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Android applications are executed on smartphones equipped with a variety of resources that must be properly accessed
and controlled, otherwise the correctness of the executions and the stability of the entire environment might be negatively
affected. For example, apps must properly acquire, use, and release microphones, cameras, and other multimedia devices
otherwise the behaviour of the apps that use the same resources might be compromised.

Unfortunately, several apps do not use resources correctly, for instance due to faults and inaccurate design decisions. By
interacting with these apps users may experience unexpected behaviours, which in turn may cause instability and sporadic
failures, especially when resources are accessed.

In this paper, we present an approach that lets users protect their environment from the apps that use resources improperly
by enforcing the correct usage protocol. This is achieved by using software enforcers that can observe executions and change
them when necessary. For instance, enforcers can detect that a resource has been acquired but not released, and automatically
perform the release operation, thus giving the possibility to use that same resource to the other apps.

The main idea is that software libraries, in particular the ones controlling access to resources, can be augmented with
enforcers that can be activated and deactivated on demand by users to protect their environment from unwanted app
behaviours. We call the software libraries augmented with one or more enforcers proactive libraries because the activation
of the enforcer decorates the library with proactive behaviours that can guarantee the correctness of the execution despite
the invocation of the operations implemented by the library. For example, enforcers can detect that a resource has not been
released on time and proactively release it.

Our experimental results with 27 possible misuses of resources in real Android apps reveal that proactive libraries are able
to effectively correct library misuses with negligible runtime overheads.
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1 INTRODUCTION
Users of mobile devices can easily and quickly access to a huge number of software applications through well-
established digital marketplaces, such as the Android’s Google Play1, the Apple’s App Store2, and the Microsoft’s
Windows Phone App Store3. These marketplaces are freely populated with applications of various quality, ranging
from professional apps to apps implemented by hobbyists. The openness of the marketplaces facilitates software
distribution but also raises relevant reliability issues. In fact many of these apps are often not thoroughly validated
and may cause troubles once installed and executed in a device.

To mitigate these problems, the marketplaces might be equipped with mechanisms to limit the proliferation of
unreliable and insecure apps. For example, users can rate and review apps, so that unsafe and unreliable apps
become less and less popular and fewer people try to install and use them [27]. Ecosystems may also implement
static analysis routines to reject largely inadequate apps [29].
Although these mechanisms can be helpful to prevent the indiscriminate proliferation of undesired apps,

customers regularly report issues with the apps downloaded from the marketplaces [6, 7, 51, 54, 55]. A relevant
portion of the problems experienced by the users is related to the way apps interact with the resources available in
a device (e.g., the camera, the microphone, and the wifi antenna). For instance, many apps fail to properly acquire
and release resources, causing efficiency and energy problems [6, 7, 55]. In some cases, inaccurate interactions
with the resources may even cause problems across apps. For instance, an app that does not release the camera
every time its execution is suspended may prevent the other apps from acquiring the camera [6, 55].
Since many of these annoying problems can be addressed by forcing the faulty apps to satisfy the expected

resource usage protocol, we studied how to design software enforcers that can monitor executions and change the
behaviour of the apps when necessary. To make the solution broadly applicable, software enforcers do not require
access to the source code of the app, but work in a black-box fashion. Moreover, they could be speculatively
activated or deactivated by users. For instance, enforcers might be activated after some applications presented
some misbehaviours.
Interestingly, the incorrect interaction between an app and a resource can be often recognized by looking

at both the usage of the library that controls the access to the resource and the lifecycle of the components of
the app that interact with the library, for instance the lifecycle of an activity4. For example, if the user moves
to background an app that is using the microphone to record some audio, the app must immediately release
the microphone, otherwise the other apps might be unable to interact with the microphone since it would be
occupied by the inactive app, and the device may unnecessarily keep the microphone active consuming extra
battery. At the level of the interaction between the app and the library this means that once an app has invoked
the method startRecording() on the Android library class AudioRecord, it must release the microphone
by invoking the method release() every time a call to the onStop() callback method is generated by the
Android framework (onStop() is a callback method that apps implement to define the operations that must be
performed before an activity becomes invisible to the user). Unfortunately, it is not always the case that apps are
implemented releasing and acquiring resources coherently with the lifecycle of the activities [6, 34, 55].
Enforcers can intercept interactions between apps and libraries to automatically fix these executions. Since

enforcers are aware of the usage policies relevant to Android libraries, they are logically associated with libraries,
that is, each library is decorated with a number of enforcers each one enforcing a different policy. The presence of
the enforcers turns regular libraries into proactive libraries, which are libraries that can perform operations even
when the methods of the libraries are not invoked (e.g., because the enforcer has to proactively execute operations

1https://play.google.com/store
2https://www.apple.com
3https://www.microsoft.com/en-in/store/apps/
4Android apps are composed of multiple components called activities: https://developer.android.com/guide/components/activities
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to fix a detected problem). For example, when the onStop() callback is generated, the enforcer associated with
the library for audio recording is triggered to check if the microphone has been released. If not, the enforcer may
force the release of the microphone, and automatically reassign it to the activity once the activity becomes visible
to the user again.
Since a regular library does not need to be modified to be turned into a proactive library, enforcers can be

easily added to existing libraries, without the need of designing libraries as proactive libraries from the very
beginning. This eases the incremental adoption of the technology. Moreover, any party may contribute to the
definition of the enforcers for a given library and not only the developers of the library. This aspect may facilitate
the proliferation of the enforcers. App developers can keep using the usual testing and analysis methods to fix
their apps. The design and implementation of enforcers is for library developers and in general for developers
who want to contribute to the Android ecosystem, while the runtime activation of the enforcers is under the
control of the final users.
In addition to studying how to turn regular libraries into proactive libraries that can be exploited to make

software systems more reliable, we defined a model-based approach for both the definition of the enforcers and
the automatic generation of their implementation, that we call proactive module, for the Android environment.
Although the concepts of enforcers and proactive libraries are general, we studied them in the context of the
Android ecosystem because many non-trivial and rapidly evolving APIs for resource management are available
and problems with resources are frequent [6, 7, 55].
This work extends our previous work on proactive libraries [44] by (i) introducing a process, a modelling

environment, and a code generation strategy to automatically generate the proactive libraries from a specification
of the enforcers, (ii) extending the modelling language used to specify the enforcers with special operations for
restoring resources and with the possibility to distinguish if an action taken by an enforcer must be executed before
or after an operation performed by the monitored software, (iii) increasing the sophistication of the proactive
module to consider the status of Android components, enforcement strategies, and resources simultaneously, (iv)
providing a more detailed presentation of the approach and additional background material, (v) extending the
empirical evaluation with 15 additional real-world cases from popular Android markets and open-source Android
community; and (vi) studying the scalability of the proactive modules and the usefulness of the model-based
approach compared to the manual implementation of the enforcers.

The paper is organized as follows. Section 2 provides background information about edit automata, which is the
formalism used in this paper to specify enforcers, model-driven software development, which is the methodology
used to specify and generate the proactive libraries, and Xposed, which is the framework we used to implement
the proactive modules for Android. Section 3 introduces a running example that is used throughout the paper to
exemplify the approach. Section 4 presents the concept of proactive library and the process for implementing it.
Section 5 describes how to formally define the correctness policies that can be enforced with proactive libraries.
Section 6 presents how to automatically generate proactive libraries from their specifications. Section 7 presents
our empirical evaluation. Section 8 discusses related work. Section 9 provides final remarks.

