
FREPA: An Automated and Formal Approach to Requirement
Modeling and Analysis in Aircraft Control Domain

Jincao Feng 1,†, Weikai Miao1,†,∗, Hanyue Zheng1, Yihao Huang1, Jianwen Li1,
Zheng Wang3, Ting Su1, Bin Gu3,∗, Geguang Pu4,∗, Mengfei Yang5 , Jifeng He1,2

1East China Normal University, China 2Shanghai Key Lab of Trustworthy Computing, China
3 Beijing Institute of Control Engineering, China 4Shanghai Trusted Industrial Control Platform Co., Ltd, China

5China Academy of Space Technology, China

ABSTRACT
Formal methods are promising for modeling and analyzing
system requirements. However, applying formal methods to
large-scale industrial projects is a remaining challenge. The
industrial engineers are suffering from the lack of automated
engineering methodologies to effectively conduct precise re-
quirement models, and rigorously validate and verify (V&V)
the generated models. To tackle this challenge, in this paper,
we present a systematic engineering approach, named Formal
Requirement Engineering Platform in Aircraft (FREPA), for
formal requirement modeling and V&V in the aerospace and
aviation control domains. FREPA is an outcome of the seamless
collaboration between the academy and industry over the last
eight years. The main contributions of this paper include 1) an
automated and systematic engineering approach FREPA to con-
struct requirement models, validate and verify systems in the
aerospace and aviation control domain, 2) a domain-specific
modeling language AASRDL to describe the formal specifica-
tion, and 3) a practical FREPA-based tool AeroReq which has
been used by our industry partners. We have successfully
adopted FREPA to seven real aerospace gesture control and
two aviation engine control systems. The experimental results
show that FREPA and the corresponding tool AeroReq signif-
icantly facilitate formal modeling and V&V in the industry.
Moreover, we also discuss the experiences and lessons gained
from using FREPA in aerospace and aviation projects.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.

† Both authors contributed equally to this research.
Jincao Feng’s email: jincaofeng@foxmail.com
∗ Corresponding authors. E-mail: wkmiao@sei.ecnu.edu.cn, gubinbj@sina.com,
ggpu@sei.ecnu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Formal Method, Requirement Modeling, Requirement V&V

ACM Reference Format:
Jincao Feng, Weikai Miao, Hanyue Zheng, Yihao Huang, Jianwen Li,
Zheng Wang, Ting Su, Bin Gu, Geguang Pu, Mengfei Yang, Jifeng He.
2023. FREPA: An Automated and Formal Approach to Requirement
Modeling and Analysis in Aircraft Control Domain. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Requirement modeling and analysis play a crucial role in
developing high-quality software. A sufficient and precise
requirement with rigorous validation and verification (V&V)
can significantly improve system design and implementation.
Unfortunately, the mainstream approaches to requirement
modeling remain the way to capture user intentions with
natural language, which is widely used in today’s software
enterprises, from small companies to giant ones. Engineers
usually have to spend a large amount of time inspecting the
requirement documents to ensure their consistency and un-
ambiguity, yet the effectiveness and efficiency of such manual
work are far from satisfactory. The drawbacks of describing re-
quirements with natural language include the lack of precision
and the difficulty in automated V&V.

Both academics and industrial communities agree that rig-
orous system modeling and analysis can significantly con-
tribute to the software quality [5, 6, 8–10, 27, 37, 46]. Mean-
while, some industrial standards, e.g., the DO-333 for the
aviation software [42], also require the application of formal
methods through the development of safety-critical software.
Modeling and analyzing system requirements with formal
methods in software development life cycle are now consid-
ered as a promising solution to ensure software quality.

Generally speaking, formal methods can extract a formal
model from a specification, on which the rigorous mathemat-
ical proofs can be conducted for the V&V purpose [1, 2, 25].
Moreover, such a process can be fully automated. Unfortu-
nately, applying formal methods to requirement modeling and
V&V in the industry remains a challenge, the main reasons for
which are summarized as follows.

• Lacking dedicated notations for requirement mod-
eling. Most existed formal languages are too general
to solve the domain-specific problems, and the dearth

ar
X

iv
:2

30
6.

01
26

0v
1

 [
cs

.S
E

]
 2

 J
un

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

of the strong mathematical background makes under-
standing these formal notations difficult for most in-
dustrial engineers [10, 33]. A proper formal language
should not only precisely definite system functions and
domain features, but also have these notations intuitive
enough for users to easily understand them.

• Lacking systematic approaches for requirement mod-
eling and V&V. The truth is that even though industry
practitioners want to apply formal methods, they do
not know how to use formal methods in practice [47],
i.e., how to build a formal requirement specification
and what techniques can be adopted for requirements
V&V. In most cases, practitioners have already had doc-
umented requirements, under which situation it is dif-
ficult to write a formal specification from scratch. The
engineers need a systematic approach to help them with
writing formal requirement specifications to achieve for-
mal V&V without touching unnecessary complicated
formal-proof tasks.

• Lacking automation. The lack of a powerful supporting
tool is a severe problem for applying formal methods
in industries. There are commercial tools that can pro-
vide formal verification, like SCADE [44], these tools
are however more useful at the stage of system de-
sign rather than requirement modeling. For most indus-
trial practitioners, mature tools for formal requirements
modeling and V&V are therefore highly in demand.

To tackle the above challenges, a promising solution is to de-
velop a domain-specific engineering approach that integrates
formal requirement modeling and V&V techniques with tool
support. Based on this motivation, we started a project from
2012 to conduct a comprehensive approach, which can sup-
port the formal and automated requirement modeling and
analysis for the aerospace and aviation domains. As shown
in Figure 1, we investigated more than 10 Chinese institutes
in the domains. The software development in these institutes
follows the trivial way to write requirements by simply using
natural language. In the beginning, we selected two institutes
as our research partners, one of which is Aero Engine Corpo-
ration of China Commercial Aircraft Engine Co. LTD (AECC
CAE), the largest aircraft engine producer of China. The other
one is the China Academy of Space Technology (CAST), the
main spacecraft manufacturer in China. Two joint research
groups were established respectively, in which members con-
sist of researchers from East China Normal University and
engineers from AECC CAE and CAST.

At the first stage, according to an extensive study on the
domain knowledge and philosophy of aircraft software de-
velopment, we first presented a formal notation language,
named SPARDL [48], to capture the features of the aircraft
control system. The formal notations defined in SPARDL are
user-friendly and robust enough to represent the specific fea-
tures in the aircraft control domain. Industrial practitioners
can thus easily get used to modeling their requirements with
SPARDL rather than other heavy-weight formal languages.
After that, we developed a requirement analysis approach

...Second	stageFirst	stageBeginingInvestigation

Select	Two	Partners:	
AECC	CAE,	CAST

SPARDL	Language

Statistical	Estimation

Integrate	in	CAST

AARSDL	language

FREPA	Approach	

Investigate	Ten
Chinese	Institutes	

AeroReq	tool	

V&V	Techniques

Figure 1: Timeline of the industry-collaborated projects

with V&V techniques like statistical estimation [50]. To apply
the approach to industrial projects, we integrated the tech-
niques into a prototype tool for the practitioners. Based on
the engineers’ feedback, we continuously improved the proto-
type until it can be successfully integrated into the software
development process of CAST.

