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ABSTRACT
UI testing is tedious and time-consuming due to the manual e�ort
required. Recent research has explored opportunities for reusing
existing UI tests from an app to automatically generate new tests for
other apps. However, the evaluation of such techniques currently
remains manual, unscalable, and unreproducible, which can waste
e�ort and impede progress in this emerging area. We introduce
FrUITeR, a framework that automatically evaluates UI test reuse
in a reproducible way. We apply FrUITeR to existing test-reuse
techniques on a uniform benchmark we established, resulting in
11,917 test reuse cases from 20 apps. We report several key �ndings
aimed at improving UI test reuse that are missed by existing work.
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1 INTRODUCTION
Writing UI tests is tedious and time-consuming [23, 26], increas-
ingly driving the focus toward automated UI testing [22]. However,
existing work tends to target tests that yield high code coverage,
rather than usage-based tests that explore an app’s functionality,
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e.g., sign-in, purchase, search, etc. Developers heavily rely on usage-
based tests [26], but currently have to write them manually [22, 26].

To reduce the manual e�ort of writing usage-based tests, recent
research has explored reusing existing tests in a source app to gener-
ate new tests automatically for a target app [20, 21, 23, 25, 28]. The
guiding insight is that di�erent apps expose common functionali-
ties via semantically similar GUI elements. This suggests that it is
possible to reuse existing UI tests across apps—in e�ect generating
the tests automatically—by mapping similar GUI elements.

Four recent techniques have targeted usage-based test reuse
across Android apps [20, 21, 23, 25].1 While these techniques have
shown promise, we have identi�ed �ve important limitations that
hinder their comparability, reproducibility, and reusability. In turn,
this can lead to duplication and wasted e�ort in this emerging area.

1 The metrics applied to date evaluate whether GUI events from
a source app are correctly transferred to a target app, but do not
consider whether the transferred tests are actually useful. It is possi-
ble that events are transferred correctly, but the generated test is
“wrong”. This can be, e.g., because a generated test is missing events
and thus not executable. Moreover, the metrics used in existing
work are not standardized even when evaluating same aspects of
di�erent techniques, making it di�cult to compare the techniques.

2 Each existing technique’s evaluation process requires signif-
icant manual e�ort: every transferred event in each test must be
inspected to determine whether the transfer is performed correctly.
This imposes a practical limit on the number of tests that can be
evaluated. For instance, the authors of ATM [21] had to restrict
their comparison with GTM [20] to a randomly selected 50% of the
possible source-target app combinations due to the task’s scale.

3 There are no standardized guidelines for conducting the manual
inspections, making the evaluation results biased and hard to repro-
duce. For instance, ATM’s authors acknowledge the possibility of
mistakes in the manual process [21]. Such mistakes are currently
hard to locate, verify, or eliminate by other researchers.

4 Existing techniques are designed as one-o� solutions and eval-
uated as a whole. This makes it di�cult to isolate and compare their
relevant components. For instance, GTM [20], ATM [21], and Craft-
Droid [25] all contain functionality to compute a “similarity score”

1Rau el al. recently proposed a test-reuse technique for web applications [28]. In this
paper, we focus on Android apps due to the availability of a larger number of existing
techniques to evaluate, although in principle our work is not limited to Android.
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between two GUI elements, but it is
unclear which of those speci�c compo-
nents performs the best against the same
baseline. This would impede subsequent
research that could potentially bene�t
from identifying underlying components
that should be reused and/or improved.

5 Existing techniques make di�erent
assumptions that hinder their comparison.
For instance, GTM [20] and ATM [21] re-
quire access to apps’ code, and cannot be
directly compared with techniques evalu-
ated on close-sourced apps.

To address limitations 1–3, as well as
limitation 4 in part, we have developed
FrUITeR, a Framework for evaluating UI Test Reuse. FrUITeR con-
sists of three key elements: a set of new evaluation metrics that
consolidate the metrics used by existing techniques and expand
them to measure important aspects that are currently missed; two
baseline UI test-reuse techniques that establish the lower- and upper-
bounds for the evaluation metrics; and an automated work�ow that
modularizes UI test-reuse functionality and signi�cantly reduces the
manual e�ort. With FrUITeR, one can automatically evaluate test-
reuse techniques on apps/tests of interest against the same baseline,
thus opening the possibility of in-depth studies at a large-scale.

To fully address limitation 4, as well as limitation 5, we have
extracted the core components from existing techniques and es-
tablished a benchmark for evaluating and comparing them. Our
benchmark currently contains 20 subject apps with 239 test cases,
involving 1,082 GUI events. This benchmark is used by FrUITeR to
evaluate side-by-side the extracted components and the two base-
line components we developed, yielding 11,917 test-reuse instances.

The results obtained by FrUITeR revealed several important �nd-
ings. For example, we have been able to pinpoint speci�c trade-
o�s between ML-based (e.g., AppFlow) and similarity-based (e.g.,
ATM) techniques. We have also identi�ed scenarios that may seem
counter-intuitive, such as the fact that manually writing tests re-
quires less e�ort than attempting automated transfer in certain
cases. Finally, performing evaluations on a much larger data corpus
allowed us to refute some conclusions reached in prior work.

This paper makes the following contributions. 1 We develop
FrUITeR to automatically evaluate UI test reuse with an expanded
set of metrics as compared to existing work, and two baseline
techniques that help to provide the lower- and upper-bounds of
UI test reuse in a given scenario. 2 We identify and extract the
core components from existing test-reuse techniques, enabling
their fair comparison. 3 We establish a reusable benchmark with
standardized ground truths that facilitates the reproducibility of
UI test-reuse techniques’ evaluation and comparison. 4 We use
FrUITeR to conduct a side-by-side evaluation of the state-of-the-art
test-reuse techniques, uncovering several needed improvements
in this area. 5 We make FrUITeR’s implementation and all data
artifacts publicly available [12], directly fostering future research.

Section 2 introduces a representative example, terminology, and
related work. Section 3 describes FrUITeR’s requirements and Sec-
tion 4 its design, followed by FrUITeR’s instantiation in Section 5.
Section 6 discusses our key �ndings. Section 7 concludes the paper.

Figure 1: sign-in tests for Wish (a1) and Etsy (b1–b3).

2 BACKGROUND AND RELATEDWORK
In this section, we introduce a motivating example and relevant
terminology, followed by an overview of the strategies pursued by
existing work and how they have been evaluated to date.

2.1 Motivating Example and Terminology
Figure 1 shows the screenshots of the sign-in process of two popular
shopping apps: Wish (left) and Etsy (right). Each screen is labeled
with an identi�er, e.g., a1 is the �rst screen of Wish. In each screen,
there may be one or more actionable GUI elements with which
end-users can interact based on the associated actions. For instance,
the “Sign In” button in screen a1 (a1-3) is associated with a click
action. Actionable elements and their associated actions embody
GUI events (de�ned below). By contrast, the label “Sign In” that is
circled in screen a1 is a non-actionable GUI element.

As an illustration, assume that Wish’s sign-in test exists and our
goal is to automatically transfer it to Etsy. The relevant actionable
GUI elements in this sign-in example are labeled and will be used
to describe the following key terms used throughout the paper.

GUI Event, or event in short, is a triple comprising (1) an ac-
tionable GUI element, (2) an associated action, and (3) an optional
input value (e.g., user input for a text box). We reuse this de�nition
from existing work [20, 21, 25]. For simplicity, we use the label of a
GUI element (e.g., a1-1) to refer to the GUI event triple.

Canonical Event is an abstracted event that captures a category
of commonly occurring events. An example canonical event may
be AppSignIn, and it would correspond to the a1-3 and b3-3 from
Figure 1, as well as similar events from other apps, such as Log In.

