
UBITect: A Precise and Scalable Method to Detect
Use-before-Initialization Bugs in Linux Kernel

Yizhuo Zhai
yzhai003@ucr.edu
UC, Riverside

USA

Yu Hao
yhao016@ucr.edu
UC, Riverside

USA

Hang Zhang
hang@cs.ucr.edu
UC, Riverside

USA

Daimeng Wang
dwang030@ucr.edu

UC, Riverside
USA

Chengyu Song
csong@cs.ucr.edu
UC, Riverside

USA

Zhiyun Qian
zhiyunq@cs.ucr.edu

UC, Riverside
USA

Mohsen Lesani
lesani@cs.ucr.edu
UC, Riverside

USA

Srikanth V. Krishnamurthy
krish@cs.ucr.edu
UC, Riverside

USA

Paul Yu
paul.l.yu.civ@mail.mil

U.S. Army Research Laboratory
USA

ABSTRACT

Use-before-Initialization (UBI) bugs in the Linux kernel have se-

rious security impacts, such as information leakage and privilege

escalation. Developers are adopting forced initialization to cope

with UBI bugs, but this approach can still lead to undefined behav-

iors (e.g., NULL pointer dereference). As it is hard to infer correct

initialization values, we believe that the best way to mitigate UBI

bugs is detection and manual patching. Precise detection of UBI

bugs requires path-sensitive analysis. The detector needs to track

an associated variable’s initialization status along all the possible

program execution paths to its uses. However, such exhaustive

analysis prevents the detection from scaling to the whole Linux

kernel. This paper presents UbiTect, a UBI bug finding tool which

combines flow-sensitive type qualifier analysis and symbolic ex-

ecution to perform precise and scalable UBI bug detection. The

scalable qualifier analysis guides symbolic execution to analyze

variables that are likely to cause UBI bugs. UbiTect also does not

require manual effort for annotations and hence, it can be directly

applied to the kernel without any source code or intermediate rep-

resentation (IR) change. On the Linux kernel version 4.14, UbiTect

reported 190 bugs, among which 78 bugs were deemed by us as

true positives and 52 were confirmed by Linux maintainers.

CCS CONCEPTS

· Security and privacy → Operating systems security; Sys-

tems security.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409686

KEYWORDS

Use-before-Initialization, bug detection, type qualifier, symbolic

execution

ACM Reference Format:

Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun

Qian, Mohsen Lesani, Srikanth V. Krishnamurthy, and Paul Yu. 2020. UBI-

Tect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs

in Linux Kernel. In Proceedings of the 28th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’20), November 8ś13, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409686

1 INTRODUCTION

Linux kernels provide a secure foundation upon which services

for user applications can be built. However, security vulnerabil-

ities existing inside kernel code violate the security guarantees

that it intends to provide. Among such vulnerabilities, use-before-

initialization (UBI) is an emerging threat. A recent report from a

Microsoft security team shows that the number of patched UBI

bugs is similar to the number of patched use-after-free bugs [20].

UBI bugs open up significant security threats against the operating

system: they could enable attackers to take control over the entire

system [2, 7, 16, 33], leak sensitive information [15, 19], and can be

exploited using automated means [16].

Both static analysis and dynamic analysis have been applied to

detect UBI bugs. Modern compilers provide the -Wuninitialized

option to facilitate the detection of UBI bugs at compile time. Unfor-

tunately, due to its limited analysis scope (i.e., intra-procedural), this

cannot detect UBI bugs that involve multiple functions. In practice,

many UBI bugs do occur inter-procedurally. For example, objects

can be allocated in one function, initialized in another function,

and used in a third function. Static symbolic execution like that

in Clang static analyzer (CSA) [26], can perform more accurate

analysis, but due to the path explosion, its ability to perform inter-

module holistic program analysis is limited. Dynamic analysis used

in MemorySanitizer [25] and kmemcheck [27] can also detect UBI

221

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/3368089.3409686
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3368089.3409686&domain=pdf&date_stamp=2020-11-08

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

bugs, but their limited code coverage means that they will miss

many bugs.

Zeroing the allocated object is a popular mitigation strategy for

UBI bugs. For example, PaX’s STACKLEAK plugin [22] forces the ini-

tialization of kernel stacks during context switches between the

kernel and user space. UniSan [15] forces the initialization of mem-

ory objects that may be uninitialized and may leave the kernel

space (e.g., copy-to-user). SafeInit [19] does so for all stack and

heap variables. However, we point out that forced initialization can

only be used to mitigate information leaks, but not other types of

UBI bugs. The reason is that, the value 0 used for initialization may

violate a program’s semantics and lead to undefined behaviors. For

instance, initializing a pointer to NULL is sufficient towards prevent-

ing information leaks, but dereferencing a NULL-pointer results in

a different type of vulnerability viz., CWE-476 [3] (which is not

desirable in OS kernels). For normal data, a few patches we submit-

ted were also rejected due to incorrect initialization values. Based

on this observation, we conclude that a better way to mitigate UBI

bugs is to warn developers and let them decide upon the correct

initialization values.

There are two particular challenges for reporting UBI bugs to

developers. First, the Linux kernel has about 27.8 million lines of

code and so, the analysis must be scalable. Second, most UBI bugs

are path-sensitive, meaning that they can only be triggered if there

is a feasible path between the allocation site and the use site, along

which the involved variable will not be initialized. Because of these,

UBI bugs are uniquely challenging to comprehensively discover

and require inter-procedural path-sensitive analysis. We are not

aware of any such analysis scaling to the whole kernel.

Flow-sensitive static analysis and symbolic execution are two

state-of-art solutions that can help towards discovering UBI bugs.

Our evaluations show that the former method scales well but gen-

erates too many warnings to inspect manually. Moreover, there

are lots of false positives in those warnings. Symbolic execution

reports fewer false positives but suffers from path explosion.

In this work, we seek to address the aforementioned two chal-

lenges, and design a tool suitable for reporting UBI bugs for manual

inspection and fixing. To this end, we have developed UbiTect,

a tool that combines flow-sensitive type qualifier inference and

symbolic execution to find UBI bugs in the Linux kernel. In the first

stage, UbiTect uses a soundy [17] flow-sensitive, field-sensitive

and context-sensitive inter-procedural analysis to find potential UBI

bugs. For each potential bug, this step also generates a guidance for

path exploration, so as to avoid paths that will never reach the use

site or paths that will initialize the involved variable. In the second

stage, UbiTect uses under-constrained symbolic execution [23] to

find a feasible path according to the guidance. If a path is found,

UbiTect will report the bug together with the corresponding path

to make the manual inspection and fix easier.

We perform a thorough evaluation ofUbiTect on Linux v4.14 un-

der allyesconfig, which includes 16,163 files with 616,893 functions.

UbiTect reported 190 bugs, among which 78 bugs were deemed

by us as true positives, yielding a false positive rate of 59%. Among

true positives, we found that the corresponding code of 9 bugs have

been removed from the mainline kernel due to feature updates and

11 bugs were already fixed in the mainline. We submitted patches

for the remaining 58 bugs and 37 were confirmed and applied by

1 /* file: drivers/crypto/mv_cesa.c

2 * uninteresting code lines are omitted

3 */

4 typedef void (*crypto_completion_t)(

5 struct crypto_async_request *req, int err);

6

7 struct crypto_async_request {

8 crypto_completion_t complete;

9 };

10

11 static int queue_manag(void *data)

12 {

13 /* backlog is defined without initialization */

14 struct crypto_async_request *backlog;

15 if (cpg->eng_st == ENGINE_IDLE)

16 backlog = crypto_get_backlog(&cpg->queue);

17 if (backlog)

18 /* uninitialized pointer dereferenced! */

19 backlog->complete(backlog, -EINPROGRESS);

20 return 0;

21 }

Figure 1: A UBI bug in the Linux kernel. Variable backlog is

not initialized if (cpg->eng_st != EN’INE_IDLE). It allows arbi-

trary code execution once an attacker exploits the bug to

control the value left on the kernel stack.

kernel maintainers. In addition, based on these bugs, we apply some

intuitive heuristics and uncover 15 more bugs, thereby confirming

52 bugs in total. Details are provided in section 6.