In the second stage of this project, before facilitating the
application of the approach in real projects, we try to intro-
duce the classic methodologies in academics like AADL [20]
to the industry. However, the practitioners think it is diffi-
cult to learn the formal notation and language, besides these
methods don’t fit their existing development process, they
want to use an approach which can be easily integrated in.
Thus, we generalized SPARDL and the relevant techniques for
AECC CAE, achieving a more general and robust lightweight
formal requirement modeling language Aerospace and Avia-
tion Software Requirement Description Language (AASRDL).
Specifically, we develop a new systematic approach Formal
Requirement Engineering Platform in Aircraft (FREPA) for
AASRDL modeling and V&V.

FREPA provides both the automated specification extraction
and formal V&V techniques including diagram-based review,
simulation, statistical estimation, and test case generation un-
der the MC/DC coverage criteria. We design the tool AeroReq
to support the usage of FREPA. FREPA was successfully applied
to seven aerospace control systems from CAST, as well as two
airplane engine control systems from AECC CAE. On average,
tens of requirements errors including 5-10 fatal ones were de-
tected for each system. The time cost for modeling and V&V
was reduced by at least 50%, from 4-6 months to 2-3 months.
The results show that FREPA significantly improves the re-
quirement modeling and analysis for our industrial partners.
Our contributions are summarized as below:

• A light-weight requirement modeling language AASRDL
that supports aerospace and aviation domain features.

• A systematic engineering approach FREPA to the formal
requirement modeling and V&V for industrial practi-
tioners in the aerospace and aviation domains;

• A tool AeroReq that supports the automation of FREPA;
In summary, we provide a systematic and automated so-

lution to mitigate the challenges raised from the industry in
terms of formal requirement modeling and V&V. In our strat-
egy, AASRDL introduces a domain-specific modeling language
with sufficient informal notations to construct the specifica-
tion, FREPA presents a systematic engineering framework to
integrate modeling and V&V technologies, and provides the

FREPA: Formal Requirement Engineering Platform in Aircraft Conference’17, July 2017, Washington, DC, USA

Specification

Construction

Formal

Specification

LTL properties

dll files

Transformation

Check

Model

Modes

Modules

Data

Dictionary

Diagram-based review

Statistical Estimation

Test Cases Generation

Requirements Simulation

Figure 2: Framework of FREPA

automated analysis tool AeroReq for the requirements. Besides,
we also share our experiences and lessons gained from us-
ing FREPA in real projects of the domains.

This paper is organized as follows. Section 2 describes the
main framework of FREPA. Sections 3 illustrates explicitly the
techniques used in FREPA. Section 4 presents our experimen-
tal results. Section 5 summarizes the experience and lessons
learned from the projects.Section 6 discusses related work.
Finally, Section 7 concludes the paper.

2 FRAMEWORK OF FREPA
FREPA consists of formal modeling and V&V techniques, whose
framework is shown in Figure 2. To model the requirement,
the engineers first manually document requirements and then
construct their specification and properties with the help of
the AASRDL template. After that, the models can be gener-
ated automatically, and then the V&V technologies can be
performed based on the generated model.

To perform the automated specification extraction from
initial requirements, we provide a Microsoft Word template
to facilitate the requirement writing. Such a template contains
the components and sections w.r.t the requirement for the
practitioner to fill in. To construct the formal specification, the
practitioner simply needs to fill in the blanks of the template.

The specification is then transformed into an AASRDL model
for V&V, which consists of four major technologies: diagram-
based validation, requirement simulation, statistical estimation,
and test case generation under the MC/DC coverage criteria [22].
Diagrams are generated from the formal model to visualize
the system functionalities such that the practitioner can check

whether the diagrams conform to their intentions. Require-
ment simulation checks some critical system behaviors by sim-
ulating formal model under certain inputs. To verify the safety-
critical functional properties w.r.t the system, FREPA supports
the statistical estimation. Rigorous requirement-based testing
required by the related industrial standards (e.g., DO-333 for
aviation software) are also supported. FREPA offers automated
test-case generation under the MC/DC coverage criteria.

FREPA is completely implemented in our tool AeroReq and
we have already made our tool demo available on GitHub1. In
the following, we briefly introduce the features of the formal
modeling and V&V techniques in FREPA.

Modeling Requirements via a Word template. Since most
of our industrial partners are accustomed to building require-
ments with Microsoft Word, we provide a Word template
such that they can write requirements under the guidance of
keywords and blocks predefined in the template. Those prede-
fined notations are represented in a structured way to precisely
specify the software’s domain features. Writing requirements
with our provided template enables our partners to focus on
the expected functions and simply fill the expressions into the
template rather than dealing with complex mathematical no-
tations. As soon as the template filling is completed, our tool
AeroReq can automatically transform the textual requirements
into a formal model for further V&V procedures.

Formal Validation and Verification (V&V). Procedures are
operated over the generated AASRDL model from the provided
template. There are four major technologies integrated into
FREPA: the diagram-based review, requirement simulation, sta-
tistical estimation, and automated test-case generation under

1https://github.com/fengjincao/AeroReqDemoForFSE

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

the MC/DC coverage criteria, which work together to achieve
the goal of formal V&V.

(1) Diagram-based review. We provide three diagrams w.r.t
the constructed model for user review, i.e., the 1○mode
transition, 2○module relation, and 3○variable dependency di-
agrams. These diagrams visualize the relations among
system modes, modules in each mode, and the variable
interactions of each module, respectively. The practition-
ers thus can validate whether the requirements conform
to their informal specifications in vision.

(2) Requirements simulation. In AeroReq, the formal model
can be dynamically executed for the simulation purpose.
Comparing the simulated and expected results given by
the domain experts, we can check whether the system’s
behaviors are correctly captured in the requirement.

(3) Statistical estimation. We utilize this technique to verify
whether the requirement model satisfies the properties
under a given probability threshold.

(4) Automated test-case generation. Since the requirements
are formally defined, the automated and requirement-
based test-case generation under the MC/DC coverage
criteria becomes possible. Although testing is not neces-
sarily an activity of requirement V&V, it is required by
some industrial standards such as the DO-333 for the
aviation systems. AeroReq is designated to make use of
the verified formal model for future testing purposes.

3 APPROACH
3.1 Template-guided Formal Specification

Construction
From our investigation, common features exist in both aerospace
and aviation control domains. These common features inspire
us to design a general modeling language that can describe the
system requirements in both domains. In summary, three ma-
jor features in both the aerospace and aviation control systems
are listed as follows.

• Mode-based: The control software is a mode transition
system, which always runs in some mode to perform
corresponding functionalities. The system can transit to
another mode if the transition condition is triggered.

• Computation-oriented: The control software usually
focuses on decision and mathematics computations.

• Period-driven: The control software performs function-
alities under the restriction of given periods. For exam-
ple, in the cruise mode, a satellite has to check the value
of the outside temperature every 5 seconds.

