
ar
X

iv
:1

91
1.

01
06

4v
1

 [
cs

.D
C

]
 4

 N
ov

 2
01

9

Enabling Enterprise Blockchain Interoperability with Trusted
Data Transfer (industry track)

Ermyas Abebe, Dushyant Behl, Chander Govindarajan, Yining Hu, Dileban Karunamoorthy, Petr Novotny,
Vinayaka Pandit, Venkatraman Ramakrishna, Christian Vecchiola

IBM Research
etabebe@au1.ibm.com,dushyantbehl@in.ibm.com,chandergovind@in.ibm.com,Yining.Hu@ibm.com,dilebank@au1.ibm.com,P.

Novotny@ibm.com,pvinayak@in.ibm.com,vramakr2@in.ibm.com,christian.vecchiola@au1.ibm.com

Abstract

The adoption of permissioned blockchain networks in enterprise
settings has seen an increase in growth over the past few years.
While encouraging, this is leading to the emergence of new data,
asset and process silos limiting the potential value these networks
bring to the broader ecosystem. Mechanisms for enabling network
interoperability help preserve the benefits of independent sover-
eign networks, while allowing for the transfer or sharing of data,
assets and processes across network boundaries. However, a naive
approach to interoperability based on traditional point-to-point in-
tegration is insufficient for preserving the underlying trust decen-
tralized networks provide. In this paper, we lay the foundation for
an approach to interoperability based on a communication proto-
col that derives trust from the underlying network consensus pro-
tocol. We present an architecture and a set of building blocks that
can be adapted for use in a range of network implementations and
demonstrate a proof-of-concept for trusted data-sharing between
two independent trade finance and supply-chain networks, each
running on Hyperledger Fabric. We show how existing blockchain
deployments can be adapted for interoperation and discuss the se-
curity and extensibility of our architecture and mechanisms.

CCS Concepts • Computing methodologies → Distributed

computingmethodologies; • Software and its engineering→
Interoperability; • Networks → Network protocols;

Keywords Distributed Ledgers, Blockchain, Smart Contracts, In-
teroperability, Protocols, Cryptography

ACM Reference Format:

Ermyas Abebe, Dushyant Behl, Chander Govindarajan, Yining Hu, Dileban
Karunamoorthy, Petr Novotny, Vinayaka Pandit, Venkatraman Ramakrishna,
Christian Vecchiola. 2019. Enabling Enterprise Blockchain Interoperabil-
ity with Trusted Data Transfer (industry track). InMiddleware ’19: Interna-

tional Middleware Conference Industrial Track, December 9–13, 2019, Davis,

CA, USA.ACM,NewYork, NY, USA, 7 pages. h�ps://doi.org/10.1145/3366626.3368129

1 Introduction and Motivation
Over the past decade, we have witnessed significant innovation

in distributed ledger technologies (DLTs). Blockchain technology,
a form of DLT, allows a network of independent peer nodes to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’19, December 9–13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7041-7/19/12. . . $15.00
h�ps://doi.org/10.1145/3366626.3368129

maintain a consistent view of shared state through consensus, thus
enabling decentralized trust. This technology is the basis for well-
known decentralized permissionless networks such as Bitcoin [25]
and Ethereum [9]. However, applications addressing enterprise use
cases impose additional requirements such as scalability, privacy,
confidentiality, and auditability. These requirements have led to
the development of permissioned blockchain networks. Today, there
is a wide spectrum of protocol and platform choices for building
permissioned networks [2, 5, 16, 19].

Creating blockchain networks entails building the right ecosys-
tem of participants to realize the benefits of decentralization for
an application. While these ecosystems should be as broad as pos-
sible, the industry trend has been to create networks as minimum

viable ecosystems, i.e., the minimum set of participants required to
demonstrate short-term benefits. This trend in conjunction with
the wide variety of available platforms has resulted in a landscape
of niche, heterogeneous blockchain networks with various meth-
ods of data and consensus management, which in turn have led to
data and asset silos [?].

To understand the nature and challenge of this fragmentation,
let us consider the networks that have emerged in space of global
supply chains. We have separate networks for different aspects
of the supply chain, like provenance [3], international trade logis-
tics [30], trade finance [31], and know-your-customer (KYC) [7]. An
exported product, financed on a trade finance network, is tracked
on both a provenance network (for provenance of the product’s
lifecycle) and a trade logistics network (for the product’s shipping
status). Meanwhile, the identities of business entities are attested
on a shared KYC network. The trustworthiness of a business pro-
cess on one network can be improved by visibility of data from an-
other network, e.g., the process of fulfilling a letter of credit (L/C) [14]
on a trade finance network can be strengthened by fetching the
corresponding bill of lading (B/L) [10] from a trade logistics net-
work. However, this is not possible today because data and assets
are trapped in their respective networks. The following examples
illustrate the varieties of fragmentation. We.Trade [31] and Marco
Polo [28], distinct trade finance networks, exhibit vertical fragmen-

tation, being built on different technologies, i.e., Hyperledger Fab-
ric [2] and Corda [16] respectively. We.Trade and TradeLens, an in-
ternational trade logistics network [30], both built on Hyperledger
Fabric, exhibit horizontal fragmentation, i.e., they support overlap-
ping business processes. Thus, there is a critical need for diverse
blockchain networks to interoperate with each other in order to
realize greater economic value and potential.