Contributions In this paper, our contributions are as follows:

• Design.We design UbiTect, which combines scalable type qual-

ifier inference with symbolic execution to perform scalable and

precise detection of Use-before-Initialization bugs in the Linux

kernel.

• Implementation. We implement UbiTect on the LLVM 7.0.0

compiler toolchain and KLEE with 13,446 LoC. The tool is open

sourced [5].

• Results.UbiTect found 78 bugs in the v4.14 Linux kernel, where

11 were already fixed and 37 were confirmed by Linux maintain-

ers.

2 USE-BEFORE-INITIALIZATION BUGS

In this section, we highlight the severity of UBI bugs and the chal-

lenges in detection.

2.1 From UBI to Arbitrary Code Execution

The first example is a bug that was found in the queue_manag func-

tion (simplified in Figure 1) and patched in revision 1a92b2b. The

root cause for this bug is that the pointer backlog (line 14) is only

initialized (line 16) when (cpg->eng_st == ENGINE_IDLE).

Although this case is simple, it highlights the severity of the se-

curity impact of UBI bugs. The variable backlog belongs to the type

structure crypto_async_request, which contains a function pointer

complete (line 8). When backlog is left uninitialized, it could point to

an arbitrary memory location depending on what value was stored

222

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

at that address (&backlog) before, and backlog->complete could also

point to arbitrary code. Since backlog is allocated on the kernel

stack, by utilizing stack spray [16], an attacker can control backlog

and thus, the function pointer (backlog->complete). Consequently,

when this function is invoked at line 19, the attacker can achieve

arbitrary code execution.

In addition to control-flow hijacking attacks, an attacker can

also launch arbitrary reads and writes by overlapping attacker-

controlled data with uninitialized pointers (e.g., CVE-2010-2963 [7]).

Moreover, if a critical decision variable (e.g., authenticated) is unini-

tialized, an attacker can bypass security checks and induce other

unexpected control flows. A subsequent research effort has shown

that such attacks are practical and can be constructed in an auto-

mated manner [16].

2.2 Challenges in Detecting UBI Bugs

The key challenge in detecting UBI bugs is the need for high-

precision analysis (to reduce false positives), which can conflict

with our goal of scaling up the analysis to the entire Linux kernel.

Figure 2 depicts a good example: function vmw_translate_mob_ptr

takes three input arguments and an output argument *vmw_bo_p,

which is supposed to be initialized at line 16. Under normal cir-

cumstances (i.e., the lookup succeeds), *vmw_bo_p will be initialized.

However, when the callee enters an error related return path (line

15), *vmw_bo_p is left unchanged.

Need for Inter-procedural Analysis. A conservative intra-procedural

analysis can require that all the variables must be initialized at all

levels (e.g., both the pointer and the data the pointer points to),

when passed to a callee. However, since the callee may not ac-

cess all input arguments (e.g., when an error is returned at line

15), this requirement is too restrictive and will generate too many

false positives. Therefore, an inter-procedural analysis is necessary.

Moreover, since *vmw_bo_p is left unchanged upon an error return,

whether the actual argument is uninitialized or initialized depends

on the calling context (i.e.,whether the caller has already initialized

it). Hence, a context-sensitive inter-procedural analysis is prefer-

able. Similarly, since the callee may not access all the fields of an

argument (e.g., sw_context), performing a field-sensitive analysis is

preferable.

Needs for Path-Sensitive Analysis. Another interesting part of

this example is that the local variable (vmw_bo) is not initialized at

first (line 10), and may not be initialized if the call to the function

vmw_user_dmabuf_lookup fails (line 12). However, since

vmw_translate_mob_ptr() checks the return value to detect the error

(line 14-15), the uninitialized value will not reach a use (line 16).

Thus, in essence, having a data-flow between where the variable is

uninitialized and used, is a necessary condition for UBI bugs but

is not sufficient (i.e., , the corresponding execution path must be

feasible). Unfortunately, no path-sensitive analysis (e.g., dynamic

analysis) can scale to cover all the paths in the kernel. As a practical

compromise, UbiTect uses under-constrained symbolic execution

to verify the feasibility of a potential buggy path.

1 /* file: drivers/gpu/drm/vmwgfx/vmwgfx_execbuf.c

2 * uninteresting code lines are omitted

3 */

4 static int vmw_translate_mob_ptr(

5 struct vmw_private *dev_priv,

6 struct vmw_sw_context *sw_context,

7 SVGAMobId *id,

8 struct vmw_dma_buffer **vmw_bo_p)

9 {

10 struct vmw_dma_buffer *vmw_bo;// = NULL;

11 uint32_t handle = *id;

12 int ret = vmw_user_dmabuf_lookup(

13 sw_context->fp->tfile, handle, &vmw_bo);

14 if (unlikely(ret != 0))

15 return -EINVAL;

16 *vmw_bo_p = vmw_bo;

17 return 0;

18 }

Figure 2: An inter-procedural UBI bug in the Linux kernel.

Argument vmw_bo_p may remain uninitialized during error

return.

Figure 3: TheworkflowofUbiTect, "QI":Qualifier Inference,

"QR":qualifier requirements, "QU": qualifier updates

3 OVERVIEW

In this section, we show howUbiTect combines type qualifier infer-

ence and symbolic execution to detect UBI bugs. Figure 3 illustrates

the workflow of UbiTect and we will explain each component in

the following content. The design of the type inference will be

presented more formally in subsection 4.2.

3.1 Pre-processing

To make the analysis easier, UbiTect first compiles Linux source

code to its LLVM Intermediate representation (IR). To improve the

scalability of the type inference, UbiTect adopts the bottom-up

style inter-procedural analysis. To support the bottom-up style

analysis, the second step is to build the call graph of the whole

code base so as to (1) resolve indirect call targets, (2) build the

dependency tree between caller and callee(s), and (3) find potential

recursive chains.

223

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

3.2 Type Qualifier Inference

Type qualifiers have been used in previous works to detect secu-

rity bugs. For example, Johnson and Wagner [13] introduced two

qualifiers kernel and user to track the provenance of pointers (i.e.,

whether their values are controlled by user space) and find unsafe

dereferences of user-supplied pointers. In this work, we adopt the

flow-sensitive type qualifier inference [9] to detect UBI bugs.

From a high level, we introduce two new qualifiers: init and

uninit , where init ⪯ uninit (i.e., init is a subtype of uninit); and de-

fines the subtype relations between qualified types (e.g., init int ⪯

uninit int). Besides the trivial check that an expression of uninit

cannot be assigned to a location of init, UbiTect adds additional

checks/assertions to detect use of initialized variables:

• Only expressions of init type can be dereferenced; and

• Only expressions of init type can be used in conditional

branches.

UbiTect only considers those two assertions that capture UBI

bugs with security implications here and ignore other types of uses

of such variables. For example, adding two uninitialized variables

reflects an uninitialized usage, but is not security-critical.

Since the IR generated by the compiler does not contain any qual-

ifier, UbiTect performs automated inference to assign a qualifier for

every variable at every program point within a function, including

its argument(s) and return value(s). If UbiTect can successfully

infer all the qualifiers, then the analyzed function is free of UBI

bugs. Otherwise we find potential UBI bug(s) and the corresponding

guidance will be generated and passed to UbiTect’s symbolic exe-

cution engine. We will first explain how UbiTect infers qualifiers

within a function and generates function summaries; then we will

describe how inter-procedural qualifier inference works.

Intra-proceduralQualifier Inference.The intra-procedural qual-

ifier inference is done as follows. (1) UbiTect assigns each expres-

sion (LLVM value) with a symbolic type κ. (2) Along different types

of expressions, UbiTect generates subtyping constraints accord-

ing to rules in subsection 4.2. (3) When encountering the security

critical operations listed above, UbiTect enforces that the corre-

sponding expression has the concrete qualifier init . (4) UbiTect

resolves the symbolic types into concrete qualified types by solving

the constraints.

Take aa_splitn_fqname in Figure 4 as an example. At the en-

try of the function (line 6), ns_name and ns_len are assigned with

two symbolic types κ1 const char κ2 ∗ κ3∗ and κ4 size_t κ5∗.

