
On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

Massimiliano Di Penta

dipenta@unisannio.it

University of Sannio

Benevento, Italy

Gabriele Bavota

gabriele.bavota@usi.ch

Università della Svizzera italiana

Lugano, Switzerland

Fiorella Zampetti

fiorella.zampetti@unisannio.it

University of Sannio

Benevento, Italy

ABSTRACT
Software refactoring aims at improving code quality while preserv-

ing the system’s external behavior. Although in principle refactor-

ing is a behavior-preserving activity, a study presented by Bavota et
al. in 2012 reported the proneness of some refactoring actions (e.g.,
pull up method) to induce faults. The study was performed by min-

ing refactoring activities and bugs from three systems. Taking profit

of the advances made in the mining software repositories field (e.g.,
better tools to detect refactoring actions at commit-level granular-

ity), we present a differentiated replication of the work by Bavota

et al. in which we (i) overcome some of the weaknesses that affect

their experimental design, (ii) answer the same research questions

of the original study on a much larger dataset (3 vs 103 systems),

and (iii) complement the quantitative analysis of the relationship be-

tween refactoring and bugs with a qualitative, manual inspection of

commits aimed at verifying the extent to which refactoring actions

trigger bug-fixing activities. The results of our quantitative analysis

confirm the findings of the replicated study, while the qualitative

analysis partially demystifies the role played by refactoring actions

in the bug introduction.

CCS CONCEPTS
• Software and its engineering→ Software reliability; Design-
ing software.

KEYWORDS
refactoring, bug introduction, mining software repositories

1 INTRODUCTION
Software refactoring has been extensively studied by the research

community, through empirical studies investigating how and why

developers perform refactoring [32, 37, 39, 43, 48, 49], how refactor-

ing relates with other development tasks (e.g.,merge conflicts [35]),

with software quality indicators (e.g., quality metrics) [5, 17, 45, 46],

and with developers’ productivity [36]. Some studies (e.g., Kim et
al. [32]) indicated that often developers are concerned about per-

forming refactoring activities as it may cause the introduction of

bugs.

The relationship between refactoring and bugs has been the

subject of several studies, that analyzed software repositories to

understand the extent to which refactoring activities introduce

bugs [8, 24, 50]. Weißgerber and Diehl [50] studied the correlation

between refactoring activities and bug reports opened in the sub-

sequent days, finding no strong correlation. However, their study

did not link refactoring activities in a specific file with bug-fixes

performed on that same file.

In a previous work, some of the authors
1
[8] presented a study

overcoming this limitation, showing that refactoring actions involv-

ing hierarchies (e.g.,push-down method) induce bug-fixing commits

more frequently than other refactoring types. They used the Ref-

Finder [40] tool to create a dataset of 12,922 manually-validated

refactoring actions, detected comparing subsequent releases (63 in

total) of three Java systems. By comparing releases, Bavota et al.
[8] assumed that a specific refactoring was performed on a file Fj
between releases Ri and Ri+1 of a given system, while the exact

refactoring-related commit was unknown. Then, by mining the

change history of the three systems, the authors identified bug-

fixing commits by linking commit messages and issue tracker data

using a keyword-based approach [25] (e.g., “fixed issue #ID”, where
ID was the id of an issue on the issue tracker of the mined system).

Finally, for each bug-fixing commit, they identified its fix-inducing

commits using the SZZ algorithm [44]. Using such data, Bavota et
al. assumed that a refactoring action performed on file Fj between
Ri and Ri+1 induced a fix if a bug-inducing commit c identified by

the SZZ was performed on Fj between Ri and Ri+1. Thus, there is
a strong assumption made in the experimental design: Since the

refactoring actions were captured between releases, it is not pos-

sible to know whether the refactoring was actually implemented

in the bug-inducing commit c . Also, some refactoring actions may

not be detected because of the large differences that may occur

between two releases.

This, together with the small size (three projects) are the main

limitations of this study.

1
In the following we refer previous work as Bavota et al. because the set of authors
only partially overlaps.

ar
X

iv
:2

00
9.

11
68

5v
1

 [
cs

.S
E

]
 2

4
Se

p
20

20

Di Penta et al.

More recently, Ferreira et al. [24] reported preliminary results of

a mining-based study performed on five systems and overcoming

the main design issue of the work by Bavota et al. [8]. Ferreira
et al. mined both refactoring actions and bug-inducing changes

at commit-level, looking for how “close” the refactoring actions

were to bug-inducing changes. They confirmed the relationship

between refactoring actions and bugs showing, however, that many

bugs are not the direct consequence of the refactoring action, but

of changes implemented later on the refactored code. By using a

tool-chain similar to the one adopted by Ferreira et al. [24], we
present a differentiated replication of the study by Bavota et al. [8].
We overcome several limitations of that study by:

Taking profit of the recent advances made in the mining software
repositories field. This reflects in (i) better refactoring miner tools

able to precisely identify refactoring actions at commit-level gran-

ularity [47], thus avoiding the assumption made in the original

study done at release-level; (ii) enhanced implementations of the

SZZ algorithm, overcoming some of the limitations of the original

algorithm [19]; (iii) a line-level linking between refactoring actions

and bug-fixing activities (as compared to the file-level linking done

in previous studies).

Considering the possible impact of the size confounding factor on
the achieved results. While the original study indicated a relationship

between specific refactoring actions and the introduction of bugs,

the authors ignored the possible impact of the size confounding

factor on this finding (e.g., refactoring is usually performed in larger

commits and larger commits are more likely to introduce bugs).

Complementing the quantitative analysis with a systematic qual-
itative evaluation. We manually analyze a statistically significant

sample of 384 commits identified as fix-inducing refactoring actions

(i.e., those that induced a bug-fixing activity) to study whether the

performed refactoring actions actually induced the bug-fix. This

analysis provides more confidence in the reported quantitative

findings.

Answering the same research questions presented in [8], but on
a larger scale. We answer the research questions presented in [8]

both on the same three systems used in the original study, as well

as, on a set of 100 open source Java projects. This increases the

generalizability of the findings.

Despite the different experimental design adopted, our quanti-

tative analysis confirms most of the findings of the original study.

However, we also unveil the significant role played by the size

confounding factor in inducing bug-fixing activities. Also, our qual-

itative analysis shows that, while the SZZ can identify the commit

implementing the refactoring(s) as the last one modifying the code

then subject to bug-fixing activities, in many cases the bug was

already in the system before the refactoring even happened.

The obtained results trigger further research in the area of auto-

mated refactoring, but also warns developers about possible risks

associated with refactoring activities, if the latter are not accompa-

nied by suitable verification & validation.

Paper structure. Section 2 describes the study design. Results

are discussed in Section 3, while their threats to validity in Section 4.

After a discussion of related work (Section 5), Section 6 concludes

the paper.

2 STUDY DESIGN
The goal of the study is to perform a differentiated replication of

the work by Bavota et al. [8], in which the authors investigated

the extent to which refactoring actions trigger bug-fixing activities.

The context is represented by the history of 103 Java projects, and

in particular by the refactoring operations and bug-fixes performed

by their developers.

We address the following research questions (RQs):

RQ1 Are refactoring-related commits more likely to induce
fixes than other commits? This RQ mirrors the RQ1 from the

original work of Bavota et al. [8]. They answered this RQ by mining

refactoring actions and fix-inducing changes performed between

subsequent releases of three systems. Using this data, Bavota et al.
investigated whether refactoring operations are likely to induce

bug-fixes. However, as also acknowledged [8], the strong (unver-

ified) assumption behind the study is that there is an overlap be-

tween the fix-inducing commits and the commits that implemented

the refactoring actions. Instead of performing our replication at

release-level, we use a commit-level granularity. This means that we

know the exact commits in which refactoring operations have been

performed in a specific file Fj and, as a consequence, we can check

whether those commits induced a fix or not. We also improved

other aspects on top of the original experimental design. Finally,

while we answer RQ1 by using the same three systems adopted in

the original study [8], we also answer RQ1 in a large-scale study

involving 100 open source projects.

