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ABSTRACT

Today, most developers bundle changes into commits that they sub-
mit to a shared code repository. Tangled commits intermix distinct
concerns, such as a bug fix and a new feature. They cause issues
for developers, reviewers, and researchers alike: they restrict the
usability of tools such as git bisect, make patch comprehension
more difficult, and force researchers who mine software reposi-
tories to contend with noise. We present a novel data structure,
the 𝛿-NFG, a multiversion Program Dependency Graph augmented
with name flows. A 𝛿-NFG directly and simultaneously encodes dif-
ferent program versions, thereby capturing commits, and annotates
data flow edges with the names/lexemes that flow across them. Our
technique, Flexeme, builds a 𝛿-NFG from commits, then applies
Agglomerative Clustering using Graph Similarity to that 𝛿-NFG to
untangle its commits. At the untangling task on a C# corpus, our
implementation,Heddle, improves the state-of-the-art on accuracy
by 0.14, achieving 0.81, in a fraction of the time: Heddle is 32 times
faster than the previous state-of-the-art.

CCS CONCEPTS

• Software and its engineering→ Software version control; •
Mathematics of computing→ Graph algorithms; • Computing

methodologies→ Kernel methods; • General and reference→
General conference proceedings.
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1 INTRODUCTION

Separation of concerns is fundamental to managing complexity.
Ideally, a commit to code repositories obeys this principle and
focuses on a single concern. However, in practice, many commits
tangle concerns [2, 6]. Time pressure is one reason. Another is
that the boundaries between concerns are often unclear. Murphy-
Hill et al. [21] found that refactoring tasks are often committed
together with code for other tasks and that even multiple bug fixes
are committed together.

Tangled commits introducemultiple problems. Theymake search-
ing for fault inducing commits imprecise. Tao et al. [27] found that
tangled changesets (commits) hamper comprehension and that
developers need untangling (changeset decomposition) tools. Bar-
nett et al. [2] confirmed this need. Herzig et al. [6, 7] studied the
bias tangled commits introduce to classification and regression
tasks that use version histories. They found that up to 15% of bug
fixes in Java systems consisted of multiple fixes in a single commit.
They also found that using a tangled version history significantly
impacts regression model accuracy. In short, tangled commits harm
developer productivity two ways: directly, when a developer must
search a version history and indirectly by slowing the creation of
tools that exploit version histories.

Version histories permit a multiversion view of code, one in
whichmultiple versions of the code co-exist simultaneously. Le et al.
built on principles described by Kim and Notkin [12] for multiver-
sion analysis: they constructed a multiversion intraprocedural con-
trol flow graph and used it to determine whether a commit fixes all
𝑛 versions [16]. This task is important when multiple versions are
active, as in software product lines, and the patch fixes a vulnerabil-
ity. Inspired by Le et al., we define a 𝛿-PDG, a multiversion program
dependence graph (PDG), a graph that combines a program’s data
and control graphs [5].

We hypothesise that identifiers differentiate concerns. We har-
vest names that are used together in a program’s execution, as
in this statement «takehome:=tax * salary» to augment our 𝛿-
PDG and produce a 𝛿-NFG. A desirable property of our 𝛿-NFG
is its modularity. It allows projecting any combination of data,
control, or lexeme. Consequently, we could effortlessly reproduce
Barnett et al.’s and Herzig et al.’s methods [2, 6] to explore the
design space in tooling for concern separation in commits.

We introduce Flexeme, a novel approach to concern separation
that uses the 𝛿-NFG. We group edits into concerns using the graph
similarity of their neighbourhoods. We base this on the intuition
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that nodes are defined by the company they keep (their neighbour-
hoods) and cluster them accordingly. Thus, we reduce the concern
separation problem to a graph clustering task. For clustering, we
start by considering each edit in a commit as an separate concern,
then use graph similarity to agglomeratively cluster them. We com-
pute this similarity using the Weisfeiler-Lehman Graph Kernel [25].

We realised Flexeme in a tool we call Heddle1. Developers can
run Heddle to detect tangled commits prior to pushing them or
reviewers can use it to ask developers to untangle commits before
branch promotion. We show that heddle improves the state-of-the-
art accuracy by 0.14, and run-time by 32 times or 3′10′′. We also
demonstrate the utility and expressivity of our 𝛿-PDG construct by
adapting Herzig et al.’s confidence voters (CV) to use the 𝛿-PDG
rather than diff-regions; the resulting novel combination, which we
call 𝛿-PDG+CV improves the performance and lowers the run-time
of Herzig et al.’s unmodified approach.

In summary, we present
(1) Two novel data-structures, the 𝛿-PDG, a multiversion pro-

gram dependence graph, and 𝛿-NFG, which augments a 𝛿-
PDG with lexemes;

(2) The Flexeme approach for untangling commits that builds
a 𝛿-NFG from a version history then uses graph similarity
and agglomerative clustering to segment it; and

(3) Heddle, a tool that realises Flexeme and advances the state
of art in commit untangling in both accuracy and run-time.

All of the tooling and artefacts needed to reproduce this work
are available at https://pppi.github.io/Flexeme/.

2 EXAMPLE

Localising a bug with git bisect to determine a bug inducing
commit, or reviewing a changeset during code review in presence
of tangled commits can make the task unnecessarily difficult or
even impossible [27]. Further, as Herzig et al. [6] found, tangled
commits have a statistically significant impact on the performance
of regressions methods used for defect prediction. Barnett et al. [2],
determined that developer productivity benefits from tools that can
propose changeset decompositions. In light of this, it is natural to
ask how do different code entities co-occur within a concern?

The code entities of a concern tend to be in close proximity
with each other in both the control- and data-flow graphs. Barnett
et al. [2] exploited this by using def-use chains, which offer a short-
range view of these connections. However, as shown in Figure 1,
connectivity through the data-flow graphs on its own is insufficient
to demarcate concerns. Indeed, this observation is reflected in the
relatively lower accuracy rates on concern separation reported in
Barnett et al. [2] compared to Herzig et al. [6], the concerns 1 and
2 consisting of the hunks 1a-1d and 2a-2b, respectively, could
be conflated as they are method invocations of the same Driver

class. The conflation might occur even though hunks 1b, 1c and 1d
are connected via the use of the Colors.Menu and ColorScheme which
provides counterweight to conflating concerns 1 and 2.

Control-flow can help delineate regions or constructs that handle
specific types of concerns. For example, a loop could be performing

1A heddle is wire or cords with eyelets that hold warp yarns in a place in a loom.
While it does not untangle, a heddle prevents tangles, so we have named our tangle-
preventing tool after it.