2 BACKGROUND
This section provides background information about edit automata, which is the formalism we used to model
the behaviour of the enforcers, the model-driven software development paradigm, which is the development
methodology we used to define the modelling environment and the generators of the enforcers, and the Xposed
framework, which is the framework we used to implement the proactive modules.
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Edit Automata
Enforcers are software components that monitor other programs to check their correctness and modify their
behaviour when problems are detected. We model the behaviour of the enforcers using edit automata, which
are abstract machines that can specify how a sequence of operations executed by a monitored program must be
transformed into an alternative sequence of operations [31]. In practice, we use edit automata to specify how to
enforce behaviours that the monitored program may fail to satisfy.
More formally, an edit automaton is a finite state model with the capability to modify an input sequence of

operations into an output sequence of operations by incrementally suppressing and inserting operations. Contrary
to a normal finite state machine, the transitions of edit automata are annotated with both an input operation
and an output operation sequence. According to the semantics of the transitions, when the input operation is
detected, the output sequence is emitted. The output sequence might be the same as the input operation, which
corresponds to not altering the execution, may contain additional operations, which corresponds to inserting
additional operations in the execution, or may omit the input operation, which corresponds to suppressing the
input operation.

0 1

opA	
e!=opA	

e

opA	

				opAA	

stop	

opAA;	stop	
e!=opA	&	e!=stop	e

Fig. 1. A sample edit automaton.

Figure 1 shows a sample edit automaton. The symbol above each transition indicates the input operation
recognized by the transition, while the sequence below a transition indicates the output sequence emitted by the
automaton when the input sequence is recognized. The input symbol can also be expressed with guard conditions,
for instance e!=opA indicates any operation different from opA. In this case e is like a variable whose value
depends on the concrete input operation that is recognized by the transition. If the event e is also reported below
the transition, the same event recognized in input is emitted in output. The arrow pointing at state 0 indicates
the initial state.

The sample edit automaton suppresses every execution of opA that is initially recognized (see the self-loop on
state 0). Once an event different than opA is detected, it moves to state 1 where it leaves the execution unaltered
unless opA or stop are detected (see the lower self-loop on state 1). The occurrences of the operation opA are
replaced with the occurrences of the operation opAA (see the upper self-loop on state 1). While when a stop
operation is recognized, the edit automaton introduces an extra opAA operation before the stop operation and
goes back to state 0.
For example, the edit automaton in Figure 1 transforms the input sequence

opA; opA; opB; opA; opA; opC; stop
into the sequence

opB; opAA; opAA; opC; opAA; stop
When the edit automaton is used to specify how to enforce a policy for a given library, the input and output

operations are events that correspond to method calls and to the termination of methods execution. These
methods can belong to either the target library or to an object lifecycle (e.g., an activity).
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Model-Driven Software Development
Model-Driven Software Development (MDSD) is an approach for developing software by extensively exploiting
models [52]. MDSD extends the notion of models as a form of documentation, to consider them as artefacts
equivalent to code, since they can be used to automatically generate executable code.
Code can be generated from models by applying a series of transformations, which can be organized in

two logical sets: the implementation independent and the implementation dependent transformations. The
implementation independent transformations are applied to an abstract model of the system to obtain a more
concrete model that can be used as basis for code generation by applying the implementation dependent
transformations.
The abstract model expresses the semantics of the system regardless of the software platform used for its

implementation (e.g., Android, iOS, .NET, and so on). In general, the abstract model is at the same abstraction
level of classic analysis models but represents the behavior of the system extensively.
To apply MDSD a number of tools are necessary, including modeling, model validation, and code generation

tools. The modeling tools offer editors for the definition of the models using a domain specific modeling language
based, for example, on UML profiles. Model validation tools verify the correctness of a given model with respect
to a model domain-specific metamodel, which can be defined in a language such as OCL [42]. Code generation
tools transform models into executable code from a given model. Code generation can only work if the model is
correct with respect to the metamodel and therefore model validation is performed before code generation.

In our approach to the design of software enforcers, we implemented modeling tools to specify the enforcers,
and defined both domain independent and domain dependent transformations to automatically generate the
proactive modules that implement the behavior specified by the enforcers from the models.

Xposed
Xposed is a framework that can be installed in a rooted smartphone to allow users easily add modules that can
customize the features present in the smartphone [56]. There exists a number of standard modules ready to be
downloaded and installed.
In addition to using existing modules, it is possible to implement new modules while exploiting the core

capabilities of the Xposed framework, which include the ability to capture and modify the execution flow of
Android apps. This ability is achieved by intercepting class loading events. Every time a class is loaded, its code
can be instrumented on the fly before it is executed. The implementation of the module must specify the code
locations that must be instrumented and the code that must be inserted at these places, similarly to what is
done with aspect oriented programming [26] frameworks. We exploit this framework to implement the software
enforcers as Xposed modules.

3 RUNNING EXAMPLE
In this section, we present a motivating example based on an app for capturing pictures in Android, Plumeria,
that we downloaded from git (https://github.com/DonLiangGit/Plumeria). We selected this app because it is
simple, but yet complex enough to illustrate the key concepts related to proactive libraries.
Listing 1 shows a code-snippet of MyActivity, which is the Android activity that uses the Camera in

Plumeria. On startup, the callback method onCreate() is executed and a new Camera object is created by
method getCamera(), whose implementation acquires the backward camera of the device invoking the method
Camera.open(). The method Camera.open() is an Android library method that can be used to request the
access to the camera, while the corresponding library method for releasing the camera is Camera.release().
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The public list of issues for this app reports an incorrect use of the camera5. In fact, every time MyActivity
becomes invisible, the camera becomes inaccessible to the other apps of the device. The camera is not even
anymore accessible from Plumeria because when MyActivity is visible again, the onCreate() callback method
is executed, and the call to Camera.open() produces an exception, since the app is attempting to acquire a
camera that is already in use (by the app itself).

Listing 1. A code-snippet that shows the activity that handles the camera in Plumeria
...
public class MyActivity extends TabActivity {

private Camera camInstance;
...

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_my);

camInstance = getCamera();
cameraPreview = new CameraPreview(this, camInstance);
preview = (FrameLayout) findViewById(R.id.camera_preview);
preview.addView(cameraPreview);
...

}

public static Camera getCamera() {
Camera cam = null;
cam = Camera.open();
return cam;

}

...
@Override
public void onPause() {

super.onPause();
}
...

}

This fault is caused by the app that does not handle the access to the camera properly. In particular, the
onPause() callback method, which is invoked when the activity becomes invisible, does not invoke
Camera.release(), contrary to what is recommended in the Android API documentation6.
In the rest of the paper, we exploit this faulty app to present the concept of a proactive library and to show

how the proactive module associated with the Camera API may automatically detect and heal this problem.

4 PROACTIVE LIBRARIES
A proactive library is a reactive library augmented with one or more proactive modules. The reactive library is a
regular library that can be normally used as part of an application. In this paper we focus on Android libraries that
control access to resources but the concept is generally valid for any library. The proactive modules are software

5See issue https://github.com/DonLiangGit/Plumeria/issues/1.
6See https://developer.android.com/guide/topics/media/camera.html#release-camera.
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components that enforce correctness policies by altering executions, for instance by adding or suppressing method
invocations.

Although the modules are reactive per se, that is, they affect the execution when specific events are detected,
their behaviour is proactive with respect to the associated library. In fact, the proactive modules can modify the
executions regardless of the behavior of the library. In particular, proactive modules react to the behaviour of
apps and libraries. The behaviour of the apps is observed in terms of the callback methods that are executed.
Invocations to callback methods are calls produced by the framework (in this case the Android framework) to
methods implemented in the app for correctly handling lifecycle state transitions. For example, in Android there
are methods that are automatically invoked by the framework when an activity is suspended, destroyed, resumed,
and so on [3].
The behavior of the libraries is observed by observing calls to library methods, that is, calls to the methods

implemented by the reactive library.

Development

App App App

Android Libraries

Policy Enforcer

Android Libraries
Android Libraries

Library

…

Enforcement
Model

Correctness
Policy

Proactive
Module

Runtime

Modeling

Proactive
Module

Correctness
PolicyEnforcement

Model

Code 
GenerationDeployment

Fig. 2. Proactive Libraries.

