
Detecting numerical bugs in neural network architectures

Zhang, Yuhao; Ren, Luyao; Chen, Liqian; Xiong, Yeifei; Cheung, Shing Chi; Xie, Tao

ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, Virtual; United States, 8-13 November 2020,
Code 164831

Accepted Version

10.1145/3368089.3409720

Association for Computing Machinery

© ACM 2020. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published
in the Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, , http://dx.doi.org/10.1145/3368089.3409720

Detecting Numerical Bugs in Neural Network Architectures

Yuhao Zhang
Key Laboratory of High Confidence

Software Technologies, MoE
Department of Computer Science and

Technology, Peking University
Beijing, PR China

yuhaoz@cs.wisc.edu

Luyao Ren
Key Laboratory of High Confidence

Software Technologies, MoE
Department of Computer Science and

Technology, Peking University
Beijing, PR China
rly@pku.edu.cn

Liqian Chen
Key Laboratory of Software

Engineering for Complex Systems,
College of Computer, National

University of Defense Technology
Changsha, PR China
lqchen@nudt.edu.cn

Yingfei Xiong∗

Key Laboratory of High Confidence
Software Technologies, MoE

Department of Computer Science and
Technology, Peking University

Beijing, PR China
xiongyf@pku.edu.cn

Shing-Chi Cheung
Department of Computer Science and

Engineering, The Hong Kong
University of Science and Technology

Hong Kong, PR China
scc@cse.ust.hk

Tao Xie
Key Laboratory of High Confidence

Software Technologies, MoE
Department of Computer Science and

Technology, Peking University
Beijing, PR China
taoxie@pku.edu.cn

ABSTRACT

Detecting bugs in deep learning software at the architecture level

provides additional benefits that detecting bugs at the model level

does not provide. This paper makes the first attempt to conduct

static analysis for detecting numerical bugs at the architecture level.

We propose a static analysis approach for detecting numerical bugs

in neural architectures based on abstract interpretation. Our ap-

proach mainly comprises two kinds of abstraction techniques, i.e.,

one for tensors and one for numerical values. Moreover, to scale

up while maintaining adequate detection precision, we propose

two abstraction techniques: tensor partitioning and (elementwise)

affine relation analysis to abstract tensors and numerical values,

respectively. We realize the combination scheme of tensor parti-

tioning and affine relation analysis (together with interval analysis)

as DEBAR, and evaluate it on two datasets: neural architectures

with known bugs (collected from existing studies) and real-world

neural architectures. The evaluation results show that DEBAR out-

performs other tensor and numerical abstraction techniques on

accuracy without losing scalability. DEBAR successfully detects

all known numerical bugs with no false positives within 1.7–2.3

seconds per architecture. On the real-world architectures, DEBAR

reports 529 warnings within 2.6–135.4 seconds per architecture,

where 299 warnings are true positives.

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409720

CCS CONCEPTS

• Software and its engineering → Formal software verifica-

tion; • Computing methodologies → Neural networks.

KEYWORDS

Neural Network, Static Analysis, Numerical Bugs

ACM Reference Format:

Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung,

and Tao Xie. 2020. Detecting Numerical Bugs in Neural Network Architec-

tures. In Proceedings of the 28th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ES-

EC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3368089.3409720

1 INTRODUCTION

The use of deep neural networks (DNNs) within software systems

(which are named as DL software systems) is increasingly pop-

ular, supporting critical classification tasks such as self-driving,

facial recognition, and medical diagnosis. Construction of such sys-

tems requires training a DNN model based on a neural architecture

scripted by a deep learning (DL) program1. To ease the development

of DL programs, the developers popularly adopt various DL frame-

works such as TensorFlow. A neural architecture, i.e., a network

of tensors with a set of parameters, is captured by a computation

graph configured to do one learning task. When these parameters

are concretely bound after training based on the given training

dataset, the architecture prescribes a DL model, which has been

trained for a classification task.

To avoid unexpected or incorrect behaviors in DL software sys-

tems, it is necessary to detect bugs in their neural architectures.

Although various approaches [8–10, 14, 17, 19–21, 23–25, 27–32]

have been proposed to test or verify DL models, these approaches

do not address the needs of two types of stakeholders: (1) archi-

tecture vendors who design and publish neural architectures to be

1A DL program may specify multiple neural architectures, each responsible for an
assigned learning task. To ease the presentation, we assume that each DL program
performs a single task with a neural architecture unless otherwise stated in this paper.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

used by other users, and (2) developers who use neural architec-

tures to train and deploy a model based on the developers’ own

training dataset.

• Architecture vendors need to provide quality assurance for

their neural architecture. It is inadequate for the vendors

to verify the architecture with specific instantiated models,

which are dataset-dependent.

• Bugs in a neural architecture may manifest themselves into

failures after developers have trained a model for hours, days,

or even weeks, causing great loss in time and computation

resources [34]. The loss can be prevented if these bugs can be

detected early at the architecture level before model training.

• Failures can also occur when developers of a DL model need

to retrain their models upon updates on training data. These

updates can frequently happen during software system de-

velopment and deployment, e.g., when the new feedback

data is collected from users [33].

• Failures in DL models can be caused by a bug in the DL

architecture, low-quality training data, incorrect parameter

settings, or other issues. It is not easy for the developers to

localize the bug.

In this paper, we present the first attempt to conduct static analy-

sis for bug detection at the architecture level. Specifically, we target

numerical bugs, an important category of bugs known to have cat-

astrophic consequences. Numerical bugs are challenging to detect,

often caused by complex component interactions and difficult to

be spotted out during code review.

A neural architecture can contain numerical bugs that cause

serious consequences. Numerical bugs in a neural architecture

manifest themselves as numerical errors in the form of “NaN”,

“INF”, or crashes during training or inference. For example, when a

non-zero number is divided by zero, the result is “INF”, indicating

that it is an infinite number; when zero is divided by zero, the result

is “NaN”, indicating that it is not a number. When a numerical

error occurs during training, the model trained using the buggy

neural architecture becomes invalid. A numerical bug thatmanifests

only when making inference is even more devastating: it can crash

the software system or cause unexpected system behaviors when

certain inputs are encountered during real system usage [24].

Detecting numerical bugs via testing is either too challenging

at the architecture level or too late at the model level as revealed

in previous empirical studies [15, 24, 34]. Testing an architecture

is challenging as we cannot execute the architecture. Testing the

trained models is too late to discover the bugs occurring at the

training time as stated earlier.

To detect numerical bugs at the architecture level, in this paper,

we propose to use static analysis because static analysis is able

to cover the large combinatorial space imposed by the numerous

parameters and possible inputs of a neural architecture. We pro-

pose a static analysis approach for detecting numerical bugs in

neural architectures based on abstract interpretation [4], which

mainly comprises two kinds of abstraction techniques, i.e., one

for tensors and one for numerical values. We study three tensor

abstraction techniques: array expansion, array smashing, and ten-

sor partitioning, as well as two numerical abstraction techniques:

interval abstraction and affine relation analysis. Among these tech-

niques, array expansion, array smashing, and interval abstraction

are adapted from existing abstraction techniques for imperative

programs [1, 5]. In addition, to achieve scalability while maintain-

ing adequate precision, we propose tensor partitioning to partition

tensors and infer numerical information over partitions, based on

our insight: many elements of a tensor are subject to the same

operations. In particular, representing (concrete) tensor elements

in a partition as one abstract element under appropriate abstract

interpretation can reduce analysis effort by orders of magnitude.

Motivated by this insight, tensor partitioning initially abstracts all

elements in a tensor as one abstract element and iteratively splits

each abstract element into smaller ones when its concrete elements

go through different operations. Each abstract element represents

one partition of the tensor, associated with a numerical interval that

indicates the range of its concrete elements. Moreover, for the sake

of precision, besides interval analysis, we conduct affine relation

analysis to infer the elementwise affine equality relations among

abstract elements representing partitions.

We evaluate the scalability and accuracy of our approach on

two datasets: a set of 9 architectures with known numerical bugs

collected by existing studies [24, 34], and a set of 48 large real-world

neural architectures. In our evaluation, we design comparative ex-

periments to study three tensor abstraction techniques and two

numerical abstraction techniques. We specifically name the imple-

mentation of the combination scheme of tensor partitioning and

affine relation analysis together with interval abstraction as DE-

BAR, being released as open source code2. In terms of scalability,

the evaluation results show that array expansion is unscalable, and

it times out in 33 architectures with a time budget of 30 minutes,

while other techniques are scalable and can successfully analyze

all architectures in 3 minutes. In terms of accuracy, DEBAR could

achieve 93.0% accuracy with almost the same time performance

compared to array smashing (87.1% accuracy) and (sole) interval

abstraction (80.6% accuracy). These results demonstrate the effec-

tiveness of tensor partitioning and affine relation analysis together

with interval abstraction.

In summary, this paper makes three main contributions:

• A study of a static analysis approach for numerical bug de-

tection in neural architectures, with three abstraction tech-

niques for abstracting tensors and two for abstracting nu-

merical values.

• Two abstraction techniques designed for analyzing neural

architectures: tensor partitioning (for abstracting tensors)

and (elementwise) affine relation analysis (for inferring nu-

merical relations among tensor partitions).

• An evaluation on 9 buggy architectures in 48 real-world neu-

ral architectures, demonstrating the effectiveness of DEBAR.

2 OVERVIEW

In this section, we explain how our approach detects numerical

bugs with an example in Listing 1. The example is modified from a

2https://github.com/ForeverZyh/DEBAR

Detecting Numerical Bugs in Neural Network Architectures ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

real-world code snippet that creates rectangles and calculates the

reciprocals of their areas3.

1 # Input:

2 # center: 2*100- shape tensor whose elements in [-1, 1]

3 # offset: 2*100- shape tensor whose elements in [0, 2]

4

5 # Create 100 rectangles.

6 bottomLeft = center - offset

7 topRight = center + offset

8 rectangle = tf.concat ([bottomLeft , topRight], axis =1)

9

10 # Calculate the reciprocal of their areas.