Usage-Based Test exercises a given functionality in an app,
such as sign-in. A usage-based test2 consists of a sequence of GUI
events. For instance, Figure 1 highlights the sign-in test in Wish
(left) as the event sequence { a1-1, a1-2, a1-3 }.

Source App is the app with known tests that can be transferred
to other apps with similar usage. For instance, Wish is a source
app with a sign-in test that can potentially be transferred to other
apps with sign-in functionality. Target App is the app to which
one aims to transfer existing tests. A target app can reuse the tests
from multiple source apps; at the same time, it can serve as a source

2If not mentioned otherwise, test or test case refers to usage-based test in this paper.
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app to other target apps if it contains known tests. Both source apps
and target apps are used extensively in existing work [20, 21, 25].

Source Test is an existing test for a given source app that
should be transferred to a target app to generate a Transferred
Test. Ground-Truth Test is an existing test for a target app that
is used to evaluate whether the transferred test is correct. (i.e.,
whether the two tests match). Source Event, Transferred Event,
and Ground-Truth Event refer to the GUI events that belong to
the source test, transferred test, and ground-truth test, respectively.

Ancillary Event is a special type of transferred event that is
not mapped from a source event, but is added in order to reach
certain states in the target app. For example, b1-1 and b2-1 from
Figure 1 may need to be added as ancillary events in order to reach
Etsy’s sign-in screen b3; such events do not exist in the source test.

Null Event is an event that should have been mapped from a
source event, but was not identi�ed as such by a given test-reuse
technique. Thus, the null event does not exist in the transferred test,
but it has a corresponding source event from which it maps. This
could be because of (1) a test-reuse technique’s inaccuracy or (2)
the di�erence in app behaviors. An example of the latter would be
the inability to map Etsy’s events b1-1 and b2-1 to Wish in Figure 1.

2.2 Strategies Explored to Date
Four recent techniques [20, 21, 23, 25] have targeted UI test reuse in
Android. The shared core concern of these techniques is to correctly
map the GUI events from a source app to a target app. In the example
from Figure 1, the source test sign-in in Wish comprises the event
sequence {a1-1, a1-2, a1-3}. By mapping GUI events in this test from
Wish to Etsy as {a1-1! b3-1, a1-2! b3-2, a1-3! b3-3}, a new
sign-in test for the target app, Etsy, is generated as {b3-1, b3-2, b3-3}.

The existing techniques can be classi�ed into two main cate-
gories, based on how they map GUI events across di�erent apps:
AppFlow [23] is an ML-based, while CraftDroid [25], GTM [20],
and ATM [21] are similarity-based techniques. We have abstracted
the two categories and their underlying work�ows through study-
ing the similarities and di�erences across the existing techniques.

ML-based techniques learn a classi�er from a training dataset
of di�erent apps’ GUI events based on certain features, such as text,
element sizes, and image recognition results of graphical icons. The
classi�er is used to recognize app-speci�c GUI events and map them
to canonical GUI events used in a test library, so that app-speci�c
tests can be generated by reusing the tests de�ned in the test library.

Similarity-based techniques de�ne their own algorithms to
compute a similarity score between pairs of GUI events in a source
app and a target app based on the information extracted from
the two apps, such as text, element attributes, and Android Ac-
tivity/Fragment names. The similarity score is used to determine
whether there is a match between each GUI event in the source app
and the one in the target app based on a customizable similarity
threshold. For example, a1-1 in Wish (left) from Figure 1 is likely
to have a higher similarity score with b3-1 than with other GUI
events in Etsy (right). In that case, a1-1 in Wish will be mapped
to b3-1 in Etsy. Another important component in similarity-based
techniques is the exploring strategy, which determines the order
of computing the similarity score between the GUI events in the
source and target apps. The target app’s events that are explored
earlier usually have a higher chance of being mapped.

2.3 Existing Evaluation Metrics
To evaluate their test-reuse strategies, existing techniques have
focused on the accuracy of the GUI event mapping. This section
overviews the metrics they applied, which guided us in de�ning
the expanded set of FrUITeR’s metrics (see Section 4.1.1). Note that
the exact de�nitions of existing metrics were not provided in the
prior publications [20, 21, 23, 25]; we had to separately contact the
authors of each technique to obtain the details introduced below.

AppFlow [23] is an ML-based technique that maps app-speci�c
events to canonical events using a classi�er as discussed earlier.
AppFlow’s classi�er is evaluated with the standard accuracy met-
ric [27], indicating the percentage of the correctly-classi�ed GUI
events among all the GUI events being classi�ed. Correctly-classi�ed
GUI events include two cases: (1) the app-speci�c events that are
mapped to the correct canonical events (true positive); and (2) the
app-speci�c events that are not mapped to any canonical events
and such canonical events do not exist (true negative).

CraftDroid [25] is a similarity-based technique. After the trans-
fer of events from a source app to events in a target app, CraftDroid’s
authors manually identify three cases: (1) true positive (TP) occurs
when the transferred event is the same as the one obtained during a
manual transfer; (2) false positive (FP) occurs when the transferred
event is di�erent; and (3) false negative (FN) occurs when Craft-
Droid fails to �nd a matching event, while the manual transfer
succeeds. Precision and recall are then calculated based on the three
cases. It is important to note that CraftDroid’s FP includes both
the incorrectly transferred events and the newly added ancillary
events (if any), which is di�erent from the FP case de�ned in other
techniques. We further illustrate this in Section 4.1.1.

ATM [21] and GTM [20] are also similarity-based techniques,
and ATM is an enhancement of GTM by the same authors. Similar
to CraftDroid, the authors manually inspect the transferred results
and identify four cases: (1) correctly matched means the source
event is mapped to the correct event in the target app (TP); (2)
incorrectly matched means the source event is mapped to the wrong
event in the target app (FP); (3) unmatched (!exist) means the source
event is not mapped to any events and no such events exist in the
target app (TN); (4) unmatched (exist) means the source event is not
mapped to any events although the matching event exists in the
target app (FN). ATM and GTM do not calculate the precision or
recall, but present the raw percentages of each of the four cases.

3 FrUITeR’s PRINCIPLE REQUIREMENTS
This section elaborates on the key limitations of current test-reuse
techniques and their evaluation processes, initially outlined in Sec-
tion 1. These limitations serve as the foundation of �ve principle
requirements we focused on in FrUITeR’s design (Section 4) and
instantiation (Section 5).

Prior to developing FrUITeR, we investigated the existing tech-
niques and their evaluations [20, 21, 23, 25] in depth. Beyond con-
sulting the available publications, we also studied the techniques’
implementations and produced artifacts [1, 3, 5, 8], and engaged
their authors in, at times, extensive discussions to obtain missing
details and resolve ambiguities. In the end, we identi�ed �ve limita-
tions that are likely to hinder future advances in this emerging area.
We base FrUITeR’s principal requirements on these limitations.
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Req1 —Metrics used by FrUITeR to evaluate test-reuse tech-
niques shall be standardized and reflect practical utility. —
Existing techniques are evaluated with di�erent, and di�erently
applied, metrics (recall Section 2.3), which harms their side-by-side
comparison. More importantly, all techniques to date have focused
on whether GUI events from a source app are correctly transferred
to a target app, without considering whether the transferred tests
are actually meaningful and applicable in the context of the target
app. It is thus possible that all GUI events are mapped correctly, but
the transferred test cannot be applied, e.g., due to missing ancillary
events (recall Section 2.1). None of the existing techniques are able
to identify such scenarios; FrUITeR must be able to do so.