Therefore in this paper, we consider the problem of enabling
trusted data exchange between two distinct blockchain networks.
We rule out the need to trust individual members in the networks
for relaying data, using approaches such as web APIs that act as

http://arxiv.org/abs/1911.01064v1
https://doi.org/10.1145/3366626.3368129
https://doi.org/10.1145/3366626.3368129

Middleware ’19, December 9–13, 2019, Davis, CA, USA IBM Research

proxies for individual nodes, since they introduce centralization
and consequently pose risk. A solution can be deemed adequate
only if the data exchanged between the networks is accompanied
by a proof that represents the consensus view of the network, in-
stead of any individual. Such an approach to interoperability has
been partially achieved by relay chains in Cosmos [26] and Polka-
dot [29], into which independent networks can "plug in" and ex-
change data. However, since neither Cosmos nor Polkadot is uni-
versally accepted, a dependency on such frameworks cannot elim-
inate fragmentation. Therefore, we present a solution which takes
fragmentation into self-sovereign independent networks as a given
and build a generic data exchange mechanism into the underlying
platforms in such a way that applications running on the platforms
can employ these mechanisms to exchange data with another net-
work as per their needs.

To summarize, we present a network-neutral architecture and
implementation for blockchain interoperability. Section 2 defines
interoperability and its challenges. Section 3 describes a generic
system architecture and protocol for trusted data transfer between
blockchain networks undergirded by relays and proofs, requiring
no trusted mediators. In Section 4, we show a proof-of-concept
for interoperability based on a use case linking simplified versions
of TradeLens and We.Trade. In Section 5, we analyze the security
properties of our interoperability protocol, demonstrate the ease
of adapting existing applications and show how our architecture is
extensible, providing the basis for a universal standard. We discuss
related and future work in Sections 6 and 7 respectively.

2 Interoperability: Definition and Challenges
Abstractly, a blockchain network consists of a set of peers that

maintain one or more shared ledgers (transaction records) without
a centralized intermediary. Clients query the ledger and modify
it by invoking transactions that are essentially executions of reg-
istered pieces of code called smart contracts. These transactions
are approved and ordered by a consensus protocol into a crypto-
graphically linked chain of blocks distributed across multiple peers,
thereby ensuring immutability of the ledger data. Permissioned
networks built using DLT frameworks like Hyperledger Fabric and
Corda also havemembershipmanagementmodules. Such networks
may logically group together clients and peers belonging to the
same business entity into organizations, and may also have gover-
nance frameworks for managing ledger access and update policies.
A blockchain application is typically built on a multi-tier design
with smart contracts at the bottom, processing requests from full-
stack service applications that run outside the peer network.

The data on the shared ledger may semantically represent state
information of the application as well as ownership details of the
underlying assets. The problem of exchanging assets between dif-
ferent networks has beenwell studied in the literature and is briefly
summarized in Section 6. However, a generalized protocol for data
transfer across DLT implementations along with an ability to pro-
vide proofs of the consensus view (i.e., the common view of a rep-
resentative subset of non-faulty peers) of the transferred data is
a relatively unaddressed problem. We define interoperability as
the semantic dependence between distinct ledgers for the purpose of

transferring or exchanging data or value, with assurances of validity

or verifiability. We tackle the design of an interoperability frame-
work that supports data transfer across networks in such a way
that the consensual validity of the received data can be verified

Figure 1. Layered Interaction Model for Blockchain Applications

without requiring a centralized intermediary. Henceforth, we will
assume that a network has a single ledger, and use the terms "net-
work" and "ledger" interchangeably. In the context of data transfer,
we refer to the network sending the data as source network and the
network receiving the data as destination network.

As illustrated in Figure 1, interoperability must be addressed at
many levels. However, interoperability challenges for the techni-
cal, syntactic, and governance layers in blockchain networks are
no different from challenges faced in the Internet and Semantic
Web domains. The unique challenges of blockchain interoperabil-
ity arise at the semantic layer since data is recorded on the shared
ledger through consensus among peers maintaining that ledger.
Hence, when the destination network receives data from the source
network, it needs a mechanism to verify that the data is indeed the
consensus view of the source network. Therefore, techniques de-
veloped for interoperability at the semantic layer in the Internet
and Semantic Web domains where the data source is a centralized
system are not applicable to blockchain interoperability.