We thus present Aerospace and Aviation Software Require-
ment Description Language (AASRDL), a generalization of

								AASRDL	Model

Condition：
N2p<500

Condition：
N2p>200

Condition：
PS3	==True

_1.1_1.2

Module	Name:	Calculate	
Angle
Module	Number:	
module_1.1
Input:	Wx,	Wy,	Wz	
Output:	Ax,	Ay,	Az
Task:{	
							;
							;
}

Mode

Data	Dictionary Control	Flow

Module

Type Decripstion Init	Value

ES int details.... 0

BSLOW	Mode

Guard:													
ES	==	ES_BSLOW
Period:	5	ms

SLOW	Mode

Guard:	
ES	==	ES_SLOW
Period:	10	ms

Normal	Mode

Guard:	
ES==ES_NORMAL
Period:	20	ms

RawNameName

EngineState

Figure 3: Structure of the AASRDL Model

SPARDL [48], which is robust to model systems in both do-
mains. The schema of the language is illustrated as follows.

Model ::= ({Mode}, {Module}, DataDict)

Mode ::= (Name, Guard, {Procedure}, {Transition})
Procedure ::= (Period, ControlFlow)

Transition = (Priority, TargetMode, Condition, Action)

Module ::= (Name, Vin ⊆ DataDict, Vout ⊆ DataDict, Task)

DataDict ::= {V|V = (Name, Type, InitValue, Min, Max)}

In the above, Guard and Condition are first-order predicates
whose evaluations can be true or false. We assume readers
are familiar with such a concept and ignore the details here.
The structure of an AASRDL model is shown in Figure 3. An
AASRDL model consists of a set of system modes and modules as
well as a data dictionary DataDict. The system always runs in
some mode, in which the contained procedures are executed in
order. Each procedure of a mode includes a period and a Control
Flow, which is a set of C-style statements without the loop. The
task of the procedure is to execute the corresponding Control
Flow within the given period. The mode transition occurs when
the condition is evaluated to be true, in which some action (same
as Control Flow), is executed for certain purposes. The mode
transits to the target mode once the corresponding guard is
evaluated to be true; otherwise, it has to rollback its action. A
module performs the functionalities in its task (same as Control
Flow). All modules have to declare their input Vin and output
variables Vout, which are all precisely defined in DataDict. A
mode calls its corresponding modules to achieve the duty. The
DataDict defines all the variables that are used in the model.

FREPA: Formal Requirement Engineering Platform in Aircraft Conference’17, July 2017, Washington, DC, USA

Mode Template

Mode Name: String
Guard: Expression
Procedure: {

Time Period: Int(unit){
ControlFlow

}
}
Transition: [{

Priority: Int
Target: String
Condition: Expression
Action: {

ControlFlow
}

},{

Mode Name:SLOW Mode
Guard: ES== ES_SLOW
Procedure: {

Time Period: 5(ms){
Call(module_1.2);
Call(module_1.1);

}
}
Transition: [{

Priority: 1
Target: BeyondSlow mode
Condition: N2<500
Action:{

ES=ES_BEYONDSLOW;
}

},{
Priority: 1
Target: Normal mode
Condition: N2>200
Action: {

ES=ES_Normal;
}

}
]

}

]

 Mode Specification

Module Template

Module Name: String

Task: {

ControlFlow

}

 Module Specification

Module Number: String
Input: List<Variable>
Output: List<Variable>

Module Name: Calculate Angle

Task:{
if(Ax > 0 && Ay > 0 && Az > 0){
 Ax=atan(sqrt(Wx/(Wy*Wy +
Wz*Wz)));
 Ay=atan(Wy/ sqrt(Wx*Wx +
Wz*Wz));
 Az=atan(sqrt(Wx*Wx + Wy*Wy)/Wz);

 }
}

Module Number:
Input: Wx, Wy, Wz
Output: Ax, Ay, Az

module_1.1

 Fill in

 Fill in

Priority: Int
Target: String
Condition: Expression
Action: {

ControlFlow

},{...}

Figure 4: An example of the fill-in template process

The information on the type, initial, minimal and maximal
values for each variable are collected in DataDict.

The system maintains a global clock by default (not defined
in the language syntax) to coordinate the running time of
different procedures. Since this paper fills in the scope of the
industrial track, we omit the language semantics, and the
reader is referred to [48] for more details.

The practitioners usually suffer from building a formal spec-
ification from scratch due to the lack of guidelines. To tackle
this problem, FREPA provides a template to guide the formal
requirement modeling. In the template, the practitioner only
needs to fill in the designated sections using AASRDL expres-
sions and predicates. The sections are specified by keywords
such as Mode Name, which guides the practitioner to write the
name of a system mode.

Figure 4 is an example to show how to fill the requirement
in the template. The left of Figure 4 is the template we pro-
vided, the right side of the figure is the specification. The
keywords such as Mode Name, Procedure and Transitions
explicitly define the components to describe the requirements.
In the specification, the keywords such as the "Mode", "Proce-
dure", and the "Transitions" explicitly defines the components
for describing the requirements.

The practitioners can obtain the formal specification eas-
ily as soon as the filling is completed. As shown in the right
of Figure 4 is the specification including one Mode and one
Module. In this specification, the period of the SLOW Mode is
5 milliseconds, which means that the computation functions

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

FREPA: Formal Requirement Engineering Platform in Aircraft ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

INITIAL
Mode

START
ABORT
Mode

GROUND
START
Mode

SLOW
Mode

BEYOND
SLOW
Mode

STAND
Mode

URGEN
STOP
Mode

NORMAL
Mode

N2P < 500

N2P > 200

P3b.signalFlt == 1

11

Figure 5: Mode Transition Diagram of the system

including the moudule_1.1, module_1.2 are executed every 5
milliseconds. The function module_1.1 performs its task and
returns the value of its output variables Ax, Ay, Az. If the
condition N2<500 is true, the system transits to the BEYOND-
SLOW Mode. If the condition N2>200 is true, the system
transits to the NORMAL Mode. we will use this specification
as our running example to motivate our approach.

Once we get the specification, our tool AeroReq takes Antrl [38]
as the compiler for specifications. In that way, we can trans-
form the specification into an AASRDL model for the next
formal V&V technologies.

3.2 Diagram-based Requirements Review
Since industrial software requirements are usually written in
a large number of documents, manually validating the tex-
tual specification is error-prone. To tackle this problem, FREPA
offers a diagram-based review method. The basic idea is gen-
erating diagrams based on the formal model to visualize the
requirements. Then the practitioner reviews the diagrams to
check whether the diagrams conform to their intentions. Since
diagrams can visualize the overall requirements intuitively,
such as reviewing on Graphic User Interface (GUI) is more
effective than that directly on the textual documents by the
practitioners’ experience. With a thorough review, some errors
in the requirements can be found by the practitioner according
to the domain knowledge.