Req2 —FrUITeR’s workflow shall reduce the requiredman-
ual e�ort and thus scale to larger numbers of apps and tests
than possible with current test-reuse techniques. — Existing
techniques’ evaluation processes require signi�cantmanual e�ort to
inspect every transferred event in each test. For example, ATM [21]
was evaluated on 4 app categories, where each category, in turn,
consisted of 4 apps. On average, each app had 10 tests to be trans-
ferred and each test had 5 events. Within each app category, ATM
transferred the tests of each app to the remaining 3 apps, resulting
in 48 source-target app pairs in total. For each app pair, ATM’s au-
thors had to manually inspect an average of 50 transferred events
(10 tests ⇥ 5 events), i.e., 2,400 events in total. This is why they were
forced to restrict their comparison with GTM [20] to a randomly
selected half of possible source-target app pairs. FrUITeR must ad-
dress this shortcoming by providing a more scalable evaluation
work�ow that requires markedly less manual e�ort.

Req3 — Evaluation results produced by FrUITeR shall be
reproducible. — As discussed in Section 2.3, the current tech-
niques’ evaluation results depend on identifying the case to which
each transferred event belongs (e.g., correctly matched, false posi-
tive, etc.). Such “ground-truth mappings” are determined manually.
However, there are no standard guidelines for conducting inspec-
tions, making the results potentially biased and unreproducible. In
Figure 1’s example, it is debatable whether {a1-1! b3-1} is correct
because a1-1 only takes the user’s email, while b3-1 takes both the
email and username. ATM’s authors also acknowledge the possibil-
ity of mistakes in the manual process [21]. More importantly, any
suchmistakes are hard to locate or verify by other researchers, since
the results of manual inspection and the ground-truth mappings on
which they are based, are recorded in ad-hoc ways. Thus, to facili-
tate future research in this area, the evaluation results produced by
FrUITeR must be reproducible, with a ground-truth representation
that can be independently veri�ed, reused, and modi�ed.

Req4 — Test-reuse capabilities incorporated and evaluated
by FrUITeR shall be modularized. — Despite providing similar
functionality, existing test-reuse techniques are designed as one-o�
solutions and evaluated as a whole. This makes it di�cult to reuse or
compare their relevant components. In turn, it invites duplication of
e�ort and introduces the risk of missed opportunities for advances
by other researchers, and even by the techniques’ own developers.
To address this problem, FrUITeR must modularize each test-reuse
artifact it evaluates, allow its independent (re)use, and associate the
obtained evaluation results with the appropriate artifacts.

Req5—Benchmarks provided andapplied by FrUITeR shall
be reusable. — Existing test-reuse techniques have been evaluated

Table 1: Fidelity metrics as used in AppFlow [23], Craft-
Droid [25], ATM [21], GTM [20], and FrUITeR.

True Pos.
(TP)

False Pos.
(FP)

True Neg.
(TN)

False Neg.
(FN) Accuracy Precision Recall

AppFlow anon anon anon anon Accuracy dnc dnc
CraftDroid TP FP1 none FN none Precision Recall

ATM/
GTM

Correctly
Matched

Incorrectly
Matched

Unmatched
(!exist)

Unmatched
(exist) dnc dnc dnc

FrUITeR Correct Incorrect NonExist Missed Accuracy Precision Recall

using di�erent benchmark apps and tests, additionally hampering
their comparison. In fact, only three subject apps were shared by
two (AppFlow [23] and CraftDroid [25]) out of the four existing
techniques in their evaluations. The underlying reason is the di�er-
ent assumptions made by the techniques. For instance, GTM and
ATM rely on the Espresso testing framework [6] that requires the
apps’ source code. As another example, AppFlow’s tests are written
in a special-purpose language based on Gherkin [13] and cannot
be reused by techniques that capture tests in other languages (e.g.,
Java, used by ATM and GTM). Thus, FrUITeR must establish a set of
uniform benchmarks with reusable apps and tests that can serve as
the foundation for evaluating and comparing solutions in this area.

4 FrUITeR’s DESIGN
This section presents FrUITeR’s design, with a focus on two features
that address requirements Req1, Req2, Req3, and partially Req4:
new evaluation metrics and an automated, modular work�ow. We
also introduce two novel test-reuse techniques to serve as baselines
for bounding the existing techniques’ evaluation results.

4.1 FrUITeR’s Metrics
To address Req1, FrUITeR incorporates a pair of evaluation metrics:
(1) �delity focuses on how correctly the GUI events are mapped
from a source app to a target app; (2) utility measures how useful
the transferred tests are in practice.

4.1.1 Fidelity Metrics. As explained in Section 2.3, �delity of the
mapping has been the main focus of existing techniques, but the
previous metrics have been used inconsistently.3 To form a fair
playground for comparing test-reuse techniques, we investigated
existing metrics in-depth. We did so by consulting available docu-
mentation and discussing the metrics with the authors of all four
techniques. We standardized this information into a comprehensive
set of �delity metrics in FrUITeR, as shown in Table 1.

Table 1 presents the �delity metrics used across the di�erent
test-reuse techniques, and their relationship to the standard metrics
as de�ned in literature [27]. Each row shows a mapping from the
names for the metrics used by each technique to the typical �delity
metrics’ names indicated in the header. “anon” cells represent met-
rics that are not reported by a technique, but are used internally
to calculate other metrics that are reported. “dnc” cells represent
metrics that are not calculated by a given technique, but can be
determined based on other metrics used. Finally, “none” cells repre-
sent cases where a metric is not used by a technique and cannot
be calculated from the available information. FrUITeR covers all
seven metrics, changing several metrics’ names to better re�ect
their application to test reuse, as will be further discussed below.

3Existing publications in this area have referred to some of these as “accuracy” metrics.
We use “�delity” to avoid confusion with a speci�c metric named “accuracy” de�ned
previously in literature [27] and used by one of the techniques we studied [23].
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Recall from Section 2.3 that CraftDroid’s FP category covers
two cases: FP1 corresponds to “Incorrectly Matched” events in
ATM/GTM and “Incorrect” in FrUITeR; FP2 corresponds to the an-
cillary events that are not considered by other techniques. FrUITeR
also excludes the ancillary events from its Incorrect category be-
cause they can be benign or even needed (e.g., b1-1 and b2-1 from
Figure 1), and do not re�ect the �delity of the GUI event mapping.
For instance, if ancillary events were considered to be False Posi-
tives, a large number of them would result in a low Precision for
the GUI event mapping. However, this would not be a meaningful
measure since the ancillary events are not mapped from the source
app. Such events are thus not relevant to the mapping’s �delity, but
should be considered by the utility metrics, introduced next.

4.1.2 Utility Metrics. FrUITeR introduces two utility metrics to
indicate how useful a transferred test is. This aspect is not con-
sidered in prior work, but is needed because a high-�delity event
mapping does not guarantee a successfully transferred test, or vice
versa. For instance, a target app’s ground-truth test may contain
ancillary events not covered by source events, making it impossible
to generate a “perfect” test by event mapping alone. On the �ip
side, a low-�delity mapping may accidentally generate a “perfect”
test. Thus, it is important to measure the utility with respect to the
ground-truth test independently of event mapping’s �delity.

To this end, we �rst de�ne an e�ort metric, to measure how
close the transferred test is to the ground-truth test, by calculating
the two tests’ Levenshtein distance [24]. Levenshtein distance is
widely used in NLP to measure the steps needed to transform one
string into another. In our case, each step is de�ned as the insertion,
deletion, or substitution of an event in the transferred test.

Secondly, we de�ne a reduction metric, to assess the manual
e�ort saved by the generation of the transferred test, compared to
writing the ground-truth test from scratch:

Reduction = (#gtEvents – e�ort) ÷ #gtEvents
The value of reduction may be negative, if transforming the trans-
ferred test into the corresponding ground-truth test takes more
steps than constructing such ground-truth test from scratch.