RQ2 To what extent is the relationship between refactoring
actions and fix induced changes influenced by the effect of
size? Bavota et al. did not consider the size of the code change as a

possible confounding factor in their analysis. However, it is well-

known that large commits (i.e., commits impacting a large number

of files/lines/code churns) have a higher probability of inducing

a bug [33]. It is possible that commits implementing refactoring

operations are more likely to induce bug-fixes simply because they

are larger than commits implementing other types of changes (e.g.,
bug-fixes, enhancements). RQ2 aims at investigating the role played

by the commit size co-factor in the relationship between refactoring

actions and fix-inducing changes.

RQ3 What kinds of refactoring types are more likely to in-
duce fixes? RQ3 mirrors the RQ2 of the original study, and analyzes

the likelihood that different types of refactoring (e.g., extract class,
pull up method) trigger bug-fixing activities.

RQ4 To what extent does refactoring actually trigger bug-
fixing activities? RQ4 is a qualitative analysis we perform on a

sample of the fix-inducing commits we identified in our quantitative

study as responsible for both (i) implementing a refactoring, and

(ii) inducing a bug-fixing activity. In other words, these should be

the commits where there is a cause-effect relationship between

refactoring and bug introduction.

2.1 Context Selection
We answer our research questions by mining the change history

of 103 projects. Three of them, namely Apache Ant, ArgoUML,

and Apache Xerces-J, are the Java projects used in the replicated

study [8], while the remaining 100 were selected from GitHub

through the following procedure.

On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

Our initial idea was to mine popular and large projects from

GitHub, excluding forked projects, coding tutorials, and personal

projects, as well as projects having less than 100 issues and 1,000

commits, to ensure the availability of a long change history to study.

Also, we decided to ignore projects having less than 80% of their

code written in Java since the refactoring detector used in our

study [47] only works with Java. Finally, since in our study it is of

crucial importance to identify bug-fixing commits, we also wanted

to exclude repositories not using a clear label for bugs and those

not consistently referencing in commit notes the id(s) of the issue(s)

closed by the commit. Concerning the first point (i.e., label for bugs),
in GitHub every project can define its own set of labels to “tag” the

opened issues, thus indicating bugs, feature requests, etc. As for the
second point, having an explicit link between commits and bugs

allows to precisely identify the bug-fixing commits needed for our

study.

To this aim, we used the GitHub API [3] to extract the list of

projects having at least 100 issues and Java as their “first language”.

The latter criterion means that Java is the most used language in the

project, but does not guarantee that the vast majority of the code is

written in Java. Since the GitHub API returns at most 1,000 results

per search, we generated several requests, each having a specific

size range. We used the size:min..max argument to retrieve only

projects within a specific size range. In this way, we increased

the number of returned results to up 1,000 × n, where n is the

number of considered size ranges. Note that, while such a search

heuristic does not allow to identify all possible GitHub projects

having at least 100 issues and Java as their primary language, this

is not important for the sake of our study. Here the goal was to

just collect a set of candidate projects that then we can manually

validate to decide which ones to include in our study. We collected

2,538 projects, and two of the authors inspected them to check the

selection criteria previously mentioned. After analyzing the first

1,000 projects (by sorting them in descending order of stars), it

became clear that most of these projects were not suitable for our

study. In particular, out of these 1,000, we found only 40 projects

to match all our selection criteria. Then, upon further inspection,

other problems were found also for most of these 40 projects. Some

of them, while having defined an explicit label for bugs, had very

few labeled issues in the issue tracker. For others, while in the

manual inspection of the change-log we observed commits linked

to closed issues, the number of these links turned out to be very

low even in projects having a very high number of commits and

issues. This likely indicated the non-consistent adoption of a linking

methodology between issues and commits.

For these reasons, we decided to adopt a different process for

project selection. However, before describing it, we want to stress

the challenges and perils of automatically selecting projects from

GitHub. Indeed, while we applied some strong selection criteria

on the number of issues (at least 100) and sorted projects based on

their popularity as indicated by the number of stars (the most pop-

ular projects in our dataset had ∼67k stars), we obtained as result

many tutorial-like projects (e.g., Snailclimb/JavaGuide), reposi-
tories collecting quiz for job interviews (e.g., kdn251/interviews)
or, as previously said, repositories making a very limited use of

methodologies to link commits and issues and/or to consistently la-

bel issues. We believe this is an important warning for our research

community when dealing with large-scale studies in which project

selection is not manually curated.

We decided to focus on projects managed by the Apache Soft-

ware Foundation (ASF) [1], because these are well-used projects

managed by a known open source foundation. Also, a large chunk

of these projects consistently used through their entire change

history a single bug-tracking system, namely JIRA [2]. The issues

are always classified based on their types (e.g., bug) and, as a best
practice, the Apache projects reference the issue id(s) in the note

of commits closing issues. We used the GitHub API to extract the

list of GitHub projects managed by the ASF. Then, we filtered out

projects not having at least 80% of their code written in Java, ob-

taining a list of 554 candidate projects. Finally, we sorted them

by the number of forks (as a proxy for popularity), and two of

the authors manually inspected this list from the top with the

goal of selecting 100 projects to use for the study. The selection

was done based on two criteria: 1) the project used the JIRA issue

tracker for its entire change history; 2) the project was not a sub-

project representing a “component” of a bigger project (e.g., we
excluded fineract-cn-portfolio). If these two criteria were met,

the authors annotated the name of the projects from the Apache

JIRA installation [2] that were referenced in the change-log of the

repositories (i.e., in the commit notes). Indeed, the Apache JIRA

installation hosts several projects, each one identified by a specific

name. For example, the apache/hadoop project references in its

change-log issues from the following projects hosted in Apache

JIRA: HADOOP, HDFS, MAPREDUCE, and YARN. The two authors

stopped when the set of 100 projects was collected (available in our

online appendix [21]).

For what concerns the three projects used in the replicated study,

two of them (i.e., ArgoUML and Xerces-J) use JIRA as well in their

whole change history. Ant, instead, uses a mix of Bugzilla and JIRA

and, thus, we had to manage this case in a different way as explained

in the next section.

2.2 Data Extraction
Once cloned the 103 repositories we used RMiner [47] to identify

commits containing refactoring operations. RMiner has been esti-

mated to achieve a precision of 98% and a recall of 87%. For each

project, we run RMiner on all commits of all branches impacting

Java files, excluding merge commits.

RMiner outputs, for each commit, the list of refactoring actions

detected, with the files and lines affected on the left-hand-side

(before) and right-hand-side (after) of the change.

For the three projects studied by Bavota et al. [8], we considered
two different observation periods. The first considers the same his-

tory they analyzed i.e., analyzing all commits preceding the releases

they studied (identified from release tags or commit messages), and

bug fixes limited within their observation period, i.e., by December

31, 2011. Specifically, we considered the following release intervals:

ArgoUML (0.11, 0.34], Ant (1.1, 1.8.2], and Xerces (1.0.3, 2.9.1].

The second observation period considers the whole evolution

of the three projects up to January 15, 2020. Similarly, for the 100

Apache projects, we considered the entire history on GitHub until

January 15, 2020.

Di Penta et al.

To identify fix-inducing changes, we first download the issue

reports of the mined projects by using the JIRA project names pre-

viously extracted during the project selection. For the 100 Apache

projects, we download issue reports using the Perceval tool [4].