@@ -127,31 +137,32 @@ namespace Terminal {
{
this.barItems = barItems;
this.host = host;

+ ColorScheme = Colors.Menu;
1a

CanFocus = true;
}
public override void Redraw(Rect region)
{

- Driver.SetAttribute(Colors.Menu.Normal);
1b

- DrawFrame(region, true);
+ Driver.SetAttribute(ColorScheme.Normal);
+ DrawFrame(region, padding: 0, fill: true);
for (int i = 0;

i < barItems.Children.Length;
i++)

{
var item = barItems.Children [i];
Move(1, i+1);

- Driver.SetAttribute(

- item == null ? Colors.Base.Focus :
1c

- i == current ? Colors.Menu.Focus :
- Colors.Menu.Normal
- );
+ Driver.SetAttribute(
+ item == null ? Colors.Base.Focus :
+ i == current ? ColorScheme.Focus :
+ ColorScheme.Normal
+ );
for (int p = 0; p < Frame.Width-2; p++)
if (item == null)

- Driver.AddSpecial(SpecialChar.HLine);
2a

+ Driver.AddRune(Driver.HLine);
else

- Driver.AddCh(' ');
2b

+ Driver.AddRune(' ');
if (item == null)
continue;
Move(2, i + 1);
DrawHotString(item.Title,

- i == current? Colors.Menu.HotFocus :
1d

- Colors.Menu.HotNormal,
- i == current ? Colors.Menu.Focus :
- Colors.Menu.Normal);
+ i == current? ColorScheme.HotFocus :
+ ColorScheme.HotNormal,
+ i == current ? ColorScheme.Focus :
+ ColorScheme.Normal);

Figure 1: A diff with two tangled concerns: (a) the change

of the drawing API (all other changes) and (b) the migration

fromusing chars and special chars to runes (the two changes

related to AddRune). Attempting to disentangle this diff with

state-of-the-art tools relying on DU-chains fails because the

tangled changes are connected in the def-use chain pertain-

ing to Driver and are in close proximity in the file. Using a

PDG allows us to additionally exploit control flow informa-

tion to aid untangling.

https://pppi.github.io/Flexeme/
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a specialised computation that forms a single concern on its own.
We see an example of such a loop in Figure 1. The for loop captures
the process by which a screen line is generated and is strongly
related to how on screen characters are handled (1a and 1b). This
suggests that using a Program Dependency Graph (PDG), which
encapsulates both control- and data-flow, as a basis for performing
commit untangling overcomes some of the shortcomings of using
the data-flow alone. The PDG provides evidence that 1a and 1b
could be a part of the same concern because of control-flow. Ad-
ditionally, the PDG also tells us that 1c and 1d could be a part of
the same concern by virtue of data-flow through Colors.Menu and
ColorScheme. However, it may be observed that the link with 2a-2b
is still strong due to flows through Driver.

Lexemes in the two concerns in Figure 1 provide strong evi-
dence for their separation. While concern 1 uses Set* methods in
Driver, concern 2 uses Add* methods. This evidence is missed by
PDGs which discard lexical information. Developers tend to use
dissimilar names for different tasks. Dash et al. [3] leveraged this
observation to augment data-flow with lexical information to suc-
cessfully identify type refinements. In our work, we take a similar
approach and use lexical information to separate concerns. Our ap-
proach to introducing lexemes in our PDG representation is similar
to the name-flows construct of Dash et al. [3].While they augmented
data-flow with lexemes, we augment PDGs and a description of
how we achieve this follows.

3 CONCERNS AS LEXICAL COMMUNITIES

Given consecutive versions of some code, Flexeme constructs their
PDGs and overlays them adding name-flows [3] to build a 𝛿-NFG.
We feed the 𝛿-NFG to a graph clustering procedure to reconstruct
atomic commits. A 𝛿-NFG naturally captures flows that bind con-
cerns together such as data- and control-flows. Additionally, it also
captures natural correlation in names that developers choose when
addressing a given concern.

Figure 2 overviews how flexeme constructs and uses a 𝛿-NFG.
For a sequence of contiguous versions, we generate a PDG first
with the help of a compiler. We then combine these PDGs to form
a multi-version PDG which we call a 𝛿-PDG. We then decorate
the 𝛿-PDG with version specific name-flow information to obtain
a 𝛿-NFG. We feed the 𝛿-NFG to agglomerative clustering. We use
graph similarity to separate concerns across the original set of con-
tiguous versions. We discuss the details of the 𝛿-NFG construction
in Section 3.1, Section 3.2 and Section 3.3. We discuss the graph
clustering approach in Section 3.4.

3.1 Multi-Version Name Flow Graphs

We now formally define the PDG, 𝛿-PDG and 𝛿-NFG in order to
bootstrap discussion on the 𝛿-NFG construction.

Definition 3.1. ProgramDependency Graph (PDG). Flexeme’s PDG
is a directed graph with node set 𝑁 and edge set 𝐸 s.t. each node
𝑛 ∈ 𝑁 is annotated with either a program statement or a conditional
expression; each edge 𝑒 ∈ 𝐸 has an optional annotation representing
the name or the data that flows along it, and a kind that describes
the relationship type: data or control.

Definition 3.2. Multi-version Program Dependency Graph (𝛿-PDG).
A 𝛿-PDG 𝑝,𝑞 is the disjoint union of all nodes and edges across all
versions in [𝑝, 𝑞]. 𝛿-PDG 𝑝,𝑝 is the PDG at version 𝑝 .

Definition 3.3. Name Flow Graph (NFG). Flexeme’s NFG is a stan-
dard dataflow graph 𝐺 = (𝑁, 𝐸), augmented with name flows, the
raw lexemes of the literals and identifiers in a program text that
originate at some node flow across edges and collect in downstream
nodes. A name flow labels an edge with those lexemes that flow
across it and a node with those that either originate at it or flow
into it.

We re-use NFG from Dash et al.’s Refinym [3]. To a first ap-
proximation, lexemes flow along def-use chains and collect in the
variables on the LHS of assignments.

Definition 3.4. Multi-version Name Flow Graphs (𝛿-NFG).
A 𝛿-NFG 𝑝,𝑞 is the 𝛿-PDG 𝑝,𝑞 , augmented with name flows: If an
edge exists in both the PDG and the NFG of a version, we augment
the PDG edge with the corresponding name flow.

Inspired by Le and Pattison [16]’s multiversion intraprocedu-
ral graphs, we are the first to propose and construct 𝛿-PDGs. To
construct a 𝛿-PDG, we start from the initial version considered.
For each subsequent version, we make use of line-span informa-
tion in the PDG and UNIX diff on the source-files to determine
changed and unchanged nodes, making Flexeme language agnostic.
Changed nodes are introduced to the 𝛿-PDG as they appear in the
new version. 𝛿-PDGs retain nodes deleted across the versions a 𝛿-
PDG spans. Deletion becomes a label. We match unchanged nodes
between the nodes of the 𝛿-PDG and the new version. To match, we
use string similarity to filter candidates and we use line-span prox-
imity to rank them (Section 3.2). For nodes the new version deletes,
we backpropagate the delete label to edges flowing into them. To
add edges, we consider all unmatched edges in the new version,
then match their source and target either to existing 𝛿-PDG nodes,
or, when a either the source or target does not exist in input 𝛿-PDG,
match it to a fresh node (Section 3.3). Finally, to obtain a 𝛿-NFG,
we endow the 𝛿-PDG with name flow information for each of the
versions considered by matching nodes using their line-spans.