Note that each usage-based test targets a scenario with a speci�c
�ow of interest; multiple �ows would result in multiple tests (e.g.,
sign-in from “homepage” vs. from “settings”). For each particular
�ow, it is possible for the ground-truth test to contain di�erent
“acceptable” ancillary events based on one’s interest, which would
result in multiple “acceptable” ground-truth tests. In FrUITeR’s cur-
rent benchmark (see Section 5.2), we manually constructed one
ground-truth test for each �ow with the minimal amount of ancil-
lary events to match prior work. However, FrUITeR’s ground-truth
tests can be modi�ed or extended to obtain their corresponding
utility results. For instance, researchers can specify multiple “ac-
ceptable” ground-truth tests for a given �ow, and measure the
transferred test’s utility with respect to each ground-truth test.

We acknowledge that the utility aspect (i.e., how useful a trans-
ferred test is) can be subjective depending on one’s goal. Alternative
utility metrics (e.g., bug-identi�cation power, executability, code
coverage) can be added to FrUITeR’s customizable work�ow (see Sec-
tion 4.2). FrUITeR’s current utility metrics speci�cally center around
e�ort because they are applied to tests transferred by techniques
whose end-goal is to reduce the e�ort of writing tests manually.

Figure 2: Overview of FrUITeR’s automated work�ow.

Re�ning utility’s de�nition with extended metrics is worthy of
further study, but outside our scope. Our goal was to show that
utility is important and measurable, to motivate further exploration
of such important aspect that has been missed by prior work.

4.2 FrUITeR’s Work�ow
To address Req2, Req3, and partially Req4 from Section 3, we de-
signed an automated evaluation work�ow with customizable com-
ponents, shown in Figure 2. The goal of FrUITeR’s work�ow is to
generate reproducible evaluation results for a test-reuse technique’s
core functionality. The work�ow’s automation is enabled by two
key aspects: (1) the uniform representation of the inputs and artifacts
needed in the evaluation process, and (2) a set of customizable com-
ponents that output the evaluation results of interest automatically.

4.2.1 Uniform Representation of Inputs. As Figure 2 shows,
FrUITeR takes two types of input: Test Input (bottom-left) and Map-
ping Input (top-right). The two are a combination of inputs taken
and artifacts produced by existing test-reuse techniques, as well as
three new inputs introduced in FrUITeR to automate the evaluation
process: Ground-Truth Tests, GUI Maps and Canonical Maps.

Test Input contains source tests, ground-truth tests, and trans-
ferred tests as de�ned in Section 2.1. The tests may be captured
in various forms by a test-reuse technique, and we cannot assume
that they will be analyzable in a standard way a priori. For instance,
all tests in ATM [21] and GTM [20] are represented as Espresso
tests [6] in Java, while CraftDroid [25]’s source tests are written in
Python using Appium [2] and its transferred tests are represented
in JSON [15]. In order to enable their automated evaluation, the het-
erogeneous tests that are part of FrUITeR’s Test Input thus need to
be standardized. FrUITeR’s Event Extractor converts the Test Input
into a standardized representation of source events, ground-truth
events, and transferred events as detailed in Section 4.2.2.

Mapping Input consists of the GUIMap and the Canonical Map,
which enable automated evaluation of a test-reuse technique’s �-
delity. The two maps are newly introduced by FrUITeR and captured
using a standardized representation. The GUI Map contains the GUI
event mapping from a source app to a target app generated by a
given test-reuse technique, and is used to compute the �delity met-
rics introduced in Section 4.1.1. Prior work does not provide GUI
Maps, but only the �nal Transferred Tests. The events in these tests
cannot be used to calculate �delity by comparing with source events
directly, because the transferred events may include ancillary and
null events. We further illustrate howwe extract the GUI Maps from
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existing techniques and evaluate their �delity automatically with
FrUITeR in Section 5. On the other hand, the Canonical Map contains
the mapping from app-speci�c events to canonical events. This map
is manually constructed and is used as the ground-truth mapping
for FrUITeR’s Fidelity Evaluator component discussed below. Note
that AppFlow [23] can generate a Canonical Map automatically
using ML techniques. However, AppFlow’s certain mapping results
can be wrong, and thus cannot be used as the ground truth.

4.2.2 CustomizableComponents. FrUITeR introduces three cus-
tomizable components, shown as shaded boxes in Figure 2: Event
Extractor, Fidelity Evaluator, and Utility Evaluator.

Event Extractor leverages program analysis to extract the GUI
event sequence from the usage tests’ code. The sequence is rep-
resented as each event’s ID or XPath, depending on which of the
two is used in the test. ID and XPath are widely used to locate spe-
ci�c GUI elements in tests in various domains, including Android
apps [7] and web apps [14]. For simplicity, we will use “ID” to refer
to either the ID or XPath of a speci�c event in the rest of the paper.

To extract the event sequence, Event Extractor analyzes the
Test Input to locate the program point of each event based on its
corresponding API, e.g., click [4] or sendKeys [10] for tests written
with Appium [2]. Once it identi�es the location, Event Extractor
determines the event’s caller, i.e., the GUI element where the event
is triggered, and performs a def-use analysis [19] to trace back
the de�nition of the caller’s ID. This de�nition is speci�ed in a
given API of the testing framework, such as findElementById() in
Appium [18]. In that case, the def-use analysis is used to pinpoint
the findElementById() call that corresponds to the event’s caller so
that ID’s value can be determined. The input value associated with
the event (if any) is determined by def-use analysis in the same
manner. In the end, the converted Source Events, Ground-Truth
Events, and Transferred Events are represented in a uniform way
with IDs regardless of what testing framework is used.

Note that if the Test Input is written in di�erent programming
languages or testing frameworks, multiple Event Extractor instances
need to be implemented if not available previously. However, this is
a one-time e�ort, and subsequent work can reuse an existing Event
Extractor when applied on the tests written in the same language
and testing framework. Furthermore, the Event Extractor is easily
customizable to process tests written with di�erent frameworks by
replacing the relevant APIs’ signatures. For instance, when iden-
tifying an event caller’s ID, the relevant API is findElementById()
if using Appium [2] to test mobile apps, or findElement() if using
Selenium [16, 17] to test web apps. By simply replacing the rele-
vant API signature, the Event Extractor will be able to process tests
written in both Appium and Selenium frameworks.

Fidelity Evaluator takes the Source Events produced by Event
Extractor and Mapping Input, and automatically outputs the sets
of (1) correct, (2) incorrect, (3) missed, and (4) nonExist cases for
calculating FrUITeR’s seven �delity metrics (recall Table 1).

Algorithm 1 describes Fidelity Evaluator in detail. The algorithm
iterates through each source event to determine to which of the four
cases it should be assigned (Lines 2-16). To do so, it �rst gets the
current source event (BA2), and the transferred event mapped from
it (CA0=B) based on the GUI Map (Lines 3-4). It then converts the app-
speci�c events BA2 and CA0=B into their corresponding canonical

Algorithm 1: F������� E��������
Input: EventList BA2⇢E4=CB , GUIMap 6D8"0? ,

CanonicalMap BA2⇠0="0? , C6C⇠0="0?
Output: Sets 2>AA42C , 8=2>AA42C ,<8BB43 , =>=⇢G8BC

1 2>AA42C = 8=2>AA42C =<8BB43 = =>=⇢G8BC = ;
2 for 8 = 1 to BA2⇢E4=CB .B8I4 do
3 BA2  BA2⇢E4=CB .GET(8)
4 CA0=B  6D8"0? .G��M�����(BA2)
5 BA2⇠0=  BA2⇠0="0? .G��C��������(BA2)
6 CA0=B⇠0=  C6C⇠0="0? .G��C��������(CA0=B)
7 if CA0=B != =D;; then
8 if CA0=B⇠0= == BA2⇠0= then
9 2>AA42C .P��(BA2)

10 else
11 8=2>AA42C .P��(BA2)

12 else
13 if C6C⇠0="0? .��������(BA2⇠0=) then
14 <8BB43 .P��(BA2)
15 else
16 =>=⇢G8BC .P��(BA2)

17 return 2>AA42C , 8=2>AA42C ,<8BB43 , =>=⇢G8BC

events BA2⇠0= and CA0=B⇠0=, using their respective Canonical Maps,
so that the events are comparable (Lines 5-6). Finally, to determine
which of the four cases BA2 falls into, the algorithm �rst checks
whether CA0=B is a null event. If not, CA0=B⇠0= will be compared
against BA2⇠0= to determine whether the transferred event refers to
the same canonical event as the source event, and BA2 will be added
to either the correct or incorrect set accordingly (Lines 7-11). If CA0=B
is null, the source event has not been mapped to any events in the
target app. The algorithm then iterates through the Canonical Map
of the target app (C6C⇠0="0?) to determine whether the matching
event BA2⇠0= exists in the target app, and BA2 will be added to either
the missed set or nonExist set accordingly (Lines 12-16).