Correctness policies specify how a library should be used by an app relating the status of the app, traced by
observing calls to callback methods, to the status of the library, traced by observing calls to library methods.
Correctness policies may potentially cover any aspect related to the usage of a library, including functional
correctness, privacy, and security aspects. In this paper we focus on a specific class of correctness policies that we
call resource usage policies. These are policies that state how the API interface of a library that controls the access
to a resource should be used to prevent any misuse of the resource, which may cause misbehaviors, failures and
crashes at runtime.
Note that in contrast to a regular reactive library, a proactive library may perform operations even when the

library is not in use. For instance, the invocation of a callback method may trigger the execution of a proactive
module, which may proactively perform some operations necessary to guarantee the correctness of the execution,
regardless the direct involvement of the library in the computation. Considering the running example, a proactive
module can fix the execution by forcing the release of the camera when MyActivity is no longer visible, that is,
when the onPause() callback method is invoked, and re-assigning the camera to the app when the activity is
resumed, that is, when the onRestart() callback method is invoked.
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Figure 2 visually illustrates how proactive libraries work, distinguishing the development and the runtime
phases. At development time, developers of proactive modules first identify the correctness policies that they want
to enforce. A correctness policy is a natural language statement that constrains the usage of the API, considering
the status of the app as captured by its lifecycle, if necessary. Any app that violates a correctness policy is faulty.
Examples of correctness policies, and more in particular resource usage policies since they refer to access to

resources, for the Camera Android library are:
Resource Usage Policy 1: “An activity that is paused while having the control of the camera must first
release the camera.”
Resource Usage Policy 2: “An app cannot acquire the camera twice.”

The first policy refers to both the status of the activity (an activity that is paused) and the usage of the API,
while the second policy only refers to the usage of the API. Both policies are valid for every app that may use the
camera. Note that the first policy is the one that should be exploited to heal the failure caused by the fault in the
running example.

Correctness policies are then formalized and encoded as enforcement models. An enforcement model precisely
defines how to react to any violation of the correctness policies. We use edit automata [31] to define the
enforcement models because they represent a simple finite-state based formalization that naturally supports
the specification of the behavior of the proactive module in terms of the events that must be intercepted and
the events that must be inserted and suppressed as a reaction to each intercepted event. The objective of the
enforcement model is to enforce a correctness policy, when the running apps do not satisfy it. The enforcement
model is defined uniquely using the knowledge of the library API and the Android lifecycle events (i.e., the
callback methods) [3], which are the same for any app. Thus its definition does not require any knowledge
specific to the app that uses the library. See Section 5 for details about how to define enforcement models using
edit automata.

An enforcement model fully describes the behavior of the corresponding proactive module, which can be thus
generated from the model. Proactive modules can be deployed in any environment where the corresponding
library is used. Since proactive modules are activated by the invocation of certain methods, their execution in
the user environment is controlled by a policy enforcer that intercepts the events and dispatches them to the
deployed proactive modules. The policy enforcer also controls the activation and deactivation of the proactive
modules, which can be turned off and on by the user. See Section 6 for details about how to generate and execute
a proactive module.

5 ENFORCEMENT MODELS
An enforcement model is a formal representation of the actions that must be undertaken to automatically enforce
a correctness policy, that is, the operations that must be executed to turn an execution that violates a policy
into an execution that satisfies it. In this paper, we focus on the Android ecosystem and on a specific class of
correctness policies, the resource usage policies, which state how an API that controls the access to a resource must
be used by apps. An interesting aspect about these policies is that the usage of a resource is strongly coupled with
the status of apps and their components, that is, depending on the state of an Android component as captured by
its lifecycle there are operations that must or must not be executed.

In practice, an enforcement model traces the state of the app by intercepting the system callbacks, for instance
the system callbacks can be used to uniquely identify the state of an activity according to the Android activity
lifecycle [3, 45], traces the state of the library by intercepting the calls to the library API methods, and specifies
the actions that must be proactively and automatically suppressed or inserted to enforce the satisfaction of a
possibly violated policy. The proactive module obtained from the enforcement model guarantees the satisfaction
of the policy at runtime, so that executions can be healed automatically.
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In the following, we discuss how edit automata can be used to specify enforcement models.

Policy Specification
An enforcement model formally defines the actions that must be automatically undertaken to enforce policies. In
the case of resource usage policies for the Android ecosystem, the enforcement models can mainly suppress and
insert actions of two kinds: callback methods and API methods. Callback methods are method calls produced
by the Android framework when an app changes its status. For instance, the callback method onStop() is
automatically invoked when the running activity of the app is no longer visible, while onDestroy() is invoked
when the activity is destroyed. The API methods are the methods implemented by the library associated with the
proactive module. In the running example, the methods open() and release() are API methods implemented
by the Camera.

0 1

a.onResume

2

c.open

c.release

a.onResume

a.onPause
a.onPause

c.open

c.release

a.onPause

c.release;a.onPause
3

a.onResume

a.onResume;e.resume

a.onCreate

a.onCreate

c.open
c.open

Fig. 3. Enforcement model for the Resource Usage Policy 1 of the Camera.

Figure 3 shows the enforcement model for the Resource Policy 1 of the Camera API reported in Section 4.
Compared to general edit automata, our enforcement models extend the standard notation to support three
aspects specific to our application context: prefixes, typed events, and special operations.
We use prefixes to disambiguate the element that performs the operation represented in the model. In this

example, the prefix a represents the Activity class, the prefix e represents the class that implements auxiliary
methods that can be invoked by the enforcer, and the prefix c represents the camera API. In the actual automata
editor the full name of classes is used as prefix of methods.

The events in the model could be of two types: events that identify the beginning of an operation and events
that identify the end of an operation. The type of an event can be distinguished based on its name: underlined
event names correspond to the end of an operation, while regular names correspond to the beginning of an
operation. For example, the outgoing transitions starting from state 0 in Figure 3 represent the beginning of
the execution of the callback methods onCreate and onResume, while the transition from state 1 to state 2
represents the completion of the execution of method open implemented by the camera.
This distinction is important to precisely represent the events that must activate the enforcers. For instance,

the enforcer must capture the beginning of onCreate and not its end to check if open is correctly invoked
during the execution of this callback method, that is, after onCreate begins its execution but before it finishes it.
Similarly, the enforcer must capture the conclusion of the callback method onPause from state 2 to detect the
case the resource has not been released, even while executing onPause.

Finally, the model may include events that are neither callback methods nor API methods but whose semantics
is known by the code generator. This capability is exploited to address cases that can be hardly managed within
the enforcer but that can be easily addressed with appropriate tool support. These events are represented with
the prefix e, to indicate enforcer methods, such as the event e.resume in Figure 3.
In this case, the event is used to activate a resume policy specific to the target resource. The policy could

be in principle explicitly encoded in the model, but this would unnecessarily complicate the specification of
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the enforcers. To address these cases, we rather extended the code generator with special operations of known
implementation that can be embedded in the generated code, as discussed in Section 6. In the context considered
in this paper, we used this capability only to support resume operations, since they may require the generation
of multiple code fragments that trace the values of the variables used in the implementation of the resume
procedure.

The example model in Figure 3 enforces the release of the Camera when the activity goes to background while
it still has the camera. In the initial state (state 0), the model waits for the creation of a new activity. Once the
activity has been created (state 1), the enforcer checks whether a camera is opened. If a camera is opened, the
enforcer checks that it is released before the activity is paused (transitions from state 2 to state 1 and from state 1
to state 0). In all these cases the execution is unaltered because the app would be using the camera consistently
with the policy that requires the camera to be released every time the activity is suspended.

However, the app might be paused without releasing the camera (transition from state 2 to state 3). In this
case the enforcer changes the execution forcing the release of the camera. When the execution of the activity is
recovered, the camera is reassigned back to the activity if the activity does not already take the camera back
autonomously (transitions from state 3 to state 2), so that the behavior of the enforcer is fully transparent to the
app.
Using edit automata to specify the behavior of a proactive module compared to directly coding the module

has several advantages: (1) it provides a compact representation of the enforcement strategy that can be more
easily manipulated and modified than working at the code level, (2) it can be used to automatically generate
an implementation of the enforcement strategy, reducing the risk of introducing faults and speeding up the
implementation process, and (3) it can be composed with other finite state specifications (e.g., the specification of
other policies, the app lifecycle, and the protocol of the API) to formally check its correctness [47].