3.2 Anchoring Nodes Across Versions

To integrate a fresh PDG 𝐺 𝑗 , we start with the patch 𝑃𝑖 𝑗 . We view
each hunk ℎ ∈ 𝑃𝑖 𝑗 as a pair of snippets (𝑠−

𝑖
, 𝑠+
𝑗
) where version 𝑖

deletes 𝑠−
𝑖
and version 𝑗 adds 𝑠+

𝑗
. Snippets 𝑠−

𝑖
and 𝑠+

𝑗
do not exist

for hunks that only add or only delete; 𝜙 represents these patches.
Accounting for 𝑠−

𝑖
is straightforward: we do not update the nodes

in the 𝐺1−𝑖 that fall into 𝑠−
𝑖
. Accounting for 𝑠+

𝑗
is non-trivial; much

like patching utilities, we need a notion of context.
For all 𝑠+

𝑗
, we introduce fresh nodes in the 𝛿-PDG. However,

we cannot anchor these nodes until we identify counterparts for
nodes in 𝐺 𝑗 that were untouched by 𝑃𝑖 𝑗 . Identifying untouched
nodes in 𝐺𝑖 is straightforward; we can simple check locations in
𝑃𝑖 𝑗 against the location of each node in𝐺 𝑗 . All touched nodes from
𝐺 𝑗 are treated as new added nodes and need to be introduced in
the 𝛿-PDG. Identifying the counterpart in𝐺𝑖 of an untouched node
in 𝐺 𝑗 requires a notion of node equivalence.
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Figure 2: Overview of flexeme’s 𝛿-NFG construction and concern separation.

Definition 3.5. Node Equivalence. Given a node 𝑣 𝑗 in a 𝐺 𝑗 and a
candidate node 𝑣𝑖 in 𝐺1,𝑖 ,

𝑣 𝑗 ≡ 𝑣𝑖 ⇐⇒ ∀(𝑝, 𝑞) ∈ 𝑅(𝐴[𝑣 𝑗 ], 𝐴[𝑣𝑖 ]).𝐹 (𝑝, 𝑞) ≥ 𝑇

Here, 𝐴[𝑘] returns all nodes adjacent to the node 𝑘 in a graph.
𝑅 is a variant of the Stable Roommates Problem [9] where nodes
drawn from𝐴[𝑣𝑖 ] are matched with nodes drawn from𝐴[𝑣 𝑗 ]. Each
node in 𝐴[𝑣 𝑗 ] has an affinity for nodes in 𝐴[𝑣𝑖 ] proportional to
the similarity of lexemes at the nodes. The operator 𝑅 considers
these affinities and tries to match each node with the one it has
the highest affinity for. By construction, 𝑅 always returns a one-
to-one match even though two different nodes 𝑎 and 𝑏 may have a
strong affinity to a third node 𝑐 . In such a case, either 𝑎 or 𝑏 will
be matched with 𝑐 but not both; the one that is not matched to its
highest preference (defined in terms of affinity) is matched to the
next node from its preference list. We further require that lexical
similarity, computed by the function 𝐹 , is above the threshold 𝑇 .
This lets us control the level of fuzziness while matching nodes.
In this work, we have chosen 𝐹 to be string edit distance and set
𝑇 = 1.0 thus requiring exact matches.

3.3 Integrating Nodes Across Versions

Once counterpart nodes are identified using a notion of node equiv-
alence, the next task is to store the location information for the
untouched nodes in 𝐺 𝑗 at theirs counterpart and mark the loca-
tion with version 𝑗 . Finally we add all the nodes 𝑃𝑖 𝑗 adds to the
𝛿-PDG and create edges between them and the counterparts of their
parents and children.

We demonstrate the 𝛿-PDG construction in Figure 3. We show
the PDG for two versions of an application — 1 and 2. Since ver-
sion 1 is our initial version in this example, it is also our 𝛿-PDG
𝐺1. We have omitted the data-flows in the PDG for brevity. Each
node in the PDG contains a list of location-version tuple; the lo-
cation information has been supressed for simplicity. The patch
above the two PDGs is the diff of the two versions. We have two
snippets in the patch: 𝑠−1 for the snippet that is to be deleted in
1 and 𝑠+2 the snippet that is to be added in 2. Accounting for the
deleted line comes for free as we store locations for snippets across
versions. All we need to do is to check the location information
for 𝑠−2 against the span of the nodes in the 𝐺1. For 𝑠+2 , we need
to search for equivalent nodes across the two versions. We per-
form fuzzy matching on lexemes in nodes shortlisted using location
information as detailed above. In the case of 𝑠+2 , we identify the
call expressions Move and Driver.AddCh(...) as parents and children,

respectively, for 𝑠+2 . Merging 𝑠+2 into the 𝛿-PDG shown on the right
is then a straightforward task of drawing edges between nodes and
their parents/children. Once we obtain this 𝛿-PDG representation,
we perform the untangling task in a reconstructive manner.

3.4 Identifying Concerns

We start by assuming each change is atomic, and iteratively merge
changes that are similar enough. At a high-level, we expect similar
nodes to have similar “neighbourhoods”. To measure this, we build
the 𝑘-hop neighbourhood2, for each node. We then cluster by simi-
larity of these neighbourhoods. To compute graph similarity, we
use the Weisfeiler-Lehman graph kernel [25] which builds on top
of the Weisfeiler-Lehman graph isomorphism test [30]. For a pair
of graphs, the test iteratively generates multi-set labels. When two
graphs are isomorphic, then all the sets are identical.

Formally, let the initial vertex labelling function of the graph
be 𝑙0 : 𝑉 (𝐺) → L, where L is the space of all node labels. At
step 𝑖 , let 𝑙𝑖 (𝑣) = {{𝑙𝑖−1 (𝑣 ′)} | 𝑣 ′ ∈ 𝑁 (𝑣)}, where 𝑁 (𝑣) is the set of
neighbours of vertex 𝑣 . At each iteration 𝑖 , this process labels the
node 𝑣 with a set comprising the labels of all of 𝑣 ’s neighbours. This
set becomes the new label of that node. Since isomorphism testing
can diverge, we bound it to 𝑛 iterations and obtain the sequence
⟨𝐺0,𝐺1, . . . ,𝐺𝑛⟩.

A positive semi-definite kernel on the non-empty set 𝑋 is a
symmetric function

𝑘 : 𝑋 × 𝑋 → R

s.t.
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑐𝑖𝑐 𝑗𝑘 (𝑥𝑖 , 𝑥 𝑗 ) ≥ 0,

∀𝑛 ∈ N, 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋, 𝑐1, . . . , 𝑐𝑛 ∈ R.

This function can take the arguments in either order and, for any
parametrization by real constants, has non-negative weighted sum
over all inputs. A graph kernel is a positive semi-definite kernel on
a set of graphs. When a kernel takes a set of graphs (G) as input, we
define the 𝐾 (G)𝑖 𝑗 = 𝑘 (𝐺𝑖 ,𝐺 𝑗 ),𝐺𝑖 ,𝐺 𝑗 ∈ G to compute the matrix
of pairwise kernel values.

Let G be the set of graphs over which we wish to compute graph
based similarity, and let 𝐾 : G → R |G | × R |G | be a graph kernel.
Then the WL Graph Kernel becomes: 𝐾𝑊𝐿 (G) = 𝐾 (G0) +𝐾 (G1) +
. . .+𝐾 (G𝑛);, where ⟨G0,G1, . . . ,G𝑛⟩ is obtained by applying𝑛 steps
of the isomorphism test to each graph in G

2In our experiments we consider the 𝑘 = 1-hop neighbourhoods.
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@@ -85,4 +85,4 @@
- Driver.SetAttribute (HasFocus? Colors.Base.HotFocus: Colors.Base.HotNormal)
+ Driver.SetAttribute (HasFocus? ColorScheme.HotFocus: ColorScheme.HotNormal)

hot_pos != -1 1

Move(4 + hot_pos, 0) 1

Drivers.SetAttribute(

HasFocus?