A framework for enabling interoperation should allow applica-
tion business logic to be written independent of the framework’s
implementation. The DLT protocols must therefore offer and use
standard abstractions for processes and data while performing cer-
tain core functions: data exposure control, i.e., making a consensual
access control decision in a source network, and data acceptance

or consensual vetting of data obtained from the source network
for authenticity in a destination network. It should be possible to
control data exposure and data acceptance policies as per the gov-
ernance requirements of a network. In general, networks should
expose the following operations for interoperability: (i) query the
data on a source ledger, (ii) carry out transactions, or update a
source ledger, and (iii) publish and subscribe to events. Blockchain
applications can exercise these primitives with their business logic.

The practical implementation of a solution to interoperability
involves a number of challenges, including specification of a ref-
erence architecture and technology-agnostic protocols, avoiding
significant modifications to existing applications, discovery of ex-
isting networks, and sharing identities and configurations across
networks. In this paper, we will tackle the problem of data transfer
through cross-network query protocols and define an initial refer-
ence architecture for interoperability. In addition, we will demon-
strate how existing autonomous networks can be augmented for
interoperability with minimal effort. Other aspects, namely cross-
network transactions and events, discovery, identity management,
and governance, are left to future work.

3 Solution For Trusted Data Transfer
We propose an architecture for interoperability between per-

missioned blockchain networks that extends the generic model
sketched in Section 2 to support cross-network data transfers.

Enabling Enterprise Blockchain Interoperability Middleware ’19, December 9–13, 2019, Davis, CA, USA

Figure 2. Architecture and Message Flow, with Source Network at Right and Destination at Left (Interoperation Components in Green)

3.1 Design Principles

The proposed architecture for trusted data transfer adheres to
the following design principles:

• Networks are independent self-governing systems that en-
able interoperability when required.

• Networks have full control over exposure of data to, and
acceptance of data from, other networks.

• Data transferred must carry verifiable proofs.
• The network requesting data must be able to specify a pol-
icy for proofs (termed as Verification Policy) that the source
network will satisfy if possible.

• The communication protocolmust be specified in a network-
neutral language.

• Enabling interoperation must not require changes to exist-
ing network protocols.

3.2 Network Components

Our architecture and message flow for interoperability between
two permissioned networks is presented in Figure 2, with the source
at the right and the destination at the left. Deployed within, and
acting on behalf of, each network is a relay service (not to be
confused with relay chains in Polkadot [29] or Cosmos [27]). The
relay service serves requests for authentic data from applications
by fetching the data along with verifiable proofs from remote net-
works. While the functions of a relay can be implemented on a
network’s peers, introducing a separate component within the net-
work addresses the design principle of requiring no modifications
to network protocols or peer implementations. Relays can thus be
deployed and configured within existing networks with ease, and
their functionality and communication protocol can evolve inde-
pendently from any network implementation.

The relays communicate using a shared network-neutral proto-
col specified using Protocol Buffers[11] which enables efficient wire
communication. This protocol is structured to provide details on
addressing a network, ledger and contract, the function name and
arguments for remote queries, a verification policy that is satis-
fied by the relay in a source network, and authentication details
of the requesting entity. Similarly, a response includes the data
queried alongwith a proof that satisfies the verification policy. The
relay also includes a set of pluggable network drivers that translates
the network-neutral protocolmessages into calls to the underlying
network implementation. The relay thus operates at the technical,
syntactic, and semantic layers of the model in Figure 1.

A set of special system contracts, independent of application
business logic and deployed on all the peers of the interoperat-
ing networks, enforces network rules for data exposure and accep-
tance. Decisions onwhat data can be exposed and what acceptance
criteria must be applied locally are made by the governing bod-
ies of the respective networks. More specifically, the Configuration
Management contract maintains identity and configuration (topol-
ogy) information about foreign networks and is used by other sys-
tem contracts for every cross-network interaction. The Exposure

Control contract enforces access control policy rules against in-
coming requests, determining which data items in the local ledger
and smart contract functions can be exposed. TheData Acceptance
contract enables networks to determine whether the data received
from a remote network, along with accompanying proof, is valid
according to the verification policy, before it can be written to the
local ledger. These system contracts can be implemented and de-
ployed in the same way as application contracts, and thus must
be re-implemented for every blockchain implementation using a
supported smart contract runtime environment and language.

The architecture assumes minimal trust in the relay. A network
can deploy additional relay services to minimize potential censor-
ship attacks and the system contracts can ensure that sensitive
data shared between networks is encrypted and unreadable by re-
lays. Furthermore, we assume that interoperating networks have
a priori knowledge of each others’ identities and configurations,
recorded on their ledgers.