Utility Evaluator automatically analyzes the Ground-Truth
Events and Transferred Events produced by Event Extractor. It
uses this information to compute the two utility metrics—e�ort and
reduction—based on their de�nitions described in Section 4.1.2.

4.2.3 Relationship to FrUITeR’s Requirements. FrUITeR’s
work�ow yields three key bene�ts that directly target Req2, Req3,
and Req4 introduced in Section 3.

First, the only manual e�ort required by FrUITeR is to construct
the Canonical Maps by relating app-speci�c events to canonical
events. This is a one-time e�ort per app, and each event only needs
to be labeled once regardless of how many times it appears in a test
(Req2). By contrast, in previous work [20, 21, 25], each app-speci�c
event needs to be manually labeled every time it appears in a test,
possibly resulting in thousands of manual inspections.

Second, FrUITeR establishes ground truths with uniform rep-
resentations: Canonical Maps are the ground truth for assessing
�delity, while Ground-Truth Events help to assess utility. This ren-
ders the evaluation results yielded by FrUITeR reproducible (Req3).
For instance, any mistakes or subjective judgments made in the cur-
rent techniques’ manual evaluation processes can be easily located
by inspecting the Canonical Maps, and independently reproduced.
Further, FrUITeR’s Canonical Maps are reusable, modi�able, and
extensible for subsequent studies, helping to avoid duplicated work.
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Algorithm 2: N���� B������� T�������
Input: EventList BA2⇢E4=CB , AppInfo C6C�??�=5 >
Output: EventList CA0=B⇢E4=CB

1 CA0=B⇢E4=CB  ;
2 2DAA4=C�2C  C6C�??�=5 > .���M���A�������()
3 foreach BA2 2 BA2⇢E4=CB do
4 8B"0??43  ��!(⇢
5 4E4=CB  C6C�??"0? .���A��������(2DAA4=C�2C )
6 4E4=CB .���������O����()
7 foreach 4E4=C 2 4E4=CB do
8 if 4E4=C .������ == BA2 .������ then
9 B8<8;0A8C~  ���R�����S���������(0, 1)

10 if B8<8;0A8C~ > )⌘A4B⌘>;3 then
11 CA0=B⇢E4=CB .���(4E4=C )
12 2DAA4=C�2C  4E4=C .����A�������()
13 8B"0??43  )'*⇢
14 break

15 if ¬8B"0??43 then
16 CA0=B⇢E4=CB .���(=D;;)

17 return CA0=B⇢E4=CB

Third, FrUITeR’s work�ow consists of customizable modules
that isolate the evaluation to a relevant component of a test-reuse
technique (Req4). For instance, Fidelity Evaluator only assesses
the performance of GUI event mapping, instead of evaluating a
technique as a whole. Moreover, both Fidelity Evaluator and Utility
Evaluator can be customized, reused, or extended to automatically
evaluate other metrics of interest based on the standardized inputs
and artifacts that FrUITeR de�nes, directly fostering future research.

4.3 FrUITeR’s Baseline Techniques
To better understand the performance of a test-reuse technique,
we developed two baseline techniques—Naïve and Perfect—that
establish the lower- and upper- bounds achievable by the �delity
and utility metrics in a given scenario.

4.3.1 Naïve Baseline. The Naïve baseline uses a random strat-
egy to select the events in a target app to which each source event
should be mapped. This sets the practical lower-bound of �delity. As
Algorithm 2 shows, Naïve initially explores the target app from the
main Activity [9] (Line 2). For each source event, it obtains all the
events at the current Activity (4E4=CB) in a random order (Lines 5-6),
and then tries to �nd a match between the current source event BA2
and each event in 4E4=CB (Lines 7-14). When mapping BA2 to 4E4=C ,
Naïve �rst checks if the associated actions of the two events are the
same, and only computes the similarity score when they are. The
similarity score is computed by selecting a random value between
0 and 1 (Line 9), which are the lower and upper bounds used in ex-
isting work. If the similarity score of BA2 and 4E4=C is above a certain
threshold, 4E4=C is added to the list maintained in CA0=B⇢E4=CB (Line
11). At that point, Naïve continues to explore the target app from
the Activity reached by the transferred 4E4=C (Line 12), and marks
the current source event BA2 as mapped (Line 13). In the end, if the
source event is not mapped, it will be marked as a null event and
added to CA0=B⇢E4=CB (Line 15-16). Null events correspond to either
the True Negative or False Negative categories in Table 1.

4.3.2 Perfect Baseline. The Perfect baseline transfers the source
events based on the ground-truth mapping we establish (recall

Section 4.2), assuming all source events are correctly mapped to
the target app. Perfect baseline thus represents a “perfect” GUI
event mapping and always achieves 100% �delity by de�nition.
Speci�cally, we are interested in the utility achieved by the Perfect
baseline since it represents the upper-bound of the transferred tests’
practical usefulness, which is not considered by existing work. This
can help us identify the room for improvement and guide future
research in test-reuse techniques. We will discuss our �ndings
regarding this in Section 6.

5 FrUITeR’s INSTANTIATION
This section describes how we instantiate FrUITeR to automatically
evaluate the relevant modules of existing techniques alongside
FrUITeR’s baseline techniques, in partial satisfaction of Req4. The
evaluation is performed based on FrUITeR’s reusable benchmark
that addresses Req5. To this end, we needed to provide information
that enables FrUITeR’s automated work�ow discussed in Section 4.2
and depicted in Figure 2: the Source Tests that are supplied as inputs
to a given test-reuse technique; the Transferred Tests and GUIMaps,
which are produced as outputs of a given test-reuse technique; and
the manually constructed ground truths, namely, Canonical Maps
and Ground-Truth Tests. However, existing test-reuse techniques
were not designed with FrUITeR’s modular work�ow in mind, and
thus do not provide such information directly.

Section 5.1 explains how we mitigated the above challenge in
order to extract the relevant components from existing techniques
and generate the information needed by FrUITeR. Note that this step
will not be necessary for future techniques if they follow FrUITeR’s
modularized design. Section 5.2 presents FrUITeR’s reusable bench-
mark for the uniform evaluation of test-reuse techniques, which
contains the Source Tests, Ground-Truth Tests, and Canonical Maps
used in FrUITeR’s automated work�ow. Finally, Section 5.3 provides
the details of FrUITeR’s implementation and generated datasets.