ColorScheme.HotFocus :

ColorScheme.HotNormal)

1

Driver.AddCh(hot_key) 1

Exit Redraw(Terminal.Rect) 1

hot_pos != -1 2

Move(4 + hot_pos, 0) 2

Drivers.SetAttribute(

HasFocus?

Colors.Base.HotFocus :

Colors.Base.HotNormal)

2

Driver.AddCh(hot_key) 2

Exit Redraw(Terminal.Rect) 2

hot_pos != -1 1 2

Move(4 + hot_pos, 0) 1 2

Drivers.SetAttribute(

HasFocus?

ColorScheme.HotFocus :

ColorScheme.HotNormal)

1

Drivers.SetAttribute(

HasFocus?

Colors.Base.HotFocus :

Colors.Base.HotNormal)

2

Driver.AddCh(hot_key) 1 2

Exit Redraw(Terminal.Rect) 1 2

Figure 3: Construction of a 𝛿-PDG from two versions — 1 and 2 — of a program. Version 2 is obtained from version 1 by

application of the patch shown in the program. Each node is annotated with the version number it is present in.

The WL Graph Kernel 𝐾 is a meta-kernel that extends an under-
lying kernel. We want a Subtree WL Graph Kernel that counts the
number of identical rooted subtrees for each node in the graph of
the same depth as the iteration. In our case, this maps to identical
downstream behaviour from each node in terms of each of the flows
considered. To achieve this behaviour, we set 𝐾 to be the Vertex
Label Histogram Kernel and encode outgoing flow types in the label
function. This kernel is defined as follows: Let Ψ be a function that
embeds the graph into a vector space, often called a feature map in
literature, and let ⟨·, ·⟩ be the inner product, then

Ψ(𝐺) = f ;

f𝑖 = |{𝑣 | 𝑣 ∈ 𝑉 (𝐺), 𝑙𝑖 ∈ L, 𝑙𝑣 (𝑣) = 𝑙𝑖 }| ;
𝐾 (G)𝑖 𝑗 = ⟨Ψ(𝐺𝑖 ),Ψ(𝐺 𝑗 )⟩;

For clustering, we opt for agglomerative clustering, like Herzig
et al. [6], Herzig and Zeller [7]. With node-neighbourhood pairwise
similarity information, we can build an affinity, i.e. a pair-wise
distance, matrix for clustering trivially by simply inverting the
value, i.e. 1 − similarity. Section 4.2 details the implementation.

4 HEDDLE

Heddle realises Flexeme.Heddle first constructs a 𝛿-PDG for each
input file, and combines them into a 𝛿-NFG. Heddle then decom-
poses the 𝛿-NFG into a forest, and uses graph kernels to compute
distance matrices which we input into agglomerative clustering.
We close by describing how a project could adopt Heddle.

4.1 𝛿-PDG Construction

We implement both name flow extraction and PDG extraction in
Roslyn [20], the open-source compiler for C# and Visual Basic from
Microsoft. We store the PDG in GraphViz Dot format. We then
implement the PDG merging procedure as described above over
the dot files. This allows us to reuse the merging procedure; it is
language agnostic. One need only provide PDGs (and optionally

name flows) as ‘dot’ files. To enable the merging process, we store
the origin line-span3 and method membership information in the
nodes along with the usual data associated with such graphs, i.e.
expression information and edge kind. To obtain textual diffs needed
for 𝛿-NFG construction, we make use of the UNIX ‘diff’ tool.

By default, Heddle constructs one 𝛿-NFGs per file. To mitigate
the problems cross-file dependencies cause and reduce the cost of
untangling, Heddle merges all graphs associated with a commit,
into a single structure. This merge uses node equivalence (Defini-
tion 3.5) when operating on files that share a namespace. A key
difference in the same-version, cross-file setting is that we need to
copy over both types of changed nodes and add the edges similar
to the added nodes scenario described in Section 3.

To simplify our code, our implementation of PDG extraction
does not consider goto statements in the Control Flow Graph; this
does not matter much in practice, as goto statements are very rare
in our corpus.

4.2 Graph Node Clustering

We use GraKeL [26] for the Weisfeiler-Lehman (WL) Graph Ker-
nel [25] implementation and leave the number of iterations of the
isomorphism tests at the library’s default of 10. We set the underly-
ing kernel to Vertex Histogram Graph Kernel to obtain the same
behaviour as the Subtree WL Graph Kernel.

For agglomerative clustering, we use SciPy [10]. We precompute
the affinity matrix by using the WL kernel similarity. We call the
clustering method with the linkage parameter set to “complete”,
which mimics the behaviour described in Herzig et al. [7], i.e. when
two groups are merged, the maximal distance from any member of
the group to any other group is kept as the new distance. We stop
merging groups when they are less than 0.5 similar to any other
group instead of providing oracle information to the method. This

3We consider code snippets at line granularity.
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models the fact that, in practice, developers do not know how many
concerns a commit contains.

Code for both 𝛿-PDG construction and node clustering is avail-
able online4.

4.3 Deployability

Heddle takes ten seconds on average to untangle a commit (Sec-
tion 6.2), and 45s on average to construct and merge the PDG for a
commit into a 𝛿-PDG. This is beyond the one second limit suggested
by Nielsen [22] for processes that allow a user to feel like operating
directly on data, which suggests that our tools should be onboarded
into a process that is out-of-band with regards to developer atten-
tion. An example of such a process is the build automation within
continuous deployment. Heddle could be added as an additional
pass at the end of the build process providing an untangle report
for the code reviewers, ready to be inspected when the review pro-
cess starts. Further, on-boarding Heddle in such a manner makes
it independent of the workflow and tooling choices made by the
developers; the system would only need to be deployed on the build
servers. The report provided would allow reviewers to better focus
on the different parts of the patch and aid patch comprehension.
There is an initial onboarding cost requiring generating NFGs for
all source files in the code-base. However, our construction is in-
cremental and for any fresh patch that needs integration into the
𝛿-NFG, we only need to consider the files touched by the patch.

5 EXPERIMENTAL DESIGN

In this section, we discuss how we constructed a dataset, mea-
sure untangling performance and our reproduction of two baseline
methods.

5.1 Corpus Construction

To construct our corpus, we reuse Herzig et al. [6] methodology
who artificially tangle atomic commits. Therefore, we consider
commits that:

(1) Have been committed by the same developer within 14 days
of each other with no other commit by the same developer
in between them.