Because ns_name (%2) and ns_len (%3) in basic block (BB) %7 are

dereferenced as pointers, the qualifier of the pointer should be

init . UbiTect can then resolve their qualified types at least to be

uninit const char uninit ∗ init∗ (initialized pointer to uninitial-

ized pointer to uninitialized constant char) and uninit size_t init∗

(initialized pointer to uninitialized integer).

Function Summaries Generations. After intra-procedural quali-

fier inference,UbiTect generates function summaries (FS) for every

function. Each function summary includes (1) qualifier require-

ments (QR) over the input arguments for the target function to be

invoked without triggering UBI bugs, (2) qualifier updates (QU) for

in and out parameters, and (3) qualifier of the return value.

Here, we continue using aa_splitn_fqname as an example and

focus on how we generate QR and QU for the input arguments

ns_name and ns_len. Let us assume that the actual argument types

are κ1 const char κ2 ∗ init∗ and κ4 size_t init∗, where κi is sym-

bolic (i.e., either init or uninit). By assigning the constant integer

to *ns_name (line 10) and *ns_len (line 11), their qualified types

will be updated to κ1 const char init ∗ init∗ and init size_t init∗.

However, when the control flow merges at basic block %8 before re-

turning, because these two variables are not written-to in the other

branch (when name == NULL), the updates to the qualifier when

aa_splitn_fqname returns will be decided by the least-upper bound

of κ2 and init (i.e., κ2 ∨ init), as well as κ4 and init .

To enable context-sensitive inter-procedural analysis, we keep

κ2 and κ4 as symbolic as łupdates to the parametersž in the function

summary, and calculate the actual updates according to the calling

context.

Inter-procedural Qualifier Inference. After we derive the sum-

mary of aa_splitn_fqname, we can proceed to analyze

aa_fqlookupn_profile. The arguments &ns_name (%4) and &ns_len

(%5) point to memory objects allocated on the stack and thus, the

qualified types areuninit char uninit ∗ init∗ anduninit size_t init∗.

Their qualified types are compatible with the QR generated above.

After invocation, according to the QU, their types remain the same

because when κ2 = uninit , uninit ∨ init = uninit .

When processing the if statement on line 22, UbiTect enforces

that the expression used as the branch condition has a qualifier

init . However, in aa_fqlookupn_profile, this subtyping constraint

cannot be satisfied because the qualified type of ns_name (%7) is

uninit char uninit∗. Due to this conflict, the inference module out-

puts a potential UBI bug on line 22 (BB %3) of aa_fqlookupn_profile.

Guidance for Symbolic Execution. To mitigate the path explo-

sion problem,UbiTect generates a guidance for the symbolic execu-

tion engine (SE). The guidance includes an avoidlist and a mustlist

of basic blocks. A basic block is inserted into the avoidlist when (1)

the involved variable is initialized or (2) the basic blocks can never

lead to the use site. A basic block is inserted into the mustlist when

(1) the involved variable becomes uninitialized or (2) the unini-

tialized variable is used. For the UBI bug detected above, UbiTect

passes SE a avoidlist containing %7 where the variable is initialized

and a mustlist containing %3 where UBI happens.

3.3 Symbolic Execution

After getting the guidance, UbiTect uses under constrained sym-

bolic execution to search for a feasible path (i.e., whose symbolic

path constraints can be satisfied) from the allocation site (i.e., the

entry of aa_fqlookupn_profile) to the problematic use site %3, while

avoiding %7. If a feasible path is found (e.g.,BB %3,%4,%8,%3),UbiTect

outputs a report for manual inspection, together with the path.

4 UBITECT DESIGN

This section describes the design details of UbiTect, including

points-to and aliasing analysis, the formalization of the type infer-

ence, and the symbolic execution engine.

4.1 Points-to and Aliasing Analysis

As a precursor to flow-sensitive qualifier inference [9],UbiTect per-

forms a flow-sensitive and field-sensitive intra-procedural points-to

224

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

1 /* file: security/apparmor/policy.c

2 * uninteresting code lines are omitted

3 */

4 const char *aa_splitn_fqname(

5 const char *fqname, size_t n,

6 const char **ns_name, size_t *ns_len) {

7 const char *name = skipn_spaces(fqname, n);

8 if (!name)

9 return NULL; //*ns_name is not initialized

10 *ns_name = NULL;

11 *ns_len = 0;

12 /* populate *ns_name */

13 return name;

14 }

15

16 int aa_fqlookupn_profile(struct aa_label *base,

17 const char *fqname, size_t n) {

18 const char *name, *ns_name;

19 size_t ns_len;

20 name = aa_splitn_fqname(fqname, n,

21 &ns_name, &ns_len);

22 if (ns_name) { // UBI!

23 //ns = aa_lookupn_ns(labels_ns(base),

24 //ns_name, ns_len);

25 }

26 return 0;

27 }

Figure 4: An inter-procedural UBI bug in the apparmormod-

ule and corresponding LLVM IR with control-flow graph.

analysis; specifically, towards this it applies standard data-flow anal-

ysis. For each statement, a points-to map is maintained and updated

according to the control-flow. This allows UbiTect to have differ-

ent points-to sets for the same pointer at different program points

(i.e., flow-sensitive).

Because type casting is common in the Linux kernel, the points-

to map tracks all variables and (field-extended) objects regardless of

whether their types are pointers or not. This allowsUbiTect to han-

dle (i) casting between pointers and integers and (ii) integer-based

pointer arithmetic. UbiTect also handles two types of castings that

are especially troublesome for points-to analysis: container_of and

casting from a void pointer. When handling such cases, UbiTect

dynamically extends the allocated object size (i.e., number of fields

in a struct type), if the destination type contains more fields than

the original object. Since such castings usually happen on function

arguments, this procedure enablesmore precise function summaries

which will be explained in subsection 4.3.

4.2 Qualifier Inference

Our qualifier inference component is an extension of the flow-

sensitive analysis by Foster et al. [9], and the inference rules for

basic expressions are the same. In addition, we consider pair types

which model the fields inside a C struct type and present their

corresponding type inference rules. Providing separate qualifiers

for elements of pairs (i.e., struct fields) is important as struct is

used extensively in the Linux kernel. More importantly, pointers to

struct are often passed between kernel functions, and whether a

field of a struct is or is not initialized is independent of the states

of the other fields in the struct.

Given a program in LLVM IR, we present a type qualifier in-

ference system to infer a qualifier (either init or uninit) for each

register variable (i.e., LLVM expression) and each field that belongs

to an allocated memory object. We perform the inference function-

by-function in a bottom-up fashion. If we can successfully infer the

qualifiers, then the analyzed function is correct; otherwise we find

potential UBI bug(s).

While we neither elaborate nor contribute to the sophisticated

theory behind type qualifiers here, we try to keep the narrative self-

contained by describing the notations and concepts applied in the

reference rules. Interested readers can refer to [9] for further details.

We retain the standard qualifier notation from Foster et al. [9], and

only present the type inference rules for pair expressions; the full

set of inference rules is available to the interested reader in the

supplementary material [4].

The subtyping relation between the two qualifiers is straightfor-

ward: init ⪯ uninit (i.e., init is a subtype of uninit), meaning that a

variable of init t could be valid wherever uninit t is expected, but

not vice versa. Defining the subtyping relations for qualified types,

and in particular qualified reference types, is subtle. Considering

the primitive type int, its subtyping relation of qualified int is:
Q ⪯ Q ′

Q int ⪯ Q ′ int

This means that if qualifierQ ⪯ Q ′, thenQ int is a subtype ofQ ′ int,

For instance, init int is a subtype of uninit int. When it comes to

references, the rule is more complicated. The following rule defines

the subtyping relation between qualified references.

225

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

Q ⪯ Q ′

Q ref (τ) ⪯ Q ′ ref (τ)

Specifically, it requires that the type of the (τ) to which the refer-

ences point, be the same.