5.1 Modularizing Existing Techniques
To lay the foundation for addressing Req4, wemodularized FrUITeR’s
design. In turn, this isolated the evaluation of GUI event mapping’s
�delity and the transferred tests’ utility, as discussed in Section 4.2.
However, the existing techniques are implemented and evaluated as
fully integrated, one-o� solutions that do not provide the artifacts
needed by FrUITeR to generate the modularized evaluation results.
Because of this, we had to extract the speci�c functionality from
existing techniques’ implementations that performs the GUI event
mapping (recall Section 2.2). Once the GUI Maps are available, we
can generate the Transferred Tests used in FrUITeR’s Utility Evalu-
ator. Note that the step of extracting GUI Mapper components is
not needed for future test-reuse techniques if they follow FrUITeR’s
modularized design. For example, we directly applied FrUITeR on
the two baseline techniques we developed, with no extra e�ort.

Extracting the GUI Mapper components from the existing tech-
niqueswas challenging sincewe had to understand each technique’s
design and implementation in detail, and to modify its source code.
To this end, in addition to the available publications, we studied
in depth the existing approaches’ implementations [1, 3, 5, 8] and
communicated with their authors extensively. We describe the chal-
lenges we faced during this process and the speci�c component-
extraction strategies we applied to each existing solution.
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5.1.1 Extracting AppFlow’s GUI Mapper. AppFlow [23] is an
ML-based technique whose key component trains a classi�er that
maps app-speci�c events to canonical events, but does not map the
events from a source app to a target app. To compare AppFlow with
similarity-based techniques, we leverage its Canonical Maps to
transfer the source events to the target app by (1) mapping each
source event to the corresponding canonical event based on the
source app’s Canonical Map and (2) mapping this canonical event
back to the app-speci�c event in the target app based on the target
app’s Canonical Map. AppFlow’s implementation does not output
its Canonical Maps, so we had to locate and modify the relevant
component to do so. Moreover, AppFlow does not store its trained
classi�er, so we had to con�gure itsMLmodel and re-train it. During
this process, we communicated with AppFlow’s authors closely to
understand its code, to obtain proper con�guration �les and training
data, and to ensure the correctness of our re-implementation.

5.1.2 Extracting ATM’s and GTM’s GUI Mappers. As discus-
sed earlier, ATM [21]was developed as an enhancement to GTM [20]
and was shown to outperform it [21]. However, the authors of these
two techniques compared them only on half of the source-target
app pairs used in ATM’s publication [21] due to the large manual
e�ort required. Since FrUITeR largely automates the comparison
process, we decided to extract the GUI Mapper components from
both techniques to enable their comparison at a large scale.

An obstacle we had to overcome was that ATM and GTM both
require the app’s source code due to their use of the Espresso frame-
work [6]. Thus, they cannot be compared as-is with techniques
evaluated on closed-sourced apps, which would have limited our
choice of benchmark apps. We discussed this issue with ATM’s
and GTM’s authors and learned that the only step that requires
source code for both techniques’ GUI Mappers is computing the
textual similarity score of image GUI elements (e.g., ImageBu�on).
In that case, the text of the image’s �lename is retrieved from the
app’s code and analyzed to compute the similarity score. However,
the main author con�rmed that, in her experience, this feature is
rarely needed in practice. We thus decided to extract ATM’s and
GTM’s GUI Mapper components as stand-alone Java programs that
do not require Espresso, omitting the �lename-retrieval feature.
We subsequently con�rmed with the two techniques’ authors the
correctness of our implementation.

5.1.3 Extracting Cra�Droid’s GUI Mapper. CraftDroid’s [25]
implementation is only partially available. Its authors informed us
that two of CraftDroid’s modules—Test Augmentation and Model
Extraction—were not releasable when we requested them, due to
ongoing modi�cations, while the prior versions of the two mod-
ules were no longer available. The authors con�rmed our obser-
vation that CraftDroid’s GUI mapping functionality depends on
the outputs of the two missing modules, and advised us that the
best strategy would be for us to reimplement them based on Craft-
Droid’s lone publication [25]. However, the publication in question
is missing a number of details that would introduce bias in our
re-implementation: we would have no guarantee that the versions
of the two components we produce are the same as those used in
CraftDroid. Instead, we decided to rely on CraftDroid’s published
Transferred Tests [5] in our evaluation.

To obtain CraftDroid’s GUI Maps, we inspected its published
artifacts [5] and found that only certain events in the Transferred
Tests have associated similarity scores, while other events are la-
beled as “empty”. Further investigation showed that each event in
the Transferred Tests belongs to one of three cases: (1) events with
available similarity scores are successfully mapped from the source
events; (2) “empty” events are mapped from the source events but
no match is found by CraftDroid (i.e., null events); (3) the remaining
events are not mapped from the source events but are added by
CraftDroid (i.e., ancillary events). We excluded the ancillary events
so that the resulting transferred events have a 1-to-1 mapping from
the source events, giving us CraftDroid’s GUI Maps.

5.2 FrUITeR’s Benchmark
As discussed above in the motivation for Req5, existing test-reuse
techniques are evaluated on di�erent apps and tests, which hin-
ders their comparability. To address this, we established a reusable
benchmark with the same apps and tests to serve as a shared mea-
suring stick in this emerging domain. This section discusses our
strategy for including existing apps and tests in the benchmark,
and for generating the required ground truth.

5.2.1 BenchmarkApps andTests. Tomaximize the results from
existing work that we can attempt to reproduce, we �rst included
the intersection of the subject apps used by existing work. This
yielded 3 shopping apps: Geek,Wish, and Etsy.We further randomly
selected 7 additional shopping apps and 10 news apps used by
AppFlow [23]. This gave us 20 benchmark apps in total, as described
in Table 2. Our rationale behind this choice of apps was two-fold:
(1) AppFlow’s authors manually inspected all app categories on
Google Play and identi�ed shopping and news as categories with
common functionalities suitable for test reuse; (2) AppFlow was
evaluated on the largest number of subject apps among the existing
techniques. By comparison, ATM [21] used 16 open-source apps
that are not as popular as those used in AppFlow.

To construct the benchmark tests, we further followed the test
cases de�ned in AppFlow, with a similar rationale: (1) AppFlow’s
authors conducted an extensive study to manually identify tests
that are shared in shopping and news apps; (2) AppFlow de�nes
a larger number of tests compared to other work. For example,

Table 2: Summary information of benchmark apps.

Shopping

App ID App Name #Downloads #Tests #Events
S1 AliExpress 100M 15 76
S2 Ebay 100M 13 48
S3 Etsy 10M 13 55
S4 5miles 5M 12 78
S5 Geek 10M 13 85
S6 Google Shopping 1M 15 72
S7 Groupon 50M 14 66
S8 Home 10M 14 98
S9 6PM 500K 14 63
S10 Wish 100M 14 85

News

N1 The Guardian 5M 13 76
N2 ABC News 5M 9 31
N3 USA Today 5M 11 28
N4 News Republic 50M 10 40
N5 BuzzFeed 5M 11 50
N6 Fox News 10M 11 28
N7 SmartNews 10M 9 20
N8 BBC News 10M 9 22
N9 Reuters 1M 10 37
N10 CNN 10M 9 24
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CraftDroid [25] only has 2 tests de�ned in each app category. We
excluded those tests that require mocking external dependencies
(e.g., a payment service). This resulted in 15 tests in the shopping
category and 14 tests in the news category, shown in Table 3. Note
that we cannot reuse AppFlow’s tests directly because they are
written in a special-purpose language de�ned by AppFlow for an
entire app category rather than a speci�c app. Instead, we relied
on multiple undergraduate and graduate students with Android
experience to write the applicable tests for each of the 20 subject
apps using Appium [2]. Some benchmark apps did not have each
functionality described in Table 3, ultimately resulting in a total
of 239 tests involving 1,082 events across the 20 apps (the two
right-most columns of Table 2), requiring 3,920 SLOC of Java code.