6 GENERATION OF PROACTIVE MODULES
A proactive module is a software component that verifies the correctness of the execution according to the strategy
defined in an enforcement model. Since implementing proactive modules manually is an error prone and time
consuming process, we defined a Model-Driven Software Development (MDSD) process and the corresponding
tool chain to obtain proactive modules automatically from the enforcement models.
Our MDSD tool chain implements the core functionalities of a MDSD environment:
• Modelling, which provides the capability to model enforcement models that encode resource usage policies;
• Validation, which provides the capability to validate the syntactic correctness of an enforcement model;
• Code generation, which provides the capability to automatically generate the source code that implements
the enforcement logic described by the enforcement model;

• Compilation and deployment, which provide the capability to compile and deploy the generated proactive
module on a target platform.

We assigned these responsibilities to two main components: the EMEditor, which implements modelling and
validation capabilities, and the PMGenerator, which implements code generation, compilation, and deployment
capabilities.
Figure 4 shows the activities that a developer who uses our MDSD-based environment follows to define

enforcement models and generate the proactive modules. The developer uses the EMEditor to visually design a
model that enforces the considered policy. The output of the EMEditor is a validated enforcement model, which
is the starting point for the generation of the proactive module. The developer then uses the PMGenerator to
generate and deploy the proactive module corresponding to the input enforcement model. Code generation is
based on two sets of rules that distinguish the platform independent and the platform dependent part of the
process. In the following, we describe the EMEditor and the PMGenerator.
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Fig. 4. The end-to-end tool chain of our MDSD-based environment

6.1 EMEditor
We implemented the EMEditor in Eclipse [18] using the Eclipse Modeling Framework (EMF) [19] and the Graphical
Modeling Framework (GMF) [20] plugins. EMF can be used to create modeling and code generation tools starting
from a data model. GMF can be used to implement graphical editors in Eclipse. We thus created the EMEditor by
defining models in EMF and obtaining the corresponding graphical editors with GMF. Figure 5 shows the set of
models that we defined and combined.

The domain model is the meta-model that defines what enforcement models are. When the developers use the
EMEditor to define enforcement models they create instances of the classes defined in the domain model. Our
domain model is shown in Figure 6.
The EnforcerAutomaton is characterized by a name, a lifecycleObject that uses the API, and the API

that we want to be used correctly. The automaton is represented as a set of States connected by Transitions.
A State could be an InitialState or a RegularState. Transitions are annotated with both the name of
the operation that is intercepted, attribute interceptedAction, and the possibly empty sequence of actions that
are generated by the enforcer, attribute actionToPerform. Those two attributes are associated with two type
definitions that constrain the values of these strings according to a syntax that is checked by the editor. The regular
expressions associated with type definitions are not shown in the model, however an ActionSignature is
constrained to be a method name with a prefix that indicates whether the enforcer should intercept the execution
of the method when it is invoked (prefix before#) or when it returns (prefix after#). The ActionSequence
is constrained to be a comma separated sequence of action signatures.

We then derived the domain generation model from the domain model through a standard EMF model-to-model
transformation. This model enriches the domain model with additional information useful to the editor, such as,
the set of properties associated with each graphical element.
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Fig. 5. The models and their composition that define the EMEditor

Fig. 6. The domain model of an enforcement model defined with the EMF framework

To obtain the visual part of the EMEditor we exploited GMF, which can be used to generate an editor where
each entity of the model has a user-defined visualization. To define the editor with GMF we defined four models,
as shown in Figure 5.
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The graphical definition model associates a graphical representation with each element of the domain model
that must be displayed within the drawing sheet of the editor. In our case, we defined shapes for all kinds of
states and transitions.
The tooling definition model defines the palette and the other accessory tools, such as menus and toolbars. In

our case, we defined a palette with four tools: three tools to create states of two types (initial and regular) and
one tool to create transitions. We also included features provided by GMF, such as the ability to zoom in and out
and the possibility to add notes.
The mapping model defines how to obtain the components of the editor, that is, the diagram editor generator

model, by combining the domain model, the graphical definition model, the tooling definition model, and the
domain generation model. In practice the mapping model mainly associates the elements in the domain model
(i.e., states and transitions) with both the respective geometric shapes defined in the graphical definition model
and the palette tools defined in the tooling definition model. The constraints defined in the domain model (e.g., the
constraints on the annotations associated with transitions) are also propagated to the diagram editor generator
model. The mapping model includes additional constraints that verify the integrity of the model drawn in the
editor (e.g., the presence of an initial state and the existence of the Java methods specified in the model).

Finally, the EMEditor is automatically obtained from the diagram editor generator model using GMF, as shown
in Figure 5. Figure 7 shows the enforcement model corresponding to the one defined in Figure 3 drawn in the
EMEditor. The models can be saved as XML which are then processed by the PMGenerator.

Fig. 7. The enforcer corresponding to the model in Figure 3 modeled with the EMEditor.

6.2 PMGenerator
The enforcement model defined in the EMEditor can be used to generate the actual proactive module that is
deployed in the target environment to actuate the enforcement strategy. In this section, we first present the
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architecture of the proactive module, and then we describe how the components of a proactive module can be
generated automatically.

We designed the architecture of a proactive module to be generic, relying only on the possibility to implement
two features with the selected technologies in the target environment: (1) the ability to intercept method calls,
and (2) the ability to encapsulate the instance of the library controlled by the proactive module. These two
features can be obtained in many different ways with different technologies and in different environments. The
information about the specific technologies to use is encoded in the sets of rules used by the PMGenerator to
emit the proactive module.
To assess our approach, we implemented the PMGenerator for Android using Xposed [56], which allows to

cost-efficiently intercept method invocations and change the behavior of an Android app using run-time hooking
and code injection mechanisms. Figure 8 graphically illustrates the architecture of a proactive module instantiated
on Android.

Xposed transparently intercepts the method calls to the encapsulated resource and to the object life cycles and
propagates them to the policy enforcer, which reacts based on the behavior defined in the enforcement model.
For instance, it might introduce additional method calls or suppress calls.
Every interaction with the target library, including interactions originated from the app and from the policy

enforcer, is mediated by a resource manager. In this way, the reference to the target library is stored inside the
resource manager and it can be destroyed and recreated transparently to the app. This capability is sometime
relevant to the policy enforcer, for instance when there is an instance that must be destroyed and recreated to
release and acquire a resource. Similarly, the resource manager detects the identity of the Android component
that interacts with a given library instance, preventing the application of the enforcement strategies to cases not
supported. The resource manager is also injected in the application using Xposed to redirect method calls.

Activity
Life Cycle

Resource 
Life Cycle

r.open
r.release
...

a.onStop
a.onCreate
...

Proactive module

Policy
enforcer

Resource
manager

open
release
...

Fig. 8. The architecture of the proactive module

To automatically generate the proactive module from the model defined with the EMEditor tool, we used
Eclipse [18] augmented with the Acceleo [17] plugin, which is an open-source code generator for model-driven
development.

As shown in Figure 4, the code generation task uses two sets of rules that define how the resulting code should
be structured, distinguishing between the rules that depend on the target platform (e.g., Android and Xposed)
and the ones that are independent (e.g., rules that depend on the choice of the target language online).

The platform-independent rules map the elements in the enforcement model to an implementation in a given
target language. In our case, we use the switch-case design pattern [24] to properly organize the generated code
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Fig. 9. Logical structure of the implementation of an enforcer for Android

in a Java class. The platform-dependent rules generate the additional code necessary to intercept method calls in
the target environment (e.g., Android) with a given technology (e.g., Xposed).
Figure 9 shows the high-level structure of the file generated automatically for Android using the Xposed

framework. Each enforcer is a class with a single method (the code injecting method) that implements the code
injection logic. The method is invoked every time the device loads new packages. The initial part of the method
(check app identity) checks if the loaded package belongs to an app that must be affected by the enforcer, otherwise
it returns immediately. The rest of the code (inject data classes) injects auxiliary classes that might be used from
the code injected afterward, for instance the implementation of the resume operation in the running example.