4.2.1 Syntax. Our qualifier inference is performed on LLVM IR

after the alias analysis. For simplicity of the discussion, we use the

following abstract syntax following the one used in Foster et al. [9],

instead of the full LLVM IR syntax.

e := x | n | λL x : t . e | e1 e2 |

| refρ e | !e | e1 := e2
| ⟨e1, e2⟩ | fst(e) | snd(e)

| fst(e1) := e2 | snd(e1) := e2 |

| assert(e,Q) | check(e,Q)

t := α | int | ref (ρ) | t →L t ′ | ⟨t1, t2⟩

L := {ρ, .., ρ}

An expression e can be a variable x , a constant integer n, a function

λL x : t . e with argument x of type t , effect set L and body e . The

effect set, L, is the set of abstract locations ρ that the function

accesses, which is calculated as part of our alias analysis. A type t

is either a type variable α , an integer type int, a reference ref (ρ) (to

the abstract location ρ), a function type t →L t ′ (that is decorated

with its effects L) or a pair type ⟨t1, t2⟩. The expression e1 e2 is the

application of function e1 to argument e2. The reference creation

expression refρ e (decorated with the abstract location ρ) allocates

memory to store the value e . The expression !e dereferences the

reference e . The expression e1 := e2 assigns the value of e2 to

the location e1 points to. The expression ⟨e1, e2⟩ is the pair of e1
and e2. The expressions fst(e) and snd(e) are the first and second

elements of the pair e , respectively. The expressions fst(e1) := e2
and snd(e1) := e2 assign the value of e2 to the first and the second

elements of the location e1 points to, respectively.

Note that, following the style of Foster et al. [9], we use explicit

qualifiers to both annotate and check the initialization status of

expressions. The expression assert(e,Q) annotates the expression e

with the qualifierQ , which is used to manually annotate types (e.g.,

the from argument of copy_to_user). The expression check(e,Q) re-

quires the top-level qualifier of e to be at most Q . We automatically

insert the check(e, init) expressions by a simple program transfor-

mation before every security critical use to enforce the safety of

the operations. Specifically, we consider a pointer dereference (!e)

to be security critical; a similar connotation applies when e is used

as the predicate of a conditional branch.

4.2.2 Qualified Types and Type Stores. Given the subtyping rela-

tions, we now define the qualified types.

τ := Q σ

Q := κ | init | uninit

σ := int | ref (ρ) | (C,τ) → (C ′
,τ ′) | ⟨τ1,τ2⟩

C := ϵ | Assign(C, ρ : τ) | ...

η := 0 | 1 | ω

The qualified types τ can have qualifiers at different levels. Q can

be a qualifier variable κ or a constant qualifier init or uninit . The

flow-sensitive analysis associates a ground storeC to each program

point that is a vector that associates abstract locations to qualified

types. Thus, function types are now extended to (C,τ) → (C ′
,τ ′)

Int⪯

Q ⪯ Q ′

Q int ⪯ Q ′ int

Ref⪯

Q ⪯ Q ′

Q ref (ρ) ⪯ Q ′ ref (ρ)
Fun⪯

Q ⪯ Q ′ τ2 ⪯ τ1 τ ′1 ⪯ τ ′2 C2 ⪯ C1 C′
1 ⪯ C′

2

Q (C1, τ1) →
L (C′

1, τ
′
1) ⪯ Q ′ (C2, τ2) →

L (C′
2, τ

′
2)

Store⪯

τi ⪯ τ ′i ηi ⪯ η′i i = 1..n

{ρ
η1
1 : τ1, ..., ρ

ηn
n : τ1 } ⪯ {ρ

η′1
1 : τ ′1, ..., ρ

η′n
1 : τ ′n }

Pair⪯

Q ⪯ Q ′ τ1 ⪯ τ ′1 τ1 ⪯ τ ′2

Q ⟨τ1, τ2 ⟩ ⪯ Q ′ ⟨τ ′1, τ
′
2 ⟩

Figure 5: Store subtyping.

where C is the store that the function is invoked in and C ′ is the

store when the function returns.

To track when strong/weak updates should be performed, each

location in a storeC also has an associated linearity η that can take

three values: 0 for unallocated locations, 1 for linear locations (i.e.,

only point-to a single abstract location and thus, admits strong

updates), and ω for non-linear locations (i.e., can point-to multiple

different abstract locations and thus, only admits weak updates).

An abstract location is linear if the type system finds that it corre-

sponds to a single concrete location in every execution. An update

that changes the qualifier of a location is called a strong update;

otherwise, it is called a weak update. Strong updates can be ap-

plied to only linear locations. The three linearities form a lattice

0 < 1 < ω. Addition on linearities is as follows: 0+x = x , 1+ 1 = ω,

and ω + x = ω. The type inference system tracks the linearity of

locations to allow strong updates for only the linear locations.

Since a store C maps from each abstract location ρi to a type τi
and a linearity ηi , we write C(ρ) as the type of ρ in C and Clin(ρ)

as the linearity of ρ in C . Store variables are denoted as ϵ . We

use the following store constructor to represent the store after an

assignment expression as a function of the store before it.

Assign(C, ρ ′ : τ)(ρ) =



τ ′ where τ ⪯ τ ′ if ρ = ρ ′ ∧Clin(ρ) , ω

τ ⊔C(ρ) if ρ = ρ ′ ∧Clin(ρ) = ω

C(ρ) otherwise

Assign(C, ρ ′ : τ)lin(ρ) = Clin(ρ)

Assign(C, ρ : τ) overrides C by mapping ρ to a type τ ′ such that

τ ⪯ τ ′. (τ ′ can be any super-type of τ .) The condition τ ⪯ τ ′ allows

assigning a subtype τ of resulting type τ ′ to ρ. If ρ is linear then its

type in Assign(C, ρ : τ) is τ ′; otherwise its type is conservatively

the least-upper bound of τ and its previous type C(ρ).

The type inference system generates subtyping constraints be-

tween stores. We define store subtyping in Figure 5. Constraints

between stores yield constraints between linearities and types,

which in turn yield constraints between qualifiers and linearities.

The rule Int⪯ requires a corresponding subtyping relation for the

qualifiers of the type int. The rule Ref⪯ requires the same subtyp-

ing relation between qualifiers and further, the equality of the two

locations. The rule Fun⪯ requires the subtyping relation between

the top-level qualifiers, and contra-variance for the argument and

input store and co-variance for the return value and output store.

The rule Store⪯ requires both subtyping and stronger linearity

226

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

for corresponding locations. The rule Pair⪯ requires subtyping be-

tween the top-level qualifiers, and also subtyping for corresponding

elements of the two pair type.

4.2.3 Type Inference System. A type inference system consists a

set of rules which define the preconditions for each expression

(with the analyzed function) to be executed safely without UBI.

Such preconditions will impose subtyping constraints between each

expression. Anchored by the (automatically inserted) check(e, init)

and (manually inserted) assert(e, init) expressions, we can infer the

qualifiers of the remaining expressions. Again, if the constraints

are satisfiable, the analyzed function is free from UBI bugs and the

inference can succeed; otherwise there may exist UBI bug(s) and

the conflicting constraint(s) will reveal the reason.

Because the main difference between our system and the one in

Foster et al. [9], is field-sensitivity, we only present the rules for

the pair expressions in this Section (Figure 6). The complete set of

rules are in the supplementary material [4]. The judgments are of

the form Γ,C ⊢ e : τ ,C ′ that is read as: in the type environment Γ

and store C , evaluating e yields a result of type τ and a new store

C ′.

The rule Pair type-checks the expressions e1 and e2 in order

and results in an initialized pair type. The rule Fst checks that the

expression e is of a pair type and types fst(e) as the first element

of the pair type. The qualifier Q of the pair type is unconstrained;

qualifiers are only checked by the check expressions discussed

above. The rule FstAssign checks that the expression e1 is of a

reference type ref (ρ), the post-store C ′′ (after checking e1 and e2)

maps the reference ρ to a supertype of a pair typeκ ⟨α1,α2⟩, and the

type τ1 of e2 is a subtype ofα1. The resulting store remaps ρ to a new

pair type where the first element is the type of τ1 and the second

element is unchanged. We elide the rules for snd that are similar

to the rules for fst. The constraints generated by the new rules

Pair, Fst and FstAssign are type and store subtyping constraints

that were also generated by the basic rules. Further, by the rule

Pair⪯ , subtyping constraints between pair types are decomposed

into subtyping constraints between qualifier and simpler types that

are inductively decomposed into constraints between qualifiers

and linearities. Thus, the added inference rules do not increase the

complexity of the generated constraints.