In FREPA, we generate three diagrams from the model: the
mode transition, module relation, and variable dependency
diagrams. Due to the limited space, we only focus on the ex-
planation of how the mode transition diagrams work. Figure 5
describes a mode diagram that is generated from the specifi-
cation of an airplane engine control system. If the condition
P3b.SignalFlt == 1 is true, the system transits from NORMAL

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

Figure 6: Overview of simulation.

Mode to STAND Mode. The requirement review for mode dia-
grams is performed according to the following criteria.

• Criterion 1: Each transition in a mode should conform
to the intended perceptions;

• Criterion 2: Mode transitions should be exclusive;
• Criterion 3: Every mode should be reachable.

Criterion 1 is a basic guideline for diagram-based review.
The practitioners check whether the mode transitions con-
form to their expectations based on domain knowledge. For
instance, the practitioners find that the system should not di-
rectly transit from the URGENSTOP Mode to the NORMAL
Mode. Criterion 2 requires that a mode never satisfies more
than one transition condition simultaneously. Criterion 3 en-
sures that the system can transit from one mode to any other
mode eventually. Checking criteria 2 and 3 are actually con-
straint solving problems. For instance, when checking whether
two transitions are exclusive, search whether there exists at
least one solution that makes both transition conditions true.

Here we run an example of exclusiveness checking. Let’s
consider two transition conditions of the SLOW Mode. If the
condition N2<500 is true, the SLOW Mode should transit to
the BEYONDSLOW Mode. If the condition N2>200 is true, the
SLOW Mode should transit to Normal Mode. Obviously, N2<500
and N2>200 can both be true when N2>200 && N2<500 is
true. That means the two mode transitions are not exclusive.

Our tool AeroReq integrates with Z3 [16] as the constraint
solver to check the exclusiveness of mode transitions. Analo-
gously, we can check the reachability among different modes.

3.3 Requirement Simulation
Simulation is often used for the V&V of system designs [15]
in commercial tools such as SCADE. However, few simulation
techniques exist in the requirement level because in many
cases, requirements are not precise for automated simulation.
To mitigate this issue, FREPA formally defines the requirements
such that automated simulation becomes possible.

Indeed, we developed a corresponding simulator to simu-
late directly on the AASRDL models. Figure 6 shows the pro-
cess of the simulation. The requirement simulation needs some
external settings and input values provided by the domain

experts Based on the model and environment, we can simu-
late our model periodically and review the results to verify
whether the requirement is what we need.

The simulator starts from the initial mode and ends when
the stop signal is received. In every cycle, our simulator first
checks whether the Guard of each mode is satisfied. If it is
the case, the simulator simulates the procedure of the mode.
Otherwise, the simulator will stop because of requirements
errors. When the simulation of a mode is completed, we will
check whether the condition of the transition is satisfied. The
mode transition will occur at the end of the cycle.

We use the specification in Figure 4 as an example. The
simulator starts from the SLOW Mode. If its guard condition
Guard(ES == ES_SLOW) is True, the modules module_1.2,
module_1.1 are called in the order in one period. When simu-
lating module_1.1, we calculate the outputs’ values (e.g., Ax,
Ay, Az) by using the input values and the control flow. When
the procedure is finished, all the conditions of the transition are
not satisfied, the simulator will enter the next cycle and repeat
its procedure. During the simulation, all the values of the out-
put variables in every period are recorded in a file. Therefore,
we can generate various charts for the result analysis.

3.4 Statistical Estimation
Model checking [11] is a classical technique to verify whether
a model satisfies the given property. One popular language for
specifying such properties is LTL (Linear Temporal Logic) [41],
which reasons over linear executions of system. The control
software systems of aircraft and spacecraft are typical linear
execution. Traditional model checking techniques, however,
cannot be directly adopted, since the aircraft execution is also
affected by the random environmental factors. Therefore, we
utilize the statistical estimation technique introduced in [50] to
check whether the model complies with the desired proper-
ties specified in LTL under a specific threshold. The statistical
estimation technique is a light-weight version of model check-
ing [28], that uses the statistical methodology to estimate the
probability of a model satisfying the given property.

Given a model M and a property p, there are two major ob-
jectives for statistic estimation. The first objective is to estimate
the probability of whether p is satisfied on every execution
path t of M. The other one is to judge whether the probability
is bigger than a given threshold. The idea of statistical esti-
mation is straightforward: we calculate the statistics of the
successful and failed model executions during the simulation
and finally return the probabilistic verification result. For in-
stance, if a property can hold 99 times under 100 times of
execution, the probability of this property to be held is 99%.

For example, a spacecraft will reach a stable state, i.e., the
angle and the angular velocity must be smaller than a thresh-
old after certain periods. We use Ax, Ay, Az to denote the
angle and Wx, Wy, Wz for the angular velocity. The property
that spacecraft will reach a stable state and then stay stable can be
described in LTL as below:

FG(
√︃

A2
x + A2

y + A2
z ⩽ 0.1 ∧

√︃
W2

x + W2
y + W2

z ⩽ 0.01)

FREPA: Formal Requirement Engineering Platform in Aircraft Conference’17, July 2017, Washington, DC, USA

Table 1: Test Cases Generated under MC/DC Coverage.

Constraints Test Cases
Ax>0∧Ay>0∧Az>0 Ax = 1; Ay = 1; Az = 1;

!(Ax>0∧Ay>0∧Az>0) Ax = 0; Ay = 1; Az = 1;
!(Ax>0∧Ay>0∧Az>0) Ax = 1; Ay = 0; Az = 1;
!(Ax>0∧Ay>0∧Az>0) Ax = 1; Ay = 1; Az = 0;

3.5 Automated Test-Case Generation under the
MC/DC Coverage Criteria

The DO-333 standard for aviation software claims that requirement-
based coverage analysis has to be achieved with using formal
methods. The purpose of requirements-based coverage analy-
sis is to determine how well the implementation of the soft-
ware requirements has been verified. Thus, the practitioners
need the requirement-based test cases to achieve the complete
coverage of each requirement, and to detect of unintended
data flow relationship between the inputs and outputs as well
as the dead code and deactivated code. To achieve this goal,
We use dynamic symbolic execution [53] implementation sup-
ports MC/DC coverage [49, 52] from the specification.

The idea to generate test cases is to collect the constraints
and conditions of the modules control flow structures, and
then compute the results that satisfy the constraints and condi-
tions. These results are the pursued test cases.Given a specific
condition statement S, the conditions along the control flow
path from the root node to S are called constraints. Then the test
case generation is an SMT solving problem. Our tool AeroReq
integrates Z3 [16] as the solving engine. Taking module_1.1 in
Figure 4 as the example, the S in this module is that Ax>0 &&
Ay>0 && Az>0, the generated constraints, and the generated
test cases are shown in Table 1.