11 bottom , left , top , right = tf.split(rectangle ,

num_or_size_splits =4, axis =1)

12 width = right - left

13 height = top - bottom

14 area = width * height

15 scale = tf.reciprocal(area)

Listing 1: A Code Snippet of a Motivating Example

The program consists of two parts. The first part defines 100

rectangles, each by a central point and an offset vector. Input vari-

able center represents 100 central points, where each point is a

2-element vector of 32-bit floats. Similarly, offset represents 100
offset vectors. Then from the central points and the offsets, the

bottom left points and the top right points are calculated (Lines

6–7), and are concatenated into a 4*100 tensor to create rectangles

(Line 8). The second part calculates the reciprocals of the areas.

First, from rectangle, the bottom, left, top, and right coordinates

are extracted (Line 11), each being a 1*100-shape tensor. The ar-

eas of rectangles are then calculated (Lines 12–14) followed by the

calculation of their reciprocals (Line 15). This program contains

a numerical bug that when any offset vector has an element of

zero, the corresponding area becomes zero and the value of scale
becomes NaN.

To capture the bug, an ideal way is to statically consider all

possible values of center and offset, and check whether any of

the values would result in a zero area. Abstract interpretation [4]

is an effective solution to statically consider all possible values of

variables. It analyzes the original program via an abstract domain,

where each abstract value represents a set of concrete values. To

apply abstract interpretation to our problem, the key is how to

abstract a neural architecture. Given a neural architecture, we need

to consider mainly two aspects. First, the numerical values and

arithmetic computations need to be abstracted. Second, the tensors

need to be abstracted. We first discuss three abstraction techniques

adapted from existing work for analyzing imperative programs, and

then describe two new techniques that we propose for analyzing

neural architectures.

2.1 Interval Abstraction

Interval abstraction [5] is a popular abstract interpretation tech-

nique for abstracting numerical values, where each scalar variable

𝑣 is represented by an interval, indicating the lower bound and

the upper bound. These intervals are then calculated by mapping

the standard operations into interval arithmetic. As a result, the

following shows the calculations performed by the analysis.

3https://github.com/tensorflow/models/blob/13e7c85d521d7bb7cba0bf7d743366f
7708b9df7/research/object_detection/box_coders/faster_rcnn_box_coder.py#L80

center: all elements have [−1, 1]
offset: all elements have [0, 2]
bottomLeft: all elements have [−3, 1]
topRight: all elements have [−1, 3]
rectangle: the first two elements in each row have

[−3, 1], and the last two elements in each

row have [−1, 3]
bottom, left: all elements have [−3, 1]
top, right: all elements have [−1, 3]
width, height: all elements have [−2, 6]
area: all elements have [−12, 36]

To detect numerical bugs, one can predefine the safe conditions

for various operations, e.g., by restricting the argument not to take

a zero value when calling reciprocal. Since zero is included in

the interval of any element in area, a potential numerical bug is

detected.

Thefirst type of imprecision is introduced by interval abstrac-

tion. In the preceding example, we can conclude from the interval

of offset that the elements in area are within interval [0, 16],
which is smaller than the inferred interval [−12, 36]. Since both
bottomLeft and topRight are calculated from center, the effect
of center is nullified when calculating width and height. How-
ever, such information is lost after the values have been abstracted

into intervals. The imprecision may lead to false alarms. Consider

a situation that the elements in offset contain values within in-

terval [1, 2], where no numerical error should be triggered. When

analyzing using the interval abstraction, we would get [−18, 36]
for all elements in area, leading to a false alarm of numerical bugs.

2.2 Array Expansion

Array expansion [1] is a basic technique for abstracting an array

in an imperative program to an abstract domain: the elements

in the array are one-to-one mapped to the abstract domain, and

no abstraction is performed. Mapping array expansion for tensor

abstraction with interval abstraction, we can also directly map the

elements in a tensor one-to-one to ranges in the abstract domain.

Scalability is the main problem of array expansion. The reason

is that we need to record an interval for each element in a tensor,

and in the motivating example, we need to record 200 intervals

for center and 200 intervals for offset, substantially affecting

scalability. As shown by our evaluation later, analyses using array

expansion time out for most real-world models with a time budget

of 30 minutes.

2.3 Array Smashing

Array smashing [1] is an alternative abstraction technique that uses

one abstract element to represent all elements in a tensor. In this

way, the number of abstract elements is greatly reduced. Mapping

array smashing for tensor abstraction with interval abstraction, we

use one range to cover all elements in a tensor.
rectangle: [−3, 3]
bottom, left, top, right: [−3, 3]
width, height: [−6, 6]
area: [−36, 36]

The second type of imprecision is introduced by array smash-

ing. In the preceding example, the intervals of center, offset,
bottomLeft, and topRight remain the same. Nevertheless, array

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

smashing can get the interval of area as [−36, 36], which is less

precise than what array expansion gets. In fact, when using array

smashing, a warning would be reported for any input intervals

as the difference between bottomLeft and topRight disappears

when they are concatenated into rectangle.

2.4 Tensor Partitioning and Affine Relation
Analysis

To scale up while maintaining adequate precision, we propose two

techniques for abstracting tensors and numerical values, respec-

tively. The first technique is tensor partitioning, which allows a

tensor to be split into multiple partitions, where each partition is

abstracted as a summary variable, and we maintain interval ranges

for such summary variables. The second technique is affine relation

analysis, which maintains affine relations between partitions and

makes use of this relation to achieve more precise analysis.

Specifically, to support tensor partitioning, we maintain the set

of indexes for each partition. We use I𝐴 to denote the index ranges

of the partition 𝐴, and use ∗ to denote all included indexes in a

dimension. For example, the following shows the calculation pro-

cess of the preceding example in tensor partitioning, where the

names in uppercase represent partitions. Tensor center has one

partition 𝐶 including all its concrete elements. To support affine

relation analysis, we introduce a symbolic summary variable 𝑎 to

denote each partition 𝐴 (i.e., 𝛼 (𝐴) = 𝑎), whose name is in lower-

case. We use 𝜎 (𝑎) to denote its corresponding interval. With these

summary variables, we maintain affine equality relations among

these summary variables.

In the motivating example, the partition𝐶 corresponds to a sym-

bolic summary variable 𝑐 , whose interval range is 𝜎 (𝑐) = [−1, 1].
Similarly, offset also has one partition 𝑂 corresponding to an

expression 𝑜 , where the interval 𝑜 is [0, 2]. Next, bottomLeft is

calculated from center and offset. Since both center and offset
have one partition, bottomLeft also has one partition 𝐵𝐿, which
corresponds to expression 𝑐 −𝑜 that is calculated from 𝛼 (𝐶) −𝛼 (𝑂).

Following this process, we can calculate the partitions and maintain

their affine equality relations.
1. center: I𝐶 = ∗ × ∗, 𝛼 (𝐶) = 𝑐 ,
2. 𝜎 (𝑐) = [−1, 1]
3. offset: I𝑂 = ∗ × ∗, 𝛼 (𝑂) = 𝑜 ,
4. 𝜎 (𝑜) = [0, 2]
5. bottomLeft: I𝐵𝐿 = ∗ × ∗, 𝛼 (𝐵𝐿) = 𝛼 (𝐶) − 𝛼 (𝑂) = 𝑐 − 𝑜
6. topRight: I𝑇𝑅 = ∗ × ∗, 𝛼 (𝑇𝑅) = 𝛼 (𝐶) + 𝛼 (𝑂) = 𝑐 + 𝑜
7. rectangle: I𝑅1 = [0..1] × ∗, 𝛼 (𝑅1) = 𝛼 (𝐵𝐿) = 𝑐 − 𝑜
8. I𝑅2 = [2..3] × ∗, 𝛼 (𝑅2) = 𝛼 (𝑇𝑅) = 𝑐 + 𝑜
9. bottom: I𝐵 = ∗ × ∗, 𝛼 (𝐵) = 𝛼 (𝑅1) = 𝑐 − 𝑜
10. left: I𝐿 = ∗ × ∗, 𝛼 (𝐿) = 𝛼 (𝑅1) = 𝑐 − 𝑜
11. top: I𝑇 = ∗ × ∗, 𝛼 (𝑇) = 𝛼 (𝑅2) = 𝑐 + 𝑜
12. right: I𝑅 = ∗ × ∗, 𝛼 (𝑅) = 𝛼 (𝑅2) = 𝑐 + 𝑜
13. width: I𝑊 = ∗ × ∗, 𝛼 (𝑊) = 𝛼 (𝑅) − 𝛼 (𝐿) = 2𝑜
14. height: I𝑅 = ∗ × ∗, 𝛼 (𝐻) = 𝛼 (𝑇) − 𝛼 (𝐵) = 2𝑜
15. area: I𝐴 = ∗ × ∗, 𝛼 (𝐴) = 𝑎,
16. 𝜎 (𝑎) = 2𝜎 (𝑜) × 2𝜎 (𝑜) = [0, 16]

The calculation is dissimilar to interval abstraction with array

smashing in two ways for the example. The first difference in cal-

culation occurs at Lines 7 and 8. Since rectangle is concatenated

from two tensors, we keep rectangle as two partitions, 𝑅1 and

𝑅2, each corresponding to an argument. In this way, we overcome

the second type of imprecision brought by array smashing while

keeping the number of abstract elements small. When splitting

rectangle into bottom, left, top, and width, we can get the pre-

cise intervals for these tensors from the corresponding partitions

in rectangle.
The second difference in calculation occurs at Line 13. When

calculating 𝑤𝑖𝑑𝑡ℎ, we make use of the affine equality relations

among partitions of 𝑅 and 𝐿, and thus we can precisely infer that

𝑤𝑖𝑑𝑡ℎ = 2𝑜 rather than only an imprecise interval for𝑤𝑖𝑑𝑡ℎ. Simi-

larly, the interval for height is also precise. In this way, we over-

come the first type of imprecision due to interval abstraction. Finally,

we calculate area based on width and height. Since the operation
of 2𝑜 × 2𝑜 is no longer linear, we cannot get any affine equality

relations for area. Hence, we introduce a summary variable 𝑎 for

the whole area, and compute its interval range. Then, for area we

get an interval [0, 16], which is the ground-truth interval range of

area.