These benchmark tests currently do not contain oracle events
because only ATM [21] and CraftDroid [25] can transfer oracles in
principle. However, due to the limited availability of CraftDroid’s
source code as mentioned earlier, we would not be able to obtain
CraftDroid’s results using our benchmark, making a comparison
across di�erent techniques impossible. As additional test-reuse tech-
niques are developed with the ability to transfer oracles, FrUITeR’s
benchmark tests can be extended to include oracle events to ob-
tain their results as well. Note that as long as future techniques
follow FrUITeR’s modularized design to provide the needed input
(e.g., GUI Maps of the oracle event mapping), FrUITeR will be able
to automatically generate the results of oracle events. A detailed
tutorial is provided on FrUITeR’s website [12].

5.2.2 Benchmark Ground Truth. As described in Section 4.2,
we de�ne Canonical Maps to represent the ground truth for the
�delity of the GUI event mapping, and Ground-Truth Events to
represent the ground truth for the utility of the transferred tests.

In our benchmark, we de�ne 72 canonical events for the shopping
apps and 55 for the news apps. Our canonical events are extended
fromAppFlow, aiming to re�ect a �ner-grained classi�cation of GUI
events. For instance, event “password” in the sign-in test (TS1/TN1
in Table 3), and events “password” and “confirm password” in the
sign-up test (TS2/TN2 in Table 3), are all represented as the same
canonical event “Password” in AppFlow. However, it is debatable
whether that is appropriate. For example, mapping “password” in
Table 3: Benchmark test cases in shopping (TS) and news
(TN) categories.

Test ID Test Case Name Tested Functionalities
TS1/TN1 Sign In provide username and password to sign in
TS2/TN2 Sign Up provide required information to sign up
TS3/TN3 Search use search bar to search a product/news
TS4/TN4 Detail �nd and open details of the �rst search result item
TS5/TN5 Category �nd �rst category and open browsing page for it
TS6/TN6 About �nd and open about information of the app
TS7/TN7 Account �nd and open account management page
TS8/TN8 Help �nd and open help page of the app
TS9/TN9 Menu �nd and open primary app menu
TS10/TN10 Contact �nd and open contact page of the app
TS11/TN11 Terms �nd and open legal information of the app

TS12 Add Cart add the �rst search result item to cart
TS13 Remove Cart open cart and remove the �rst item from cart
TS14 Address add a new address to the account
TS15 Filter �lter/sort search results
TN12 Add Bookmark add �rst search result item to the bookmark
TN13 Remove Bookmark open the bookmark and remove �rst item from it
TN14 Textsize change text size

sign-up to “password” in sign-in may lead to non-executable tests.
To remove ambiguity, we capture such events separately.

Based on the canonical events, we construct 20 Canonical Maps,
one per subject app. We do so by manually relating to the canonical
events a total of 561 subject apps’ GUI events that appear in one
or more of the 239 tests. As discussed in Section 4.2, this is the
only manual step required by FrUITeR and is a one-time e�ort: the
Canonical Maps can be reused when relying on the same subject
apps. As a point of comparison, recall from Section 3 that evaluating
48 app pairs in ATM [21] required manually inspecting 2,400 events.
By contrast, our one-time inspection of the 561 events enabled the
use of 200 app pairs (2 categories ⇥ 10⇥10 apps, i.e., including an
app’s test transfer to itself) by every technique FrUITeR evaluated.

The Ground-Truth Events in our benchmark are extracted from
the 239 tests by FrUITeR’s Event Extractor (recall Figure 2).

5.3 FrUITeR’s Implementation Artifacts
FrUITeR’s artifacts are publicly available [12]: its source code; �nal
datasets; GUI Mappers extracted from existing work; implementa-
tions of baseline techniques, their GUI Maps, and Transferred Tests;
benchmark apps and tests; and manually constructed benchmark
ground truths. We highlight the key details of these artifacts below.

5.3.1 Source Code. FrUITeR’s Event Extractor (recall Figure 2) is
implemented in Java using Soot [11] (235 SLOC). FrUITeR’s Fidelity
Evaluator and Utility Evaluator are implemented in Python (1,045
SLOC). FrUITeR’s baseline techniques Naïve and Perfect (recall Sec-
tion 4.3) are likewise implemented in Python (112 SLOC). The GUI
Mapper components extracted from existing techniques (recall Sec-
tion 5.1) are implemented in their original programing languages:
AppFlow in Python (1,084 SLOC); GTM in Java (1,409 SLOC); and
ATM in Java (1,314 SLOC). The functionality that processes their
outputs and generates the uniform representation of GUI Maps
and Transferred Tests is implemented in Python (404 SLOC). As
discussed earlier, due to CraftDroid’s unavailable source code, we
can only interpret its published artifacts [5]; that functionality is
implemented in Python (86 SLOC). The data analyses that interpret
our �nal datasets are written in R (585 SLOC).

5.3.2 Final Datasets. Our �nal datasets contain the results of
11,917 test transfer cases generated by the GUIMappers from the ex-
isting techniques and our two baselines when applied on FrUITeR’s
benchmark. We apply 5 techniques—AppFlow, ATM, GTM, Naïve,
Perfect—to transfer tests across 20 shopping and news apps, involv-
ing 1,000 source-target app pairs (2 app categories ⇥ 100 app pairs
in each category ⇥ 5 techniques). This yielded 2,381 result entries
per technique. As discussed earlier, we have to rely on CraftDroid’s
�nal results, and can thus only compare CraftDroid to the other
techniques on the 3 shopping apps—Geek, Wish, Etsy—used both
in our benchmark and in CraftDroid’s evaluation. This gave us
12 result entries for CraftDroid since only 2 tests are transferred
by CraftDroid in each app. Each of the total 11,917 result entries
contains the following information: (1) the source and target apps;
(2) the source, transferred, and ground-truth tests; (3) the technique
used to transfer the test; (4) the correct/incorrect/missed/nonExist
sets of GUI events output by FrUITeR’s Fidelity Evaluator as de-
scribed in Algorithm 1, and the seven corresponding �delity metrics
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Figure 3: Comparison of average precision and recall.

de�ned in Section 4.1.1; and (5) values of the two utility metrics—
e�ort and reduction—de�ned in Section 4.1.2. Note that obtaining
these 11,917 result entries following prior work’s evaluation pro-
cesses would have required manual inspection of 53,963 events that
appear across all of the source tests, which is infeasible in practice.

6 FINDINGS
The datasets produced by FrUITeR include the results obtained by
evaluating side-by-side the extracted GUIMapper components from
the four existing test-reuse techniques [20, 21, 23, 25] and the two
baseline techniques we developed. In turn, this data enables further
in-depth studies of a range of research questions in this emerging
domain. As an illustration, this section highlights several �ndings
uncovered by FrUITeR’s datasets that are missed by prior work.

6.1 GUI Mapper Comparison
As discussed earlier, existing techniques are evaluated in their en-
tirety, on di�erent benchmark apps and tests, and using di�erent
evaluation metrics, all of which makes their results hard to com-
pare. By contrast, FrUITeR was able to evaluate their extracted GUI
Mappers side-by-side, with our two techniques—Naïve and Perfect—
serving as baselines. We note that it is possible for a given test-reuse
technique to produce results as a whole that may be di�erent from
those produced only by its extracted GUI Mapper. One reason may
be that there is additional relevant functionality that is scattered
across the technique’s implementation. However, any such func-
tionality can be added to the existing GUI Mappers, or introduced
in additional FrUITeR components.

6.1.1 Fidelity Comparison. FrUITeR’s website [12] contains the
results of all seven �delity metrics from Section 4.1.1 obtained
using our benchmark. Due to space limitations, we show the results
of three �delity metrics (Precision, Recall, Accuracy), and restrict
our discussion to Precision and Recall since Accuracy follows a
similar trend as Precision; the results of the four remaining �delity
metrics (Correct, Incorrect, Missed, NonExist) can provide an in-
depth understanding on each of the four speci�c cases, and can
be found on FrUITeR’s website [12]. Figure 3 shows the average
precision and recall achieved by the four existing techniques as
well as Naïve; we omit Perfect since its values are always 100% by
de�nition.