3.3 Message Flow

To enable interoperability between two networks, their system
contracts must be initialized with metadata that is determined by
the networks’ governing bodies and subsequently applied to the
respective ledgers by satisfying the networks’ consensus rules. In
a source network, the Exposure Control contract is used to set ac-
cess control policies at desired granularities. The identities against
which the access control policies are applied can be at the level
of a network, a named subdivision (organization), a single entity
(peer, user or application), or entities that satisfy one or more veri-
fiable credentials. In a destination network, theConfigurationMan-

agement contract defines the verification policies that dictate the
criteria under which data and accompanying proof from a remote
networkmust be evaluated for validity by theData Acceptance con-
tract. This verification policy is based on the source network’s con-
sensus rules and network units’ (e.g., peers) identities; determina-
tion of which identities to include in the policy is the responsibility
of the destination network.

Middleware ’19, December 9–13, 2019, Davis, CA, USA IBM Research

The steps involved in executing a transaction in a destination
network that is dependent on a source network for input data pro-
ceed as shown in Figure 2. (1) The client application in the destina-
tion submits a request to its local relay service by specifying the
source network’s unique name, ledger, contract and function to in-
voke, along with any arguments. It also specifies the verification
policy that was determined during the initialization phase. (2) The
local relay, designed to support pluggable discovery services, per-
forms a lookup using such a service for the address of the destina-
tion relay based on the remote network’s name. (3) The destination
relay serializes the request and forwards the binary message to the
source relay (4) The source relay deserializes the message and de-
termines the network the message is intended for. (5) It then uses
the appropriate network driver to orchestrate the query against
the respective peers in the network based on the specified verifi-
cation policy. (6) Each peer executing the contract function refers
to the Exposure Control contract to determine if the remote client
application has appropriate permissions to read the data. (7) The
results from each of the selected peers collectively form the proof
satisfying the verification policy. (8) The source relay serializes the
results and sends a reply message to the destination relay. (9) The
latter then forwards the result back to the application. (10) The
application finally constructs a transaction which includes the re-
sult of the remote query along with the proof in its input. This
transaction is submitted to the appropriate application contract in
the local network, which refers to the Data Acceptance contract to
validate the query result data and associated proof against the ver-
ification policy. If the policy is satisfied, the application contract
successfully executes an update to the local ledger.

4 Use Case and Implementation
The use case we consider is motivated by two industry-scale

blockchain consortiumnetworks, TradeLens (TL) [30] andWe.Trade
(WT) [31], both built on Hyperledger Fabric. For simplicity, we
constructed scaled-down versions of the two networks using ku-

bernetes [23], calling them Simplified TradeLens (STL) and Simpli-

fied We.Trade (SWT) respectively (see Table 1). While TL connects
sellers, carriers, ports, terminal operators and freight forwarders,
STL retains just a Seller and a Carrier negotiating the export of a
shipment. WT helps banks facilitate trade financing using open ac-
counts [15]; SWT connects banks and their clients too, but using
letters of credit (L/C) [14] (to demonstrate interoperation with STL,
as we will see later). Initially built to be non-interoperable, both
STL and SWT were augmented to support cross-network queries.

4.1 Hyperledger Fabric Overview

Hyperledger Fabric [18] is an open-source permissioned block-
chain platform for building enterprise networks, following the mo-
del outlined in Section 2. Fabric is atypical in its use of an execute-

order-validate transaction processing model for better privacy and
scalability. Though every peer node maintains shared ledger repli-
cas and commits transactions, only a subset run smart contract
code (chaincode) as endorsers. Every transaction requires a subset
of endorsers, selected through a predetermined policy, to agree on
the result, and a separate ordering service creates and disseminates
blocks. Peers are classified into organizations that represent busi-
ness interests within a consortium, each typically having its own
Membership Service Provider (MSP) for identity management and
certificate authorization [2].

Figure 3. Simplified Trade Interoperation Use Case

4.2 Use Case: Supply-Chain and Trade Finance

The STL network on Fabric consists of 2 peers: one belongs to
a Seller organization and the other to a Carrier organization. A
single chaincode manages shipment state and documentation. In-
dependent applications were developed for the Seller and Carrier,
invoking chaincode below and offering web UIs above. The SWT
network consists of 4 peers: 2 in a Buyer’s Bank organization and
2 in a Seller’s Bank organization; a Buyer and a Seller are clients of
their respective banks’ organizations. A single chaincode manages
letters of credits and payments. Independent applications were de-
veloped for Seller and Buyer.

The communication between STL and SWT is illustrated in Fig-
ure 3. On STL, a seller and a carrier arrange shipment of exported
goods against a purchase order negotiated offline between the seller
and a buyer (Step 1). Steps 5-8 culminate in the carrier taking pos-
session of the shipment and producing a bill of lading (B/L) [10]
as proof. On SWT, the buyer’s bank issues an L/C for the buyer’s
transaction against the same purchase order in favour of the seller’s
bank (Steps 2-4), whose client (seller) is also a member of STL. L/C
terms mandate payment upon dispatch; hence the seller’s bank
may request payment from the buyer’s bank as illustrated in Step
10, but it must have proof of existence of a valid B/L, and such
proof is fetched from STL using a cross-network query (Step 9.)
This interoperation step lets SWT avoid dependence on the seller,
who has incentive to forge a B/L and claim payment.

