulate the
time between batches, lowering the variability (by as much as
76%) and improving tail latency by up to 40%.

(2) Redesigning the LRU management on the Memcached server at
low throughput: In the case of low throughput configuration,
we find that the tcp-to-socket stage of processing exhibits the
highest service time variability. TheMemcached server reorders

items to maintain the Least-Recently-Used (LRU) ordering of
items in the cache. To shorten the critical path, Memcached
moves the LRU maintenance off the request processing path
and delegates the responsibility to a dedicated LRUmanagement
thread that is run periodically. When this thread is active, it
interferes with the Memcached request processing, resulting in
high service time variability. We redesign the LRU management
functionality and include it on the critical path of Memcached
request processing in the form of fine-grained slices of LRU
work. This counter-intuitive redesign reduces variability and
improves latency by about 30%.

(3) Application thread pinning for the Apache web server : Using our
profiling approach, we find that the socket-to-parse stage of
processing exhibits the highest service time variability at the
Apacheweb server. TheApacheweb server schedules its various
worker threads and processes on any available idle CPU core
opportunistically to start serving customer requests as soon
as possible. Consequently, threads may move between cores,
resulting in context switch overheads and state migration. We
explore thread pinning to reduce this overhead and associated
variability, though at the expense of possibly delaying request
processing when the pinned core is busy. We show that, at high
load, this approach can reduce latency by 50%.

We experimentally evaluate the performance improvements for the
above three use cases under various workload scenarios, including
different levels of load, different inter-arrival time distributions, and
different (time-varying) arrival traces. Our alternative approach of
focusing on service time variability substantially reduces mean and
tail latency (by up to 30–50%) in all three cases. Importantly, we
do so by simply changing the metric that we use to identify the
critical stage of request processing and determine the appropriate
control knob.

To highlight the significance of using variability as a guiding
principle, we also evaluate the use of existing approaches, such as
exclusively focusing on reducing mean service time or employing
ad-hoc control knobs, and show that such approaches can end up
hurting request latency. For example, when employingmean service
time as the metric to determine the bottleneck stage of request
processing for the Memcached application in the low throughput
configuration, the socket-to-parse stage comes out on top (instead
of the tcp-to-socket stage determined by our approach of using
variability as the metric). Accordingly, if we employ batching to
mitigate the time spent in the socket-to-parse stage, we find that
latency does improve at low request rates, but latency suffers, by
as much as 32%, at high request rates. By contrast, our approach
consistently improves latency by about 26-61% when employing
the amortized LRU to mitigate variability in the tcp-to-socket stage.
This shows that exclusively focusing on reducing mean service
time may not always improve latency; a more robust approach is
to also consider service time variability.

Selecting control knobs in an ad-hoc manner is an alternative
and sometimes easier approach. Consider the Memcached appli-
cation; an alternative control knob is to pin application threads.
However, under the high throughput configuration, by employing
thread pinning, we find that mean latency increases by about 11.5%,
whereas our chosen control knob (batching) improves latency by
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about 20.9%. Likewise, for the low throughput configuration, pin-
ning threads hurts latency by about 51.1%, whereas our chosen
control knob (amortized LRU) improves latency by about 35.4%.
Similarly, for the Apache web server, another option is to batch
requests by modifying the Nagle’s algorithm. However, even under
the optimal batching interval for Apache, the improvement in mean
request latency is only about 2.7%, whereas that under our chosen
control knob (pinning) is about 21.1%. We refer interested readers
to our full evaluation results for further details [20].

Conclusion
Latency is a critical metric for user-facing web services. Existing
work typically focuses on shortening the critical path (or mean
service time) to improve performance. This tutorial takes an alter-
native approach to improving application performance - reducing
the variability in request processing. By using “reduction in service
time variability” as the guiding principle in web server design, we
reveal control knobs that improve request latency (both mean and
tail) by up to 28-50% across different scenarios. Our end-goal is
to make the case for using service time variability as a metric to
guide system design. The three use cases presented in this tutorial
demonstrate the validity of this approach.

As part of future work, we plan to extend our approach to mit-
igate variability in multi-tier and microservices architectures. In
such cases, it is common for a bottleneck in one stage/service to
have a cascading effect on other components of the application [23].
Further, the latency in such architectures is known to exhibit high
variability [6], suggesting that our approach can be useful in such
settings.
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