The code injecting method then includes a series of blocks that inject code in the individual classes that must
be instrumented (hooking class methods). Each block looks for the class to instrument first, and then injects
specific behaviours that are executed before (before method code) and after (after method code) the target method
is executed. The injected code fragments are themselves defined as methods that are executed before or after the
target method.

Listing 2 shows an excerpt of the code corresponding to the model in Figure 3 generated by the PMGenerator.
The blue underlined code is the code obtained with platform independent rules.

The handleLoadPackage() method is the method responsible for instrumenting the loaded packages. The
invocations to findClass search for the classes that are specified in the model and that must be instrumented.
The getAppClassesFromDex extracts the classes in the application package. In the cycle that iterates over these
classes, the code checks if the class in the app package is the same or a subclass of the classes that have to be instru-
mented. If the class has to be instrumented, the findAndHookMethod invocation identifies and instruments the
target methods. For instance, the sample code instruments the openmethod of the android.hardware.Camera
class and its subclasses, and the onPause method of the android.add.Activity class and its subclasses.
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Listing 2. A code-snippet of the proactive module corresponding to the enforcement model in Figure 3
public class CameraReleaseEnforcer extends IXposedHookLoadPackage {

...
public void handleLoadPackage(XC_LoadPackage.LoadPackageParam lpparam) throws Throwable {

...
Class<?> apiClass = findClass("android.hardware.Camera", lpparam.classLoader);
Class<?> lifeCycleObjectClass = findClass("android.app.Activity", lpparam.classLoader);
ArrayList<Classes<?>> appClasses = getAppClassesFromDex(lpparam);
...
for (Class<?> appClass : appClasses) {

...
if(apiClass.isAssignableFrom(appClass)){

findAndHookMethod(appClass, "open", new XC_MethodHook() {
...
protected void afterHookedMethod(MethodHookParam param) throws Throwable {

...
//transition from state 1 to state 2 (camera open)
if (S1.equals(currentStates.get(lifeCycleObject))) {

currentStates.put(lifeCycleObject, S2);
}
...

}
});
...

}
...
if(lifeCycleObjectClass.isAssignableFrom(appClass)){

findAndHookMethod(lifeCycleObjectClass, "onPause", new XC_MethodHook() {
...
protected void afterHookedMethod(MethodHookParam param) throws Throwable {

...
//transition from state 2 to 3 (activity on pause)
if (S2.equals(currentStates.get(lifeCycleObject))) {
doNotAlterateExecution = true;

Camera resource = lifeCycleObject2resource.get(lifeCycleObject);
saveCameraState(resource, lifeCycleObject);
resource.release();
doNotAlterateExecution = false;
currentStates.put(lifeCycleObject, S3);

}
...

}
});
...

}
}

}
}

, Vol. 1, No. 1, Article . Publication date: November 2019.



Controlling Interactions with Libraries in Android Apps Through Runtime Enforcement • :17

When a method is instrumented, the body of the method findAndHookMethod may contain the
beforeHookedMethod and the afterHookedMethod inner methods, which define the operations that must
be executed before and after the target method, respectively.
The structure of the enforcer discussed so far is the result of rules that depend on the target platform. The

body of the beforeHookedMethod and afterHookedMethod however may derive from rules of both kinds.
The code that depends on the platform is the one that retrieves and stores variables from data structures to make

them accessible by the code generated from the enforcement model, such as the code that retrieves the current
state of the enforcer (currentStates.get(lifeCycleObject)) and the code that retrieves the resource
associated with the current activity (resource = lifeCycleObject2resource.get(lifeCycleObject)).
Note that the implementation stores and retrieves this information while taking into account the mapping
between the activity, the resource manipulated by the activity, and the enforcer that controls that interaction (a
different enforcer instance is created for each pair activity-resource).
The rest of the code is generated from the enforcement model only. The code that derives directly from the

model could be as simple as changing the current state only, such as for the afterHookMethod of the open
method, or it might be more complex. For instance, the afterHookMethod associated with the onPausemethod
generates an additional method call (resource.release) to force the release of the camera. The code also
includes statements to avoid that the enforcer intercepts the calls produced by the enforcer itself (see usage of
variable doNotAlterExecution) and code to store variable values to later enable the possibility to resume the
resource.
Once the file has been generated, it can be compiled and deployed on the target platform. Our MDSD-

environment exploits Gradle to import the generated source file in an Xposed project defined in Android
Studio IDE [5]. Our prototype implementation of the tool can be downloaded from https://gitlab.com/learnERC/
proactivelibrary.
Note that the entire process is independent on the apps that will be affected by the enforcers. In fact, our

MDSD-environment does not require to know the identity of the apps that may violate a policy but only the
library API involved in the policy that must be enforced. The target apps are identified by the user when enabling
the enforcement mechanism for one or more target apps. The enforcement mechanism checks the identity of the
app in the check app identity step before the rest of the enforcement logic is applied. If the app is not among the
ones to be enforced, its behavior is not modified.

7 EVALUATION
To evaluate proactive libraries, we considered three research questions, one about the effectiveness, one about
efficiency, and one about the usefulness of the MDSD environment.

RQ1 (effectiveness): Can proactive libraries be used to detect and heal actual library misuses in Android applications?
With this research question, we evaluate the effectiveness of proactive libraries against actual problems reported

in Android apps. As discussed in the paper, we focus on the misuses of the APIs that control the access to local
resources because these misuses are quite frequent [6, 34, 55], and may have a significant impact on the system,
for instance affecting the other non-faulty apps that run in the same device and use the same resources.

RQ2 (efficiency): What is the overhead introduced by proactive libraries compared to traditional reactive libraries?
With this research question, we measure the runtime overhead that can be experienced when the proactive

modules are active compared to the standard configuration that executes the reactive libraries only.

RQ3 (usefulness): Can developers conveniently obtain proactive modules using the MDSD environment?
With this research question, we compare the effort needed to obtain proactive modules using the MDSD

environment that we defined to the effort needed to directly implement them in Java.
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Table 1. Apps

App Name Version Type Downloads Last Update Links

AndroidHacks N/A open source - 2018 https://github.com/YingVickyCao/AndroidHacks/

BlueChat 1.1 open source - 2016 https://f-droid.org/wiki/page/com.alexkang.bluechat

CheDengWo 2.4.4 closed source 2.3 millions 2018 https://www.qimai.cn/andapp/downTotal/appid/4676

ErWeiMaL 1.0 closed source 4.2 millions 2015 http://apps.wandoujia.com/apps/com.weilaifu.qrcode

FontMaster 4.3.9 closed source 894 millions 2018 https://www.wandoujia.com/apps/com.zhiqupk.ziti
https://www.qimai.cn/andapp/downTotal/appid/607

Foocam 1.2 open source 100+ 2017 https://play.google.com/store/apps/details?id=net.phunehehe.foocam2

FromCat 580 closed source 20,000 2016 https://www.qimai.cn/andapp/downTotal/appid/143359

GetBackGPS 0.4.1 open source - 2019 https://ruleant.github.io/getback_gps/

IPST2 N/A open source - 2017 https://github.com/fRueD4096/IPST2

MaMa 1.0 closed source 10,000+ 2015 https://www.qimai.cn/andapp/downTotal/appid/881807

QiCaiScan 1.0 closed source 19,300+ 2018 https://www.qimai.cn/andapp/downTotal/appid/151774

SuperTorch 3.2 closed source 17.9 millions 2015 https://www.wandoujia.com/apps/com.idiantech.torch
https://www.qimai.cn/andapp/downTotal/appid/25771

WebPCsuite 3.1.6 closed source 1.5 millions 2016 https://www.appsapk.com/web-pc-suite/
https://apk-dl.com/web-pc-suite-file-transfer/com.geeksoft.wps