As for the three projects from the replicated study [8], they use

a heterogeneous way of reporting issues. While Xerces uses the

Apache JIRA server, and ArgoUML uses its own JIRA installation,

Ant is the trickiest case because it used Bugzilla at the beginning

of its history, and JIRA later. Also, Ant has several cases of bugs re-

ported directly in the commit message. Therefore, for these projects,

we identified regular expressions in commit messages referring to

(i) JIRA issues, (ii) Bugzilla issues, and (iii) bugs fixed without an

issue. For the first two cases, we downloaded the issue reports using

the wget Unix utility, rendering them as free-text using the Lynx

browser, and extracted the relevant content using a Python script.

For fixes without an issue report, we assumed the reporting and

closing timestamp to match the commit timestamp.

Once downloaded the relevant issues, we linked them to commits

using a regular expression-based approach [25]. For the Apache

projects, the regular expression is of type ISSUEPROJECT-# (where

ISSUEPROJECT is the name of the project on the issue tracker),

whereas for the three other projects we used all possible regular

expressions identified through the manual analysis explained above.

We considered as bug-fixing commits those (i) linked to an issue

of type “Bug” or, for Bugzilla (Ant), of priority at least “Normal”

and not being an “Enhancement”; (ii) where the issue was in sta-

tus “Closed” and Resolution “Fixed”, except for 12 Apache projects

where the Closed status was not used, and we kept those with a

“Resolved” status. For the Ant fixes without an issue, as explained

before, we simply relied on the commit message regular expression.

Finally, we noticed that some of the mined commits included com-

mits reverting previous bug fixes (thus, they were matching our

regular expressions since mentioning the issue for which they were

reverting the fixing). We excluded these cases from the analysis.

While we are aware that software projects may contain fixes

with no explicit link to issues [12] and that approaches to propose

candidate links for such fixes exist [52], we preferred to avoid such

a solution in order to limit false positives.

More important, as explained in Section 2.1, one criterion for

the selection of projects was the careful usage of issue trackers

(the only exception was Ant, which has several non-tracked issues,

which we handled as explained above). We could have identified

bugs from commits to mitigate the bias described by Bird et al. [12],
but this would have introduced false positives in the bug datasets

and, also, would not have provided us with information about the

issue opening date. For this reason, we limited this approach to

untracked commits from Ant.

After having the set of bug-fixing commits and related issue

metadata available, we were ready to apply the SZZ.

At first, we tried to use already available tools, and in particular,

SZZ Unleashed [13]. However, by experimenting it and by dis-

cussing with its authors, we discovered that sometimes it tracks to

wrong file version and line numbers, due to issues with the used

Python git library. Thus, we implemented our own version of SZZ,

capable of (i) ignoring cosmetic changes (i.e., formatting, using the

git blame -w option), changes to comments, and changes to non-

Java files; and (ii) relying on the native Unix git diff, renaming

and line mapping. Our SZZ does not ignore semantically-equivalent

changes because, indeed, we are interested in analyzing refactoring

actions. Our SZZ implementation first identifies the lines changed

by the fix. Then, starting from the file version before the fix, and

considering only the fixed lines, it uses git blame -w -p to iden-

tify the last change before the fix to these lines, along with the file

name, and the line number mapping. In summary, for each changed

line of fixed files, the algorithm outputs a candidate introduction

location (commit, file name and line number). We discard candidate

fix-inducing changes that occurred after the issue opening date. As

for fixes without an issue (only for the Ant project), this heuristic

was not used as a filter.

Recent work suggests that for an accurate fix-inducing change

identification, bulk commits as well as the first commit of the project

should also be ignored [19], although the work also points out that

such commits can still introduce fixes. For such reasons, we decided

to keep them, also considering that (i) the first commit of the ana-

lyzed projects does not contain refactoring actions, and therefore

false positives in those commits do not affect the experimental

group; (ii) refactoring actions could occur in bulk commits because

these can be commits aimed at performing a general restructuring

of the projects. At the same time, in RQ2 we control the effect of the

change’ size on the observed results. Furthermore, some SZZ imple-

mentations [20] only consider the most recent blame from each fix

as a fix-inducing change, while we consider all possible blames as

we want to be conservative. Indeed, we keep track of these changes

and we show how results change if limiting the analysis only to

those.

As a final step of our data extraction approach, we merge the

SZZ output with the RMiner output. Specifically, for each commit

considered by RMiner, we report:

(1) whether it contains at least a refactoring;

(2) whether it induces a fix;

(3) whether there is at least one fix inducing change and refac-

toring action occurring in the same file;

(4) whether there is at least one fix inducing change and refac-

toring action occurring on the same line;

(5) detailed information for each refactoring action, i.e., refac-
toring type and whether the refactoring occurs in a file and

in a line with fix-inducing changes.

Finally, to control for the size of the change, we compute using

git diff, for each analyzed commit, the number of changed Java

files and the number of churns and of lines added and deleted in

these files.

2.3 Analysis Methodology
The analyses described below have been performed using the R

statistical environment [41]. To addressRQ1, we first use a method-

ology similar to the one applied by Bavota et al. [8]. That is, we
use Fisher’s exact test [26] and Odds Ratio (OR) effect size to check

whether commits containing at least one refactoring induce fixes in

a higher proportion with respect to other commits. An OR x > 1 in-

dicates that the odds for refactoring-related commits to induce fixes

are x times greater than other commits. Note that for a refactoring-

related commit we assume that the refactoring induces a fix if (1) at

last a refactoring occurs on the same file where the fix is induced;

On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

or (2) the refactoring impacts the same lines changed in the bug-

fixing commit. We analyze results for both options (1) and (2). For

option (1) it is possible that refactoring and bug fixing occur in

different lines of the same file. As it will be explained in Section 2.2,

since the relationship between the refactoring and the bug fix is

determined using a re-implementation of the SZZ algorithm [44],

the fix must occur after the refactoring. We perform the analysis

on each project separately, and then we adjust p-values using the
BenjaminiâĂŞHochberg procedure [10].

To address RQ2, we first identify the change size indicator to be

used, by analyzing the presence of a correlation (using Spearman’s

rank correlation) between different size indicators. Then, we test

the null hypotheses H0r : refactoring-related commits do not have

a significantly different size from other commits, and H0f : fix-

inducing commits do not have a significantly different size from

other commits. We first test such null hypotheses using Wilcoxon

rank-sum test [51]. We then consider all possible combinations

of the two factors (e.g., fix-inducing and refactoring-related, fix-

inducing but not refactoring related, etc.), using Kruskal-Wallis

test [34] followed by a Dunn post hoc analysis [22]. We also report

Cliff’s delta effect size values [28].

Finally, we study whether the size of the change and refactoring

actions interact with respect to inducing a fix, by using a logistic

regression model with mixed-effect (glmer function of the R lme4
package [7]). The dependent variable is a dichotomous variable indi-

cating if a commit is fix-inducing or not; the independent variables

are dichotomous variables indicating whether a commit contains

at least a refactoring which impacted a fix inducing file or line, the

commit size, and their interaction. The random effect is the project.

To address RQ3, we perform, on data from all projects, an anal-

ysis similar to the one of RQ1, but by refactoring type. That is, we

consider whether commits containing at least one refactoring of

a given type have higher odds to induce a fix (again considering

as positive cases when the refactoring overlaps with the fix at file

or line level) than commits not containing that kind of refactor-

ing. Since the test is repeated for 41 refactoring types, p-values are
adjusted as before.

To address RQ4, we firstly extracted from our dataset the 17,985

bug-fixing commits for which a match with one or more refactoring

was found at line level in the fix-inducing commit. This means that

the source code lines impacted by the bug-fixing commit were

also impacted, completely or in part, by refactoring operations

performed in the fix-inducing commit.