4 EXPERIMENTS
4.1 Experimental Setup
Goals. In this section, we introduce the performance of FREPA
on the two benchmark systems. We aim to show the effective-
ness of FREPA in the following subsections.
Platform. Our tool AeroReq was running on a computer of
CAEC, which has two processors (2.70 GHz Intel(R) Core(TM)
i5-6400 CPU) with 8 GB memory. The operating system on
the computer is 64-bit Windows 7. For the projects of the
aerospace control system, AeroReq was running on a server in
CAST, which has eight processors (2.33 GHz Intel(R) Xeon(R)
E5345 CPU) with 16 GB RAM. The operating system on the
server is 32-bit Windows Server 2003.
Industrial Benchmarks. As mentioned before, FREPA has been
applied to seven aerospace gesture control and two airplane
engine control systems for formal V&V. Based on the contract
with our industrial collaborators, we only have the chance
to use FREPA from scratch on one of the systems each as the
demonstration, and other systems that applied FREPA to are
completed by our industrial partners due to the privacy regu-
lation. We thus introduce the evaluation results on these two
demonstrative systems. The formal specification of the avi-
ation system is a 128-page Word document with 10 system

modes, 139 modules, and 1200 variables, while the specifica-
tion of the aerospace system is a 145-page Word document
with 14 system modes, 42 modules, and 420 variables.

4.2 Results and Analysis

G1: How useful for the diagram-based review to im-
prove the requirement analysis?

We generated a 10-mode transition diagram, 152 module-
relation diagrams,and 152 variable-dependency diagrams for
the aviation system. A total of 99 errors were detected during
that process, which includes before-use defined or uninitial-
ized variables as well as the incomplete inputs and outputs
of modules. In practical, the errors may be caused by some
trivial mistakes, such as inconsistent capitalization or typos.
By reviewing those generated diagrams manually, it helps to
detect 9 errors, such as 4 wrong variable dependencies, cir-
cular dependencies among variables, in which deadlocks may
occur, and 2 nonexclusive and 3 unreachable mode transi-
tions. Similarly, for the aerospace system, we generated a
14-mode transition diagram, 42 module-relation diagrams,
and 42 variable-dependency diagrams. 17 errors were thus
detected. In general, generating diagrams from the specifica-
tion helps to detect errors caused by imprecise requirements,
while manually reviewing the diagrams helps to find logic
errors.

G2: How useful for the requirement simulation to
detect requirement errors?

To evaluate the requirement simulation results, we com-
pared the values of key variables computed by the simulator
against the expected ones from simulink provided by our
industrial partners. The motivation came from that any incon-
sistency between the simulated and expected values indicated
the possibility of error occurrence. We selected the engine-
starting process of the aviation system as an example to show
the simulation results. The engine-starting process requires
that the system should start from the initial mode, then transit
to the STAND Mode, GROUND-START Mode, SLOW Mode in
order. The relevant key variable is N2, which represents the
high-compressor-rotor speed of the engine. Our purpose was
to simulate the whole process of the engine-starting to check
whether N2 meets expectations.

We detected 2 errors based on the simulation. Figure 7 is the
simulation result of the engine-starting process. The dotted
curve has a breakpoint approximately 1000 periods, which
shows the simulation terminates with exceptions. By investi-
gating log files, we found the error was caused by the abuse
of variable LowOil representing the low oil pressure value.
The Guard in the GROUND-START Mode restricts that LowOil
cannot always below the threshold during a certain time. In
the simulation, LowOil does not satisfy the Guard such that the
transition to the GROUND-START Mode cannot succeed. As a
result, the simulation stops and throws an exception.

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

Figure 7: Unexpected simulation for the aviation system.

Figure 8: Normal simulation for the aviation system.

We re-simulated the engine-start process after fixing the
problem discovered above. Figure 8 shows the corresponding
result, in which the simulation result is not strictly consistent
with the expected one after 1000 periods. The practitioners
hence double-checked the requirement and found that N2 is a
float type variable instead of the double type originally given
by the company. The small deviation at the beginning resulted
in a much bigger difference after thousands of periods.

In general, our simulation technique is helpful to find two
categories of errors that frequently occur. The first one is the
logical error, e.g., the incorrect computation. The second one is
inadequate requirements. For instance, the aerospace control
system has a function for monitoring outside temperature. In
the requirement, the practitioner did not define a reset opera-
tion in this function. Therefore, the simulation stopped when
the temperature reached the upper bound.

G3: How useful for the statistical estimation to identify
more requirement errors than human work?

We selected three properties that the engine control system
should satisfy for the experiment. The corresponding explana-
tions of the three properties are listed below.

(1) The system will eventually reach a stable state and stays
there forever.

(2) The system starts from mode m2, and then it will finally
transit to mode m5 or mode m6 or mode m8, and stay
forever in one of these three modes.

(3) When the system leaves mode m4, it has to transit to
mode m0, and then to mode m1, and finally to mode m2.

We then formulated these properties in LTL and utilized
the statistical estimation introduced in [50] to check whether

Table 2: Results of the Statistical Estimation

Period Property 1 Property 2 Property 3
0 0% 0% 100%

500 0% 0% 100%
1000 0% 0% 100%
1500 4% 0% 100%
2000 11% 0% 100%
2500 28% 0% 97%
3000 36% 0% 83%
3500 48% 0% 64%
4000 59% 0% 46%
4500 73% 0% 35%
5000 92% 0% 27%

the model complies with the desired properties. The prop-
erty translation from natural language to LTL is conducted
manually. We take property 1 as an example. The term “sta-
ble” means that the angle and the angular velocity must be
smaller than the given thresholds. We can use mathematical

formulas
√︃

A2
x + A2

y + A2
z ⩽ 0.1 ∧

√︃
W2

x + W2
y + W2

z ⩽ 0.01 to
express this property. And the term “forever” can be formally
expressed by the temporal LTL operators, e.g., X, F, and G.
The following LTL formulas are the formal properties that are
translated from the above natural-language ones.

FG(
√︃

A2
x + A2

y + A2
z ⩽ 0.1 ∧

√︃
W2

x + W2
y + W2

z ⩽ 0.01) (1)

(ES = 2) ∧ FG(ES = 5 ∨ ES = 6 ∨ ES = 8) (2)

G((ES = 4) ⇒ (X(ES = 0) ⇒ (X(ES = 1) ⇒ X(ES = 2)))) (3)

Suggested by the engineer, we set the simulation period
from 0 to 5000. The semi-confidence interval was set to 1% (δ
= 1%). The confidence was set to 5% (σ = 5%). The time limit
for property verification was 10 hours. Statistical estimation
results are shown in Table 2. The probability to the satisfaction
of Property 1 increases along with the periods. Finally, the
probability reaches 92% when the period is 5000. According
to the engineer’s experience, this probabilistic increase is rea-
sonable. The angle and the angular velocity will be smaller
than a threshold after the period is greater than 5000.

Table 2 shows that the probability of the satisfaction of prop-
erty 2 is 0% at all times. That means, the expected transition
from mode m2 to other modes never occurs. This is obviously
incorrect. By checking the specification, the practitioner found
that this error was caused by a variable that was not correctly
initialized. The system switched to mode m4 after finishing the
tasks of mode m2 and finally got stuck in mode m4 due to this
error. The experimental results convinced us that statistical
estimation can detect more deep-rooted errors than human
work. In our experiment, a total of 12 properties were built and
verified. Requirement errors were detected by 3 properties
while the rest 9 properties were satisfied.