4.3 Inter-Procedural Analysis

Given a function F in the call graph, after applying the type infer-

ence to each callee function separately, the summaries generated

for all of these are used in the analysis of the caller function F .

The function summary is represented as (1) the qualifier require-

ments for the input arguments (of the function), (2) the qualifier of

returned value, and (3) the updates to in and out arguments. The re-

quirements specify the weakest qualifiers for the formal arguments

that are necessary for the function to be invoked safely without trig-

gering any UBI bug. This means that if the actual arguments have

weaker qualifiers, UBI bug(s) may occur. The updates record the

qualifiers of outputs, which in the C language, are output pointer

arguments. To support context-sensitive inter-procedural analysis,

the updates and return value are polymorphic, i.e., based on the

qualifiers of the actual arguments from the callers, the qualifiers of

the outputs may change.

As shown in subsection 4.2, a qualified function could be repre-

sented in the format ofQ (C,τ) →L (C ′
,τ ′)whereQ is the qualifier

of the function object itself, C maps locations ρ to their types τ

before the function is called, τ is the parameter type, C ′ maps lo-

cations ρ to their (possibly) updated types τ after the function is

called, τ ′ is the return type, and L is the set of locations accessed by

the function. The concept is further exemplified by the following

example:

init ([ρ 7→ uninit int, ρ ′ 7→ init int], ref (ρ))

→{ρ,ρ′ }

([ρ 7→ init int, ρ ′ 7→ init int], init int)

It represents an (initialized) function that starts with a pre-store

where ρ is uninitialized and ρ ′ is initialized. The input is the refer-

ence for ρ, and the function accesses both ρ and ρ ′. The function

initializes ρ and leaves ρ ′ initialized. This function is summarized

as follows ś no initialization requirements for its parameter and one

update: update parameter ρ to initialized.

4.3.1 Calculating and Using Summaries. Requirements over input

arguments can be directly fetched from the inference result. While

updates are a little complicated, they are calculated as follows. For

any pointer argument, UbiTect maintains a copy of the alias set

of its abstract location at both the entry and exit of the function. If

the alias set changes, then the corresponding argument is updated

during the execution, and the output qualifier is the least-upper

bound of the qualifiers of all variables from the alias set at the exit

of the function. If the points-to set still contains the initial value

from the alias set at the entry of the function, then its qualifier is

kept as symbolic, so as to support polymorphism. For a concrete

example, please refer to section 3.

The qualifier of the return value is handled similarly: if it de-

pends on the qualifier of the input value(s), UbiTect keeps them as

symbolic so that the return value can have the appropriate qualifier

based on the calling context.

Using function summaries, the implementation of context-sensitive

inter-procedural analysis is straightforward.

• Inference constraints: Each actual argument must be a subtype of

the corresponding formal argument (i.e., requirements). Adding

this constraint allows us to (1) check if the callee can be safely

invoked (if not, type inference over the current function will fail).

and (2) automatically propagate the requirements from the callee

to the caller, in case the caller passes its argument(s) to the callee.

• Apply updates: After the invocation of a function, the qualifiers

of values inside the points-to set of pointer type argument(s) are

updated according to the updates. Further, the qualifier of the

value used to receive the return value is the same as the qualifier

of the return value.

• Indirect calls: For indirect calls, the actual arguments have to

satisfy the requirements of all possible call targets, and the up-

dates are conservatively calculated as the least-upper bound of

all updates.

4.3.2 Special Cases. There are some nuances that are associated

with summary-based inter-procedural analysis; here, we describe

two that we belive are important.

227

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

Pair
Γ, C ⊢ e1 : τ1, C

′
Γ, C′ ⊢ e2 : τ2, C

′′ κ fresh

Γ, C ⊢ ⟨e1, e2 ⟩ : init ⟨τ1, τ2 ⟩, C
′′

Fst

Γ, C ⊢ e : Q ⟨τ1, τ2 ⟩, C
′

Γ, C ⊢ fst(e) : τ1, C
′

FstAssign

Γ, C ⊢ e1 : Q ref (ρ), C′
Γ, C′ ⊢ e2 : τ1, C

′′ κ ⟨α1, α2 ⟩ ⪯ C′′(ρ) τ1 ⪯ α1 κ, α1, α2 fresh

Γ, C ⊢ fst(e1) := e2 : τ1, Assign(C′′
, ρ : ⟨τ1, snd(C

′′(ρ))⟩)

Figure 6: Type inference rules for the pair expressions (C struct fields).

Heap Objects. Because our points-to analysis is intra-procedural,

it cannot track aliases created or removed outside the current func-

tion. More importantly, the concurrent nature of the kernel also

makes it hard to precisely reason about the qualifier for heap data.

For example, thread A stores an initialized data to heap address

addrh ; however, when A tries to load from the same address, the

data may no longer be initialized because a concurrent thread B

could have written an uninitialized data to the same address. To

handle this, we (1) track the provenance of memory objects; any

object that is not allocated in the current scope is conservatively

considered to be a heap object (i.e., globally visible); and (2) enforce

a conservative rule for writing to heap objects: the variable has

to be fully initialized (i.e., with qualifier init); if the variable is of

pointer type, we also require that the data it points to are initialized.

By doing so, we can safely assume all data loaded from heap are

also initialized but false positives are introduced because of this

strategy.

Recursion. After building the call graph, we observed recursions

among functions calls. Fixed point analysis is adopted to handle

such recursions. Specifically, a function in the circular dependency

graph is randomly picked to start the qualifier analysis. For callees

whose summaries are not available, the subtyping constraints are

temporarily ignored. As a result, an imprecise summary of the as-

sociated function is constructed by the first-time analysis. Then

UbiTect moves on to analyze its callers using this imprecise sum-

mary. Following the dependency circle, the function is analyzed

again. Because this time the summaries of its callees will be avail-

able, despite being imprecise, a new summary would be generated.

This process is repeated until there are no changes to the summaries.

4.4 Symbolic Execution

Up to this point, the type qualifier inference reported all the sus-

picious UBI locations. Next, UbiTect uses under-constrained sym-

bolic execution to find true positives.

For each potential bug output by the static analysis module,

the symbolic execution (SE) module first links all the bitcode files

related to the bug. It then starts searching for a feasible path from the

beginning of the function where the involved variable is allocated.

During the exploration, the SE module will prune paths that include

any basic block in the avoidlist or paths that do not include all basic

blocks in the mustlist. In this way, type qualifier inference reduces

the searching space for SE and makes it more scalable.

Since a partial path (the portion between uninitialization and

use) is explored instead of a full execution path from entry to the

kernel (e.g., system call) to the use, some false positives could still

pass the filter. Similarly, false positives caused by an imprecise call

Table 1: LoC for different analysis of UbiTect.

Analysis Line of Code

Call Graph 708

Points-To 1,652

Alias 375

Qualifier Inference 4,460

Utility Functions 3,412

Symbolic Execution 2,839

Total 13, 446

graph (i.e., indirect call targets) will not be filtered. However, we

ensure that no true positives are wrongly excluded.

Finally, despite the use of under-constrained symbolic execution

and guided path exploration, due to path explosion and complex

path constraints, the tool may still take a long time and/or a large

amount of memory to verify a warning. To handle the large vol-

ume of warnings from the static analysis, we rank the remaining

warnings by łthe time taken to find a feasible path between the

uninitialization site and the use sitež. Our observations are (1) bug

reports with a feasible path are much easier for developers to verify

and (2) the less complex the path is, the sooner symbolic execution

will find it.

5 IMPLEMENTATION

UbiTect is built upon the LLVM compiler infrastructure. We adopt

the whole kernel analysis infrastructure from KINT [29] and modify

it tomatch the bottom-up analysis. Points-to analysis is based on the

structure analysis code from [1] while under-constrained symbolic

execution stands on KLEE [6]. Overall, 13,446 LoC are added, the

distributions of which are shown in Table 1.