Once obtained this set, we extracted from it a statistically signif-

icant sample ensuring a 95% confidence level ± 5%.

This resulted in the selection of 384 bug-fixing commits with

their related refactoring operations. The selection of the 384 in-

stances was performed in the following way. First, we analyzed the

distribution of refactoring types (e.g., extract class, extract method,
etc.) in the entire population of fix-inducing commits implement-

ing refactoring actions. In this way, we found out the percentage

of fix-inducing commits in which each refactoring type appears.

Then, we also computed the number of fix-inducing commits in

each of the 103 systems considered in our study. The system and

the refactoring type were used as strata to randomly select the

384 commits for manual validation. This means that the higher

the number of fix-inducing commits in a system S , the higher the

number of fix-inducing commits from S that will be in our sample.

Similarly, the higher the number of fix-inducing commits contain-

ing a certain refactoring type T , the higher the number of commits

implementing T in our sample.

The selected sample was manually analyzed by three authors

(from now on evaluators) with the goal of classifying them as false

positive (i.e., the refactoring in the fix-inducing commit was not

responsible for the bug introduction) or as a true positive (i.e., the
refactoring introduced the bug). In the latter case, the evaluator

could also briefly describe the reason why the refactoring induced

the bug-fixing activity.

The manual analysis was supported by a Web app that we de-

veloped for this task. Each author independently inspected the

commits randomly assigned to her by the Web app. Each commit

was assigned to two evaluators by the Web app, that showed for

a given commit: (i) the link to the bug-fixing commit in GitHub,

highlighting the code line(s) modified in it that was also impacted

by the refactoring; (ii) the link to the fix-inducing commit in GitHub,

highlighting the code line(s) impacted by the refactoring that was

also modified in the bug-fix; (iii) a list of the refactoring actions

detected by RMiner that were implemented in the fix-inducing

commit and matched the lines in the bug-fix. Each author roughly

classified 270 commits to obtain the two evaluations needed for

each of the 384 commits. At the end of this process, the authors

performed an open discussion to solve the 117 conflicts (30%) that

have occurred.

To answer RQ4, we report the percentage of analyzed commits

in which we found an actual link between refactoring and bug

introduction. Also, we discuss interesting cases identified in our

manual analysis.

3 STUDY RESULTS
We discuss the results accordingly to the defined RQs.

RQ1: Are refactoring-related commits more likely to in-
duce fixes than other commits? We report the comparison of

the proportion of fix-inducing changes occurring in commits with

a refactoring — overlapping at the file(s) or the lines(s) level — and

in other changes. In particular, Table 1 reports results on the same

systems and on the same history studied by Bavota et al. [8].
As the table shows, commits with refactoring always have sig-

nificantly higher odds to induce a fix than other changes. Looking

at the top-side of the table, the ORs are between 3.46 and 3.87 when

considering a matching at the file level. This is the closest com-

parison to Bavota et al. [8]: compared to our results, they reported

OR at release-level, with the following OR ranges computed for

significant differences: Ant [3.50,6.65], ArgoUML 5.17 (only one

release showed significant results) and between 8.79 and 157.69

for Xerces2-J. Note that they counted proportions on refactoring

instances detected on a single release, and because of that for many

releases (13 out of 17 for Ant, 13 out of 14 for ArgoUML, 23 out of

29 for Xerces2-J) they did not obtain statistically significant results.

However, such a lack of significance seems to be due more to a

limited statistical power rather than to other reasons. Similarly, the

157 OR they observed for ArgoUML was computed on a release

with only 2 refactoring actions and 2 fix inducing commits.

Di Penta et al.

Table 1: RQ1: Replication on the same systems and history
of Bavota et al.. (NRNI: no refactoring, no inducing fix; NRI:
no refactoring, inducing fix; RNI: refactoring, no inducing
fix; RI: refactoring, inducing fix).

File matching

System NRNI NRI RNI RI OR p adj
Ant 11,823 288 1,981 187 3.87 <0.001
ArgoUML 19,413 458 3,979 344 3.66 <0.001
Xerces2-J 4,206 614 672 340 3.46 <0.001

Line matching

System NRNI NRI RNI RI OR p adj
Ant 11,823 288 2,085 83 1.63 <0.001
ArgoUML 19,413 458 4,144 179 1.83 <0.001
Xerces2-J 4,206 614 846 166 1.34 <0.001

Table 2: RQ1: Replication on the same systems of Bavota et
al., history up to date. (NRNI: no refactoring, no inducing
fix; NRI: no refactoring, inducing fix; RNI: refactoring, no
inducing fix; RI: refactoring, inducing fix).

File matching

System NRNI NRI RNI RI OR p adj
Ant 13,762 371 2,248 257 4.24 <0.001
ArgoUML 22,526 590 4,366 410 3.59 <0.001
Xerces2-J 5,747 686 970 392 3.38 <0.001

Line matching

System NRNI NRI RNI RI OR p adj
Ant 13,762 371 2,384 121 1.88 <0.001
ArgoUML 22,526 590 4,564 212 1.77 <0.001
Xerces2-J 5,747 686 1,168 194 1.39 <0.001

Looking at the bottom side of the table, if we consider that a

refactoring induces a fix only if a line affected by the refactoring is

also modified in the bug-fixing commit, odds are reduced by 60%

or more, and vary between 1.34 and 1.83. Still, changes involving

refactoring actions have higher odds to induce a fix. Also, note this

is a very conservative analysis because a refactoring might still

impact a fix without directly affecting a line modified in the bug

fix.

Considering the complete history of the projects, as Table 2

shows, results are quite consistent with the ones of Table 1.

When performing the Fisher’s exact test for the 100 Apache

projects, at file-level, 85 p-values are statistically significant (< 0.05,

before and after the adjustment). At line-level, only 34 p-values
are statistically significant, 28 after the adjustment. Figure 1 shows

the distribution of OR at file- and line-level matching for the 100

Apache projects. An OR greater than one indicates that a commit

where a refactoring occurs has more chances than other commits

to induce a fix. For the file-level matching, the median OR is 2.13 (it

reaches 2.36 if considering only the projects where the difference in

proportion is statistically significant). For the line-level matching,

the OR decreases dramatically to a level at which the difference

between a commit with refactoring actions and other commits is

1
2

3
4

5
6

Matching granualrity
file line

Od
ds

 ra
tio

2.13

1.14

Figure 1: RQ1: Odds that refactoring actions induce fixes.
Boxplot of OR for the 100 Apache projects.

smaller (OR=1.13, while it reaches 1.46 if considering statistically

significant cases only).

What if considering as fix-inducing only the most recent

blame [20]? We performed the analysis (details in the replication

package [21]), and results did not change dramatically. For the three

projects of Bavota et al., odds were still above 3 at file-level and

above 1.5 at line-level. For the 100 Apache projects the median OR

was 2.07 and 1.17 at file- and line-level, respectively.

RQ1 Summary:Our results confirm themain findings of Bavota

et al. [8]. Commits implementing refactoring actions have higher

odds to induce a fix than other changes. This finding is also

confirmed when working at line-level granularity, even though

the difference between refactoring and other types of changes

is less marked.

RQ2: To what extent is the relationship between refactor-
ing actions and fix induced changes influenced by the effect
of size? We found a moderate to strong correlation (0.59) between

the number of changed files and the number of added lines, between

the number of added and deleted lines (0.46), between the number

of added lines and added churns (0.79), and between the number of

added lines and deleted churns (0.50). Therefore, we only report our

analysis considering, as the size of a change, the number of added

lines. We also performed the same analysis for the other factors,

obtaining similar results.