G4: How useful for the test-case generation under the
MC/DC coverage to improve the testing?

FREPA: Formal Requirement Engineering Platform in Aircraft Conference’17, July 2017, Washington, DC, USA

We implemented the test-case generation under the MC/DC
coverage in the aviation system. We generated 2,341 test cases
in total from the formal specification. To validate the imple-
mentation w.r.t. the requirement, we ran our test cases on the
source-code level. Summarily, 1,934 of the test cases could be
directly used for testing, while the other 407 could not. The
reasons are mainly that the requirements are: 1) incomplete,
e.g., variables are missing; 2) imprecise, e.g., the fact of the
minimum value being less than the maximum value is not an
explicit statement; 3) inconsistent to the implementation, e.g.,
the requirement requires that the first period must perform
differently with another one, but the implementation does not
care about the first period.

In general, executing the test cases under the MC/DC cover-
age detects errors in both source codes and requirements. The
automated generation of such test cases from requirements
also accelerates the testing on the implementation stage.

G5: How useful for the whole approach in practice,
compared to the situation where it is not applied?

To compare FREPA and traditional technologies in the in-
dustry, we investigated some important subjective data from
the 12 practitioners who were involved in this project. The
investigation aims at evaluating the usability of FREPA. We de-
signed a comprehensive questionnaire including 19 questions.
Some questions were purely subjective, such as “Do you feel
that the diagrams really help you find errors?” , “Are the time costs
of simulation and statistical estimation acceptable? ” and “Is it
difficult to write the LTL properties for statistical estimation?”.

On average, 8 fatal requirement errors have been detected
for each system tested in our experiment. For all the nine
projects of our partners, about 5-10 requirements errors could
be discovered, depending on the projects. The time cost of
modeling and V&V has been reduced by more than 50%, from
4-6 months to 2-3 months. On average, the time cost for a
requirement engineer to finish the diagram-based review is
about 1-2 weeks. If the specification is manually reviewed, it
needs 6-8 weeks by each practitioner. The efficiency of test
case generation has been improved since the test case gener-
ation is fully automated.The most controversial issue lies in
statistical estimation. 10 of the 12 practitioners complained
that the construction of LTL properties was difficult. The lack
of the mathematical notations took them a lot of time to trans-
late the domain properties to the LTL properties. This problem
will be considered in our future work. To sum up, the statistics
show that FREPA is useful to most practitioners.

5 EXPERIENCE AND LESSONS
In this section, we share our experience and lessons gained
from the 8-year long projects with our partners in both the
aerospace and aviation domains. We hope the community can
benefit from our positive experience and get rid of the wasted
efforts from our negative lessons.

5.1 Experience
One important experience is that researchers in formal meth-
ods must help engineers focus on domain knowledge rather
than notation details. When our research project started eight
years ago, we recommended the practitioner’s traditional for-
mal methods with great confidence and ambitions. We be-
lieved that most of their problems with precise requirements
and rigorous V&V could be solved by formal methods. How-
ever, after a three-months practice, the domain practitioners
gave up since they still could not figure out how to represent
the domain-specific knowledge and features in a formal speci-
fication. Moreover, how to build the formal specification from
scratch was not solved as well. To tackle this problem, we fo-
cused on developing a targeted formal engineering approach
to the domains. The experimental results showed that the
dedicated formal notations and the template-guided formal
modeling process are more attractive to the practitioners, as
they can get rid of complex formal notations and rules. The
well-designed template can guide them to write the appropri-
ate requirement specifications.

Another experience is the concept of "engineering". The en-
gineering processes and specific technologies are important
for applying formal methods to the industry. Formal methods
can be significantly helpful if they are properly implemented.
Some formal verification techniques, such as theorem prov-
ing [14], may not be suitable for industrial practitioners since
the training cost is too high. In fact, the lack of engineering
approaches is the main reason that stops practitioners from ap-
plying formal methods to their projects. An ideal engineering
approach should organize engineering processes coherently
and systematically to tell the practitioners what to do and how to
do. These experiences give us the hint that developing domain-
specific engineering methodologies is more important than
introducing general theories as well as research-oriented tools.

Since 2012, FREPA have been used in industrial projects to
help detect requirement problems in critical systems. We ver-
ify the software in the requirement phase rather than design
phase, and find many errors in the test-adequate requirement.
However, We still can’t get the useful properties to detect the
deep-level errors, and our requirement language is limited
for the specific domain. Furthermore fills requirement in our
template is a labor-cost work. We will address these limita-
tion in the future work with the help of the natural language
processing technology and industry norms.

5.2 Lessons
Do not ask the engineers to learn complicated formal no-
tations or proof knowledge. We spent almost three months
introducing formal notations and proofs to the engineers but
failed. A more promising way may be to develop a dedicated
approach rather than showing formal theories only.
Do not make aggressive changes to the engineers’ custom
to modeling and V&V. The ways of requirement modeling
and V&V, for instance, writing specification with Microsoft
Word, have been used by engineers for decades. Any new
approach should not significantly change these traditional

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

ways. A more rational idea is to integrate traditional ways
in the new approach. That is, "reform" is more appropriate
than "revolution". As a result, we design a Microsoft Word
requirements template for formal specification construction.
Never underestimate the importance of the tool support. If
the automation is insufficient, few engineers are willing to use
the formal method. After a thorough investigation, we gradu-
ally developed our tool AeroReq to support the automation of
FREPA, which makes the engineers happier to use formal meth-
ods. This philosophy is similar to Karl Marx’s "The weapon of
criticism can certainly not replace the criticism of weapons". Engi-
neering problems need to be solved by powerful tools rather
than only by theories.

6 RELATED WORK
More and more industry stakeholders want to improve soft-

ware quality. [40] reports that at least 70% of errors are intro-
duced during the specification process and before implemen-
tation efforts. This indicates the requirement is the core stage
of the software life-cycle.

A good requirement-engineering process includes require-
ment elicitation, requirement modeling, and analysis, require-
ment validation and negotiation [45]. KAOS is a classic goal-
oriented approach defining systems within agents, objects, op-
erations to elicit requirements [13]. The approach i* [51] which
focuses on modeling environment and features for the early-
phase of requirement engineering is also used for requirement
elicitation. However, our work focus on modeling and anal-
ysis requirement, the start point of our work from the stated
requirement from the industry. Leveson et al. [29] proposed a
systemic STPA method for accident analysis, hazard analysis,
and accident prevention strategies. There is subsequent work
on STPA, e.g., [24, 39], showing that STPA has a great improve-
ment in the accident-oriented system. However, STPA is an
accident-oriented modeling method, and company has to re-
organize its development process from scratch to adopt STPA.
Meanwhile, not every system is suitable for accident-oriented
modeling. In fact, the industry engineers want an approach
integrated into their existing development process. FREPA
proposes the proper V&V technologies meet this goal. Kafali
et al. [26] propose a temporal reasoning framework NANE.
NANE can help analysts identify misuse cases by formal rea-
soning about norm enactments, however, the process of norm
extraction from the requirement is still a problem which is a
general difficulty problem for modeling requirements. FREPA
provides the language template to tackle this challenge.