Table 1. Common Use Case Acronyms

Acronym Expansion & Description

L/C Letter of Credit: Trade Financing Instrument
B/L Bill of Lading: Carrier Acknowledgement of Shipment Receipt
(S)TL (Simplified) TradeLens: Trade Logistics Network
(S)WT (Simplified) We.Trade: Trade Finance Network
SWT-SC Simplified We.Trade-Seller Client
ECC Exposure Control Chaincode
CMDAC Configuration Management & Data Acceptance Chaincode

4.3 End-to-End Data Transfer Protocol

We implemented a generic protocol for data transfer based on
themessage flow in Figure 2. Figure 4 illustrates the instance of the
protocol used to perform Step 9 in our use case. Before running the
applications, both networks were configured in preparation to run
cross-network operations. The Exposure Control contract is im-
plemented as an application chaincode (called ECC). The Configu-
ration Management and Data Acceptance contracts are combined
into a single application chaincode (called CMDAC) for runtime ef-
ficiency, as proof verification depends on foreign networks’ config-
urations. STL configuration (organization and peer identities and
root certificates used by MSPs to issue membership credentials) is

Enabling Enterprise Blockchain Interoperability Middleware ’19, December 9–13, 2019, Davis, CA, USA

Figure 4. Transaction Depending on Cross-Network Query

recorded on the SWT ledger using its CMDAC, as is SWT config-
uration on the STL ledger. For network discovery and lookup, a
local file-based registry was plugged into the SWT Relay.

The STL Chaincode offers aGetBillOfLading function that takes
a purchase order reference as an argument and retrieves the B/L
from the ledger. Correspondingly, the SWT Chaincode offers an
UploadDispatchDocs function that takes a B/L as well as a purchase
order reference as arguments. For interoperation, the SWT Chain-
code was modified to verify proofs by invoking the CMDAC chain-
code. Accordingly, in the SWT Seller application, aGetBillofLading
query to the relay service was added, along with code to process
responses from the relay, decrypt the proof and add the result-
ing data to the UploadDispatchDocs transaction’s arguments’ list.
STL Chaincode was also modified to check if an incoming query is
from a relay, and if so, verify access permissions and encrypt the
response, all using ECC invocations.

The ECC maintains access control policy rules in the form of a
<network ID, organization ID, chaincode name, chaincode function>
tuple: the subject (requestor) is a member of a network organiza-
tion and the object (to which the requestor is to be granted access)
is a chaincode function. The rule <"we-trade", "seller-org", "Trade-
LensCC", "GetBillOfLading">was recorded on the STL ledger, which
permits STLpeers to satisfy B/L queries frommembers of the Seller’s
organization in SWT. The CMDAC on the SWT ledger was used to
record a verification policy for STL: it requires proof from a peer
in both the Seller and Carrier organizations. The (UploadDispatch-
Docs) transaction in SWT requires 2 endorsements: one froma peer
each in the Buyer’s Bank and Seller’s Bank organizations.

We can now follow the data transfer procedure in Figure 4. The
SWT Seller Client (SWT-SC) sends a query via its relay to the STL
Relay, which in turn orchestrates proof collection by selecting a set
of STL peers to query based on the verification policy it receives.
Query response (B/L document) and collected proof are returned
to the SWT Seller Client via the SWTRelay, which replaces the B/L
argument in its transaction request with the received response and
proof, and then selects peers to endorse this transaction. (Note that
the operations and flows in the Peer(s) sections of Figure 4 at both
ends occur concurrently on multiple peers.)

For end-to-end confidentiality, the SWT-SC generates an asym-
metric key pair and gets a certificate from the Seller organization’s
MSP. On an STL peer handling the query, the ECC validates the

SWT-SC’s certificate using the recorded SWT configuration (man-
aged by the CMDAC) before checking whether access ought to
be granted as per recorded policy. Post-execution, proof is gen-
erated in a 2-step process. First, the result is encrypted with the
SWT-SC’s public key (from the certificate) using an ECC invoca-
tion. Next, the normal peer endorsement process, which produces
a signature over query result metadata, is replaced with custom
logic [8] that signs the metadata (including the result) and then
encrypts it with the SWT-SC’s public key. The STL Relay receives
an <encrypted result , encrypted metadata, siдnature> from each
STL peer; an array [<encryptedmetadata,siдnature>] thus consti-
tutes the proof returned to SWT in addition to the encrypted result .
(The result is encrypted to prevent tampering by a malicious relay,
whereas the metadata is encrypted to prevent a verifiable proof as-
sociated with the result from being exfiltrated by a malicious relay
to unauthorized networks; only the SWT-SC possesses a decryp-
tion key.) On every SWT peer validating this (decrypted) proof, the
chaincode invokes the local CMDAC to validate proof against the
verification policy; i.e., validate each signature and authenticate
each signer using the recorded STL configuration. Note that replay
attacks can be mitigated by nonces generated by the SWT-SC and
recorded on the destination ledger in every protocol instance.