The Wilcoxon rank-sum test indicates that commits with fix-

inducing changes are bigger than other commits (p-value < 0.001)

with a medium effect size (d=0.40). At the same time, commits in

which refactoring actions occur are significantly bigger than others

(p-value < 0.001), with a large effect size (d=0.50). In our dataset

On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

Table 3: Mixed-effect logistic regression relating refactoring,
lines added, and their interaction with fix-inducing changes

AIC BIC logLik deviance df.residuals
300,772.4 300,828.6 -150,381.2 300,762.4 562,671

Scaled residuals:

Min 1Q Median 3Q Max
-3.4245 -0.3249 -0.2389 -0.1491 15.0509

Random effects:

Groups Variance Std.Dev.
Project (Intercept) 0.7136 0.8448

Number of obs: 562,676, Groups: Project: 103

Fixed effects:

Estimate Std. Error z value Pr(> |z |)
(Intercept) -3.24 0.08 -39.81 <0.001

Ref. 0.83 0.01 61.97 <0.001
Lines Added 0.01 0.00 80.96 <0.001

Ref.:Lines Added -0.00 0.00 -16.95 <0.001

the conditions for ANOVA application were not met (residuals not

normally distributed and variance not homogeneous). Therefore,

we verified the presence of interaction between the two factors (i.e.,
refactoring and fix-inducing) using a Kruskal-Wallis test followed

by a post hoc Dunn’s test with Benjamini-Hochberg correction.

The test indicates that all possible combinations are statistically

different from each other, and that (i) changes with refactoring

actions and fix-inducing changes are larger than all other changes;

(ii) changes with refactoring actions but not fix-inducing are larger

than changes with no refactoring but fix-inducing, and (iii) changes

with no refactoring actions and no fix-inducing are smaller than

any other group.

Finally, we use a mixed-effect logistic regression model to evalu-

ate whether, even in presence of the “size” effect, refactoring actions

still correlate with fix-inducing changes. As Table 3 shows, the oc-

currence of refactoring actions, the commit size in lines added, and

their interaction have a statistically significant effect on the likeli-

hood that the commit induces a fix. By observing the estimates, the

presence of a refactoring increases by e0.83 = 2.29 times the odds

that a commit induces a fix, while a unity increment of the added

lines increases the odds by e0.01 = 1.01, and a similar effect size is

observed for the interaction between refactoring actions and lines

added.

Similar results have been obtained considering, as a change size

indicator, the number of added churns.

RQ2 Summary:When controlling for size, the refactoring ac-

tions still play a role in inducing bug-fixing activities, thus sup-

porting the RQ1 findings.

RQ3: What kinds of refactoring types are more likely to
induce fixes? Table 4 reports, for each refactoring type, the odd

that a commit containing at least a refactoring of that type has to

induce a fix. For this RQ, for space reasons, we consider only the

case in which the refactoring overlaps with the bug-fix at line level.

This also because non-overlapping lines in the same file could be

subject to other refactoring types. Refactoring types are ordered by

decreasing OR.

Table 4: Fix-inducing proneness by type of refactoring.

Name # (%) Buggy OR p adj
Extract Subclass 910 0.31 232 2.07 <0.001
Move And Inline Method 1,962 0.68 422 1.65 <0.001
Extract Class 4629 1.60 994 1.65 <0.001
Extract And Move Method 6,633 2.29 1,331 1.52 <0.001
Move And Rename Method 3,672 1.27 735 1.51 <0.001
Push Down Method 744 0.26 143 1.44 <0.001
Split Attribute 413 0.14 73 1.30 0.07

Extract Superclass 5,272 1.82 916 1.27 <0.001
Merge Variable 838 0.29 140 1.21 0.06

Move Method 5,767 1.99 930 1.15 <0.001
Parameterize Variable 3,870 1.33 618 1.15 <0.001
Merge Parameter 738 0.25 117 1.14 0.25

Replace Attribute 203 0.07 32 1.13 0.52

Split Parameter 331 0.11 52 1.13 0.48

Extract Interface 2,011 0.69 312 1.11 0.14

Split Variable 149 0.05 23 1.10 0.65

Inline Method 5,056 1.74 782 1.10 0.03
Push Down Attribute 575 0.20 88 1.09 0.48

Pull Up Attribute 1,310 0.45 198 1.08 0.42

Pull Up Method 1,571 0.54 230 1.03 0.65

Move Attribute 4,614 1.59 656 1.00 1.00

Move And Rename Class 2,999 1.03 389 0.90 0.09

Replace Variable With Attr. 3,469 1.20 443 0.88 0.02
Extract Method 27,371 9.44 3,509 0.86 <0.001
Merge Attribute 576 0.20 70 0.84 0.22

Move And Rename Attr. 216 0.07 25 0.79 0.40

Inline Variable 5,957 2.05 611 0.69 <0.001
Rename Attribute 15,435 5.32 1,535 0.66 <0.001
Rename Variable 23,327 8.05 2,310 0.65 <0.001
Change Parameter Type 15,098 5.21 1,446 0.63 <0.001
Change Variable Type 20,484 7.07 1,929 0.61 <0.001
Rename Parameter 19,011 6.56 1764 0.60 <0.001
Change Return Type 16,868 5.82 1,493 0.58 <0.001
Change Attribute Type 20,064 6.92 1,721 0.56 <0.001
Rename Method 20,938 7.22 1,798 0.54 <0.001
Extract Variable 25,328 8.74 2,150 0.54 <0.001
Rename Class 8,459 2.92 609 0.46 <0.001
Extract Attribute 2785 0.96 197 0.46 <0.001
Move Class 6,345 2.19 373 0.37 <0.001
Change Package 1,149 0.40 60 0.33 <0.001
Move Source Folder 2,750 0.95 58 0.13 <0.001

Most of the refactoring types having a high odd to induce

fixes are those involving refactoring big chunks of code (extract
class/subclass, move and inline method/extract and move methods),
as well as those involving inheritance (extract subclass/superclass,
push down method).

The latter confirms previous findings [8], which also found such

types of refactoring to be particularly concerning, and literature

highlighting the difficulties to test class hierarchies [29].

We can also notice how some refactoring actions not involv-

ing large changes, e.g., split attribute and merge variable have a

relatively high OR (1.30 and 1.20, respectively). Instead, renaming

changes are largely harmless, despite being among the most fre-

quent refactoring actions we found. Surprisingly, extract method,
another very frequent refactoring has an OR (0.86) smaller than

similar refactoring types (e.g., extract and move method, 1.52). It

Di Penta et al.

The refactoring induced
the bug-fixing activity

The refactoring is unrelated
to the bug-fixing activity

38%

62%

147 fix-inducing refactorings:
top causes for bug-fixes

Bug in refactored code (71%)

Chain-of-changes (20%)

Application logic bug
Exception handling issue

Refactored code deleted in fix
Major changes to refactored code

Reverted refactoring (9%)
Extract method
Change return type

Figure 2: RQ4: Manual validation of 384 fix-inducing com-
mits implementing refactoring actions.

is possible that extracting a method within the same class creates

fewer problems than an extract and move method (due to the need

for context adjustment).

RQ3 Summary: Twenty refactoring types confirm their higher

chances to induce fixes as compared to other types of changes,

with ten of them being statistically significant. As compared

to the work by Bavota et al. [8], we confirm the high odds to

induce fixes for refactoring types related to inheritance.

3.1 RQ4: To what extent does refactoring
actually trigger bug-fixing activities?

Figure 2 shows the results of the manual validation we performed to

verify whether the refactoring actions detected in 384 fix-inducing

commits identified through the SZZ algorithm were actually re-

sponsible for triggering the bug-fixing activity. Before commenting

on the results, a number of clarifications must be made. First, we

noticed that in some cases what was labeled as “bug” in the is-

sue tracker of the subject systems was not a functional bug, but
rather an issue with non-functional aspects of source code (e.g.,
performance) or, in a few cases, minor issues (e.g., a wrong logging

message).