3 APPROACH

In this section, we first introduce the preliminaries of abstract in-

terpretation and two basic numerical abstract domains, the interval

abstract domain, and the affine equality abstract domain. We then

describe our abstraction for neural architectures using tensor par-

titioning (for abstracting tensors) and numerical abstractions, i.e.,

combining intervals with affine equalities (for abstracting numeri-

cal values). We then show how to abstract tensor operations under

two abstraction techniques, tensor partitioning and affine relation

analysis (as well as interval analysis), designed for neural archi-

tectures. We also discuss the initial intervals for input ranges and

parameter ranges.

3.1 Preliminaries

3.1.1 Basics of Abstract Interpretation. In abstract interpretation [4],

concrete properties are described in the concrete domain C with a

partial order ⊆, and abstract properties are described in the abstract

domain A with a partial order �. We say that the correspondence

between concrete properties and abstract properties is a Galois con-

nection 〈C, ⊆〉
𝛾
�
𝛼

〈A, �〉 with an abstraction function 𝛼 : C ↦→ A

and a concretization function 𝛾 : A ↦→ C satisfying

∀𝑐 ∈ C,∀𝑎 ∈ A.𝛼 (𝑐) � 𝑎 ⇔ 𝑐 ⊆ 𝛾 (𝑎).

To infer the value range for variables in a DL program, we need

to compute the possible sets of values that each variable can take.

We define the concrete domain C of 𝑛 variables as P(R𝑛), where an

element is a set of 𝑛-element vectors denoting the possible values

that𝑛 variables can take. The partial order inC is the subset relation

⊆ over sets.

3.1.2 Abstract Domain of Intervals. The abstract domain of inter-

vals [3] AI is defined as

AI � {([𝑙1, 𝑢1], . . . , [𝑙𝑛, 𝑢𝑛]) | 𝑙, 𝑢 ∈ R𝑛}.

An element in AI can be seen as a pair of two vectors (𝑙, 𝑢), where
[𝑙𝑖 , 𝑢𝑖] denotes the lower bound and upper bound of the values

that the 𝑖-th variable may take. Given two elements 𝑎1, 𝑎2 ∈ AI,

Detecting Numerical Bugs in Neural Network Architectures ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

we say 𝑎1 � 𝑎2 if both have 𝑛 intervals and each interval in 𝑎1 is a
sub-interval of the interval in the corresponding position in 𝑎2.

The abstraction function 𝛼I of an element 𝑐 ∈ C is defined as

𝛼I (𝑐) = ([𝑙𝑐1 , 𝑢
𝑐
1], . . . , [𝑙

𝑐
𝑛, 𝑢

𝑐
𝑛]), where

𝑙𝑐𝑖 = min
𝑥 ∈𝑐

(𝑥𝑖), 𝑢𝑐𝑖 = max
𝑥 ∈𝑐

(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑛.

The concretization function 𝛾I of an element 𝑎 ∈ AI is defined as

𝛾I (𝑎) = {𝑥 ∈ R𝑛 | ∀𝑖 ∈ [1, 𝑛] .𝑥𝑖 ∈ [𝑙𝑎𝑖 , 𝑢
𝑎
𝑖]},

where [𝑙𝑎𝑖 , 𝑢
𝑎
𝑖] is the interval range of the 𝑖-th variable of 𝑎.

It is easy to see that the concrete domain 〈C, ⊆〉 and the interval

abstract domain 〈AI, �I〉 form the Galois connection. More details

can be found in the publication by Cousot and Cousot [3].

3.1.3 Abstract Domain of Affine Equalities. As discussed in Sec-

tion 2, we also maintain affine relations among variables in a DL

program in the form of ∑
𝑖>0

𝜔𝑖𝑥𝑖 = 𝜔0, (1)

where 𝑥𝑖 ’s are variables and 𝜔𝑖 ’s are constant coefficients, inferred

automatically during the analysis.

The abstract domain of affine equalities [16] AE is defined as

AE � {(A, 𝑏) | A ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚,𝑚 > 0},

where a matrix A and a column vector 𝑏 define the affine space of

𝑛 variables. An element in AE constrains variables 𝑥 ∈ R𝑛 by an

equation A𝑥 = 𝑏 describing the possible set of values that 𝑥 can

take. Furthermore, to have a canonical form, we require (A, 𝑏) to
be in the reduced row echelon form [16].

The abstraction function 𝛼E of an element 𝑐 ∈ C is defined as

𝛼E (𝑐) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(A, 𝑏), (A, 𝑏) is in reduced row echelon form, and

A𝑥 = 𝑏 holds for all 𝑥 in 𝑐

, if 𝑐 is the whole space

⊥, otherwise.

The concretization function 𝛾E of an element 𝑎♯E = (A, 𝑏) ∈ AE
is defined as

𝛾E ((A, 𝑏)) = {𝑥 ∈ R𝑛 | A𝑥 = 𝑏}.

The concrete domain 〈C, ⊆〉 and the affine equality abstract do-

main 〈AE, �E〉 form the Galois connection

〈C, ⊆〉
𝛾E
�
𝛼E

〈AE, �E〉.

The details about the domain operations (including meet, join,

inclusion test, etc.) of the affine equality abstract domain can be

found in the publication by Karr [16]. We do not need a widening

operation for the domain of affine equalities because the lattice of

affine equalities has finite height, and the number of affine equal-

ities while analyzing a program is decreasing until reaching the

dimension of the affine space in the program.

3.2 Abstraction for Neural Architectures

We use tensor partitioning and interval abstraction with affine

equality relation to abstract tensors in neural architectures.

3.2.1 Tensor Partitioning. As discussed in Section 2, we introduce a

new granularity of array abstraction, named tensor partitioning,

which is a form of array partitioning (also named array segmen-

tation) [6, 12, 13] but tailored for tensor operations: we partition

a tensor 𝐴 into a set of disjoint partitions {𝐴1, 𝐴2, . . . , 𝐴𝑛} where

each partition 𝐴𝑖 is a sub-tensor of 𝐴. The number of partitions

of 𝐴 is denoted as N𝐴 . The set of array indexes of the cells from

partition 𝐴𝑖 is continuous in 𝐴 and defined by Cartesian products

of index intervals for all dimensions, denoted as I𝐴𝑖 . Note that the

indexes in I𝐴𝑖 are indexes of the corresponding elements in ten-

sor 𝐴, while we sometimes use I𝐴𝑖 .𝑠ℎ𝑎𝑝𝑒 to represent the indexes

of the corresponding elements in sub-tensor 𝐴𝑖 , where 𝐴𝑖 .𝑠ℎ𝑎𝑝𝑒
denotes a tuple of integers giving the size of the sub-tensor 𝐴𝑖

along each dimension. In our motivating example, 𝑅2 is a parti-

tion of rectangle, and I𝑅2
= [2..3] × [0..99], 𝑅2 .𝑠ℎ𝑎𝑝𝑒 = (2, 100),

I𝑅2 .𝑠ℎ𝑎𝑝𝑒 = [0..1]× [0..99]. For clarity, we introduce a notion of par-
titioning positions for each dimension to denote the indexes where

we partition the tensor in that dimension. Index 𝑖 is a partitioning
position for a tensor 𝐴 in dimension 𝑝 iff the element 𝐴[𝑖] and the

element 𝐴[𝑖 + 1] in dimension 𝑝 belong to different partitions. It

is worth mentioning that the partitioning positions are easier to

infer for DNN implementations than for regular programs (e.g.,

C programs) [6, 12, 13], because the shapes of (sub-)tensors are

usually determined syntactically (often specified by parameters of

tensor operations) so that we know the exact boundary of each

partition, e.g., tf.concat and tf.split in our motivating example.

After partitioning, for each partition𝐴𝑖 , we introduce an abstract

summary variable 𝑎𝑖 to subsume all the elements in 𝐴𝑖 , denoted

as 𝛼 (𝐴𝑖) = 𝑎𝑖 . Note that in this paper, we use lowercase letters

to denote the summary variables of partitions (sub-tensors) while

uppercase letters to denote tensors. To perform static analysis, we

maintain numerical relations among summary variables of parti-

tions, with details described in the next subsection.

3.2.2 Interval Abstraction with Affine Equality Relation. We com-

bine the interval abstraction and affine equality relation abstraction

as our numerical abstraction to infer the value range for scalar

variables in the DL programs and also for those auxiliary abstract

summary variables introduced by tensor partitioning. We could use

relational numerical abstract domains (such as polyhedra) to infer

(inequality) relations. However, because many tensor operations

induce affine equality relations, in this paper, we consider only the

affine equality relations among variables. In addition, affine equality

relations are cheap to infer, and thus are fit to analyze large DNNs.

Furthermore, because ReLU operations are widely used in DNN

implementations, for each variable 𝑎, we introduce 𝑎ReLU to denote

the resulting variable of ReLU(𝑎), i.e., 𝑎ReLU =𝑚𝑎𝑥 (0, 𝑎). Consider-
ing the way of using ReLU operations in DNN implementations, in

this paper, we maintain only the affine equality relations between

a variable 𝑏 and the ReLU result of another variable 𝑎 of the same

shape (while 𝑎, 𝑏 may be the summary variables of partitions from

different tensors), in the form of

𝑏 − 𝑎𝑅𝑒𝐿𝑈 = 0,

which can also be expressed in the form of Eq 1. Additionally, the

ReLU operation has a property

ReLU(𝑎) − ReLU(−𝑎) − 𝑎 = 0,∀𝑎 ∈ R.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

We can utilize this property for better analysis precision by (1)

adding an additional equality

𝑎ReLU − 𝑎−ReLU − 𝑎 = 0,

where 𝑎−ReLU denotes the result of ReLU(−𝑎); (2) adding an addi-

tional equality

𝑐ReLU − 𝑎−ReLU = 0

for every equality in the form of 𝑐 = −𝑎.