(2) Change namespaces whose names have a large prefix match.
(3) Contain files that are frequently changed together.
(4) Do not contain certain keywords (such as ‘fix’, ‘bug’, ‘feature’,

‘implement’) multiple times.
The first criterion mimics the process by which a developer for-
gets to commit their working directory before picking up a new
task. The next criterion is an adaptation of Herzig et al.’s ‘Change
close packages’ criterion to the C# environment. The third con-
siders files that are coupled in the version history, thus creating
a tangled commit not too dissimilar from commits that naturally
occurred. The intuition being that if commit 𝐴 touches file 𝑓𝐴 and
commit 𝐵 touches file 𝑓𝐵 , s.t. 𝑓𝐴 and 𝑓𝐵 are frequently changed
before(coupling) [31], then 𝐴 and 𝐵 should be tangled. The final
criterion is a heuristic to ensure that we do not consider tangling
commits that we are certain are not atomic. We add this condition
to mitigate the problem of tangling actually tangled commits which

4https://pppi.github.io/Flexeme/

Table 1: Project statistics. The last revision indicates the com-

mit at which we performed the ‘git clone’.

Project LOC # of Commits Last revision
Commandline 11602 1556 67f77e1
CommonMark 14613 418 f3d5453
Hangfire 40263 2889 175207c
Humanizer 56357 1647 604ebcc
Lean 242974 7086 71bc0fa
Nancy 79192 5497 dbdbe94
Newtonsoft.Json 71704 299 4f8832a
Ninject 13656 784 6a7ed2b
RestSharp 16233 1440 b52b9be

would cause an issue when computing ground truth. Overall, this
artificially created corpus mimics some of the tangled commits we
expect developers to make; specifically, it captures the intuition of
a developer committing multiple consecutive work units as a single
patch. Section 7 discusses the threat this poses to Heddle’s validity.

Following the above procedure, we obtain a shortlist of chains
of SHAs of varying length for nine C# systems; we show project
statistics in Table 1. These SHAs refer to atomic commits. We san-
ity check that they are atomic by uniformly sampling 30 commits
from our corpus and examining each commit for up to five minutes.
We found 27/30 to be atomic, 2 of the tangled commits refactor
comments (which are invisible and therefore atomic to Heddle),
and 1 tangled commit due to merging content from a different
versioning system (SVN) in a single commit. From this study, we
extracted two heuristics that we used to filter out non-atomic com-
mits. Specifically, we excluded all merge commits and those that
generate 𝛿-PDGs that have no changed nodes.

We attempt to create tangled commits by selecting the SHAs in
the tail of these chains and git cherry-picking them onto the head.
We then mark the originating commit in the tangled diff using the
individual atomic diffs as not all selections are successful. Some of
the successful selections may not have changes from all tangled
commits as later commits may shadow them. Therefore, we perform
a final pass to learn the actual number of surviving concerns. In
the end, we built two sets of tangled commits: those that tangle 2
and those that tangle 3. This models the most common numbers of
tangled concerns in the wild [6, Figure 7].

Table 2 shows the final statistics for our corpus, where the num-
ber of concerns is the count of surviving concerns at the end of the
selection process. We report all successfully generated data-points
and detail, in Section 6, the subsets on which we compared any
two methods when at least one of them did not run on the full
corpus due to time-outs. We do not treat time-outs as a zero accu-
racy result, but drop them from consideration. We remark that the
primary source of time-outs is the computational cost of running
our reproduction of Herzig et al..

5.2 Experimental Setup

Our experiments assess how well our method recovers the origi-
nal commits compared to the baseline methods proposed by Bar-
nett et al. [2] and Herzig et al. [6]. Additionally, we measure the
runtime cost of the different methods. For this, all methods are run

https://pppi.github.io/Flexeme/
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Table 2: Successfully tangled commits.

Project Concerns
2 3 Overall

Commandline 308 32 340
CommonMark 52 0 52
Hangfire 229 87 316
Humanizer 85 4 89
Lean 154 24 178
Nancy 284 67 351
Newtonsoft.Json 84 7 91
Ninject 82 0 82
RestSharp 95 18 113
Overall 1373 239 1612

in isolation on the same high-end laptop (i7-8750H @ 3.20 GHz, 16
GB RAM @ 2666 MHz) and we compute accuracy for all methods
as follows:

𝐴 =
#Correctly labeled nodes

#Nodes in graph . (1)

Both baselines, as well as Heddle, may recover an arbitrary per-
mutation of the ground truth labels. To avoid artificially penalising
them, we first use the Hungarian Algorithm [15] to find the permu-
tation that maximises accuracy. Consider the ground truth ‘[01122]’,
should a tool output ‘[20011]’, a naïve approach would award it
0.0 accuracy, while a trivial permutation of the labelling function
reveals that this is indeed 1.0 accuracy. We report this maximal
accuracy for each method.

For the purpose of timing, we perform one burn-in run of com-
mit segmentation followed by 10 repeats that are used to compute
the runtime cost. We then obtain the speed-up factor as a non-
parametric pairwise comparison between the methods. Notably,
we do not include the cost of the static analysis required for each
method, rather only the cost of segmentation. This is due to de-
riving the required program representations for each method as a
projection from the 𝛿-NFG.

5.3 Reproducing Barnett et al. and Herzig et al.

In order to use Barnett et al.’s method as a baseline, we had to re-
implement it, because its source is not public. Their method rests
on def-use chains. They retain all def-use chains that intersect a
diff hunk in a commit. To obtain this, we first recover the dataflow
graph and then we separate the flows by ‘kill’ statements, such as as-
signments. In a 𝛿-PDG, this becomes a def-use chain projected onto
a diff hunk. Two chains are equivalent if (a) they are both changed
and are both uses of the same definition or (b) they are a changed
use of a changed definition. Under this partition, they divide the
parts into trivial and nontrivial. All diff-regions in a trivial part fall
within a single method. To avoid overwhelming developers with
chains that are highly likely to be atomic, they do not show trivial
parts; implicitly, they are assuming that developers can see and
avoid method-granular tangling. In contrast, we, like Herzig et al.,
consider method-granular tangling, so our re-implementation does
not distinguish trivial and non-trivial parts.

To reproduce Herzig et al.’s method, we reconstruct the call
graph by collapsing into hypernodes by method membership, we
recover the dataflow from the 𝛿-PDG, and we additionally generate
an occurrence matrix specifying the files changed by a commit, as
well as file sizes in terms of number of lines. Finally, we compute
a diff-region granular corpus for all the successful tangles, as the
Herzig et al. algorithm works at a diff-region granularity. Using this
information, we construct a distance matrix for each tangled com-
mit. This distance matrix is populated by the sum of the distances
from each individual voter. All confidence voters are identical to
the original paper with one exception. We replaced package dis-
tance by namespace distance; we do, however, compute it in the
same manner. At evaluation time, we also provide the number of
concerns to be untangled. This is known by construction, as in
the original paper. We perform agglomerative clustering on the
resultant matrix using complete linkage, i.e. taking the maximum
distance over all diff-regions within a cluster.

We also create a version of Herzig et al.’s confidence voters
method that operates directly on 𝛿-PDGs, which we call 𝛿-PDG+CV.
The last stage here is not dissimilar to flexeme, with the remark
that we still provide Herzig et al.’s approach with oracle access to
the number of concerns while flexeme requires only a similarity
threshold. We implemented the voters so that only file distance
and change coupling require auxiliary information. This is pre-
computed from the git history of the project under analysis. Every
other voter — call graph distance, data dependency and namespace
distance — are computed on demand only for the nodes that we
consider for merging.

For both baselines, as well as Heddle, we measure only the time
taken to untangle and not the construction of auxiliary structures.
We exclude the construction time as we derive the DU-chains, call-
graphs and dataflow-graphs from our 𝛿-PDG.