WiFiSaver N/A open source - 2018 https://github.com/FilipBanak/WifiSaver

XiaoMiWifi 1.1.755 closed source 32.9 millions 2018 https://play.google.com/store/apps/details?id=com.xiaomi.router
https://www.qimai.cn/andapp/downTotal/appid/1463

To investigate these three research questions, we selected a set of Android apps that have been reported to be
affected by API misuses. In particular, we selected all the apps from the benchmark that Liu et al. [34] used to
evaluate their static analysis technique for the detection of resource leaks. This consists of 9 closed-source apps
and 3 open-source apps. We extended this set with 3 open source apps from GitHub for a total of 15 real-world
Android apps. Table 1 lists all the apps, reporting their name (column App Name), version name when available
(column Version), the type of app (column Type), the number of downloads of the app for the ones available on a
store (column Downloads), the year last time the app has been updated either on the open source repository or on
its online store (column Last Update), and the link to download the app from either the open source repository or
the app store (column Links). The apps are from a variety of domains, including communication and productivity,
are quite popular, and still maintained. All these apps use resources and have been reported to be potentially
affected by a total of 27 resource misuses spanning 12 different resources, including the Media player, the Camera,
and the Location manager.
For each case, we used Appium [21], a test automation tool for mobile apps, to manually implement an

automatic test case that reproduces the sequence of actions that has been reported to produce the misuse. All
the executions have been performed on an actual smartphone: the Samsung Galaxy S5 smartphone running the
Android 6.0.1 Marshmallow mobile platform, equipped with a 2.5 GHz quad-core Snapdragon 801 system-on-chip,
2 GB of RAM, and 16 GB of internal storage.

RQ1 - Effectiveness
To evaluate the effectiveness of proactive libraries, we first identified the usage policies relevant to the APIs
involved in the reported misuses and we then defined the corresponding enforcement strategies. To identify the
policies, we exploited the information about the use of the Android API reported in [4, 34, 55]. Each enforcement
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Table 2. Effectiveness of Proactive Libraries

APP Lifecycle Object API Usage Policy Policy Violation

AndroidHacks Activity android.app.Activity If managedQuery() is invoked, replace
it with query() of ContentResolver healed

BlueChat Activity android.bluetooth.BluetoothAdapter If enable() is invoked, invoke
disable() when onDestroy() healed

CheDengWo Activity android.media.MediaPlayer If <init>is invoked, invoke
release() when onPause healed

ErWeiMaL Activity android.media.MediaPlayer If <init> is invoked, invoke
release() when onPause healed

FontMaster Activity android.util.LruCache If <init> is invoked, invoke
evictAll() when onDestroy() healed

Activity android.hardware.Camera If open() is invoked, invoke
release() when onPause()

no
violationFoocam

Activity android.hardware.Camera If startPreview() is invoked, invoke
stopPreview() when onPause() healed

Activity android.media.MediaPlayer If create() is invoked, invoke
release() when onPause healed

FromCat
MediaRecorder android.hardware.Camera If MediaRecorder.start() is invoked,

do not invoke lock()
no

violation

Activity android.hardware.SensorManager If registerListener() is invoked, invoke
unregisterListener() when onPause()

no
violation

Activity android.location.LocationManager If requestLocationUpdates() is invoked,
invoke removeUpdates() when onPause()

no
violation

Activity android.os.RemoteCallbackList If register() is invoked, invoke
unregister() when onPause()

no
violation

Service android.hardware.SensorManager If registerListener() is invoked, invoke
unregisterListener() when onDestroy()

no
violation

Service android.location.LocationManager If requestLocationUpdates() is invoked,
invoke removeUpdates() when onDestroy()

no
violation

GetBackGPS

Service android.os.RemoteCallbacklist If register() is invoked, invoke
unregister() when onDestroy()

no
violation

IPST2 Resources android.content.res.Resources If getDrawable is invoked, replace it with
getDrawable of AppCompatDrawableManager healed

MaMa Activity android.media.MediaPlayer If <init> is invoked, invoke
release() when onPause healed

Activity android.hardware.Camera If open() is invoked, invoke
release() when onPause() healed

Activity android.hardware.Camera If startPreview() is invoked, invoke
release() when onPause() healedQiCaiScan

Activity android.media.MediaPlayer If <init> is invoked, invoke
release() when onPause

no
violation

Activity android.media.MediaPlayer If <init> is invoked, invoke
release() when onPause healed

SuperTorch
Activity android.location.LocationManager If requestLocationUpdates() is invoked,

invoke removeUpdates() when onPause() healed

Activity android.media.MediaPlayer If <init> is invoked, invoke
release() when onPause healed

WebPCSuite
Activity android.os.PowerManager.WakeLock If acquire() is invoked, invoke

release() when onPause() healed

WiFiSaver Service java.lang.Thread If <init> is invoked, invoke
interrupt() when onDestroy healed

Activity android.net.wifi.WifiManager.MulticastLock If acquire() is invoked, invoke
release() when onDestroy()

no
violationXiaoMiWiFi

Service android.net.wifi.WifiManager.MulticastLock If acquire() is invoked, invoke
release() when onDestroy() healed
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strategy has been codified as an edit automaton using the EMEditor and finally turned into a Java proactive module
with the PMGenerator. The code generated for the proactive modules ranged from 1K lines of code in the case of
android.os.PowerManager.WakeLock to 2K lines of code in the case of android.media.MediaPlayer.
Quantitatively most of the code has been generated by the platform dependent rules.

To study the effectiveness of the proactive modules, we executed the test cases that should produce the misuses,
and checked whether the misuses have been automatically detected and healed by the proactive modules. Table 2
reports the results. Column APP indicates the name of the Android app used in the evaluation. Columns Lifecycle
Object and API indicate the Android component that has been reported to misuse the API and the API that has
been reported to be misused, respectively. Note that each API maps to a different local resource.

Column Usage Policy indicates the policy that has been reported to be violated by the app. We have written the
policies in the forms “if methodA is invoked, invoke methodB when callback”, “if methodA is invoked, replace
it with methodB”, and “if methodA is invoked, do not invoke methodB”. The first policy should be interpreted
as: if the app invokes methodA, it should also invoke methodB when callback is produced by the Android
framework, unless methodB has been already invoked before. This policy requires interrupting any ongoing
usage of a resource if certain events occur, such as the suspension or destruction of the current activity. The
second policy should be interpreted as: if the app invokes methodA, the call should be replaced with a call
to methodB. This policy requires replacing calls to faulty or deprecated methods with calls to methods that
properly implement the required logic. The third policy should be interpreted as: if the app invokes methodB
after methodA, suppress the call to methodB. This policy prevents the violation of API usage protocols.

Column Policy Violations indicates the effect of the proactive modules on the execution: healed indicates that
the execution has been automatically corrected, while no violation indicates that the policy has not been violated
by the execution. In none of the cases the proactive modules fail to heal an execution that violates a resource
usage policy. This result confirms the effectiveness and suitability of proactive modules to enforce correctness
policies.
It is worth discussing the ten cases where no violation has been detected. In the case of the fooCam app, the

camera release policy has been reported as violated in [34], where a static analysis tool is exploited to detect
erroneous accesses to resources. We discovered that this case in reality is a false positive produced by static
analysis. The path that may violate the resource usage policy is infeasible, thus it can be never executed. This
case is correctly captured by the enforcement model that does not report any violation when the app is executed,
contrary to static analysis. Similarly, FromCat and QiCaiScan apps happened to use the camera properly.

In the cases belonging to GetBackGPS and XiaoMiWiFi, which were also reported as violating the corresponding
resource usage policies in [34], we found out that they are not actual policy violations. In these four cases Android
activities do not violate any policy because the resources are in reality acquired and released by Android services,
which are usually used to perform long-term operations in background. Enforcing the release of the resources in
these situations would produce misbehaviours since resources would be released while they are still in use by
services. Our proactive modules for activities correctly captured this situation. To confirm this result we also
generated the proactive modules checking that Android services acquire and release the resources properly and
no violation has been reported.