3.2.3 Abstract Domain for Neural Architectures.

Definition 3.1. The abstract domain for Tensor partitioning and

Interval abstraction with affine Equality relation ATIE is defined as

ATIE � {(P, 𝑎♯I, 𝑎♯E) | 𝑎♯I ∈ AI, 𝑎
♯E ∈ AE},

where P = {𝐴1, . . . , 𝐴𝑛} is the set of the disjoint partitions of the

tensors and 𝑎♯I, 𝑎♯E are the numerical abstract elements over the 𝑛
summary variables corresponding to the partitions P in the interval

domain AI and the affine equality domain AE, respectively.

Definition 3.2. The concretization function 𝛾TIE of an element

𝑎♯ = (P, 𝑎♯I, 𝑎♯E) ∈ ATIE is defined as

𝛾TIE (𝑎
♯) =

{
A

P = {𝐴1, . . . , 𝐴𝑛} ∧ ∀(𝑗1, . . . , 𝑗𝑛) ∈ 𝐽 .

(𝐴1 [𝑗1], . . . , 𝐴𝑛 [𝑗𝑛]) ∈ (𝛾I (𝑎
♯I) ∩ 𝛾E (𝑎

♯E))

}
,

where 𝐴 is the tensor constructed by its partitions P = {𝐴1, . . . , 𝐴𝑛}

and

𝐽 = {(𝑗1, . . . , 𝑗𝑛) | ∀𝑖 ∈ [1, 𝑛] . 𝑗𝑖 ∈ I𝐴𝑖 .𝑠ℎ𝑎𝑝𝑒 }.

3.3 Abstracting Tensor Operations

We next show how to construct abstract operations based on tensor

partitioning and affine relation analysis (together with interval

analysis) for analyzing three common tensor operations in neural

architectures. We provide the construction for other operations in

our DEBAR open source code.

To ease the presentation, we illustrate our approach using vectors

(one-dimensional tensors) and matrices (two-dimensional tensors).

Our approach is generalizable to multi-dimensional tensors.

3.3.1 Addition and Subtraction. Tensor addition and subtraction,

in the form of𝐶 = 𝐴±𝐵, take two input tensors𝐴, 𝐵 with the same

shape to calculate the resulting tensor 𝐶 .
Since the input tensors 𝐴 and 𝐵 may not be partitioned in the

same way, we should first align the partitions of 𝐴 and those of 𝐵,
such that ∀𝑖 ∈ [1,N𝐴] .I𝐴𝑖 = I𝐵𝑖 where N𝐴 denotes the number of

partitions of 𝐴 and 𝐵 after aligned. To align the partitions of 𝐴 and

those of 𝐵, for each dimension, we take the set union of the two

partitioning positions as the new set of partitioning positions for

𝐴 and 𝐵. Then, we put the aligned set of partitioning positions as

that for the resulting tensor 𝐶 , such that 𝐶 is aligned with 𝐴, 𝐵.
After that, for each partition 𝐶𝑖 , we compute the interval range

for its summary variable by

𝜎 (𝑐𝑖) = 𝜎 (𝑎𝑖) ± 𝜎 (𝑏𝑖).

Furthermore, for tensor addition and subtraction, we maintain the

elementwise affine equality relations among partitions of 𝐴, 𝐵,𝐶 .
For each partition 𝐶𝑖 , we have

𝑐𝑖 = 𝑎𝑖 ± 𝑏𝑖 𝑖 ∈ {1, . . . ,N𝐶 },

Figure 1: Concatenating Tensors (Horizontally)

which means

∀𝑗 ∈ I(𝐶𝑖 .𝑠ℎ𝑎𝑝𝑒) .𝐶𝑖 [𝑗] = 𝐴𝑖 [𝑗] ± 𝐵𝑖 [𝑗] 𝑖 ∈ {1, . . . ,N𝐶 }.

For example, suppose that both the one-dimensional tensors 𝐴
and 𝐵 are partitioned into two partitions, and

I𝐴1
= [0..2] ∧ I𝐴2

= [3..9] ∧ I𝐵1
= [0..5] ∧ I𝐵2

= [6..9]∧
𝛼 (𝐴1) = 𝑎1 ∧ 𝜎 (𝑎1) = 1 ∧ 𝛼 (𝐴2) = 𝑎2 ∧ 𝜎 (𝑎2) = [2, 3]∧
𝛼 (𝐵1) = 𝑏1 ∧ 𝜎 (𝑏1) = 4 ∧ 𝛼 (𝐵2) = 𝑏2 ∧ 𝜎 (𝑏2) = [5, 6] .

After aligning partitions of 𝐴 and 𝐵, we have

I𝐴1
= [0..2] ∧ I𝐴2

= [3..5] ∧ I𝐴3
= [6..9]∧

I𝐵1
= [0..2] ∧ I𝐵2

= [3..5] ∧ I𝐵3
= [6..9]∧

𝛼 (𝐴1) = 𝑎1 ∧ 𝜎 (𝑎1) = 1 ∧ 𝛼 (𝐴2) = 𝑎2 ∧ 𝜎 (𝑎2) = [2, 3]∧
𝛼 (𝐴3) = 𝑎3 ∧ 𝜎 (𝑎3) = [2, 3] ∧ 𝛼 (𝐵1) = 𝑏1 ∧ 𝜎 (𝑏1) = 4∧

𝛼 (𝐵2) = 𝑏2 ∧ 𝜎 (𝑏2) = 4 ∧ 𝛼 (𝐵3) = 𝑏3 ∧ 𝜎 (𝑏3) = [5, 6] .

After 𝐶 = 𝐴 ± 𝐵, for 𝐶 , we have:

I𝐶1
= [0..2] ∧ I𝐶2

= [3..5] ∧ I𝐶3
= [6..9]∧

𝛼 (𝐶1) = 𝑐1 ∧ 𝜎 (𝑐1) = 1 ± 4 ∧ 𝛼 (𝐶2) = 𝑐2 ∧ 𝜎 (𝑐2) = [2, 3] ± 4

∧𝛼 (𝐶3) = 𝑐3 ∧ 𝜎 (𝑐3) = [2, 3] ± [5, 6]∧
𝑐𝑖 = 𝑎𝑖 ± 𝑏𝑖 𝑖 = {1, 2, 3}.

3.3.2 Concatenate. In DNN implementations, tensors can be con-

catenated along certain dimension 𝑝 . An assignment statement

𝐶 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝐴, 𝐵, 𝑝) denotes that two input tensors 𝐴 and 𝐵
are concatenated to form an output tensor𝐶 along dimension 𝑝 . For
example, Figure 1 shows that two two-dimensional tensors𝐴 and 𝐵
are concatenated to form a tensor 𝐶 along dimension 0 (rows). To

handle the Concatenate operation, first, we need to align partitions

of 𝐴 and 𝐵 along all other dimensions except dimension 𝑝 . To align
the partitions, in each dimension (except dimension 𝑝), we use the
set union of partitioning positions of 𝐴 and 𝐵 as the new set of

partitioning positions for 𝐴, 𝐵 and also that for 𝐶 . In dimension 𝑝 ,
we do not change the partitioning positions of 𝐴 and 𝐵, while the
set of partitioning positions of 𝐶 consists of (1) 𝐴’s partitioning po-

sitions in dimension 𝑝 ; (2) the size of 𝐴 in dimension 𝑝 , denoted as

𝑛 (representing the boundary between𝐴 and 𝐵); (3) 𝐵’s partitioning
positions (in dimension 𝑝) plus 𝑛. Let N𝐴,N𝐵 denote the number

of partitions of 𝐴, 𝐵 after alignment, respectively.

For simplicity of presentation, herewe assume that two-dimensional

tensors 𝐴, 𝐵 are concatenated to form a tensor 𝐶 along dimension

0 (i.e., 𝑝 = 0). Then for each partition 𝐶𝑖 , we calculate its interval
range by

𝜎 (𝑐𝑖) =

{
𝜎 (𝑎𝑖) if 𝑖 ∈ {1, . . . ,N𝐴}

𝜎 (𝑏𝑖−N𝐴
) if 𝑖 ∈ {N𝐴 + 1, . . . ,N𝐴 + N𝐵}.

Detecting Numerical Bugs in Neural Network Architectures ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 2: Splitting Tensors (Vertically)

We also maintain the elementwise affine equality relations between

𝐶𝑖 and 𝐴𝑖 (when 𝑖 ≤ N𝐴), as well as relations between 𝐶𝑖 and 𝐵𝑖
(when 𝑖 > N𝐴), as

𝑐𝑖 = 𝑎𝑖 𝑖 ∈ {1, . . . ,N𝐴}

𝑐𝑖 = 𝑏𝑖−N𝐴
𝑖 ∈ {N𝐴 + 1, . . . ,N𝐴 + N𝐵},

which means

∀(𝑗, 𝑘) ∈ I(𝐶𝑖 .𝑠ℎ𝑎𝑝𝑒) .𝐶𝑖 [𝑗] [𝑘] = 𝐴𝑖 [𝑗] [𝑘] 1 ≤ 𝑖 ≤ N𝐴

∀(𝑗, 𝑘) ∈ I(𝐶𝑖 .𝑠ℎ𝑎𝑝𝑒) .𝐶𝑖 [𝑗] [𝑘] = 𝐵𝑖−N𝐴
[𝑗] [𝑘] N𝐴 < 𝑖 ≤ N𝐴 + N𝐵 .