6 RESULTS

In this section, we compare Heddle against our two baselines, in
terms of accuracy and runtime. To implement our baselines, we
reproduced the methodology and tooling from Herzig et al. [6]
and Barnett et al. [2]. We show that Heddle outperforms, in both
accuracy and run-time, our reproduction of Herzig et al.’s method.
We report comparisons between tools only on the subset of data-
points on which both tools run to completion.

6.1 Untangling Accuracy

When recovering the original partition of the 𝛿-NFG from our arti-
ficial tangle of code concerns, Heddle achieves a median accuracy
of 0.81 and a high of 0.84 on the project Nancy; it outperforms
Herzig et al. by 0.14 and trails 𝛿-PDG+CV only by 0.02 while scal-
ing better to big patches. Unlike Herzig et al., Heddle achieves this
result without resorting to heuristics or manual feature construc-
tion.

Heddle outperforms both baselines in accuracy, the difference
being statistically significant at 𝑝 < 0.001 (Wilcoxon pair-wise test),
and matches the performance of 𝛿-PDG+CV, the new technique
we have built from grafting Herzig et al.’s confidence voters on top
of our 𝛿-NFG (𝑝 = 0.76, Wilcoxon pair-wise test). Unlike Heddle,
the other approaches consider file-granular features. Specifically,
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Table 3: Median performance of untangling commits for each method by project and number of tangled concerns. The perfor-

mance differences are significant to 𝑝 < 0.001 for all overall results according to a two-tailed Wilcoxon pair-wise test on the

common set of data-points, except 𝛿-PDG+CV vs heddle, which is significant to 𝑝 < 0.001. Entries indicated by a ‘*’ signify

that there was no relevant data point to report the performance on and those indicated by ‘x’ indicate time-outs.

Project Name Barnett et al. [2] Herzig et al. [6] 𝛿-PDG+CV Heddle (𝛿-NFG + WL)

2 3 Overall 2 3 Overall 2 3 Overall 2 3 Overall
Commandline 0.18 0.21 0.19 0.67 0.48 0.64 0.77 0.84 0.80 0.82 0.92 0.82

CommonMark 0.20 * 0.20 0.65 * 0.65 0.90 * 0.90 0.70 * 0.70
Hangfire 0.16 0.13 0.15 0.70 0.54 0.64 0.84 0.88 0.87 0.86 0.68 0.79
Humanizer 0.18 0.31 0.18 0.64 0.42 0.62 0.69 x 0.69 0.83 0.57 0.81

Lean 0.19 0.12 0.18 0.69 0.62 0.69 0.84 0.71 0.84 0.77 0.82 0.80
Nancy 0.09 0.08 0.09 0.70 0.56 0.67 0.86 0.80 0.86 0.81 0.92 0.84
Newtonsoft.Json 0.15 0.11 0.15 0.71 0.56 0.71 0.86 0.69 0.82 0.71 0.52 0.71
Ninject 0.14 * 0.14 0.57 * 0.57 0.94 * 0.94 0.80 * 0.80
RestSharp 0.12 0.14 0.12 0.71 0.69 0.70 0.74 0.53 0.70 0.82 0.89 0.82

Overall 0.14 0.11 0.13 0.69 0.62 0.67 0.83 0.84 0.83 0.81 0.84 0.81

Table 4: Median time taken (s) to untangling commits for each method by project and number of tangled concerns up to 3

sig figs. The runtime cost differences are significant to 𝑝 < 0.001 for all overall results according to a two-tailed Wilcoxon

pair-wise test, except 𝛿-PDG+CV vsHeddle, where the difference is not statistically significant (𝑝 = 0.51). Entries indicated by

a ‘*’ signify that there was no relevant data point to report the performance on and those indicated by ‘x’ indicate time-outs.

Project Name Barnett et al. [2] Herzig et al. [6] 𝛿-PDG+CV Heddle (𝛿-NFG + WL)

2 3 Overall 2 3 Overall 2 3 Overall 2 3 Overall
Commandline 0.10 8.51 0.12 10.51 8.56 9.26 0.42 153.55 0.59 0.85 182.62 1.04
CommonMark 2.56 * 2.56 1.96×103 * 1.96×103 10.38 * 10.38 14.95 * 14.95
Hangfire 1.15 4.97 1.95 1.30×104 5.57×104 1.72×104 10.61 123.99 13.84 8.06 45.29 11.64
Humanizer 0.44 0.23 0.41 40.62 49.53 44.44 9.24 x 9.24 4.86 2.56 4.58
Lean 1.00 1.59 1.28 345.05 173.58 288.35 19.28 17.08 19.28 18.07 24.07 18.23
Nancy 2.06 5.63 2.42 570.57 1.29×103 600.16 22.04 20.52 21.96 18.38 85.55 21.78
Newtonsoft.Json 2.14 6.42 2.35 225.62 510.77 230.49 20.04 51.54 20.32 8.01 11.98 8.58
Ninject 1.25 * 1.25 81.53 * 81.53 4.52 * 4.52 14.99 * 14.99
RestSharp 0.74 1.25 0.78 46.22 222.98 72.09 7.80 1.01 4.99 9.86 26.25 10.11
Overall 1.02 5.02 1.41 81.53 647.99 117.35 7.17 70.35 10.27 7.99 43.29 9.56

they compute a probability that two files are changed together, and,
by proxy, tackle the same concern, from the version history. This
allows them to better cluster related changes that span multiple
files.Heddle, in such cases, relies only on the existence of call edges
between the different files when projected onto a 𝛿-NFG. Further,
Herzig et al. has oracle access to the number of concerns while
heddle has not. Despite the lack of explicit file-level relationships
or oracle access, Heddle’s accuracy matches confidence voters
when applied to 𝛿-NFGs, and outperforms them when they are
applied to diff-regions.

Of the four methods we consider, our re-implementation of Bar-
nett et al.’s method (Section 5.3) produces the lowest median accu-
racy — 0.13. We believe that two reasons account for this accuracy.
First, we evaluate our re-implementation on trivial parts. Second,
Barnett et al. speculate that their high FN rate is due to relations,
like method calls, that def-use chains miss [2, §VI.A]. We emphasise
that Barnett et al. performed much better in its native setting. They
built their approach for Microsoft developers and the commits they
handle on a daily basis. Section 7 details the threats to Heddle’s

validity this difference in methodology incurs. Section 8.2 further
details their approach and evaluation and its differences to Heddle.

When considering accuracy for an increasing number of con-
cerns (See Figure 4), only Barnett et al. and Herzig et al. report
statistically significant performance drops (𝑝 < 0.01 and 𝑝 < 0.001
according to a Mann-Whitney U test). Barnett et al.’s drop is, how-
ever, not observable at two decimal points, while Herzig et al.’s
drop is by 0.07. Both 𝛿-NFGs-based tools report statistically indis-
tinguishable results as the number of concerns increases.

As heddle is not privy to the number of concerns, its behaviour
on atomic commits is interesting. When we apply heddle to atomic
commits, they are correctly identified as atomic with 0.63 accuracy.
This results is when we ask the the yes/no question ‘Is this commit
atomic?’. We also want to determine how wrong heddle is when
creating spurious partitions. For this, we consider the node-level
accuracy of heddle. The result is 0.93, suggesting that heddle
often mislabels a small number of changed nodes.