5 Evaluation and Discussion
We have demonstrated how a cross-network data transfer pro-

tocol can be designed using system contracts to enforce consen-
sual access control and verification-policy-based proof generation
and validation. We now evaluate our design based on the follow-
ing metrics: (i) security, (ii) ease of use and adaptation, and (iii)
generalization and extensibility.

Security:We evaluate our protocol against the standard infor-
mation security CIA triad model [32] and reason how it provides
confidentiality, integrity and availability. (i) Our protocol satisfies
the confidentiality property, as response data from source to des-
tination is encrypted by the source’s peers using the remote client’s
public key, ensuring that an untrusted relay cannot read or exfil-
trate the information. (ii) It also satisfies the integrity property
as the source network’s peers digitally sign the response and the
destination’s peers can validate the signatures as well as authenti-
cate the signers using the source network’s MSP certificates that
are recorded on the destination network’s ledger. (iii) In terms of

Middleware ’19, December 9–13, 2019, Davis, CA, USA IBM Research

availability, our protocol is not immune toDoS Attacks, given the
reliance on the relay services of both networks. The effects of DoS
attacks can be mitigated by adding redundant relays. DoS protec-
tion can also be built into the relay service, protecting the peers
themselves from such attacks.

Ease of Use and Adaptation: The only modification required
in a source network is in chaincode. We inserted two function calls
in the STL Chaincode: (i) an access control check by invoking the
ECC before query execution, and (ii) an encryption call to the ECC
after query execution, adding∼35 source lines of code (SLOC). This
is a one-time effort, permitting access to functions other than Get-

BillOfLading only requires the addition of a policy rule, and no
further chaincode modification.

A destination network requires a more complex configuration,
as modifications are needed in chaincode as well as the applica-
tion. In the SWT Chaincode, we added ∼20 SLOC for proof unmar-
shaling, and proof verification by invoking the CMDAC; this is a
one-time effort. In the higher-layer application, we (i) inserted a
remote query call using the relay service API before an Upload-

DispatchDocs transaction submission to the SWT Chaincode and
(ii) added calls to decrypt and validate the response and metadata,
and run the transaction using the decrypted data and proof as argu-
ments. This required adding ∼80 SLOC. Only a couple of function
calls with different parameters need to be inserted in appropriate
places in the business logic for other cross-network queries.

Generalization and Extensibility: The query protocol pre-
sented in this paper can be easily extended to enable cross-network
chaincode invocations. While the sequence of steps is expected to
be different, the relay service, system contracts, and application
client support described earlier can be reused directly.

To extend our protocol to other permissioned blockchains, the
relay service (which is separate from peer networks) can be di-
rectly reused in networks built on Corda or Quorum [5], for ex-
ample, with suitable modifications for API compatibility. The sys-
tem contracts need platform-specific implementations. In Corda,
a verification policy can be specified to include signatures from
notaries [6], which will be involved in access control, proof gener-
ation and verification. In Quorum, proof generation may require
augmenting a peer to return a signed query response in addition
to implementing our system contracts. The functions served by
these contracts will remain the same, as will the relay communi-
cation API offered by the target platform’s SDK. These networks
have identity managers and certificate authorities as Fabric does,
so network configuration can be shared for proof validation and
authentication. Standardization of platform-independent schemas
will be required to facilitate the sharing of these configurations.

6 Related and Complementary Work

Cross-NetworkCommunicationProtocols:Many emerg-
ing projects are actively developing inter-blockchain protocols to
build networks of networks. The most prominent among them, Cos-
mos [27] and Polkadot [29], enable cross-network transactions be-
tween separate blockchains, called zones in Cosmos and parachains
in Polkadot, via a central blockchain, called the hub in Cosmos
and relay chain in Polkadot. Cosmos and Polkadot networks are de-
centralized: i.e., every transaction committed to the central block-
chain is verified by a group of validators. Polkadot requires all par-
ticipating networks to conform to a common consensus protocol
to achieve inter-network operations. Cosmos allows participating

blockchains to "plug in" to themain hub keeping their original con-
sensus protocol. However, Cosmos requires all participating net-
works to comply with the Inter-Blockchain Protocol (IBC) [26] for
interoperability. Polkadot and Cosmos are also not interoperable
with each other, forcing existing network pairs to choose and im-
plement the same protocol for mutual interoperability. In compar-
ison, our design does not impose any such constraints on partici-
pating networks or reliance on a central blockchain.