We manually summarize 26 functions from three major cate-

gories. (the reasons for doing so are provided within the discussion

pertaining to each category):

• LLVM intrinsics and assembly functions: We do not have access

to intrinsic functions like memset and memcpy or functions imple-

mented in pure assembly; thus, in these cases we cannot construct

summaries through automatic inference.

• Heap allocation functions: For reasons discussed earlier, we man-

ually summarize typical kernel heap allocation functions, in-

cluding the kmalloc series and the kmem_cache_alloc series. Since

these functions accept flag GFP_ZERO, which will initialize the

allocated memory, we set the initial qualifier for the allocated

object according to this flag. Because our points-to analysis is

field-sensitive (instead of byte-sensitive) and the allocation size

to these functions are in bytes, to determine the type of allocated

object, we will follow the def-use chain of the returned address

228

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: Evaluation I: UBI bugs patched since 2013. All of

the uninitialized variables are located on stack.UbiTect can

successfully detect all of them.

Commit or CVE No Type UbiTect

bde6f9d intra-procedural Yes

1a92b2b intra-procedural Yes

8134233 inter-procedural Yes

c94a3d4 inter-procedural Yes

da5efff inter-procedural Yes

CVE 2010-2963 inter-procedural Yes

7814657 inter-procedural Yes

6fd4b15 inter-procedural Yes

and check for a bitcast operation. If we cannot find one, we treat

the object as having a single field (i.e., void type).

• Security related functions: As mentioned in section 2, we can use

qualifiers to explicitly express security policies we want to en-

force. For example, copy_to_user() copies the kernel data to the

user space. To avoid information leakage because of uninitialized

data, we manually create a summary for this function, requiring

the source object to be fully initialized.

6 EVALUATION

Our experiments are systematically performed with the objective

of answering the following research questions:

• RQ1: Can UbiTect detect previously known bugs?

• RQ2: Can UbiTect detect new bugs?

• RQ3:Compared withUbiTect, how do other open sourced static

analyzers perform for finding UBI bugs in the Linux kernel?

Experimental Setup. To answer these three questions, we first

gathered eight previously patched Linux kernel UBI bugs studied

in [16] and validate our tool. Then, we apply UbiTect to the x86_64

Linux kernel, version 4.14, with allyesconfig. It was tested on

machines with Intel(R) Xeon(R) E5-2695v4 processors and 256GB

RAM. The operating system is the 64 bit Ubuntu 16.04 LTS.

Data Availability. Linux kernel is an open sourced project. We

will also open source UbiTect for aiding the reproducibility of the

experimental results.

6.1 Detecting Known UBI Bugs

To answer RQ1, we evaluateUbiTect in terms of finding eight previ-

ously patched Linux kernel UBI bugs studied in [16]. Table 2 shows

the results i.e., UbiTect can detect all of them. Two of these bugs

can be detected by intra-procedural analysis but the rest require

inter-procedural analysis.

6.2 Detecting New UBI Bugs

It took UbiTect about a week to fully analyze the entire Linux

kernel with 616,893 functions. Specifically, it took 7 and 205 days

of CPU time for qualifier inference and symbolic execution (SE),

respectively. After qualifier inference, for each function, generated

warnings were immediately fed into SE, which ran on more than

30 CPU cores, on average (and was complete in a week of real

time). The qualifier inference component generated 147,643 poten-

tial uninitialized use of stack variables. Each warning represents

a unique use of an uninitialized variable, meaning that repeated

accesses to the same uninitialized variable in different statements

and accesses to different fields of the same object are considered as

different warnings. Since our modeling of heap variables is very

conservative and the number of warnings for stack variables is

already large enough, we exclude the warnings relating to writing

uninitialized values to heap variables.

UbiTect’s under-constrained symbolic execution (SE) compo-

nents filtered 4,150 warnings as false positives because it was unable

to find a feasible path based on the guidance. 1,190 cases could not

be handled by our SE component due to a mixture of 32-bit and

64-bit pointers. We then manually inspected 190 bugs where our SE

component can find a feasible path within 2 minutes. 6 of the 190

bugs are due to the use of uninitialized function pointers, 125 are

due to use of uninitialized data pointers, and 59 are related to use

of uninitialized data (that affect control flow). Our manual analysis

confirmed 78 of them as true positives, yielding a false positive rate

of 59%. We interpret a reported bug as a false positive if the path

returned by SE is infeasible, or the variable is actually initialized

along the path.

To confirm our manual inspection results with kernel main-

tainers, we tried to create patches for the 78 true positive cases.

During this process, we found that the buggy code of 9 cases have

been removed in the mainline due to feature updates and 11 are

already fixed in the mainline. We also found that many bugs were

related to missing checks over the return value [14] of the function

regmap_read(). Further (manual) checks over the remaining callers

led to an additional 60 bugs. We submitted patches for all the un-

fixed 118 cases to Linux developers. 52 bugs have been confirmed,

35 cases were categorized as łwill not happen in reality,ž and the

remaining 31 are still in process (we are awaiting feedback). The

detailed list of the confirmed bugs is shown in Table 3. We point

out here that among the 52 bugs, 37 of them were reported auto-

matically while 15 are identified from the additional manual check.

In fact, if we extend the time and memory limitations for symbolic

execution, we expect that these cases can be reported automatically

as well.

For 112 warnings we deemed as false positives, we also analyzed

the root causes.The major ones include (1) Incomplete black and

whitelist (39 cases): when the path crosses multiple functions. (2)

Imprecise indirect call resolution (26 cases): the indirect call target is

infeasible. (3) LLVM optimization (16 cases):wherein LLVM converts

a struct with twou32 types, directly to au64 type; this optimization

makes certain function summaries inaccurate. (4) The limitations

of under-constrained symbolic execution: we treat input arguments

as unconstrained symbolic values; however, in reality, such uncon-

strained inputs are impossible according to the program logic (e.g.,

constraints incurred outside the scope of the symbolic execution).

and (5) Assembly code (10 cases).