We do not make any distinction among these types of issues in

our study, assuming that what was labeled by the original devel-

opers as a “bug” should be considered as such. Second, while the

authors involved in the manual validation have a strong experience

in Java (i.e., the language used in all subject systems), they are

not the developers of the subject systems. In some cases, while we

managed to identify the refactored code as responsible (or not) for

triggering the fixing activity, we found extremely difficult to distill

the exact code change that caused the bug. For example, let us as-

sume that a method created through an extract method refactoring

in the fix-inducing commit was the target of changes in the bug-fix,

and that the impacted code was created during the extract method
refactoring (i.e., did not previously exist in the system). We labeled

this refactoring as fix-inducing even if we did not manage to locate

the actual bug in the code.

For 147 (38%) of the analyzed fix-inducing commits, we clas-

sified the refactoring as responsible for triggering the bug-fixing

activity. This means that in 62% of cases (237 commits), while the

refactoring actions were part of the changes implemented in the

fix-inducing commit, the manual analysis did not show any evi-

dence about their implication in the bug introduction. The main

reasons for not considering the refactoring as the trigger for the

fixing commit were three. In 31% of cases (74), the refactored code

was unrelated to the bug introduction meaning that, while the bug

was actually introduced in the commit indicated by the SZZ (i.e.,
the one implementing the refactoring) and the bug-fixing commit

also modified lines of code impacted by the refactoring, the fixed

bug concerned other lines modified in the same commit that were

not subject of any refactoring activity. In 29% of cases (68 out of

237), the fixed bug already affected the system before the refactor-

ing. An example of this scenario is the case in which an extract
class refactoring grouped together a number of existing statements

and one of them was already buggy (e.g., the condition in an if
statement, then fixed in the bug-fixing commit). The subsequent

extract class did not change the statements but was identified by

the SZZ as responsible for triggering the fix since it was the last

change impacting on the buggy statement. Finally, in the remaining

40% of cases (95), the refactoring and or the bug-fixing were part of

tangled commits (such a percentage is smaller of the proportion of

floss refactoring indicated in previous literature [37], i.e., about 60%,
but not particularly small), often of huge size, that made extremely

difficult to identify the actual triggering of the bug-fix. However, in

all those cases, the authors agreed on the unlikely link between the

refactoring and the bug introduction.

For what concerns the 147 “true positive” instances, Figure 2

shows the three causes we identified for the triggering of bug-fixing

activities, i.e., Bug in refactored code, Chain-of-changes, and Reverted
refactoring. Each of these categories contains sub-categories better

detailing the reason behind the bug. Due to space limitations, we

only report in Figure 2 the top-2 subcategories for each of these

main categories. The complete categorization is available in our

online appendix [21]. In the following, we describe each category

and present one representative example for each of them.

Bug in refactored code. This is the “obvious” and expected rea-

son for which a refactoring should trigger a bug-fixing commit

and, indeed, this category accounts for 71% of the true positive

cases. Most of the bugs in this category are related to application

logic bugs, to the handling of exceptions, and to wrong initializa-

tion of variables. An example of this category is commit c20ac05
from apache/karaf, in which an extract method refactoring is

On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

implemented. In particular, part of the doExecute method from

the DisplayLog class is extracted into the newly created display
method, which is then invoked in doExecute through the statement

display(cnv, event, out). The bug-fixing commit (d9ecb3d),
which commit note mentions “[KARAF-546] Added NPE check in-
side DisplayLog”, adds a Null Pointer Exception (NPE) guard in an

if statement preceding the invocation of the extracted method

(i.e.,if(event != null)) and avoids possible NPE. The changes

introduced due to the performed extract method have induced the

bug-fixing commit.

Chain-of-changes. In 20% of cases, while we were not able

to precisely identify bugs in the refactored code, we observed a

“chain-of-changes” triggered by the refactoring and resulting in the

bug-fixing commit. For example, in 10% of cases, the refactored

code (e.g., an extracted variable/class/method) was deleted in the

bug-fixing commit. In the remaining cases, the bug-fixing commit

implemented major changes in the previously refactored code. For

example, we found seven commits in which the refactoring changed

the type of a parameter, a variable, or the return type of a method

and then, the bug-fixing commit changed that same type again —

not to the original type (i.e., the one before the refactoring) but

to a new one. An example of these cases is commit 6a1ced0 from
apache/felix, in which the developers performed a change param-
eter type refactoring, changing Source sourceDirectory to List
sourceDirectories. The bug-fixing commit changed again the

parameter to File outputDirectory, with a consequent impact

on the application logic of the method. Note that in these cases

the link between refactoring and bug-introduction is less strong

as compared to the previous category. However, we still see the

refactoring as at least one of the causes of the changes implemented

in the bug-fix.

Reverted refactoring. In 9% of cases, the bug-fixing commit

reverted the changes implemented by the refactoring. Differently

from the Chain-of-changes category, in this case the refactored

code was reverted to its status before the refactoring. The most

reverted refactoring actions are those related to the changes of

types. In commit ae008b7 of apache/hive, a change variable type
converts the type of a variable t from TimestampWritable to

TimestampWritableV2. Such a change is reverted in the bug-fixing

commit bd95a2f with the following comment added in the source

code //Use old timestamp writable hash- code for-
backwards compatibility.

It is important to note that, while we found 9% of reverted refac-

toring, none of them belong to an explicitly reverted commit (pre-

vious research indicate how reverted commits are used to undo

changes throughout a project’s history [42].)

RQ4 Summary: Our manual validation, while confirming the

possible role played by refactoring in the introduction of bugs,

partially debunks the findings of our quantitative analysis and

of previous studies [8]. Indeed, in 62% of cases, while the SZZ re-

ports the commit implementing refactoring as the one inducing

the bug-fixing activity, we did not find evidence of the linking

between the refactored code and the bug-fix.

4 THREATS TO VALIDITY
Construct validity. Imprecisions in the detected refactorings could

have affected our results. However, we used a highly precise state-

of-the-art tool (RMiner [47]), reported to have a 98% precision and

87% recall. Another threat is related to the approximations and

the granularity of the SZZ algorithm [13] used for identifying fix-

inducing changes. As detailed in Section 2.2, we used appropriate

heuristics to mitigate this issue, e.g., filter out commented code and

cosmetic changes. Although we did not compute the accuracy for

our SZZ re-implementation, we mitigate this threat (i) by testing

our implementation on a set of ∼ 20 bug introduction instances,

and (ii) through the manual analysis performed in the context of

RQ4.

Finally, links between commits and issues may be missing and

biased [12], or issues improperly tagged [6, 30]. This is one of the

reasons why we decided to use as subject systems a set of projects

adopting well-defined practices to label issues and to link them to

commits.

Conclusion validity. As already detailed in Section 2.3, wherever

possible we used appropriate statistical procedures with p-value
correction and effect size measures to test the significance of the

differences and their magnitude.

Internal validity. Those are mainly related to a missing causation

link between refactorings and bug fixes and to possible confound-

ing factors that may influence such a relationship. We controlled

for the size of implemented changes as confounding factors. Other

co-factors not considered in our study may play a role in the re-

ported findings (e.g., floss refactoring activities). However, (i) in

our observational study we do not claim causation, and (ii) at least,

we complemented the quantitative analysis with a qualitative one,

which helped in better understanding the refactoring-bug relation-

ship.

External validity.While we considered over 100 projects in our

study, we only considered Java projects belonging to the Apache

ecosystem. In Section 2.1, we explained the reasons of this choice,

i.e., availability of reliable-enough defect data. Our findings may

not generalize to other languages or to systems outside of this

ecosystem. Also, we only considered the refactoring operations

currently supported by RMiner.