Cross-NetworkDataTransferwithProof:Anumber ofmech-
anisms to prove the veracity of transactions recorded on a ledger
using self-sufficient proofs have been proposed for both public [20,
21, 24] and private [4, 27, 29] blockchains, creating a basis for
trusted data transfer. Cosmos, Polkadot and Corda all utilize mech-
anisms in which a subset of members attest their approvals of a
transaction, thereby proving its validity. SPV-based [22, 24, 34],
PoPoW[20] andNIPoPoW [21] proofmechanisms are used to prove
the validity of a transaction in a public ledger (e.g., Bitcoin, Ethe-
reum) on any other blockchain by certifying thework done for that
particular transaction (in other words: proving proof-of-work). Our
protocol implementation uses a form of attestation-based proof,
but the architecture allows any suitable proof scheme to be plugged
in. Furthermore, our architecture enables consensual data expo-
sure control and acceptance, which none of the aforementioned
proof schemes provide on their own.

Cross-Network Asset Transfers: Atomic asset transfers and
exchanges between ledgers are an important interoperation sce-
nario for which techniques like atomic swaps [17] and Hash Time

Locked Contracts (HTLC) [33] have been invented. In addition, net-
works implementing the Interledger Protocol (ILP) [1] can swap as-
sets across multiple blockchain network hops, each hop swapping
the asset using an HTLC variant. In the future, we will consider in-
corporating these techniques into our architecture and protocol to
enable a wider spectrum of applications including both asset and
data transfers.

7 Conclusion and Future Work

Enabling seamless interoperability is critical to realizing the po-
tential of blockchain technology. In this paper, we have taken a
concrete step towards presenting a reference architecture and pro-
tocol for trusted data transfer between blockchain networks using
local relays and policy-driven control of interactions. We have also
demonstrated proof of concept based on a real industry use case.
We plan to implement protocols for cross-network transactions
and events and incorporate asset exchanges to enable a wider ar-
ray of use cases. We will leverage technologies like decentralized
identifiers [12] and verifiable credentials [13] to build decentral-
ized frameworks for the sharing of network identities and config-
urations. We will also investigate the construction of an optimal
verification policy from a network’s consensus policy.

Acknowledgments

The authors would like to thank Adarsh Saraf and Bruno Mar-
ques for helping with system design, Isabell Kiral and Nick Way-
wood for helping build the applications and Allison Irvin and Is-
abell Kiral for review and feedback.

Enabling Enterprise Blockchain Interoperability Middleware ’19, December 9–13, 2019, Davis, CA, USA

References

[1] 2019. Interledger Protocol V4. (2019). Retrieved May 13, 2019 from
h�ps://interledger.org/rfcs/0027-interledger-protocol-4/

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gen-
nady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,
Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason
Yellick. 2018. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys Confer-
ence (EuroSys ’18). ACM, New York, NY, USA, Article 30, 15 pages. DOI:

h�ps://doi.org/10.1145/3190508.3190538
[3] IBM Blockchain. 2019. IBM Food Trust - A new era for the

worldâĂŹs food supply. (2019). Retrieved Sept 5, 2019 from
h�ps://www.ibm.com/in-en/blockchain/solutions/food-trust

[4] Richard Brown. 2018. Some Thoughts on Compatibility, Interoper-
ability and Integration. (12 2018). Retrieved May 22, 2019 from
h�ps://medium.com/corda/some-thoughts-on-compatibility-interoperability-and-integration-e1c6b3af3987

[5] JPMorgan Chase. 2019. Quorum: A permissioned implementation of Ethereum
supporting data privacy. (2019). h�ps://github.com/jpmorganchase/quorum

[6] Corda. 2019. Corda Notaries. (2019). Retrieved May 25, 2019 from
h�ps://docs.corda.net/key-concepts-notaries.html

[7] Michael Curry. 2019. Blockchain for KYC: Game-changing
RegTech innovation. (2019). Retrieved September 13, 2019 from
h�ps://www.ibm.com/blogs/insights-on-business/banking/blockchain-kyc-game-changing-regtech-innovation/

[8] Hyperledger Fabric Docs. 2019. Pluggable transaction endorsement and valida-
tion. (2019).

[9] Ethereum Foundation. 2019. Ethereum. (2019). h�ps://www.ethereum.org/
[10] Trade Finance Global. 2019. What is a Bill of Lad-

ing (BL)? (2019). Retrieved September 13, 2019 from
h�ps://www.tradefinanceglobal.com/freight-forwarding/bill-of-lading-bl-bol/

[11] Google. 2019. Protocol Buffers. (2019). Retrieved May 11, 2019 from
h�ps://developers.google.com/protocol-buffers/

[12] W3C Community Group. 2019. Decentralised Identifiers (DIDs) v0.12.
h�ps://w3c-ccg.github.io/did-spec/. (May 2019).

[13] W3C Community Group. 2019. Verifiable Credentials Data Model 1.0.
h�ps://w3c.github.io/vc-data-model/. (March 2019).