6.3 Sensitivity and Precision

We showcase how different sensitivity levels affect UbiTect’s qual-

ifier inference. First, we use a simple syntax analysis as the baseline,

where we check for stack variables that are not initialized immedi-

ately after their declaration. This baseline flagged 1,373,174 abstract

locations (expanded to be field-sensitive) out of 2,179,399 as not

229

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

Table 3: Evaluation II: New bugs detected by UbiTect. The

Line No. column gives the place where uninitialized uses

happens. The last column: A-Patch Applied; C-Confirmed

by developers

No. Sub-System Module Variable Line No. Patch

1 iommu/amd iommu.c unmap_size 1523 A
2 asoc/rt565 rt5651.c ret 1759 A
3 asoc/rt274 rt274.c buf 364 A
4 asoc/rt275 rt274.c val 1133 A
5 net/stmmac dwmac-sun8i.c val 646 A
6 clk/gemini clk-gemini.c val 320 C
7 iio/adc meson_saradc.c regval 286 C
8 iio/adc meson_saradc.c regval 313 C
9 iio/adc meson_saradc.c val 454 C
10 iio/adc meson_saradc.c regval 631 C
11 iio/adc meson_saradc.c regval 789 C
12 regulator pfuze100-regulator.c val 635 A
13 drm/bridge sii902x.c status 122 C
14 iio/trigger stm32-timer-trigger.c ccer 136 C
15 iio/trigger stm32-timer-trigger.c cr1 140 C
16 iio/trigger stm32-timer-trigger.c ccer 168 C
17 iio/trigger stm32-timer-trigger.c cr1 173 C
18 iio/trigger stm32-timer-trigger.c cr1 222 C
19 iio/trigger stm32-timer-trigger.c psc 224 C
20 iio/trigger stm32-timer-trigger.c arr 225 C
21 iio/trigger stm32-timer-trigger.c dat 411 C
22 iio/trigger stm32-timer-trigger.c dat 454 C
23 media atmel-isc.c isc_intsr 1255 C
24 media atmel-isc.c isc_intmask 1255 C
25 mfd fsl-imx25-tsadc.c status 40 C
26 mfd ti_am335x_tscadc.c reg 58 C
27 net/ethernet hns_mdio.c reg_value 165 A
28 clk/axi-clkgen clk-axi-clkgen.c d 314 C
29 power/supply max17042_battery.c read_value 485 C
30 power/supply max17042_battery.c vfSoc 667 C
31 power/supply max17042_battery.c vfSoc 682 C
32 pwm pwm-stm32-lp.c val 163 C
33 pwm pwm-stm32-lp.c prd 163 C
34 power/supply max17042_battery.c full_cap0 681 C
35 power/supply max17042_battery.c val 1082 C
36 power/supply rt5033_battery.c val 33 C
37 iio/adc bcm_iproc_adc.c intr_status 161 C
38 iio/adc bcm_iproc_adc.c intr_mask 162 C
39 iio/adc bcm_iproc_adc.c intr_status 187 C
40 iio/adc bcm_iproc_adc.c ch_intr_status 194 C
41 iio/adc bcm_iproc_adc.c channel_status 201 C
42 iio/adc bcm_iproc_adc.c val_check 299 C
43 pwm pwm-stm32.c psc 100 C
44 pwm pwm-stm32.c arr 100 C
45 pwm pwm-stm32.c ccer 295 C
46 pwm pwm-stm32.c ccer 312 C
47 regulator ltc3589.c irqstat 419 C
48 regulator max8907-regulator.c val 303 A
49 media pvrusb2-hdw.c qctrl.flags 793 A
50 x86/hpet hpet.c msg.f2 503 C
51 staging/ddk750 ddk750_chip.c pll.OD 58 C
52 power/supply max17042_battery.c val 837 C

being initialized when declared. If we add flow-sensitive analysis

(but without inter-procedural analysis), the number of warnings

was 10,267,357.

This number is higher than the baseline in line with what one

might expect, because this is on the basis of uses (i.e., different

uses will be considered as different warnings) instead of decla-

rations. If we add inter-procedural analysis but without context-

sensitivity, the number of warnings was 242,934. After adding

context-sensitivity to the analysis, UbiTect’s static analysis com-

ponent reported 147,644 warnings. Again, because each warning

from static analysis is based on a unique use, the reduction rate is

actually higher than 90%.

6.4 Comparison with other Static Analyzers

To answer RQ3, we compare UbiTect with two open sourced tools

which are able to detect UBI bugs. We first compare the perfor-

mance of UbiTect with that of cppcheck [18]. Both UbiTect and

cppcheck need the access to the source code and do not need man-

ual annotations. While UbiTect’s static analysis is inter-procedural

and reports the warnings at the use site, cppcheck’s analysis is only

intra-procedural and reports the warning when the uninitialized

variable is read. We ran the cppcheck on the whole Linux ker-

nel, version 4.14. It reported 191 UBI bugs, from which 164 bugs

were within our analysis scope (i.e., code enabled by allyesconfig).

Among the overlapped 164 bugs, only 2 are true positives (i.e., a

much higher false positive rate of 98%). From these 2 true positives,

UbiTect catches only one via its static analysis component; the

other is missed by UbiTect because the use site is not explicitly

marked by us. Specifically, the uninitialized value is leaked through

the network layer but we only explicitly marked copy_to_user()

to detect potential leaks. 29 false positives are shared between

UbiTect’s static analysis and cppcheck. The remaining 131 false

positives were correctly filtered byUbiTect’s inter-procedure static

analysis.

Opposite to the cppcheck’s lightweight and imprecise analysis,

the Clang Static Analyzer (CSA) is another open source tool which

applies the expensive and precise symbolic execution to catch UBI

bugs. As with any symbolic execution, it is hard to scale to large

programs due to the path explosion problem. Therefore, CSA only

performs inter-procedural analysis within a module. Unfortunately,

even without inter-module whole program analysis, it is difficult to

scale CSA to all the source code files in Linux kernel. Alternatively,

we ran CSA over the 78 files in which our true positives were

located. CSA took about 1.5 hours (96m 8.171s) to finish (had it

performed inter-module analysis, the time is likely to blow up much

more). Because our analysis was performed over 16,163 files in total,

at this speed, CSA will run for ≈ 13 days to finish analyzing the

entire kernel. Within the 78 files, CSA reported only 22 uninitialized

variables. 3 were false positives that were filtered by UbiTect. 2

were not reported by UbiTect due to complex assembly which are

hard to verify. For the remaining 17 true positives, 12 were within

the 78 bugsUbiTect reported in subsection 6.2, while the remaining

5 can be verified by UbiTect’s SE component with longer times

(more than 2 minutes). The majority of the true positives found

by UbiTect were not found by CSA; the main reason is that these

bugs fundamentally require analysis across multiple modules.

In UbiTect, we take the best of both qualifier inference and

symbolic execution. We apply the expensive and precise symbolic

execution only selectively under the guidance of qualifier infer-

ence, e.g., to go across the boundary of modules (files) and to focus

on a subset of all the program paths. This allowed us to discover

more vulnerabilities than pure symbolic execution (i.e., more scal-

able) with better accuracy than pure static analysis (i.e., less false

positives).

6.5 Threats to Validity

There are three major threats to the validity of our evaluation. First,

although the theoretical foundation of type inference is sound,

compromises made during the design could affect the soundness of

our analysis results and hence, our static analysis component may

miss some bugs. Such compromises include imprecise modeling of

assembly code, undefined behaviors (e.g., out-of-bound memory

access), and data structure padding. The second threat is potential

230

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

bugs in our prototype implementation. We have used previously

known UBI bugs to test our prototype, but the test set is small

and thus, could not cover all corner cases. Finally, classifying bugs

reported by UbiTect was done by the authors. As we are not Linux

kernel maintainers, we could have made mistakes on whether a

reported bug is a true positive or false positive. We tried to mitigate

this threat by reporting the bugs that we believe were true positives

to the kernel maintainers, but we did not hear back for all the cases.

7 RELATED WORK

Mitigating UBI Bugs. Automated mitigation of UBI bugs is pio-

neered by PaX’s STACKLEAK plugins [22], which forces the initializa-

tion of kernel stacks during context switches between the kernel

and user space; STRUCTLEAK optimizes STACKLEAK by only initializ-

ing objects that may be exposed to user space. Two recent related

works are SafeInit [19] and UniSan [15]. SafeInit [19] is a compiler

extension that initializes all allocated memory to zero. However,

this blind initialization strategy is often undesired and can mask the

real bug. According to our interaction with kernel developers, it is

actually believed that in many cases the right approach is to leave a

variable uninitialized when it is first created. The reasoning is that

the real initial value will be computed dynamically later anyway;

assigning zero or some arbitrary value is not only unnecessary

but can also mask a real bug where the desired (correct) initializa-

tion procedure fails and the variable gets used subsequently. The

correct way to fix such bugs is to make sure that the use-before-

initialization path is eliminated (e.g., by properly checking for the

absence of initialization and returning). UniSan [15] detects and ze-

ros uninitialized data that can leak from the kernel space. So, it only

eliminates information leakage resulting from uninitialized reads.

This work attempts to detect all use-before-initialization bugs. For

instance, an uninitialized function pointer may be dereferenced in

the kernel to cause arbitrary code execution as discussed earlier. At

this stage, UBI bugs still need to be patched manually case by case,

and we believe that the identification of such bugs with UbiTect is

a necessary first step.

Static Detection of Kernel Bugs.With the increasing popularity

of LLVM, many LLVM-based static analysis tools have been devel-

oped to find bugs in the Linux kernel source. KINT [29] put together

a number of static analysis techniques such as taint and range anal-

ysis to discover integer overflow vulnerabilities in the Linux kernel.

Juxta [21] detects semantic bugs in Linux file systems by finding

deviant behaviors in different file system implementations [8]. Dr.

Checker [17] is a static taint analysis engine that can be used to

find taint-style vulnerabilities in the Linux kernel. K-Miner [10]

performs context-sensitive value-flow analysis to identify memory-

corruption vulnerabilities. Deadline [30] and Check-it-Again [28]

detect a special type of time-of-check-to-time-of-use (TOCTTOU)

bugs due to lack of re-checks. CRIX [14] detects missing security

checks in the Linux kernel. PeX [32] detects missing permission

checks. To our knowledge, no analysis has attempted to discover

the increasing number of UBI bugs.