For each technique except CraftDroid, the top (blue) bar shows
the average calculated based on 2,381 cases transferred among both
shopping and news apps. Tomeaningfully compare CraftDroid with

Figure 4: Comparison of average accuracy.

other techniques, even if only partially, we show the averages cal-
culated based on the 12 cases for which we have CraftDroid’s data,
in the bottom (orange) bars. CraftDroid only transferred “Sign In”
and “Sign Up” tests in the 3 shopping apps—Geek, Wish, and Etsy—
leading to the 12 cases (6 source-target app pairs ⇥ 2 tests).

We highlight three observations based on the results from Fig-
ure 3. First, every existing technique yields lower recall than pre-
cision on the larger (blue) data set, meaning that it su�ers from
more missed (i.e., false negative) than incorrect (i.e., false positive)
cases. Although AppFlow’s recall is highest among the existing
techniques, it exhibits the largest drop-o� between its precision
and recall values. A plausible explanation is that, as an ML-based
technique, AppFlow will likely fail to recognize relevant GUI events
if no similar events exist in its training data. This was somewhat un-
expected, however, given that AppFlow’s authors carefully crafted
its ML model to the app categories we also used in FrUITeR, and
suggests that additional research is needed in selecting and training
e�ective ML models for UI test reuse. By comparison, similarity-
based techniques such as ATM will miss fewer GUI events in prin-
ciple: they can always compute a similarity score between two
events and return the mapped events whose scores are above a
given threshold. However, if the similarity threshold is set too low,
it will result in more incorrect cases, leading to low precision.

A related observation is that AppFlow’s precision outperforms
the other techniques across the board, for both the larger (blue)
and smaller (orange) datasets. This is because AppFlow has the
advantage of more information, obtained from a large corpus of
apps in its training dataset, than the similarity-based techniques,
which compute the similarity scores based only on the information
extracted from the source and target apps under analysis. However,
AppFlow’s recall is lower than both ATM and CraftDroid on the 12
(orange) cases from Geek, Wish, and Etsy. This reinforces the above
observation that an ML-based technique will fail to recognize GUI
events if no similar events exist in its training data.

Finally, our data con�rms that ATM indeed improves upon GTM,
as indicated in their pairwise comparisons across both precision
and recall, on both large and small datasets. In fact, GTM exhibits
the lowest �delity of all existing techniques, and its recall across the
2,381 (blue) cases is actually lower than that achieved by the Naïve
strategy. We note that GTM’s design is geared to transferring tests
in programming assignments that share identical requirements, and
is clearly not suited to heterogenous real-world apps.

6.1.2 Utility Comparison. Figure 5 shows the two utility metrics
yielded by each of the four existing and two baselines. Recall from



FrUITeR: A Framework for Evaluating UI Test Reuse ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 5: Comparison of average e�ort and reduction.

Section 4.1.2 that utility measures how useful the transferred tests
are in practice compared to the ground-truth tests. The objective
of utility is to minimize the e�ort while maximizing the reduction.

The utility of existing techniques shows similar trends to those
observed in the case of �delity. For example, AppFlow outperforms
other techniques, while GTM exhibits similar performance to that
of Naïve. This indicates a possible correlation between the �delity
of the GUI event mapping and the utility of the transferred tests.

At the same time, we observe that, while our Perfect GUI Mapper
achieves higher utility than the remaining techniques, that utility is
not optimal. In fact, Perfect’s average reduction is under 50% across
the 2,381 cases in the larger dataset (top, blue bar). In other words,
even with the best possible mapping strategy, we save less than half
of the e�ort required to complete the task manually. The previously
published techniques performmuchworse than this: AppFlow saves
under 30%, ATM under 10%, and GTM under 1% of the required
manual e�ort, while the reduction yielded by CraftDroid on the
smaller (orange) dataset is lower than Perfect’s on either of the two
datasets. This indicates that �delity is clearly not the only factor to
consider in order to achieve desired utility, and that there is large
room for improvement in future test-reuse techniques.

To verify the above insights, we conducted pairwise correlation
tests between the seven �delity and two utility metrics. Overall, the
results, further discussed below and provided in their entirety in
FrUITeR’s online repository [12], show a weak correlation between
�delity and utility. This reinforces our observation that accurate
GUI mappings can yield useful transferred tests, but are not the
only relevant factor. In turn, this �nding calls for exploration of
other components in test-reuse techniques since the focus on GUI
event mapping alone can hit a “ceiling”, as shown by the Perfect
baseline. We discuss such possible directions next.

6.2 Insights and Future Directions
Guided by the above observations, we explore potential strategies
for improving UI test reuse with various statistical tests and manual
inspections on FrUITeR’s datasets. Due to space limitations, we
highlight four �ndings that were not reported by previous work.

Source app selection matters for a given target app. Fig-
ures 3, 4, and 5 all show consistent improvement across the tech-
niques in the smaller datasets (12 cases transferred among 3 apps)
compared to the larger ones (2,381 cases transferred among 20 apps).
This suggests that certain source-target app pairs achieve better
results than others. For example, we found that app pairs involving
Wish, Geek, and a benchmark app called Home—all of which are
developed by the same company,Wish Inc.—achieve high �delity

and utility, regardless of the technique used. Another such compat-
ible app pair is ABC News and Reuters. Performing a large-scale
evaluation enabled by FrUITeR will help spot pairings like this, and
give researchers a starting point to explore the characteristics that
can lead to better transfer results.

Automated transfer is not suitable for all tests. Our utility
metrics revealed large e�ort and negative reduction in some cases,
meaning that correcting a transferred test required more work than
writing it from scratch. Further inspection revealed that this is
primarily due to a test’s length rather than a technique’s accuracy.
For instance, Perfect showed no bene�t (reduction  0) 16% of the
time, and the average number of source events in those cases is
only 4. This suggests that, for simple tests, manual construction
may be preferable. Future research should consider the criteria for
suitable tests to transfer instead of transferring all source tests.

There is a trade-o� betweenML- and similarity-based tech-
niques. As discussed above, an insu�cient training set in an ML-
based technique may yield low recall, while a low similarity thresh-
old in a similarity-based technique can address this but may yield
low precision. This suggests two future research directions. First,
selecting training sets and similarity thresholds is important, but
existing techniques did not justify their choices [20, 21, 23, 25].
There is clearly a need for further study of novel strategies such
as incorporating dynamic selection criteria based on target app
characteristics. Second, future research should consider the trade-
o�s across di�erent test-reuse techniques and provide guidance on
selecting the most suitable techniques for a given scenario.

Test length is not a key factor in�uencing �delity. Craft-
Droid and GTM studied the relationship between the test length
and their transferred results. For instance, CraftDroid showed a
strong negative correlation between test length and its two �delity
metrics (coe�cient < �0.5 in both cases). To verify these �ndings,
we conducted correlation tests on FrUITeR’s much larger datasets.
Our results indicate a negative but very weak correlation between
test length and FrUITeR’s �delity metrics (�0.25 < coe�cient < 0
across all seven cases). This shows that test length is not the key
factor that impacts �delity, arguing that future research targeting
reuse of complex tests may be a fruitful direction.

7 CONCLUSION
This paper has presented FrUITeR, a customizable framework for
automatically evaluating UI test-reuse techniques. FrUITeR has been
instantiated and successfully demonstrated on the key functionality
extracted from existing test-reuse techniques that target Android
apps. In the process, we have been able to identify several avenues
of future research that prior work has either missed or actually
�agged as not viable. We publicly release FrUITeR, its accompanying
artifacts, and all of our evaluation data, as a way of fostering future
research in this area of growing interest and importance.
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