RQ2 - Overhead
To measure overhead, we measured the time spent to run each test case, when proactive modules are active and
when they are not. In the case of apps with multiple policies to be enforced, the experiment was conducted by
activating all the proactive modules applicable to the app. For example, in the case of Foocam, there are two
modules that act at the same time when the activity is paused: one to enforce the release of the camera, and the
other to enforce stop capturing and drawing preview frames.
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Fig. 10. Distribution of execution time w and w/o proactive modules

In addition to study the scalability of the approach, we measured how the overhead increases for an increasing
number of monitored events. For this task, we selected the app whose proactive modules introduced the highest
overhead, that is Bluechat, and we deployed an increasing number of enforcers. We measured the overhead for
every configuration and report the results.

Figure 10 shows the overhead measured when the proactive modules that enforce the policies listed in Table 2
are active with a box plot. Each box represents a population of 10 samples obtained by running the same test case
10 times. We put next to each other the two sets of executions that we collected: the box labeled with w/o shows
the runtime cost for the samples collected without activating the proactive module, while the box labeled with
shows the runtime cost for the samples collected when the proactive module is active.
We can notice that in most cases the use of proactive libraries does not generate any measurable overhead.

This is confirmed with an ANOVA test that only reports the app as a significant factor (p-value = 2e−16) and
reports the presence of the proactive module as largely non-significant (p-value = 0.99). Overhead is low because
the enforcement models for the majority of the cases leave the input unaltered or perform very simple operations.
Considering all 15 apps we have an average overhead of 2%, even if in several cases (7 out of 15 apps) we have
multiple modules active at the same time: 2 proactive modules for Foocam, FromCat, SuperTorch, WebPCSuite, and
XiaoMiWiFi, 3 proactive modules for QiCaiScan, and 6 proactive modules for GetBackGPS.
In the worst case we reported an overhead equals to 6% (the actual overhead was 52ms in the context of

a functionality that required 858ms to complete), which is still an amount of overhead that can be hardly
perceived [10]. The fact that the overhead introduced with the proactive modules does not introduce significant
differences in the execution time of the apps has been confirmed with an ANOVA test that revealed no significant
differences (with a significance level equals to 0.05) between the app with and without the enforcers running.
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Fig. 11. Overhead vs number of proactive modules

Figure 11 shows the overhead (y axis) observed for an increasing number of proactive modules deployed on
the app (x axis). Each box is the result of 10 executions. It is possible to notice how the approach scales well
with the deployment of multiple proactive modules and thus the monitoring of many events. The presence of
the monitoring infrastructure causes a mean overhead around 5% already when a single proactive module is
deployed. The overhead however growths smoothly with the number of active modules. Indeed it is only slightly
higher when 60 enforcers have been deployed reaching a mean value around 12%. This result shows that the
approach does not suffer any particular limitation in terms of the number of enforcement strategies that can be
simultaneously active.

Based on these results, we can conclude that enforcers can be feasibly used by final users to improve the
reliability of their environment.

RQ3 - Usefulness
To investigate if the modeling and code generation environment is actually useful compared to implementing
Xposed modules from scratch we defined an experiment involving human subjects. In particular, we involved
three developers who graduated from our department with different levels of experience with Android and
Xposed: an Experienced User with more than 1 year of experience with both Android and Xposed, a Moderately
Experienced User with some months of expertise with both Android and Xposed, finally a Novice to Xposed user
with years of expertise of Android development but only a 15 minutes training on Xposed.

After a 15mins debriefing on edit automata and our modeling environment, we asked each subject for each
app to first design the enforcement strategy in our MDSD environment and then implement the same strategy
with Xposed. We fixed a time limit of 3 hours for each task. Note that this setting is very favourable to the
implementation of the modules directly with Xposed because the design effort necessary to identify the right
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Table 3. Effort comparison

Subject App Lifecycle Object Policy Time with MDSD Time with Xposed

Experienced User
SuperTorch Activity If <init>is invoked, invoke

release() when onPause 15 min 2 h 51 min

WiFiSaver Service If <init>is invoked, invoke
interrupt() when onDestroy 16 min 2 h 25 min

Moderately Experienced User
SuperTorch Activity If <init>is invoked, invoke

release() when onPause 32 min >3h

WiFiSaver Service If <init>is invoked, invoke
interrupt() when onDestroy 25 min >3h

Novice to XPosed
SuperTorch Activity If <init>is invoked, invoke

release() when onPause 45 min >3h

WiFiSaver Service If <init>is invoked, invoke
interrupt() when onDestroy 15 min >3h

strategy is entirely spent in themodeling phase andwhen using Xposed the subjects already know the enforcement
strategy they have to implement. Each subject worked on two apps and two policies, one policy that refers to
Android activities and one policy that refers to Android services. To prevent human subjects from being tired
while performing their tasks, the four tasks have been performed over four days, one task per day. We measure
the time required to complete the task in the two cases for each subject. Finally, note that the human subjects had
to use the actual apps only to validate their implementation, which can be anyway designed and implemented
(generated in the case of our MDSD environment) regardless of the target app. In fact, the enforcement strategies
require no information about the target apps that may violate the policies.
Table 3 reports the results. When using our MDSD environment, all the subjects managed to obtain correct

enforcers in less than 1 hour, with the experienced user completing the task faster than all the other subjects. On
the contrary only the experienced user managed to implement correct enforcers in less than three hours when
using Xposed. This is mainly due to the complexity of the interactions between the monitored components, which
is well abstracted in our modeling environment. In fact, the implementation has to deal with aspects such as
tracing the identity of the components that interact with the considered APIs, transparently resuming resources
that have been released, and avoiding the interference between the activity of the enforcer and the Xposed
module. We can finally notice that although the experienced user finally obtained the module programmatically,
he needed an order of magnitude more time than the time needed using our MDSD environment to achieve it.
These results suggest that our MDSD environment provides a proper abstraction of the problem of designing an
enforcement strategy and it can be useful to experienced users, to quickly obtain enforcers that can be deployed,
and to both moderately experienced and novice users, who can more easily approach the technology.

Threats to Validity
The main internal threats to validity of our experiments relate to the definition of the enforcement model. In RQ1
and RQ2 we studied the applicability of proactive libraries using enforcement models designed by us. Although
the enforcement strategies that we used are not particularly sophisticated at the model level, different users may
design different strategies. To mitigate this issue we investigated the design of enforcement strategies with RQ3.
All the subjects produced the same enforcement strategy consistently with the one designed by us when using
our MDSD tool. In the case of the overhead, we further mitigated the issue by studying the scalability of the
approach with respect to a number of configurations.
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The investigation of RQ3 required the involvement of developers. To mitigate the issue about the background
knowledge of the developers, we controlled this factor explicitly. To derive a worst case result, we also designed
our study such a way that the developers implementing the Xposed modules already know how the enforcer
should behave based on their experience with the MDSD tool. In reality the gap between subjects who use our
modelling environment and subjects who implement modules directly would be higher.
The main external threat to validity is about the generalizability of the results. We considered various apps,

faults, and strategies to mitigate this issue. The results that we achieved are quite consistent across cases so far,
thus we expect a good degree of generalization, while we cannot exclude the existence of cases that can challenge
our approach, as discussed in the next section.

Discussion
Proactive libraries can be a useful technology to deal with library misuses. In fact, if final users notice any
misbehaving app, they can activate the available proactive modules to increase the reliability of their apps at the
cost of introducing little overhead, as shown in our experiments. Note that these bugs may require a significant
amount of time to be fixed. Out of the three bugs affecting open source apps, two of these bugs are still open at
the time the paper was submitted and one bug has been fixed after 2 years and 3 months.

The evaluation confirmed the generality of proactive modules. In fact, enforcement strategies are defined using
app-independent information only: information about the life-cycle of Android components and information
about the library APIs. As a consequence, a same policy is always addressed with a same proactive module, which
is reused across multiple apps. This is exactly what happened in our evaluation where we addressed the 27 cases
reported in Table 2 with only 19 proactive modules, always reusing a same module across different apps when a
same policy has been addressed.
Indeed proactive modules cannot be used to address any possible problem present in mobile applications. A

first limitation is the direct consequence of their quality of being app independent. Since a proactive module
relies uniquely on the library API and the app lifecycle events it can be applied to any Android app. On the other
hand, app independence has a cost, that is, proactive modules cannot be used to deal with problems that require
the knowledge of the app to be fixed, such as faults that do not imply any interaction with libraries but only
depend on the internal behavior of the app.