5 RELATEDWORK
As reported in the introduction, many studies have investigated

software refactoring practices [32, 37, 39, 43]. In this section, we

focus on the ones aimed at investigating the impact of refactoring

on code quality, since being the most related to our work.

Bavota et al. [9], mined the evolution history of three open source

projects looking at whether refactoring operations usually involve

code components with specific characteristics in terms of quality

metrics and presence of smells.

Their results highlight that (i) very often quality metrics do

not show a clear relationship with refactoring; (ii) only 42% of

refactoring involves code components affected by code smells; and

(iii) only 7% of the performed operations actually remove the code

smells from the affected class.

Cedrim et al. [15] conducted a longitudinal study aimed at char-

acterizing the beneficial and harmful effects of refactoring on code

Di Penta et al.

smells. Their results show that even if in ≃ 80% of cases refactoring

activities involve smelly elements, only ≃ 10% of the refactoring

actions results in the removal of code smells from the affected code.

Moreover, they found that while applying refactoring developers

tend to introduce new code smells (33%), e.g., ≃ 30% ofmove method
and pull up method refactoring operations introduce a God Class.

Chávez et al. [18] analyzed the impact of refactoring on internal

quality attributes by looking at 29k refactoring actions occurred

in the history of 23 projects. They found that often the refactoring

touches code components showing at least one critical internal

quality attribute. Furthermore, they show that 55% of these oper-

ations improve internal quality attributes against a 10% of code

quality decline.

Eposhi et al. [23] studied, among other things, the relationship

between refactoring and code quality issues. Their findings show

that (i) the density of code smells is more than 8 times higher in

refactored classes and (ii) refactoring actions usually do not reduce

the density of quality issues.

Bibiano et al. [11] looked at refactoring operations applied in

batches rather than in isolation to analyze their effect on code smells.

Their study is based on the assumption that a single refactoring

rarely suffices to remove a code smell. Surprisingly, their results

show that batches mostly ended up introducing (51%) or not fully

removing (38%) smells.

Vassallo et al. [48] mined 200 systems to quantitatively investi-

gate factors correlating with refactoring, looking at when, why, and

by whom refactoring is performed. Their results show that refactor-

ings (i) are rarely performed close to a new release; (ii) are mainly

performed while improving existing features; and (iii) are mainly

done by the owners of the code components being refactored.

All the aforementioned work relate refactoring actions to quality

attributes, such as metrics, code smells, or to process indicators

(as Vassallo et al. [48] did), whereas our study relates refactoring

actions to bug introduction, while considering the effect of some

change metrics (i.e., change size) as a co-factor. Our study allowed

to (partially) corroborate previous findings reported in the literature

[8].

A close-related work to ours is the one by Ferreira et al. [24], who
conducted a study on five Java projects, 20,689 refactoring actions

and 1,033 bug reports, looking at the distance between the commit

in which the refactoring was performed and the commit in which

the bug emerged in the refactored code element. They found that (i)

many bugs are introduced in the refactored code as soon as the first

immediate change is made on it, and (ii) code elements affected by

refactoring actions performed in conjunction with other changes

(i.e., floss refactoring) are more prone to have bugs compared to

root-canal refactoring actions.

Indeed, we used a similar toolchain (e.g.,RMiner to detect refac-

toring actions, SZZ to identify fix-inducing commits). However, the

study design, the answered RQs, and the scale of the studies are

different.

6 CONCLUSIONS
This paper reported a differentiated replication of a previous study

by Bavota et al. [8], using a different and up-to-date tool chain, finer
granularity and more precise matching between refactoring actions

and fix-inducing changes, and being conducted at a larger scale

(103 projects in total).

The data extraction itself posed several challenges and high-

lighted important lessons for researchers conducting similar stud-

ies. First, carefully test the tool chain (including third-party tools)

being used. Second, refrain to perform an indiscriminate, large-

scale mining from GitHub. While previous studies already advised

about the risks of mining GitHub [31] and ranking projects by stars

[14], or provided means to identify a diverse and representative

set of projects [38], for our study we found that only relying on a

set of project belonging to a well-disciplined ecosystem (i.e., the
Apache Software Foundation projects) allowed us to have enough

confidence to mine projects with a good linking between commits

and issues and issue classification.

The quantitative study results were surprising. Albeit the tool

chain and the analysis methodology (i.e., commit-level of granu-

larity and matching of lines affected by refactoring actions and fix

inducing changes) was completely different, and although we found

how the size of a change played a significant role, results of the

replicated study were generally confirmed, and the effect of refac-

toring appeared even more evident. Noteworthy, results hold both

on the three systems analyzed in the original study and on a larger

set including 100 additional Apache projects. These findings also

support the observations reported in previous qualitative studies

with developers [32], indicating their concerns about possible bugs

introduced in the refactoring process.

However, a deep, manual analysis on a sample of 384 fix-inducing

changes overlapping with refactoring partially debunked the quan-

titative results, revealing that a quantitative analysis may “scratch-

the surface” and miss details on how exactly the source code

changed over time. At the same time, there is still a good pro-

portion of cases in which refactoring actions indeed induce fixes,

and there are recurring patterns in such cases. Often such recurring

patterns highlight latent implications, e.g., reverted changes might

imply that some refactoring actions were not carefully planned.

The obtained results entail implications for both researchers and

practitioners. As for researchers, the study highlights the need for

better refactoring support, in particular for better planning/pon-

dering it (e.g., in the direction of identifying its possible impact

[16]), or automatically testing/verifying the change made, or fur-

ther work in the direction of supporting refactoring review [27].

As for practitioners, this study warns them by pointing out that

refactoring is only in theory behavior-preserving, therefore it must

be planned with appropriate verification & validation activities

aimed at reducing its risks.

We believe that our study, together with the previously published

research on the same topic [8, 24, 50], provides substantial quantita-

tive evidence of the relationship between refactoring and bug-fixing

activities. However, we still see the need for more qualitative studies

unveiling the mechanisms through which refactoring operations

introduce bugs. Our future work will point in this direction.

The data and scripts used in our study are publicly available [21].

On the Relationship between Refactoring Actions and Bugs:
A Differentiated Replication

ACKNOWLEDGMENTS
This work has received funding from the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No. 851720).

REFERENCES
[1] [n.d.]. The Apache Software Foundation. https://www.apache.org

[2] [n.d.]. Apache’s JIRA issue tracker. https://issues.apache.org/jira

[3] [n.d.]. GitHub REST API v3. https://developer.github.com/v3/

[4] [n.d.]. Perceval. https://github.com/chaoss/grimoirelab-perceval

[5] Mohammad Alshayeb. 2009. Empirical investigation of refactoring effect on

software quality. Information and Software Technology 51, 9 (2009), 1319 – 1326.

[6] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-

Gaël Guéhéneuc. 2008. Is it a bug or an enhancement?: a text-based approach to

classify change requests. In Proceedings of the 2008 conference of the Centre for
Advanced Studies on Collaborative Research. IBM, 23.

[7] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting

Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1
(2015), 1–48.

[8] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di

Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactoring Induce

Bugs? An Empirical Study. In 12th IEEE InternationalWorking Conference on Source
Code Analysis and Manipulation, SCAM 2012, Riva del Garda, Italy, September
23-24, 2012. 104–113.

[9] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and

Fabio Palomba. 2015. An experimental investigation on the innate relationship

between quality and refactoring. Journal of Systems and Software 107 (2015), 1 –
14.

[10] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:

A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[11] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia, Mar-

cos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and

Diego Cedrim. 2019. A quantitative study on characteristics and effect of batch

refactoring on code smells. In 2019 ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement (ESEM). IEEE, 1–11.