For the example shown in Figure 1, suppose

I𝐴1
= [0..0] × [0..1] ∧ I𝐴2

= [0..0] × [2..3]∧
I𝐵1

= [0..1] × [0..3] ∧ I𝐵2
= [2..2] × [0..3]∧

𝛼 (𝐴1) = 𝑎1 ∧ 𝛼 (𝐴2) = 𝑎2 ∧ 𝛼 (𝐵1) = 𝑏 ·1 ∧ 𝛼 (𝐵2) = 𝑏 ·2,

where we temporarily use 𝑏 ·𝑖 to denote the summary variables for

𝐵𝑖 here. After aligning the partitions of 𝐴 and 𝐵 , we have

I𝐴1
= [0..0] × [0..1] ∧ I𝐴2

= [0..0] × [2..3]∧
I𝐵1

= [0..1] × [0..1] ∧ I𝐵2
= [0..1] × [2..3]∧

I𝐵3
= [2..2] × [0..1] ∧ I𝐵4

= [2..2] × [2..3]∧
𝛼 (𝐴1) = 𝑎1 ∧ 𝛼 (𝐴2) = 𝑎2∧

𝛼 (𝐵1) = 𝑏1 ∧ 𝜎 (𝑏1) = 𝜎 (𝑏 ·1) ∧ 𝛼 (𝐵2) = 𝑏2 ∧ 𝜎 (𝑏2) = 𝜎 (𝑏 ·1)∧
𝛼 (𝐵3) = 𝑏3 ∧ 𝜎 (𝑏3) = 𝜎 (𝑏 ·2) ∧ 𝛼 (𝐵4) = 𝑏4 ∧ 𝜎 (𝑏4) = 𝜎 (𝑏 ·2) .

Then, after 𝐶 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝐴, 𝐵, 0), for 𝐶 , we have:

I𝐶1 = [0..0] × [0..1] ∧ I𝐶2 = [0..0] × [2..3] ∧ I𝐶3 = [1..2] × [0..1]∧
I𝐶4 = [1..2] × [2..3] ∧ I𝐶5 = [3..3] × [0..1] ∧ I𝐶6 = [3..3] × [2..3]∧

𝛼 (𝐶1) = 𝑐1 ∧ 𝜎 (𝑐1) = 𝜎 (𝑎1) ∧ 𝛼 (𝐶2) = 𝑐2 ∧ 𝜎 (𝑐2) = 𝜎 (𝑎2)∧
𝛼 (𝐶3) = 𝑐3 ∧ 𝜎 (𝑐3) = 𝜎 (𝑏1) ∧ 𝛼 (𝐶4) = 𝑐4 ∧ 𝜎 (𝑐4) = 𝜎 (𝑏2)∧
𝛼 (𝐶5) = 𝑐5 ∧ 𝜎 (𝑐5) = 𝜎 (𝑏3) ∧ 𝛼 (𝐶6) = 𝑐6 ∧ 𝜎 (𝑐6) = 𝜎 (𝑏4)∧

𝑐𝑖 = 𝑎𝑖 𝑖 = {1, 2} ∧ 𝑐𝑖 = 𝑏𝑖−2 𝑖 = {3, 4, 5, 6}.

3.3.3 Split. A tensor can be split into sub-tensors along a certain di-

mension. More clearly, a statement (𝐵 (1) , . . . , 𝐵 (𝑛)) = 𝑠𝑝𝑙𝑖𝑡 (𝐴,𝑛, 𝑝)
denotes that 𝐴 is split along dimension 𝑝 into 𝑛 smaller tensors,

which are stored in 𝐵 (1) , . . . , 𝐵 (𝑛) . The statement requires that 𝑛
evenly divides 𝐴.𝑠ℎ𝑎𝑝𝑒 [𝑝] (i.e., the number of elements in dimen-

sion 𝑝 in A). For example, Figure 2 shows that a two-dimensional

tensor 𝐴 is split along dimension 0 (rows) into 2 sub-tensors 𝐵1
and 𝐵2. To handle the 𝑆𝑝𝑙𝑖𝑡 operation, first, we use the following
set as the new set of partitioning positions of 𝐴 in dimension 𝑝:

{
𝐴.𝑠ℎ𝑎𝑝𝑒 [𝑝]

𝑛 −1, 2∗
𝐴.𝑠ℎ𝑎𝑝𝑒 [𝑝]

𝑛 −1, . . . , (𝑛−1) ∗
𝐴.𝑠ℎ𝑎𝑝𝑒 [𝑝]

𝑛 −1}, and

align the partitions of 𝐴 with respect to the new set of partitioning

positions. Let N𝐴 denote the number of partitions of 𝐴 after align-

ment. Then, we keep the set of partitioning positions of𝐴 as that of

𝐵 (𝑗) for all dimensions except 𝑝 . In dimension 𝑝 , we use the empty

set as the set of partitioning positions of 𝐵 (𝑗) . In other words, we

do not partition 𝐵 (𝑗) in dimension 𝑝 .
For simplicity of presentation, herewe assume that two-dimensional

tensors 𝐴 are split into sub-tensors (𝐵 (1) , . . . , 𝐵 (𝑛)) along dimen-

sion 0 (i.e., 𝑝 = 0). Then, considering an output sub-tensor 𝐵 (𝑗) , for

each of its partitions 𝐵
(𝑗)
𝑖 , we calculate its interval range by

𝜎 (𝑏
(𝑗)
𝑖) = 𝜎 (𝑎𝑖′),

where 𝑖 ′ = (𝑗 −1) ∗ N𝐴
𝑛 +𝑖 . We also maintain the elementwise affine

equality relations between 𝐵
(𝑗)
𝑖 and𝐴𝑖′ (where 𝑖

′ = (𝑗 −1) ∗ N𝐴
𝑛 +𝑖):

𝑏
(𝑗)
𝑖 = 𝑎𝑖′ 𝑖 ∈ {1, . . . , N𝐴

𝑛 },

which means

∀(𝑘,𝑚) ∈ (𝐵
(𝑗)
𝑖 .𝑠ℎ𝑎𝑝𝑒) .𝐵

(𝑗)
𝑖 [𝑘] [𝑚] = 𝐴𝑖′ [𝑘] [𝑚] 𝑖 ∈ {1, . . . ,

N𝐴

𝑛
}.

For example, consider (𝐵 (1) , 𝐵 (2)) = 𝑠𝑝𝑙𝑖𝑡 (𝐴, 2, 0) in Figure 2

and suppose that before this statement, 𝐴 is partitioned into the

following two partitions:

I𝐴1
= [0..1]×[0..1]∧I𝐴2

= [0..1]×[2..3]∧𝛼 (𝐴1) = 𝑎 ·1∧𝛼 (𝐴2) = 𝑎 ·2,

where we temporarily use 𝑎 ·𝑖 to denote the summary variables for

𝐴𝑖 here. After aligning the partitions of 𝐴, we have

I𝐴1
= [0..0] × [0..1] ∧ I𝐴2

= [0..0] × [2..3]∧
I𝐴3

= [1..1] × [0..1] ∧ I𝐴4
= [1..1] × [2..3]∧

𝛼 (𝐴1) = 𝑎1 ∧ 𝜎 (𝑎1) = 𝜎 (𝑎 ·1) ∧ 𝛼 (𝐴2) = 𝑎2 ∧ 𝜎 (𝑎2) = 𝜎 (𝑎 ·2)∧
𝛼 (𝐴3) = 𝑎3 ∧ 𝜎 (𝑎3) = 𝜎 (𝑎 ·1) ∧ 𝛼 (𝐴4) = 𝑎4 ∧ 𝜎 (𝑎4) = 𝜎 (𝑎 ·2).

Then, after (𝐵 (1) , 𝐵 (2)) = 𝑠𝑝𝑙𝑖𝑡 (𝐴, 2, 0), for 𝐵 (1) , 𝐵 (2) , we have:

I
𝐵
(1)
1

= [0..0] × [0..1] ∧ I
𝐵
(1)
2

= [0..0] × [2..3]∧

I
𝐵
(2)
1

= [0..0] × [0..1] ∧ I
𝐵
(2)
2

= [0..0] × [2..3]∧

𝛼 (𝐵 (1)
1) = 𝑏 (1)

1 ∧ 𝜎 (𝑏 (1)
1) = 𝜎 (𝑎1) ∧ 𝛼 (𝐵 (1)

2) = 𝑏 (1)
2 ∧ 𝜎 (𝑏 (1)

2) = 𝜎 (𝑎2)∧

𝛼 (𝐵 (2)
1) = 𝑏 (2)

1 ∧ 𝜎 (𝑏 (2)
1) = 𝜎 (𝑎3) ∧ 𝛼 (𝐵 (2)

2) = 𝑏 (2)
2 ∧ 𝜎 (𝑏 (2)

2) = 𝜎 (𝑎4)∧

𝑏 (𝑗)
𝑖 = 𝑎𝑖′ 𝑖, 𝑗 = {1, 2},

where 𝑖 ′ = (𝑗 − 1) ∗ 2 + 𝑖 .

3.4 Input Ranges and Parameter Ranges

In previous sections, we initialize the intervals as full ranges of the

respective types, e.g., [FLOAT_MIN, FLOAT_MAX] for floats. How-

ever, in the real world, the input may fall into only a small range.

For example, an RGB value of an image falls into [0, 255]. Especially,
in many applications, inputs are normalized into a small range (e.g.,

[−1, 1]) after the preprocessing step. Similarly, the parameters of a

neural network may also fall into a small range. For example, many

neural architectures are initialized with a weight initialization func-

tion, which reflects the desired upper bounds and lower bounds of

the parameters. Assuming full ranges for these inputs and parame-

ters may lead to unnecessary false positives, and thus our approach

also allows the user to specify input ranges and parameter ranges,

and uses the user-provided ranges to initialize the intervals.

4 EVALUATION

Our evaluation aims to answer the following research questions

for assessing effectiveness of DEBAR (RQ1) and studying the tech-

niques in DEBAR (RQ2 and RQ3):

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

• RQ1: Is DEBAR effective in detecting numerical bugs?

• RQ2: How effective are the three tensor abstraction tech-

niques?

• RQ3: How effective are the two numerical abstraction tech-

niques?

4.1 Datasets

We collect two datasets for the evaluation. The first dataset is a set

of 9 buggy architectures collected by existing studies. The buggy

architectures come from two studies: 8 architectures were collected

by a previous empirical study [34] on TensorFlow bugs and 1 archi-

tecture was obtained from a study conducted to evaluate Tensor-

Fuzz [24].