Type Qualifiers. Type qualifiers have been shown to be a powerful

way to represent invariants in programs. A type qualifier is general

and expressive enough to conduct a variety of security analysis and

bug finding tasks, including the popular taint analysis [12]. Some

examples of applying type systems for bug finding include finding

user/kernel pointer bugs [13], format string vulnerabilities [24],

integer-overflow-to-buffer-overflow [31], null pointer deference

bugs [11], lock/unlock bugs and file descriptor bugs [9].

8 CONCLUSIONS

In this paper, we target the principled detection of the underrated

yet dangerous use-before-initialization (UBI) bugs in the Linux

kernel. These bugs pose a security threat not only because they

can lead to unpredictable behaviors but also because they are ex-

ploitable to gain root privileges.We design and implementUbiTect,

a framework that combines flow-, field-, and context-sensitive type

qualifier inference with symbolic execution to identify UBI bugs

with low false positive rates. A key characteristic that distinguishes

UbiTect from other efforts is that it takes the best of the two meth-

ods and performs scalable inter-procedural analysis to catch the

uninitialized use of variables across functions. We applyUbiTect to

the Linux 4.14 kernel and 138 new bugs are unearthed from which

52 of them are confirmed by Linux maintainers.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insight-

ful comments that helped improve the quality of the paper. We

thank Manu Sridharan for his useful comments, and Weiteng Chen

for his assistance. This research was partially sponsored by the U.S.

Army Combat Capabilities Development Command Army Research

Laboratory and was accomplished under Cooperative Agreement

Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views

and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, ei-

ther expressed or implied, of the Combat Capabilities Development

Command Army Research Laboratory or the U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

here on. It was also partially supported by NSF award CNS-1718997

and ONR under grant N00014-17-1-2893.

REFERENCES
[1] 2014. Andersen’s inclusion-based pointer analysis re-implementation in LLVM.

https://github.com/grievejia/andersen/graphs/contributors.
[2] 2018. CVE-2018-6981. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2018-6981.
[3] 2020. CWE-476: NULL Pointer Dereference. https://cwe.mitre.org/data/

definitions/476.html.
[4] 2020. Qualifier Type Inference. https://github.com/seclab-ucr/UBITect/blob/

master/QualifierTypeInference.pdf.
[5] 2020. UBITect. https://github.com/seclab-ucr/UBITect
[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[7] K. Cook. 2011. Kernel Exploitation Via Uninitialized Stack. https:
//www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-
Cook-Kernel-Exploitation.pdf..

[8] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5, 57ś72.

[9] Jeffrey S Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-sensitive type
qualifiers. Vol. 37. ACM. https://doi.org/10.1145/512529.512531

[10] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-Miner:
Uncovering Memory Corruption in Linux. In Annual Network and Distributed
System Security Symposium (NDSS). https://doi.org/10.14722/ndss.2018.23326

231

https://github.com/grievejia/andersen/graphs/contributors
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6981
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6981
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://github.com/seclab-ucr/UBITect/blob/master/QualifierTypeInference.pdf
https://github.com/seclab-ucr/UBITect/blob/master/QualifierTypeInference.pdf
https://github.com/seclab-ucr/UBITect
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://doi.org/10.1145/512529.512531
https://doi.org/10.14722/ndss.2018.23326

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

[11] David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and tuning
a static analysis to find null pointer bugs. In ACM SIGSOFT Software Engineering
Notes, Vol. 31. ACM, 13ś19. https://doi.org/10.1145/1108768.1108798

[12] Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-Based Taint Analysis
for Java Web Applications. In IEEE/ACM International Conference on Automated
Software Engineering (ASE). https://doi.org/10.1007/978-3-642-54804-8_10

[13] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference. In USENIX Security Symposium (Security), Vol. 2. https://dl.acm.
org/doi/10.5555/1251375.1251384

[14] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic-and Context-Aware Criticalness and Constraints Inferences. In
USENIX Security Symposium (Security).

[15] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
kernel memory initialization to eliminate data leakages. In ACM Conference on
Computer and Communications Security (CCS). https://doi.org/10.1145/2976749.
2978366

[16] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger, Wenke Lee,
and Michael Backes. 2017. Unleashing use-before-initialization vulnerabilities in
the Linux kernel using targeted stack spraying. InAnnual Network and Distributed
System Security Symposium (NDSS).

[17] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for
Linux Kernel Drivers. In USENIX Security Symposium (Security).

[18] Daniel Marjamäki. 2019. Cppcheck: a tool for static c/c++ code analysis. http:
//cppcheck.sourceforge.net/.

[19] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. SafeInit: Com-
prehensive and Practical Mitigation of Uninitialized Read Vulnerabilities. In
Annual Network and Distributed System Security Symposium (NDSS). https:
//doi.org/10.14722/ndss.2017.23183

[20] Matt Miller. 2019. Trends, Challenges, and Strategic Shifts in the Software
Vulnerability Mitigation Landscape. In BlueHat IL.

[21] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th Symposium on Operating Systems Principles.
361ś377. https://doi.org/10.1145/2815400.2815422

[22] PaX Team. 2013. PaX - gcc plugins galore. https://pax.grsecurity.net/docs/
PaXTeam-H2HC13-PaX-gcc-plugins.pdf.

[23] David A Ramos and Dawson R Engler. 2015. Under-Constrained Symbolic Ex-
ecution: Correctness Checking for Real Code. In USENIX Security Symposium
(Security).

[24] Umesh Shankar, Kunal Talwar, Jeffrey S Foster, andDavidWagner. 2001. Detecting
format string vulnerabilities with type qualifiers. In USENIX Security Symposium
(Security).

[25] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In International Symposium on Code
Generation and Optimization (CGO). https://doi.org/10.1109/CGO.2015.7054186

[26] The Clang Team. 2019. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[27] Vegard Nossum. 2015. Getting Started With kmemcheck. https://www.kernel.

org/doc/Documentation/kmemcheck.txt.
[28] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it again: Detecting

lacking-recheck bugs in os kernels. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 1899ś1913. https://doi.
org/10.1145/3243734.3243844

[29] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
2012. Improving Integer Security for Systems with KINT. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[30] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and scalable detection of double-fetch bugs in OS kernels. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
https://doi.org/10.1109/SP.2018.00017

[31] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch:
Automatically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time. In European Symposium on Research in Computer Security (ESORICS).

[32] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for Linux
Kernel. In USENIX Security Symposium (Security).

[33] Hanqing Zhao, Yanyu Zhang, Kun Yang, and Taesoo Kim. 2019. Breaking Turtles
All the Way Down: An Exploitation Chain to Break out of VMware ESXi. In
USENIX Workshop on Offensive Technologies (WOOT).

232

https://doi.org/10.1145/1108768.1108798
https://doi.org/10.1007/978-3-642-54804-8_10
https://dl.acm.org/doi/10.5555/1251375.1251384
https://dl.acm.org/doi/10.5555/1251375.1251384
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/2976749.2978366
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://doi.org/10.14722/ndss.2017.23183
https://doi.org/10.14722/ndss.2017.23183
https://doi.org/10.1145/2815400.2815422
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://doi.org/10.1109/CGO.2015.7054186
https://clang-analyzer.llvm.org/
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1109/SP.2018.00017

	Abstract
	1 Introduction
	2 Use-before-Initialization Bugs
	2.1 From UBI to Arbitrary Code Execution
	2.2 Challenges in Detecting UBI Bugs

	3 Overview
	3.1 Pre-processing
	3.2 Type Qualifier Inference
	3.3 Symbolic Execution

	4 UbiTect Design
	4.1 Points-to and Aliasing Analysis
	4.2 Qualifier Inference
	4.3 Inter-Procedural Analysis
	4.4 Symbolic Execution

	5 Implementation
	6 Evaluation
	6.1 Detecting Known UBI Bugs
	6.2 Detecting New UBI Bugs
	6.3 Sensitivity and Precision
	6.4 Comparison with other Static Analyzers
	6.5 Threats to Validity

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