Proactive libraries, as demonstrated in the empirical evaluation, can deal with multiple Android components,
such as activities and services. The approach is not conceptually limited to these two components, but it can
deal with any component and class interacting with a library. A limitation of the current implementation of
our MDSD tool is that a same enforcement strategy cannot include multiple clients for a same library API. This
limitation can be eliminated by extending the language of the edit automata and the corresponding tool support.
Another source of limitation is the need of intercepting events at run-time to inject and suppress events. In

our prototype implementation we used Xposed, which requires rooting the device. This solution is not always
practical because users might be unhappy with this requirement. However, there are also other options to affect
the run-time behavior of apps. For example, apps can be instrumented in the smartphone, so that they can be
monitored and enforced without requiring rooting the device, as done in the work by Neisse et al. [41]. We are
considering this alternative implementation also for proactive modules.

Some events might be particularly hard to detect. For instance, peculiar app implementations such as the case
of apps that bypass a library API producing native calls would not be intercepted by a proactive module. In
general, the events that can be handled by proactive modules are either Java API calls or lifecycle callback events.
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8 RELATED WORK
Android is one of the most popular software ecosystems that allows developers to easily develop and distribute
apps, and allows users to easily retrieve and install applications. However, the development of reliable apps is
a complex task that has to face several challenges, such as the unpredictability and the high variability of the
environment [1, 39], the instability and rapid evolution of the software platform [32, 38], as well as the lack of
strong and reliable analyses and testing tools [23, 25]. This often results in poorly developed applications, which
may cause other apps or even the entire system to perform badly and crash.
In this paper we presented an approach that allows users to protect their environment from unreliable apps

that improperly use APIs by enforcing the correct usage protocols. There are three distinct areas of research
that are related to our contribution: detection of API misuses, incorrect resource management, and design of
self-healing systems.
API misuses. Failures caused by API misuses are very popular [2]. These failures have been proven to be

pervasive in software systems and different automated approaches are available to detect different types of
misuses [30, 37, 53]. However, it is still impossible to completely prevent API misuses, due to limitations of the
available techniques that can only detect specific classes of faults.
The presence of applications that incorrectly interact with an API could be further amplified by the rapid

evolution of APIs, in fact developers often struggle to adapt their software to the latest versions of libraries. These
problems are well-known to affect modern ecosystems, such as Android [14, 33]. The likelihood of encountering
any of these problems while using an app downloaded from a marketplace is further increased by the lack of
control over the process used to develop the apps available on the market. In fact, contributors are often more
focused on rapidly prototyping their apps than developing high-quality applications. In a nutshell, despite the
existence of techniques to assess interactions with APIs, problems due to API misuse are still often encountered
by users [6, 7, 51, 54, 55].
This paper proposes to increase the reliability of devices that use applications developed by potentially third

parties replacing traditional reactive libraries with proactive libraries, which can still be executed as reactive
libraries when needed. Proactive libraries can transform the interaction between an API and unsafe applications
to ensure that they do not violate usage protocols. This strategy can be effective in preventing multiple classes of
problems, especially those related to the use of resources.
The proactive libraries share the idea of extending libraries with ReBa [13], which is a technique for the

development of libraries augmented with adapters to ensure backward compatibility. However, ReBa and the
proactive libraries have different goals and adopt different solutions. ReBa addresses the problems introduced
by software evolution, while proactive libraries are a general mechanism for enforcing policies at runtime. In
addition, ReBa is purely reactive, while proactive libraries use proactive modules to timely take actions to ensure
correctness. Compared to a purely reactive solution, proactive modules can change executions more broadly by
accessing information that otherwise cannot be intercepted.
Bad resource management. Although the concept of proactive library is general, many of the cases studied in

the paper are about failures caused by bad resource management, such as apps that acquire and release resources
according to wrong patterns [6, 28, 34, 46, 55]. Although some of these problems may be discovered with ad-hoc
tests and static analysis techniques [6, 34, 55], it is generally difficult to eliminate resource management problems,
covering every possible situation, also considering the problem of fragmentation that affects Android [54]. In
addition, installing apps that misuse resources can also impact apps that properly interact with the same resources,
increasing the need for solutions that can operate in the device. Our empirical results suggest that the reliability
of interaction with resources can significantly improve if proactive libraries are adopted to replace reactive
libraries, thus providing to library developers and app users a solution that complements the in-house testing
and verification activities.
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Self-healing. Techniques for avoiding and mitigating the impact of failures have been studied in many different
contexts, including Web applications [35], cyber-physical systems [50], and Cloud computing [11]. Some tech-
niques have also explored the idea of detecting and reacting to wrong situations, for example by using exception
handlers [8, 9] and adapters [12]. However, only a few self-healing solutions have been designed to address an
environment with limited resources such as a mobile device.

The first results in the Android domain were mainly related to dynamic patch injection, automatic suppression
of faulty functionality, and healing of data loss problems. Dynamic patch injection can be used to quickly deploy
fixes in apps [40, 57]. However, since patches are produced offline, healing is only achieved with the intervention
of the developer, similarly to program repair techniques [22]. This mechanism can be useful to solve important
vulnerabilities, but it cannot be used for immediate and automatic healing of failing executions.

Automatic suppression mechanisms can be used to automatically detect crashes and avoid future occurrences
of the same crashes by bypassing the execution of features that caused the crash. [6]. This approach may be
useful in preventing further failures, but does not help with fixing problems.
Finally, healing of data loss problems provides a strategy to prevent any data loss due to an incorrect imple-

mentation of mechanisms to suspend and recover the execution of the apps [43, 48].
Compared to these techniques, proactive libraries provide a design solution that is complementary to mech-

anisms such as dynamic patch injection, and potentially more general than approaches that address specific
classes of failures, such as data loss problems.
It is worth mentioning that runtime enforcement in the Android environment has also been investigated by

Falcone et al. [16], but their approach does not take into account the idea of designing policy enforcers that
exploit the knowledge of general lifecycle events to increase the effectiveness of the enforcement strategies and
does not include automatic code generation.

Finally, there are different approaches for the automatic adaptation of the software running on mobile devices to
a changing context [15, 36, 49]. Although adaptation mechanisms are usually driven by the need for optimization
rather than failure, it might be possible to explore how to apply proactive libraries to enforce adaptation policies
rather than correctness policies.

9 CONCLUSIONS
Program libraries implement reusable functionalities that can be conveniently integrated into many different
applications. The correctness of this integration depends on the ability to satisfy the assumptions of the library,
usually consisting of constraints on when and how certain library operations can be performed. Unfortunately,
satisfying these constraints is not always easy. This might be due to the complexity of the APIs implemented by
the library, tacit assumptions about the library, and the complexity of the applications that use the library. For
example, Android apps are particularly prone to incorrect interactions with their libraries [6, 34, 54, 55].
To address this problem, we introduced the concept of proactive library, which combines a regular reactive

library with multiple proactive modules that can monitor executions and enforce correctness policies. These
policies define how a library should be properly used at runtime. Since proactive modules are monitors that can
alter executions according to a strategy, we propose to model their behavior as enforcement models, which offer
a natural formalism to represent how an execution can be modified by suppressing and inserting method calls.
We use a model-driven software development process to automatically generate the proactive modules from

models. In particular, we defined a code generation strategy that separates the code generated directly from the
model and the code that depends on the target platform. This allows the code generator to be extended to other
target environments while preserving the code generation rules that do not depend on the target platform.
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We evaluated our solution on the Android environment focusing on relevant classes of APIs and correctness
policies about access to resources. Results show that proactive libraries can effectively and efficiently enforce the
specified resource usage policies.
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