As most of the architectures in the first dataset are small, we

collect the second dataset, which contains 48 architectures from

a large collection of research projects in the repository of Tensor-

Flow Research Models4. The whole collection contains 66 projects

implemented in TensorFlow by researchers and developers for dif-

ferent tasks in various domains, including computer vision, natural

language processing, speech recognition, and adversarial machine

learning. We first filter out the projects that are not related to

specific neural architectures such as API frameworks and optimiz-

ers. We further filter out the projects of which the computation

graph cannot be generated due to incomplete documentation or

complicated configuration. As a result, 32 projects remain after

filtering, and some of them contain more than one neural archi-

tecture. Overall, our second dataset contains a great diversity of

neural architectures such as Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN), Generative Adversarial Network

(GAN), and Hidden Markov Model (HMM). Note that we have no

knowledge about whether the architectures in this dataset contain

numerical bugs when collecting the dataset.

For every architecture in the two datasets, we extract the com-

putation graph via a TensorFlow API. Each extracted computation

graph is represented by a Protocol Buffer file5, which provides the

operations (nodes) and the data flow relations (edges). We make 48

computation graphs publicly available6.

Columns 1–4 in Table 1 provide an overview of the two datasets.

Column 2 provides an estimation of the lines of code in the corre-

sponding DL programs. Column 3 shows the number of operations

in the computation graphs, and textsum has the highest number

of operations (208,412). Moreover, Column 4 shows the number

of parameters (trainable weights) in the DNN architectures, and

lm_1b has the largest number of parameters (1.04G).

4.2 Setups of Input Range and Parameter
Range

In our evaluation, we conservatively provide the input ranges. As

described in Section 3.4, we get the initial input ranges from the

physical meaning of inputs, and derive input range information

from the preprocessing programs typically written for the training

4https://github.com/tensorflow/models/blob/13e7c85d521d7bb7cba0bf7d743366f
7708b9df7/research
5https://en.wikipedia.org/wiki/Protocol_Buffers
6https://doi.org/10.5281/zenodo.3843648

data. If we fail to provide input ranges with the preceding two steps,

we set the input ranges to [FLOAT_MIN, FLOAT_MAX].
We determine the parameter rangeswith theweight initialization

functions. If the parameters are initialized to zero, we set their

ranges as default values [−1, 1]. We also provide some heuristics

for uninitialized parameters: setting variance to [0, FLOAT_MAX],
and setting count and step to [1, FLOAT_MAX]. Otherwise, we set
the parameter ranges to [FLOAT_MIN, FLOAT_MAX].

We provide the setups for each architecture in our DEBAR open

source code.

4.3 Unsafe Operations to Check

By investigating the dataset in a previous empirical study [34], we

collect a list of unsafe operations shown in Table 2. These opera-

tions have the most frequent occurrences and have a high potential

to cause numerical errors. In this paper, we use our static analysis

approach based on abstract interpretation to check whether these

operations can cause numerical errors. Specifically, after perform-

ing our analysis, we can get the interval range for the parameter

𝑥 of the operations, denoted as [𝑥, 𝑥]. Then we check the unsafe

constraints listed in Table 2. If the unsafe constraints for an opera-

tion are satisfiable, our checker issues an alarm for indicating that

the operation may cause numerical errors. Otherwise, the opera-

tion is safe. In Table 2,𝑀𝑓 and𝑚𝑓 , respectively, denote the largest
non-infinity floating-point number and the smallest non-zero posi-

tive floating-point number that the used floating-point format (e.g.,

32-bit, 64-bit) can represent exactly.

In DNN implementations, there are many operations (e.g., the

multiplication) that may lead to numerical bugs. Our approach’s

current implementation checks only those operations listed in Ta-

ble 2, but can be easily extended to other operations.

4.4 Measurements

Our approach checks every operation that may lead to a numerical

error and determines whether a warning should be reported. To

measure the effectiveness of our approach, we treat it as a classifier

that classifies whether each operation is buggy, and evaluates its

effectiveness using the number of true/false positives/negatives

and accuracy. More concretely, true (false) positives refer to the

warnings that are (not) indeed bugs, true (false) negatives refer to

those correct (buggy) operations where no warning is reported, and

accuracy is calculated using the following formula, where 𝑇𝑃/𝐹𝑃
refers to true/false positive and𝑇𝑁 /𝐹𝑁 refers to true/false negative.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑇𝑃 + #𝑇𝑁

#𝑇𝑃 + #𝑇𝑁 + #𝐹𝑃 + #𝐹𝑁

For the first dataset, we refer to user patches to determinewhether

a warning is a bug. For the second dataset,

• 204 true positives are confirmed by executing the architec-

ture under analysis using the designed inputs and parameters

to trigger the numerical errors.

• 52 true positives are confirmed by the developer-provided

fixes (not merged yet) in the issue discussion.

• 43 true positives are confirmed when two authors of this

paper separately do reasoning on each computation graph,

and both authors conclude that each warning is true positive.

Detecting Numerical Bugs in Neural Network Architectures ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Dataset Overview and Results

Name LoC #Ops #Params TP
DEBAR Array Smashing Sole Interval Abstraction

TN FP Acc Time TN FP Acc Time TN FP Acc Time

TensorFuzz 77 225 178K 4 0 0 100.0% 1.9 0 0 100.0% 1.9 0 0 100.0% 1.7
Github-IPS-1 367 1,546 5.05M 1 4 0 100.0% 2.3 4 0 100.0% 2.2 4 0 100.0% 2.2
Github-IPS-6 2,377 167 23.6K 2 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
Github-IPS-9 226 102 23.6K 1 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
StackOverflow-IPS-1 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.8 1 0 100.0% 1.8
StackOverflow-IPS-2 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.7 1 0 100.0% 1.8
StackOverflow-IPS-6 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.8 1 0 100.0% 1.8
StackOverflow-IPS-7 49 145 407K 2 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
StackOverflow-IPS-14 48 74 7.85K 1 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.6

ssd_mobile_net_v1 71,242 22,412 27.3M 26 233 48 84.4% 21.8 137 144 53.1% 21.5 136 145 52.8% 21.6
ssd_inception_v2 71,242 23,929 100M 3 49 2 96.3% 19.8 45 6 88.9% 19.8 44 7 87.0% 19.7
ssd_mobile_net_v2 71,242 28,724 24.3M 26 233 48 84.4% 25.5 137 144 53.1% 26.0 136 145 52.8% 25.9
faster_rcnn_resnet_50 71,242 12,485 73.4M 5 31 22 62.1% 11.4 31 22 62.1% 11.4 31 22 62.1% 11.5
deep_speech 659 7,318 0.131K 0 6 0 100.0% 6.9 6 0 100.0% 7.1 6 0 100.0% 7.1
deeplab 7,514 21,100 87.1M 0 2 0 100.0% 17.8 2 0 100.0% 17.7 2 0 100.0% 18.3
autoencoder_mnae 369 187 944K 0 1 0 100.0% 2.6 1 0 100.0% 2.7 1 0 100.0% 2.6
autoencoder_vae 369 370 1.41M 2 1 0 100.0% 2.7 1 0 100.0% 2.7 1 0 100.0% 2.7
attention_ocr 1,772 3,624 1.74M 1 4 2 71.4% 5.2 4 2 71.4% 5.1 4 2 71.4% 5.2
textsum 906 208,412 10.5M 0 94 0 100.0% 105.7 94 0 100.0% 103.1 94 0 100.0% 106.4
shake_shake_32 1,233 7,348 5.85M 0 55 0 100.0% 7.5 55 0 100.0% 7.6 55 0 100.0% 7.7
shake_shake_96 1,233 7,348 52.4M 0 55 0 100.0% 7.6 55 0 100.0% 7.7 55 0 100.0% 7.7
shake_shake_112 1,233 7,348 71.3M 0 55 0 100.0% 7.6 55 0 100.0% 7.6 55 0 100.0% 7.5
pyramid_net 1,233 43,142 52.6M 0 7 0 100.0% 37.9 7 0 100.0% 38.7 7 0 100.0% 39.2
sbn 1,108 11,262 2.21M 0 42 3 93.3% 4.1 42 3 93.3% 4.1 26 19 57.8% 3.7
sbnrebar 1,108 11,262 2.21M 0 187 2 98.9% 9.8 187 2 98.9% 9.8 107 82 56.6% 8.8
sbndynamicrebar 1,108 31,530 2.61M 0 194 2 99.0% 18.7 194 2 99.0% 19.2 114 82 58.2% 17.9
sbngumbel 1,108 2,070 1.98M 0 78 2 97.5% 4.6 78 2 97.5% 4.6 46 34 57.5% 4.0
audioset 405 699 216M 0 2 0 100.0% 2.9 2 0 100.0% 2.9 1 1 50.0% 2.9
learning_to_remember 702 1,027 4.30M 0 6 0 100.0% 3.1 6 0 100.0% 3.1 6 0 100.0% 3.1
neural_gpu1 2,401 5,080 2.68M 0 53 0 100.0% 5.5 53 0 100.0% 5.5 53 0 100.0% 5.6
neural_gpu2 2,401 2,327 1.35M 0 38 0 100.0% 4.2 38 0 100.0% 4.2 38 0 100.0% 4.2
ptn 1,713 23,636 145M 0 351 0 100.0% 14.8 351 0 100.0% 15.0 351 0 100.0% 14.8
namignizer 262 2,310 652K 0 3 0 100.0% 3.5 3 0 100.0% 3.5 3 0 100.0% 3.5
feelvos 2,955 83,558 83.0M 0 4 0 100.0% 135.4 4 0 100.0% 137.7 4 0 100.0% 132.6
fivo_srnn 5,661 3,514 357K 0 7 11 38.9% 4.2 7 11 38.9% 4.3 7 11 38.9% 4.3
fivo_vrnn 5,661 3,820 365M 0 7 11 38.9% 4.4 7 11 38.9% 4.5 7 11 38.9% 4.5
fivo_ghmm 5,661 2,759 60 0 9 23 28.1% 4.0 9 23 28.1% 4.1 9 23 28.1% 4.1
dcb_var_bnn 2,143 474 36.0K 0 22 0 100.0% 3.0 22 0 100.0% 3.0 22 0 100.0% 3.0
dcb_neural_ban 2,143 186 18.0K 0 4 0 100.0% 2.7 4 0 100.0% 2.7 4 0 100.0% 2.7
dcb_bb_alpha_nn 2,143 11,180 36.0K 0 163 2 98.8% 8.2 163 2 98.8% 8.2 163 2 98.8% 8.4
dcb_rms_bnn 2,143 186 18.0K 0 4 0 100.0% 2.7 4 0 100.0% 2.7 4 0 100.0% 2.7
adversarial_crypto 133 676 8.14K 0 6 0 100.0% 3.0 6 0 100.0% 3.0 6 0 100.0% 3.0
sentiment_analysis 130 334 4.39M 0 3 1 75.0% 2.7 3 1 75.0% 2.7 3 1 75.0% 2.7
next_frame_prediction 493 2,820 6.70M 1 6 0 100.0% 4.0 6 0 100.0% 4.1 6 0 100.0% 4.0
minigo 3,774 929 34.4K 1 0 0 100.0% 3.0 0 0 100.0% 3.0 0 0 100.0% 3.0
compression_entropy_coder 2,000 15,709 20.0K 0 13 0 100.0% 9.7 13 0 100.0% 10.0 13 0 100.0% 9.8
lfads 2,898 51,853 928K 202 213 3 99.3% 48.7 213 3 99.3% 49.5 213 3 99.3% 48.6
lm_1b 3,81 2,926 1.04G 0 1 0 100.0% 4.0 1 0 100.0% 4.0 1 0 100.0% 4.0
swivel 1,449 279 36.0K 0 1 0 100.0% 2.7 1 0 100.0% 2.7 1 0 100.0% 2.7
skip_thought 1,129 6,800 377M 0 15 0 100.0% 5.7 15 0 100.0% 5.8 15 0 100.0% 5.7
video_prediction 462 48,148 41.6M 32 288 0 100.0% 30.7 288 0 100.0% 30.6 288 0 100.0% 30.5
gan_mnist 806 2,664 39.7M 0 3 0 100.0% 3.7 3 0 100.0% 3.8 3 0 100.0% 3.7
gan_cifar 510 3,784 43.3M 0 17 0 100.0% 4.5 17 0 100.0% 4.5 17 0 100.0% 4.5
gan_image_compression 444 4,230 35.5M 0 17 0 100.0% 4.7 17 0 100.0% 4.7 17 0 100.0% 4.7
vid2depth 2,502 35,072 99.6M 0 132 48 73.3% 21.2 132 48 73.3% 21.9 132 48 73.3% 21.5
domain_adaptation 3,079 6,010 7.01M 0 28 0 100.0% 5.6 28 0 100.0% 5.6 25 3 89.3% 5.7
delf 3,683 2,712 9.10M 0 10 0 100.0% 5.1 10 0 100.0% 5.1 10 0 100.0% 5.0