In the aviation domain, Miller et al. [35] propose a require-
ment specification written in the RSML-e language for the
mode logic of the Flight Guidance System of a typical regional
jet aircraft. However, the RSML-e language only focuses on
verifying system modes without considering the verification
of the computation task. Feiler et al. [20] proposed the Archi-
tecture Analysis & Design Language(AADL) support early
and repeated analyses of the embedded system. As an in-
ternational standard (AS5506A [4]), AADL is wildly used in
the aviation domain, like [12, 17]. In many projects, AADL is
more suitable for system architecture modeling and validation

than for requirement modeling and analysis. The reason is
that system architecture defines "how to do " but requirement
specifications focus on "what to do". Moreover, AADL is a
semi-formal notation, which cannot support formal specifica-
tion construction and analysis. Extant commercial tools, e.g.,
DOORS [19] and RTCASE [43] fall short in precise specification
modeling and rigorous V&V.

Several techniques of formal methods can be utilized to
model requirements, e.g., the Z [25], B [1], and Event-B [2]
methods. These methods can model systems not only with
physical environments but also with human users [3]. To
enrich the expressiveness, traditional state machines are im-
proved for requirements modeling, such as the ASM (Abstract
State Machine) Method [7]. StateChart is widely used in indus-
trial software modeling and analysis [21]. MatLab/SimuLink
provides the Stateflow that is improved based on StateChart.
The SOFL method that has been applied in domains like the
services computing [33] and the railway control systems [34],
focuses on the requirement modeling and static analysis [23,
30–32]. Dietl et al. [18] automatically converts the program
and property into a game that can be played by people with no
knowledge of or training in computing. Dietl thinks that labor
costs have heretofore made formal verification too costly to
apply beyond small critical software components. The avail-
ability of inexpensive formal verification could change the
economics of software V&V. Morisio et al. [36] propose a few
extensions to express variability, and they define precisely
their semantics so that a tool can support them.

7 CONCLUSION
In this paper, we present a formal engineering approach FREPA
to the formal requirements modeling and V&V in the aerospace
and aviation control domains. The specification construction
is guided by a template that is developed based on domain
knowledge and features. The requirements V&V consists of
the diagram-based review, requirement simulation, statistical
estimation, and the MC/DC test-case generation techniques.
We also have developed a supportive tool AeroReq for FREPA
provides users with a unified requirements specification con-
struction and V&V environment. So far, FREPA has been ap-
plied to real aerospace and aviation control systems from our
industrial partners, the AECC Commercial Aircraft Engine
co. LTD and the China Academy of Space Technology. The
experimental results demonstrate the feasibility and advan-
tages of FREPA. We have also reported the experience and the
lessons when using the approach. In future work, we plan to
apply the natural language processing techniques to automat-
ically extract the formal specifications from user requirements.
Improving our V&V performance is also one of our research
topics in the future.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feed-
back. Weikai Miao is supported by the NSFCs of China (No.
61872144 and No. 61872146). Geguang Pu is supported by
NSFC Project No. 61632005 and NSFC Project. No. 61532019.

FREPA: Formal Requirement Engineering Platform in Aircraft Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Jean-Raymond Abrial. 2005. The B-book: assigning programs to meanings.

Cambridge University Press.
[2] Jean-Raymond Abrial. 2010. Modeling in Event-B: system and software engi-

neering. Cambridge University Press.
[3] Jean-Raymond Abrial. 2018. On B and Event-B: Principles, Success and

Challenges. In International Conference on Abstract State Machines, Alloy, B,
TLA, VDM, and Z. Springer, 31–35.

[4] SAE AS5506. 2004. Architecture analysis and design language (aadl).
Embedded Computing Systems Committee, SAE (2004).

[5] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek,
Alan J Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure
Kukovec, et al. 2019. Reachability analysis for AWS-based networks. In
International Conference on Computer Aided Verification. Springer, 231–241.

[6] Nikolaj Bjørner and Karthick Jayaraman. 2015. Checking cloud contracts
in Microsoft Azure. In International Conference on Distributed Computing and
Internet Technology. Springer, 21–32.

[7] Egon Börger. 2010. The abstract state machines method for high-level
system design and analysis. In Formal Methods: State of the Art and New
Directions. Springer, 79–116.

[8] Marsha Chechik and John Gannon. 2001. Automatic analysis of consis-
tency between requirements and designs. IEEE Transactions on Software
Engineering 27, 7 (2001), 651–672.

[9] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huff-
man, Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen,
Serdar Tasiran, et al. 2018. Continuous formal verification of Amazon s2n.
In International Conference on Computer Aided Verification. Springer, 430–446.

[10] Edmund M Clarke and Jeannette M Wing. 1996. Formal methods: State of
the art and future directions. ACM Computing Surveys (CSUR) 28, 4 (1996),
626–643.

[11] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and
Helmut Veith. 2018. Model checking. MIT press.

[12] Darren Cofer, Andrew Gacek, John Backes, Michael W Whalen, Lee Pike,
Adam Foltzer, Michal Podhradsky, Gerwin Klein, Ihor Kuz, June Andron-
ick, et al. 2018. A formal approach to constructing secure air vehicle
software. Computer 51, 11 (2018), 14–23.

[13] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. 1993. Goal-
Directed Requirements Acquisition. In Selected Papers of the Sixth Inter-
national Workshop on Software Specification and Design (6IWSSD). Elsevier
Science Publishers B. V., NLD, 3–50.

[14] Martin Davis, George Logemann, and Donald Loveland. 1962. A Machine
Program for Theorem Proving. Communications of the Acm 5, 7 (1962),
394–397.

[15] BB Nicolau de Franca and G Horta Travassos. 2012. Reporting guidelines
for simulation-based studies in software engineering. (2012).

[16] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337–340.

[17] Julien Delange, Laurent Pautet, Alain Plantec, Mickael Kerboeuf, Frank
Singhoff, and Fabrice Kordon. 2009. Validate, simulate, and implement
ARINC653 systems using the AADL. In Proceedings of the ACM SIGAda
annual international conference on Ada and related technologies. 31–44.

[18] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Nathaniel Mote, Brian
Walker, Seth Cooper, Timothy Pavlik, and Zoran Popović. 2012. Verification
games: Making verification fun. In Proceedings of the 14th Workshop on
Formal Techniques for Java-like Programs. 42–49.

[19] Doors Document 2019. The document of the Engineering Requirements Man-
agement DOORS. https://www.ibm.com/support/knowledgecenter/
SSYQBZ_9.7.0/com.ibm.doors.requirements.doc/helpindex_doors.html

[20] Peter H Feiler, Bruce A Lewis, and Steve Vestal. 2006. The SAE Architecture
Analysis & Design Language (AADL) a standard for engineering perfor-
mance critical systems. In 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference on Control Applications,
2006 IEEE International Symposium on Intelligent Control. IEEE, 1206–1211.