[12] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,

Vladimir Filkov, and Premkumar T. Devanbu. 2009. Fair and balanced?: bias in

bug-fix datasets. In Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2009, Amsterdam, The Netherlands, August 24-28,
2009. 121–130.

[13] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ un-

leashed: an open implementation of the SZZ algorithm - featuring example usage

in a study of just-in-time bug prediction for the Jenkins project. In Proceedings of
the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques
for Software Quality Evaluation, MaLTeSQuE@ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 27, 2019. 7–12.

[14] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-

standing Repository Starring Practices in a Social Coding Platform. J. Syst. Softw.
146 (2018), 112–129.

[15] Diego Cedrim, Alessandro Garcia, MelinaMongiovi, Rohit Gheyi, Leonardo Sousa,

Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez. 2017.

Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23

Software Projects. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). 465–475.

[16] Oscar Chaparro, Gabriele Bavota, Andrian Marcus, and Massimiliano Di Penta.

2014. On the Impact of Refactoring Operations on Code Quality Metrics. In 30th
IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, 2014. 456–460.

[17] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and

Alessandro Garcia. 2017. How Does Refactoring Affect Internal Quality At-

tributes?: A Multi-project Study. In Proceedings of the 31st Brazilian Symposium
on Software Engineering (SBES’17). 74–83.

[18] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and

Alessandro Garcia. 2017. How does refactoring affect internal quality attributes?

A multi-project study. In Proceedings of the 31st Brazilian Symposium on Software
Engineering. 74–83.

[19] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta

Coelho, and Ahmed E. Hassan. 2017. A Framework for Evaluating the Results of

the SZZ Approach for Identifying Bug-Introducing Changes. IEEE Trans. Software
Eng. 43, 7 (2017), 641–657.

[20] Steven Davies, Marc Roper, and Murray Wood. 2014. Comparing text-based and

dependence-based approaches for determining the origins of bugs. Journal of
Software: Evolution and Process 26, 1 (2014), 107–139.

[21] Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. 2020. On the
Relationship between Refactoring Actions and Bugs: A Differentiated Replication –
Replication Package. https://doi.org/10.5281/zenodo.4018691

[22] Olive Jean Dunn. 1961. Multiple Comparisons among Means. J. Amer. Statist.
Assoc. 56, 293 (1961), 52–64.

[23] Andre Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto

Oliveira, and Anderson Oliveira. 2019. Removal of design problems through

refactorings: are we looking at the right symptoms?. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 148–153.

[24] Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, Anderson Uchôa, Ana Carla

Bibiano, Alessandro Garcia, João Lucas Correia, Filipe Santos, Gabriel Nunes,

Caio Barbosa, and et al. 2018. The Buggy Side of Code Refactoring: Understand-

ing the Relationship between Refactorings and Bugs. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings (ICSE
?18). 406?407.

[25] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a Release

History Database from Version Control and Bug Tracking Systems. In 19th
International Conference on Software Maintenance (ICSM 2003). 23–.

[26] R. A. Fisher. 1922. On the Interpretation of Χ-square from Contingency Tables,

and the Calculation of P. Journal of the Royal Statistical Society 85, 1 (1922),

87–94.

[27] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson R. Murphy-Hill. 2017.

Refactoring-aware code review. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2017, Raleigh, NC, USA, October 11-14,
2017. 71–79.

[28] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

[29] Mary Jean Harrold, John D. McGregor, and Kevin J. Fitzpatrick. 1992. Incremental

Testing of Object-Oriented Class Structures. In Proceedings of the 14th Interna-
tional Conference on Software Engineering, Melbourne, Australia, May 11-15, 1992.
68–80.

[30] Kim Herzig, Sascha Just, and Andreas Zeller. 2015. It’s Not a Bug, It’s a Fea-

ture: How Misclassification Impacts Bug Prediction. In Software Engineering &
Management 2015, Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT)
und Wirtschaftsinformatik (WI), FA WI-MAW, 17. März - 20. März 2015, Dresden,
Germany. 103–104.

[31] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

Germán, and Daniela E. Damian. 2016. An in-depth study of the promises and

perils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.

[32] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field

Study of Refactoring Challenges and Benefits. In Proceedings of the 20th Inter-
national Symposium on Foundations of Software Engineering (Research Triangle

Park, NC, USA).

[33] Sunghun Kim, E. James Whitehead Jr., and Yi Zhang. 2008. Classifying Software

Changes: Clean or Buggy? IEEE Trans. Software Eng. 34, 2 (2008), 181–196.
[34] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion

Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.
[35] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are Refactorings

to Blame? An Empirical Study of Refactorings in Merge Conflicts. In 26th IEEE
International Conference on Software Analysis, Evolution and Reengineering, SANER
2019. 151–162.

[36] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-

ancarlo Succi. 2008. Balancing Agility and Formalism in Software Engineering.

Chapter A Case Study on the Impact of Refactoring on Quality and Productivity

in an Agile Team, 252–266.

[37] Emerson Murphy-Hill, Chris Parnin, and Andreaw P. Black. 2011. How We

Refactor, and HowWe Know It. Transactions on Software Engineering 38, 1 (2011),
5–18.

[38] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity

in software engineering research. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. 466–476.

[39] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D.

Newman. 2018. An Empirical Investigation of How andWhy Developers Rename

Identifiers. In Proceedings of the 2Nd International Workshop on Refactoring (IWoR
2018). 26–33.

[40] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, andMiryung Kim. 2010. Template-

based reconstruction of complex refactorings. In 26th IEEE International Con-
ference on Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara,
Romania. 1–10.

[41] R Core Team. 2012. R: A Language and Environment for Statistical Computing.
http://www.R-project.org ISBN 3-900051-07-0.

[42] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, David Pursehouse, and Naoy-

asu Ubayashi. 2016. Why are Commits Being Reverted?: A Comparative Study

of Industrial and Open Source Projects. In 2016 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7,
2016. 301–311.

https://www.apache.org
https://issues.apache.org/jira
https://developer.github.com/v3/
https://github.com/chaoss/grimoirelab-perceval
https://doi.org/10.5281/zenodo.4018691
http://www.R-project.org

Di Penta et al.

[43] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?

confessions of GitHub contributors. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016. 858–
870.

[44] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do

changes induce fixes?. In Proceedings of the 2005 International Workshop on Mining
Software Repositories, MSR 2005, Saint Louis, Missouri, USA, May 17, 2005.

[45] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–Does It

Improve Software Quality?. In Proceedings of the 5th International Workshop on
Software Quality (WoSQ ’07). IEEE Computer Society, Washington, DC, USA,

10–.

[46] Gábor Szoke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy.

2014. Bulk Fixing Coding Issues and Its Effects on Software Quality: Is It Worth

Refactoring?. In Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th
International Working Conference on. IEEE, 95–104.

[47] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,

and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit

History. In Proceedings of the 40th International Conference on Software Engineering

(ICSE ’18). 483–494.
[48] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald Gall, and Alberto

Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in

open source software projects. Science of Computer Programming 180, 1 (2019),

1–15.

[49] Yi Wang. 2009. What motivate software engineers to refactor source code?

evidences from professional developers. In Software Maintenance, 2009. ICSM
2009. IEEE International Conference on. 413 –416.

[50] Peter Weißgerber and Stephan Diehl. 2006. Are refactorings less error-prone

than other changes?. In Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, Shanghai, China, May 22-23, 2006. 112–118.

[51] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[52] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. Re-

Link: recovering links between bugs and changes. In SIGSOFT/FSE’11 19th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged, Hun-
gary, September 5-9, 2011. 15–25.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Context Selection
	2.2 Data Extraction
	2.3 Analysis Methodology

	3 Study Results
	3.1 RQ4: To what extent does refactoring actually trigger bug-fixing activities?

	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