Total — — — 313 2760 230 93.0% 691.1 2564 426 87.1% 694.9 2349 641 80.6% 688.7

Since our approach does not have false negatives by design, we

omit this column in reporting our evaluation results.

4.5 Implementation and Hardware Platform

We have implemented our DEBAR tool in Python. All of our mea-

surements are performed on a server running Ubuntu 16.04.6 LTS

with a GeForce GTX 1080 Ti GPU and i7-8700K CPU running at

3.70GHz.

4.6 RQ1: Effectiveness of DEBAR

4.6.1 Setup. To answer RQ1, we invokeDEBAR on the two datasets

and check the number of true/false positives/negatives, accuracy,

and execution time (in seconds).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

Table 2: Operations to Check

Operations Unsafe Constraints

Exp(x), Expm1(x) log(𝑀𝑓) < 𝑥
Log(x) 𝑥 < 𝑚𝑓
Log1p(x) 𝑥 + 1 < 𝑚𝑓
RealDiv(y, x) 𝑥 < 𝑚𝑓 ∧ 𝑥 > −𝑚𝑓
Reciprocal(x) 𝑥 < 𝑚𝑓 ∧ 𝑥 > −𝑚𝑓
Sqrt(x) 𝑥 ≤ −𝑚𝑓
Rsqrt(x) 𝑥 < 𝑚𝑓

4.6.2 Results. Columns 5–9 of Table 1 show the results. We make

the following observations about DEBAR.

• It detects all known numerical errors on the 9 architectures

in the first dataset, with zero false positive.

• It detects 299 previously unknown operations that may lead

to numerical errors in the real-world architectures from the

second dataset. Note that a numerical bug can trigger multi-

ple numerical errors at different operations, e.g., failing to

normalize an input tensor that is used in multiple operations.

• It correctly classifies 3,073 operations with only 230 false

positives, achieving accuracy of 93.0%.

• It is scalable to handle the real-world architectures, all of

which are analyzed in 3 minutes, and the average time is

12.1 seconds.

To understand why DEBAR generates some false positives, we

investigate the false positives (FPs) and find the following reasons.

• Some operations depend on an argument to index the tensor

elements for the operations. For example, function gather
returns elements in a tensor based on an argument that speci-

fies the elements’ indexes. Since we do not know beforehand

which indexes are subject to an operation, we merge the

intervals at all possible indexes, leading to imprecision. 116

FPs belong to this category.

• Our affine relation analysis works on only linear expressions.

When a non-linear operation is used, we create a new ab-

stract element, leading to imprecision. 15 FPs belong to this

category.

• 48 FPs belong to both of the preceding two categories.

• For while loops in RNNs, we do not use tensor partitioning

and elementwise affine equality relations but use the classic

Kleene iteration together with the widening operator [4] in

the interval abstract domain, leading to imprecision. 50 FPs

belong to this category.

• The TensorFlow API used to extract computation graphs

fails to analyze the shapes of some tensors, leading to 1 FP.

4.7 RQ2: Study on Tensor Abstraction

4.7.1 Setup. To study three tensor abstraction techniques, we com-

pare array smashing and array expansion with tensor partitioning

by fixing the numerical abstraction as affine relation analysis (used

together with interval abstraction).

4.7.2 Results. Columns 10–13 of Table 1 show the results of array

smashing, and Table 3 shows the results of array expansion. Since

Table 3: Results of Array Expansion

Name
Array Expansion

TN FP Acc Time

TensorFuzz 0 0 100% 29.6

GitHub-IPS-6 0 0 100% 3.2

GitHub-IPS-9 0 0 100% 3.1

StackOverFlow-7 0 0 100% 72.4

StackOverFlow-14 0 0 100% 2.4

autoencoder_mnae 1 0 100.0% 105.4

autoencoder_vae 1 0 100.0% 232.6

sbn 42 3 93.3% 397.8

sbnrebar 187 2 98.9% 725.1

sbngumbel 78 2 97.5% 401.2

learning_to_remember 6 0 100.0% 913.5

neural_gpu1 53 0 100.0% 702.8

neural_gpu2 38 0 100.0% 336.8

namignizer 3 0 100.0% 629.9

fivo_srnn 7 11 38.9% 44.1

fivo_ghmm 9 23 28.1% 4.1

dcb_var_bnn 22 0 100.0% 12.3

dcb_neural_ban 4 0 100.0% 4.0

dcb_bb_alpha_nn 163 2 98.8% 155.5

dcb_rms_bnn 4 0 100.0% 4.0

adversarial_crypto 6 0 100.0% 3.6

sentiment_analysis 3 1 75.0% 693.8

mingo 0 0 100.0% 8.0

compression_entropy_coder 13 0 100.0% 340.7

array expansion times out on 33 of the subjects with a time budget of

30 minutes, we report only the results on the remaining 24 subjects.

From the tables, we make the following observations.

• Compared to array smashing, DEBAR even runs faster, indi-

cating that the overhead of tensor partitioning is so negligible

that the overhead is dominated by the random error of exe-

cution time, and DEBAR successfully eliminates 196 more

false positives, improving the (total) accuracy from 87.1% to

93.0%.

• Compared to array expansion, the analysis of DEBAR runs

seconds to hundreds of seconds faster, and does not lose

any accuracy on all the 24 subjects that array expansion can

analyze within the time budget of 30 minutes.

These observations confirm that tensor partitioning is more effec-

tive than the other two tensor abstraction techniques.

4.8 RQ3: Study on Numerical Abstraction

4.8.1 Setup. To study two numerical abstraction techniques, we

compare sole interval abstraction and affine relation analysis with

interval abstraction by fixing the tensor abstraction as tensor parti-

tioning.

4.8.2 Results. Columns 14–17 of Table 1 show the results of DE-

BAR and sole interval abstraction. DEBAR has a negligible overhead

(0.3% on average) and eliminates 411 false positives, improving the

Detecting Numerical Bugs in Neural Network Architectures ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

accuracy from 80.6% to 93.0% in total. These observations indi-

cate that the affine relation analysis is effective and substantially

contributes to the overall effectiveness.

4.9 Threats to Validity

The threat to internal validity mainly lies in the implementation of

our approach—whether our implementation correctly captures our

approach. To alleviate the threat, we have manually checked all the

warnings reported by our approach, and analyzed the reasons for

the false positives, validating the implementation to some extent.

The threat to external validity lies in the representativeness of

the subjects. In particular, the proportion of false warnings among

all warnings heavily depends on the number of numerical bugs in

the subjects and may not be generalizable. On the other hand, the

accuracy is more generalizable and thus we choose accuracy as part

of the metrics in our evaluation.