Table 3 shows detailed per project results broken down by project
and number of concerns for each of the four untangling techniques.
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Figure 4: Boxplot comparing the accuracy of the baseline and Heddle (Figure 4a) as well as time taken (s) to segment a

commit (Figure 4b) for all projects. The drop in accuracy for Herzig et al.’s approach as the number of concerns increases is

significant to 𝑝 < 0.001 and Barnett et al.’s to 𝑝 < 0.01 according to a Mann-Whitney U test. The results of the same test for

𝛿-PDG+CV and Heddle indicate that there is no statistically significant difference (𝑝 = 0.28 and 𝑝 = 0.76 respectively). All

increases in time taken to segment are statistically significant (𝑝 < 0.001, Mann-Whitney U test).

6.2 Untangling Running Time

Figure 4b shows that Barnett et al. [2]’s def-use chain technique is
by far the fastest. This result is expected because the algorithm is,
at its core, strongly connected components detection over a sparse
graph, and is therefore linear in the number of nodes in def-use
chains that contain at least one addition. However, as we have
previously seen in Table 3, its accuracy is considerably worse.

Heddle is 32 times faster than Herzig et al. in a pair-wise ra-
tio test. Where 𝑛 is the number of diff-regions, the Herzig et al.
technique requires 𝑛2 shortest path computations, each requiring
the solution of 𝑛2 reachability queries over the dataflow graph.
Consider the sparse occurrence matrix that encodes which commit
touched which file; its dimensions are the number of commits by
number of files that ever existed in the repository. Herzig et al.’s
technique also sums each row of this matrix. Although their tech-
nique needs these steps only to populate the distance matrix before
agglomerative clustering, these operations are expensive and must
be computed for all diff-regions within a patch. The fact that their
technique is heavy weight is unsurprising.

When compared to 𝛿-PDG+CV, the performance on graphs tan-
gling only two concerns is comparable; however, Heddle scales
better as the number of concerns, and the number of changed nodes
increases. We estimate the runtime of both Heddle and 𝛿-PDG+CV
using a robust linear model regression and fitting a second order
polynomial in the number of changed nodes (𝑛). We find Heddle
to scale with 𝑡 = 0.3371 − 0.0041𝑛 + 0.0015𝑛2, 𝑅2 = 1.00 and 𝛿-
PDG+CV with 𝑡 = 0.8794 − 0.0528𝑛 + 0.0019𝑛2, 𝑅2 = 0.99. At 500
nodes changed, which is common in our dataset, this would account
for a difference of 68 seconds.

Finally, we compute the pair-wise ratio of runtimes and find that
Heddle is, over the median of these ratios, 9 times slower than
Barnett et al. and 32 times faster than Herzig et al. at untangling
commits, taking, on average, ten seconds per commit.

7 THREATS TO VALIDITY

Heddle faces the usual threat to its external validity: the degree to
which its corpus of commits across a set of projects is representa-
tive. The fact that we construct tangled commits exacerbates this
threat and introduces the construct validity threat that commits
that we assume are atomic, are not, in fact, atomic. To address
the latter threat, we validated the atomicity of the commits, from
which we built tangled commits, on a small, uniform sample of
30 commits across our corpus. As is conventional, we choose 30
because this is typically when the central limit theorem starts to
apply [8]. We did not validate the representativeness of our corpus
against a real-world sample of tangled commits. Ground truth in
real-world samples can be hard to identify, so we opted to use the
methodology from Herzig et al. [6] to create an artificial corpus
that mimics some tangled commits we expect developers to make;
it captures the intuition of a developer committing multiple consec-
utive work units as a single patch. This decision restricts our results
only to the type of tangled commits we mimic, which generalise
only in so far as our algorithmically tangled commits generalise.
Further, like Barnett et al., we evaluated Heddle only on C# files,
so, despite Flexeme’s language-agnosticism, Heddle’s result may
not generalise to other languages.

Our re-implementations of Herzig et al.’s and of Barnett et al.
may contain errors. Section 5.3 details these re-implementations
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andwhere they differ from their authors’ descriptions of the original
implementations. Finally, we published these re-implementations
at https://pppi.github.io/Flexeme/, so other researchers can vet our
work.

We borrowed Herzig et al.’s commit untangling evaluation strat-
egy wholesale, as Section 5.1 and Section 5.2 detail. Thus, we were
able to directly compare our work with theirs. Barnett et al. opted
for a different evaluation strategy (Section 8.2), because obtaining
a ground truth for their evaluation is too time-consuming in their
setting. Thus, we can neither directly compare Heddle against
their approach, nor assess our re-implementation relative to their
tool. They also conducted a user study showing both a developer
need for such tooling and that their suggestions are useful. Because
we did not conduct a user study, our results lack the sanction of
developer approval.

8 RELATEDWORK

We first discuss the impact of tangled commits both on developers
and researchers. We then discuss approaches to untangling such
commits followed by a discussion of multiversion representations.
We conclude with a discussion of graph kernels.

8.1 Impact of Tangled Commits

Tao et al. [27] were amongst the first to highlight the problem of
change decomposition in their study on code comprehension; they
highlight the need for decomposition when many files are touched,
multiple features implemented, or multiple bug fixes committed.
The latter is diagnosed by Murphy-Hill et al. [21] as a deliberate
practice to improve programmer productivity. Tao et al. conclude
that decomposition is required to aid developer understanding of
code changes.

Independently, Herzig et al. [6, 7] investigate the impact of tan-
gled commits on classification and regression tasks within software
engineering research. The authors manually classify a corpora of
real-world changesets as atomic, tangled or unknown, and find
that the fraction of tangled commits in a series of version histories
ranges from 7% to 20%; they also find that most projects contain
a maximum of four tangled concerns per commit, which is con-
sistent with previous findings by Kawrykow and Robillard [11].
They find non-atomic commits significantly impact the accuracy of
classification and regression tasks such as fault localisation.

8.2 Untangling Commits into Atomic Patches

It is natural to think of identification of communities in the 𝛿-NFG as
a slicing problem [28]. However, boundaries across concerns do not
naturallymap to a slicing criterion; it is unclear how to seed a slicing
algorithm and when to terminate it. This is because concerns are
linked with multiple edges which makes their separation difficult
to specify with a slicing criterion. In the rest of this section, we
discuss the literature around the problem of tangled commits and
the theoretical foundations of flexeme.

Research on the impact of both tangled commits and non-essential
code changes prompted an investigation into changeset decompo-
sition. Herzig et al. [6, 7] apply confidence voters in concert with
agglomerative clustering to decompose changesets with promising

results, achieving an accuracy of 0.58-0.80 on an artificially con-
structed dataset that mimics common causes of tangled commits.
In contrast, Kirinuki et al. [13, 14] compile a database of atomic
patterns to aid the identification of tangled commits; they manually
classify the resulting decompositions as True, False, or Unclear,
and find more than half of the commits are correctly identified as
tangled. The authors recognise that employing a database intro-
duces bias into the system and may necessitate moderation via
heuristics, such as ignoring changes that are too fine-grained or
add dependencies.