[14] UN Trade Facilitation Implementation Guide. 2019. Let-
ters of credit. (2019). Retrieved September 13, 2019 from
h�p://tfig.unece.org/contents/le�ers-of-credit.htm

[15] UN Trade Facilitation Implementation Guide. 2019. Open
account. (2019). Retrieved September 13, 2019 from
h�p://tfig.unece.org/contents/open-accounts.htm

[16] Mike Hearn. 2016. Corda: A Distributed Ledger. (29 November 2016).
h�ps://docs.corda.net/_static/corda-technical-whitepaper.pdf

[17] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing. ACM, 245–254.

[18] Hyperledger. 2019. Hyperledger Fabric Docs. (2019).
h�ps://hyperledger-fabric.readthedocs.io/en/latest/

[19] Hyperledger. 2019. Hyperledger Sawtooth. (2019).
h�ps://www.hyperledger.org/projects/sawtooth

[20] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. 2016.
Proofs of proofs of work with sublinear complexity. In International Conference
on Financial Cryptography and Data Security. Springer, 61–78.

[21] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2017. Non-Interactive
Proofs of Proof-of-Work. IACR Cryptology ePrint Archive 2017, 963 (2017), 1–42.
h�ps://eprint.iacr.org/2017/963.pdf

[22] Aggelos Kiayias and Dionysis Zindros. 2018. Proof-of-Work Sidechains. IACR
Cryptology ePrint Archive 2018, 1048 (2018). h�ps://eprint.iacr.org/2018/1048.pdf

[23] Kubernetes. 2019. Kubernetes - Production-Grade Container Orchestration.
(2019). Retrieved September 13, 2019 from h�ps://kubernetes.io

[24] Loi Luu, Nate Rush, and Nicholas Lin. 2019. PeaceRelay, Connecting the many
Ethereum Blockchains. (2019). h�ps://peacerelay.io/

[25] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system,âĂİ
http://bitcoin.org/bitcoin.pdf. (2009).

[26] Cosmos Network. 2018. Cosmos Inter-Blockchain Communication (IBC) Proto-
col. (2018). Retrieved May 22, 2019 from h�ps://cosmos.network/docs/spec/ibc/

[27] Cosmos Network. 2019. Internet of Blockchains - Cosmos Network. (2019).
Retrieved May 6, 2019 from h�ps://cosmos.network/

[28] Marco Polo Network. 2019. Marco Polo Network. (2019). Retrieved May 25,
2019 from h�ps://www.marcopolo.finance/

[29] Polkadot Network. 2019. Polkadot | The next-generation platform for connect-
ing independent blockchains together. (2019). Retrieved May 6, 2019 from
h�ps://polkadot.network/

[30] Tradelens. 2019. TradeLens: Digitizing The Global Supply Chain. (2019).
[31] we.trade. 2019. we.trade. (2019). Retrieved May 25, 2019 from

h�ps://we-trade.com
[32] Michael E. Whitman and Herbert J. Mattord. 2011. Principles of Information

Security (4th ed.). Course Technology Press, Boston, MA, United States.

[33] Bitcoin Wiki. 2018. Hashed time-locked contract transactions. (2018).
h�ps://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

[34] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William Knottenbelt. 2019. XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets. (2019).

https://interledger.org/rfcs/0027-interledger-protocol-4/
https://doi.org/10.1145/3190508.3190538
https://www.ibm.com/in-en/blockchain/solutions/food-trust
https://medium.com/corda/some-thoughts-on-compatibility-interoperability-and-integration-e1c6b3af3987
https://github.com/jpmorganchase/quorum
https://docs.corda.net/key-concepts-notaries.html
https://www.ibm.com/blogs/insights-on-business/banking/blockchain-kyc-game-changing-regtech-innovation/
https://www.ethereum.org/
https://www.tradefinanceglobal.com/freight-forwarding/bill-of-lading-bl-bol/
https://developers.google.com/protocol-buffers/
https://w3c-ccg.github.io/did-spec/
https://w3c.github.io/vc-data-model/
http://tfig.unece.org/contents/letters-of-credit.htm
http://tfig.unece.org/contents/open-accounts.htm
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.hyperledger.org/projects/sawtooth
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2018/1048.pdf
https://kubernetes.io
https://peacerelay.io/
https://cosmos.network/docs/spec/ibc/
https://cosmos.network/
https://www.marcopolo.finance/
https://polkadot.network/
https://we-trade.com
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

	Abstract
	1 Introduction and Motivation
	2 Interoperability: Definition and Challenges
	3 Solution For Trusted Data Transfer
	3.1 Design Principles
	3.2 Network Components
	3.3 Message Flow

	4 Use Case and Implementation
	4.1 Hyperledger Fabric Overview
	4.2 Use Case: Supply-Chain and Trade Finance
	4.3 End-to-End Data Transfer Protocol

	5 Evaluation and Discussion
	6 Related and Complementary Work
	7 Conclusion and Future Work
	References