The threat to construct validity ismainly that we have defined the

input range and parameter range, and real users may set different

ranges from us. To alleviate this threat, we take a very conserva-

tive approach such that real users are likely to set only smaller

ranges rather than larger. To further understand the effect of these

ranges, we conduct two additional experiments to understand the

effect of removing these ranges. We find that, after removing all

the input ranges, the accuracy drops 6.2 percentage points, and

after removing all the parameter ranges, the accuracy drops 6.4

percentage points. The results suggest that the ranges do affect the

accuracy of the DEBAR tool. However, the effect is relatively small,

and our conclusion still holds in general, even if different ranges

are specified.

5 RELATEDWORK

Static Analysis for TensorFlow Programs. Ariadne [7] can de-

tect errors at code creation time for TensorFlow programs in Python

by applying a static analysis framework (WALA). Unlike DEBAR,

Ariadne cannot detect bugs at the architecture level. Moreover,

Ariadne targets to infer the shapes of tensors and builds a type

system for analyzing tensor shapes. Since Ariadne does not track

the tensor values, it cannot be applied to detect numerical bugs.

Static Analysis of DL Models. Multiple approaches have been

proposed to statically analyze DL models. Reluplex [17] uses Satis-

fiability Modulo Theory (SMT) to verify properties of DNNs. Dutta

et al. [9] proposed an output range analysis for DNNs using a lo-

cal gradient search and mixed-integer linear programming (MILP).

Lomuscio et al. [19] used linear programming to analyze the reach-

ability of DNNs. A recent study [10] shows that these approaches

cannot scale up to large DL models due to the scalability issue of

existing constraint solvers.

Other work built static analyzers based on abstract interpretation.

Gehr et al. [10] proposed AI2, which deploys abstract interpreta-

tion (zonotope domain) to prove safety properties of DNNs. Singh

et al. [27] proposed DeepPoly for using floating-point polyhedra

and affine transformations to improve the scalability and precision

of analysis. Singh et al. [28] proposed RefineZero for using the

zonotope domain and MILP to further improve the precision of

analysis. Li et al. [18] used the symbolic propagation technique to

improve precision. Unlike DEBAR, these approaches aim to analyze

neural network models precisely, so these approaches all adapt the

array expansion strategy, where each element is instantiated as a

scalar variable. As shown by our evaluation, this strategy is not

efficient enough to identify numerical bugs before training. On the

other hand, DEBAR incorporates a novel tensor abstraction, maps

tensor partitions to abstract elements, and discovers linear equality

relations between partitions.

Testing DL Models. Quite some previous work on testing DL

models focuses on test coverage criteria for DL models [20, 21, 25,

29–31]. For example, based on coverage criteria, Odena et al. [24]

proposed TensorFuzz for using coverage-guided fuzzing to test DL

models. Such previous work focuses on DL models and does not

detect numerical bugs before training.

Adversarial examples are often viewed as revealing vulnerabili-

ties of DL models, and many approaches focus on finding adversar-

ial examples. Popular adversarial attack approaches such as FGSM,

C&W, and PGD [2, 11, 22] use gradient-based techniques to generate

adversarial examples guided by objective functions whose inputs

are the parameters. These approaches cannot be easily adapted to

test DL architectures as the objective functions cannot be computed

without parameters.

Testing DL Libraries. CRADLE [26] was proposed to detect and

locate bugs in deep learning libraries. In contrast, our DEBAR ap-

proach targets at DL architectures instead of DL libraries.

Array Analysis in Imperative Programs. Our approach is in-

spired by the existing approaches of abstract interpretation for

analyzing arrays, in particular, array partitioning [6, 12, 13]. Com-

pared with the existing approach of array partitioning, we are the

first to generalize this approach from arrays to tensors, employ

an affine relation analysis for capturing affine equality relations

among partitions, and design abstract tensor operations for DL

architectures such as the abstract operation for ReLU.

6 CONCLUSION

We have proposed a static analysis approach to detect numerical

bugs in neural architectures. We specially designed tensor parti-

tioning and affine relation analysis (used together with interval

abstraction) over partitions for our approach, and implemented

them as DEBAR. We evaluated our approach on two datasets with

various settings on tensor abstraction and numerical abstraction

techniques, and the results show that (1) DEBAR is effective to

detect numerical bugs in real-world neural architectures; and (2)

two specially designed abstraction techniques are essential for im-

proving the scalability and accuracy of detecting numerical bugs.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Devel-

opment Program of China under Grant No. SQ2019YFE010068, the

National Natural Science Foundation of China under Grant Nos.

61922003, 61932021, 61872445, and MSRA Collaborative Research

Grant.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie

REFERENCES
[1] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent

Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003. A Static
Analyzer for Large Safety-critical Software. In Proceedings of the 2003 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2003, San Diego, California, USA, June 9-11, 2003. 196–207. https://doi.org/10.
1145/781131.781153

[2] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. 39–57. https://doi.org/10.
1109/SP.2017.49

[3] Patrick Cousot and Radhia Cousot. 1976. Static Determination of Dynamic
Properties of Programs. In Proceedings of the 2nd International Symposium on
Programming. Dunod, Paris, France, 106–130.

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Conference Record of the 4th ACM Symposium on Principles of
Programming Languages, POPL 1977, Los Angeles, California, USA, January 1977.
238–252. https://doi.org/10.1145/512950.512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software, Raleigh, North Carolina, USA. ACM, 77–94.
https://doi.org/10.1145/800022.808314

[6] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. A Parametric
Segmentation Functor for Fully Automatic and Scalable Array Content Analysis.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. ACM,
105–118.

[7] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. 2018. Ari-
adne: Analysis for Machine Learning Program. In Proceedings of the 2nd ACM
SIGPLAN International Workshop on Machine Learning and Programming Lan-
guages, MAPL@PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. ACM, 1–10.
https://doi.org/10.1145/3211346.3211349

[8] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability
Analysis for Neural Feedback Systems using Regressive Polynomial Rule Infer-
ence. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019.
ACM, 157–168. https://doi.org/10.1145/3302504.3311807

[9] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In Proceedings
of the 10th NASA Formal Methods Symposium, NFM 2018, Newport News, VA, USA,
April 17-19, 2018. 121–138. https://doi.org/10.1007/978-3-319-77935-5_9

[10] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin T. Vechev. 2018. AI2: Safety and Robustness Certification
of Neural Networks with Abstract Interpretation. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy, SP 2018, San Francisco, California, USA, May
21-23, 2018. 3–18. https://doi.org/10.1109/SP.2018.00058

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015. http://arxiv.org/abs/1412.6572

[12] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. 2005. A Framework for
Numeric Analysis of Array Operations. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005. ACM, 338–350.

[13] Nicolas Halbwachs and Mathias Péron. 2008. Discovering Properties about
Arrays in Simple Programs. In Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2008, Tucson, AZ,
USA, June 7-13, 2008. 339–348. https://doi.org/10.1145/1375581.1375623

[14] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
Verification of Deep Neural Networks. In Proceedings of the 29th International
Conference on Computer-Aided Verification, CAV 2017, Heidelberg, Germany, July
24-28, 2017. 3–29. https://doi.org/10.1007/978-3-319-63387-9_1

[15] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. 510–520. https://doi.org/10.1145/3338906.
3338955

[16] Michael Karr. 1976. Affine Relationships among Variables of a Program. Acta Inf.
6, 2 (June 1976), 133–151. https://doi.org/10.1007/BF00268497

[17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Proceedings of the 29th International Conference on Computer-Aided Verification,
CAV 2017, Heidelberg, Germany, July 24-28, 2017. 97–117. https://doi.org/10.1007/
978-3-319-63387-9_5

[18] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun
Zhang. 2019. Analyzing Deep Neural Networks with Symbolic Propagation:
Towards Higher Precision and Faster Verification. In Proceedings of the 26th Static
Analysis Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019 (Lecture Notes
in Computer Science, Vol. 11822). Springer, 296–319. https://doi.org/10.1007/978-
3-030-32304-2_15

[19] Alessio Lomuscio and Lalit Maganti. 2017. An Approach to Reachability Anal-
ysis for Feed-forward ReLU Neural Networks. CoRR abs/1706.07351 (2017).
arXiv:1706.07351 http://arxiv.org/abs/1706.07351

[20] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao.
2019. DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019.
614–618. https://doi.org/10.1109/SANER.2019.8668044

[21] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018. 120–131. https://doi.org/10.
1145/3238147.3238202

[22] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Ad-
versarial Attacks. In Proceedings of the 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018.
https://openreview.net/forum?id=rJzIBfZAb

[23] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv,
and Toby Walsh. 2018. Verifying Properties of Binarized Deep Neural Networks.
In Proceedings of the 32rd AAAI Conference on Artificial Intelligence, AAAI 2018,
New Orleans, Louisiana, USA, February 2-7, 2018. 6615–6624. https://www.aaai.o
rg/ocs/index.php/AAAI/AAAI18/paper/view/16898

[24] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
Long Beach, California, USA, 9-15 June 2019. 4901–4911. http://proceedings.mlr.
press/v97/odena19a.html

[25] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP 2017, Shanghai, China, October
28-31, 2017. ACM, 1–18. https://doi.org/10.1145/3132747.3132785

[26] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 1027–1038. https:
//doi.org/10.1109/ICSE.2019.00107

[27] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3,
POPL, Article 41 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290354

[28] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.
Boosting Robustness Certification of Neural Networks. In Proceedings of the 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. https://openreview.net/forum?id=HJgeEh09KQ

[29] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural
Networks. CoRR abs/1803.04792 (2018). arXiv:1803.04792 http://arxiv.org/abs/
1803.04792

[30] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. 109–119. https:
//doi.org/10.1145/3238147.3238172

[31] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018. 303–314. https://doi.org/10.1145/3180155.3180220

[32] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana.
2018. Formal Security Analysis of Neural Networks using Symbolic Inter-
vals. In Proceedings of the 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018. USENIX Association, 1599–1614.
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

[33] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learn-
ing Testing: Survey, Landscapes and Horizons. CoRR abs/1906.10742 (2019).
arXiv:1906.10742 http://arxiv.org/abs/1906.10742

[34] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018. 129–140. https://doi.org/10.1145/
3213846.3213866