Other approaches rely on dependency graphs and use-define
chains: Roover et al. [23] use a slicing approach to segment com-
mits across a Program Dependency Graph, and correctly classify
commits as (un)tangled in over 90% of the cases for the systems stud-
ied, excluding some projects where they are hampered by toolchain
limitations. They propose, but do not implement, the use of Sys-
tem Dependency Graphs to reduce some of the limitations of their
approach, such as being solely intraprocedural. Flexeme tackles
interprocedural and cross-file dependencies by merging the 𝛿-PDGs
of the files touched by a commit.

Barnett et al. [2] implement and evaluate a commit-untangling
prototype. This prototype projects commits onto def-use chains,
clusters the results, then classifies the clusters as trivial or non-
trivial. A cluster is trivial if its def-use chains all fall into the same
method. Barnett et al. employ a mixed approach to evaluate their
prototype. They manually investigated results with few non-trivial
clusters (0-1), finding that their approach correctly separated 4 of
6 non-atomic commits, or many non-trivial clusters (> 5), finding
that, in all cases, their prototype’s sole reliance on def-use chains
lead to excessive clustering. For results containing 2–5 clusters,
they conducted a user-study. They found that 16 out of the 20 de-
velopers surveyed agreed that the presented clusters were correct
and complete. This result is strong evidence that their lightweight
and elegant approach is useful, especially to the tangled commits
that Microsoft developers encounter day-to-day. During the inter-
views, multiple developers agreed that the changeset analysed did
indeed tangle two different tasks, sometimes even confirming that
developers had themselves separated the commit in question after
review. In addition to validating their prototype, their interviews
also found evidence for the need for commit decomposition tools.
Because they use def-use chains and ignore trivial clusters, Bar-
nett et al.’s approach can miss tangled concerns that Flexeme can
discern. Barnett et al.’s user study itself shows that this can matter:
it reports that some developers disagreed with the classification of
some changesets as trivial.

Dias et al. [4] take a more developer-centric approach and pro-
pose the EpiceaUntangler tool. They instrument the Eclipse IDE and
use confidence voters over fine-grained IDE events that are later
converted into a similarity score via a Random Forest Regressor.
This score is used similarly to Herzig et al. [6]’s metrics, i.e. to per-
form agglomerative clustering. They take an instrumentation-based
approach to harvest information that would otherwise be lost, such
as changes that override earlier ones. This approach also avoids
relying on static analysis. They report a high median success rate
of 91% when used by developers during a two-week study. While
Dias et al. sidestep static analysis, they require developers to use an
instrumented IDE.Heddle is complementary to EpiceaUntangler: it

https://pppi.github.io/Flexeme/
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allows reviewers to propose untanglings of code that may originate
from development contexts where instrumentation might not be
possible.

8.3 Multiversion Representations of Code

Related work has considered multiversion representations of pro-
grams for static analysis. Kim and Notkin [12] investigate the ap-
plicability of different techniques for matching elements between
different versions of a program. They examine different program
representations, such as String, AST, CFG, Binary or a combination
of these as well as the tools that work on them on two hypotheti-
cal scenarios. They only consider the ability of the tools to match
elements across versions and leave the compact representation of
a multiversion structure as future work. Some of the conclusions
from the matching challenges presented by Kim and Notkin [12]
are echoed in Flexeme as well, we make use of the UNIX diff as it is
stored within version histories; however, we also make use of line-
span hints from the compilers for each version of the application
to better facilitate matching nodes within a NFG.

Le et al. [16] propose a Multiversion Interprocedural Control
Graph (MVICFG) for efficient and scalable multiversion patch veri-
fication over systems such as the PuTTY SSH client. Our 𝛿-PDG is a
generalisation of this approach to a more expressive data structure,
with applications beyond traditional static analysis.

Alexandru et al. [1] generalise the Le et al.MVICFG construction
to arbitrary software artefacts by constructing a framework that
creates a multiversion representation of concrete syntax trees for
a git project. They adopt a generic ANTLR parser, allowing them
to be language agnostic, and achieve scalability by state sharing
and storing the multi-revision graph structure in a sparse data
structure. They show the usefulness of such a framework by means
of ‘McCabe’s Complexity’, which they implement in this framework
such that it is language agnostic, does not repeat computations
unnecessarily and reuses the data stores in the sparse graph by
propagating from child to parent node. Sebastian and Harald [24]
propose a compact, multiversion AST that cleverly shares state
across versions. Flexeme, in contrast, rests on PDGs and is well-
suited for the untangling tasks, as our evaluation demonstrates.

8.4 Semantic Slicing of Version Histories

Features in a system often co-evolve, which tangles the changes
made for a one high-level feature with others in a version history.
To resurface feature-specific changes, they dynamically slice a tar-
get version, then walk backwards in history while they can reverse
the intra-version patch without conflict; at each version they reach,
they add any commit that contains a hunk that touches the current
slice to it. The goal of this semantic slicing of version histories
is to find a minimal slice of a version history that captures the
evolution of a feature. Li et al. [17, 19] first formulated and intro-
duced this problem. Semantic slicing is a form of commit untangling
backwards through history. This retrospective framing is why they
treat the history as immutable. In this initial solution, Li et al. treat
commits as atomic so their slices may contain noise introduced
by tangled commits. To reduce this noise, Li et al., in more recent
work [18], unpack commits into single-file commits into a private,
local history. Flexeme, in contrast, is static and online: built from

the ground up to rewrite commits as developer make history. As
such Flexeme and semantic slicing are complementary: Flexeme
would improve the signal to noise ratio of semantic slicing. An
interesting direction for future work would be to use Flexeme to
preprocess version histories prior to semantically slicing them as
with Definer [18].

8.5 Graph Kernels

Real world data is often structured, from social networks, to protein
interactions and even source code. Knowing if a graph instance
is similar to another is useful if we wish to make predictions on
such data by means that employ either similarity or distance. Vish-
wanathan et al. [29] provide a unified framework to study graph
kernels, bringing previously defined kernels under a common um-
brella and offering a new method to compute graph kernels on
unlabelled graphs in a fast manner, reducing the asymptotic cost
from𝑂 (𝑛6) to𝑂 (𝑛3). They mainly study the construction of the dif-
ferent graphs and demonstrate the run-time improvement without
applying it to a downstream prediction task. Shervashidze et al. [25]
introduce the Weisfeiler-Lehman Graph kernel, which they evalu-
ate with three underlying kernels — subtree, edge histogram, and
shortest path — on several chemical and protein graph datasets.
Although code is often represented as a graph structure and the
methods presented here are also used by us to compute graph sim-
ilarity, this literature primarily concerns itself with chemical and
social network datasets that have become standardised benchmarks.

9 CONCLUSION

We have presented Flexeme— a new approach to commit untan-
gling. Flexeme’s realisation inheddle advances the state-of-the-art:
it is 0.14more accurate (achieving 0.81) and 32 times faster than the
previous state-of-the-art. This result rests on a novel data structure,
𝛿-NFG, which augments a multiversion program dependence graph
(also introduced in this paper) with name flows. 𝛿-NFG facilitate
dual-channel reasoning across versions. Thus, we believe that 𝛿-
NFG will be useful on tasks other than commit untangling, such
as code refactoring, notably renaming, or code summarisation, as
when suggesting docstrings.
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