[21] David Harel. 1987. Statecharts: A visual formalism for complex systems.
Science of computer programming 8, 3 (1987), 231–274.

[22] Kelly J Hayhurst. 2001. A practical tutorial on modified condition/decision
coverage. DIANE Publishing.

[23] Yihao Huang, Jincao Feng, Hanyue Zheng, Jiayi Zhu, Shang Wang, Siyuan
Jiang, Weikai Miao, and Geguang Pu. 2019. Prema: a tool for precise
requirements editing, modeling and analysis. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE,
1166–1169.

[24] Takuto Ishimatsu, Nancy G Leveson, John Thomas, Masa Katahira, Yuko
Miyamoto, and Haruka Nakao. 2010. Modeling and hazard analysis using
STPA. (2010).

[25] Jonathan Jacky. 1997. The way of Z: practical programming with formal methods.
Cambridge University Press.

[26] Özgür Kafali, Munindar P Singh, and Laurie Williams. 2016. Nane: Iden-
tifying misuse cases using temporal norm enactments. In 2016 IEEE 24th
International Requirements Engineering Conference (RE). IEEE, 136–145.

[27] John C Kelly. 1997. Formal Methods Specification and Analysis Guide-
book for the Verification of Software and Computer Systems Volume II: A
Practitioner’s Companion. (1997).

[28] Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. Statistical model
checking: An overview. In International conference on runtime verification.
Springer, 122–135.

[29] Nancy Leveson. 2004. A new accident model for engineering safer systems.
Safety science 42, 4 (2004), 237–270.

[30] Mo Li and Shaoying Liu. 2015. Integrating animation-based inspection
into formal design specification construction for reliable software systems.
IEEE transactions on reliability 65, 1 (2015), 88–106.

[31] Shaoying Liu. 2013. Formal Engineering for Industrial Software Development:
Using the SOFL Method. Springer Science & Business Media.

[32] Shaoying Liu, A. Jefferson Offutt, Chris Ho-Stuart, Yong Sun, and Mitsuru
Ohba. 1998. SOFL: A formal engineering methodology for industrial
applications. IEEE Transactions on Software Engineering 24, 1 (1998), 24–45.

[33] Weikai Miao and Shaoying Liu. 2012. A formal engineering framework for
service-based software modeling. IEEE Transactions on Services Computing
6, 4 (2012), 536–550.

[34] Weikai Miao, Geguang Pu, Yinbo Yao, Ting Su, Danzhu Bao, Yang Liu,
Shuohao Chen, and Kunpeng Xiong. 2016. Automated Requirements
Validation for ATP Software via Specification Review and Testing. In Inter-
national Conference on Formal Engineering Methods. Springer, 26–40.

[35] Steven P Miller, Timothy M Carlson, and Alan C Tribble. 2003. Flight
guidance system requirements specification. NASA.

[36] Maurizio Morisio, Guilherme H Travassos, and Michael E Stark. 2000.
Extending UML to support domain analysis. In Proceedings ASE 2000.
Fifteenth IEEE International Conference on Automated Software Engineering.
IEEE, 321–324.

[37] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. 2014. Use of formal methods at Amazon Web
Services. See http://research. microsoft. com/en-us/um/people/lamport/tla/formal-
methods-amazon. pdf (2014).

[38] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k)
parser generator. Software: Practice and Experience 25, 7 (1995), 789–810.

[39] Daniel Patrick Pereira, Celso Hirata, and Simin Nadjm-Tehrani. 2019. A
STAMP-based ontology approach to support safety and security analyses.
Journal of Information Security and Applications 47 (2019), 302–319.

[40] Strategic Planning. 2002. The economic impacts of inadequate infrastruc-
ture for software testing. National Institute of Standards and Technology
(2002).

[41] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science. IEEE, 46–57.

[42] SC RTCA. 2011. DO-333 formal methods supplement to DO-178C and
DO-278A. Tech. Rep. (2011).

[43] RTCASE 2019. RTC’s guide. http://www.visionmc.com/
[44] SCADE Suite 2019. ANSYS SCADE Suite. https://www.ansys.com/

products/embedded-software/ansys-scade-suite
[45] Ian Sommerville and Pete Sawyer. 1997. Requirements engineering: a good

practice guide. John Wiley & Sons, Inc.
[46] Christos Tsigkanos, Nianyu Li, Zhi Jin, Zhenjiang Hu, and Carlo Ghezzi.

2018. On early statistical requirements validation of cyber-physical space
systems. In Proceedings of the 4th International Workshop on Software Engi-
neering for Smart Cyber-Physical Systems. ACM, 13–18.

[47] Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio
Vetrò, Marcos Kalinowski, Roel Wieringa, Dietmar Pfahl, Tayana Conte,
Marie-Therese Christiansson, Desmond Greer, et al. 2019. Status quo in
requirements engineering: A theory and a global family of surveys. ACM
Transactions on Software Engineering and Methodology (TOSEM) 28, 2 (2019),
1–48.

[48] Zheng Wang, Geguang Pu, Jianwen Li, Jifeng He, Shengchao Qin, Kim G
Larsen, Jan Madsen, and Bin Gu. 2013. MDM: A mode diagram modeling
framework. arXiv preprint arXiv:1301.0046 (2013).

[49] T. Wu, J. Yan, and J. Zhang. 2014. Automatic Test Data Generation for
Unit Testing to Achieve MC/DC Criterion. In 2014 Eighth International
Conference on Software Security and Reliability (SERE). 118–126.

[50] Mengfei Yang, Zheng Wang, Geguang Pu, Shengchao Qin, Bin Gu, and
JiFeng He. 2012. The stochastic semantics and verification for periodic
control systems. Science China Information Sciences 55, 12 (2012), 2675–2693.

[51] Eric SK Yu. 1997. Towards modelling and reasoning support for early-
phase requirements engineering. In Proceedings of ISRE’97: 3rd IEEE Inter-
national Symposium on Requirements Engineering. IEEE, 226–235.

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.7.0/com.ibm.doors.requirements.doc/helpindex_doors.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.7.0/com.ibm.doors.requirements.doc/helpindex_doors.html
http://www.visionmc.com/
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite

Conference’17, July 2017, Washington, DC, USA J.Feng, W.Miao, H.Zheng, Y.Huang, J.Li, Z.Wang, T.Su, B.Gu, G.Pu, M.Yang and J.He

[52] Chengyu Zhang, Yichen Yan, Hanru Zhou, Yinbo Yao, Ke Wu, Ting Su,
Weikai Miao, and Geguang Pu. 2018. Smartunit: Empirical evaluations
for automated unit testing of embedded software in industry. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP). IEEE, 296–305.
[53] Jian Zhang. 2005. Constraint solving and symbolic execution. In Working

conference on verified software: Theories, tools, and experiments. Springer, 539–
544.

	Abstract
	1 Introduction
	2 Framework of FREPA
	3 APPROACH
	3.1 Template-guided Formal Specification Construction
	3.2 Diagram-based Requirements Review
	3.3 Requirement Simulation
	3.4 Statistical Estimation
	3.5 Automated Test-Case Generation under the MC/DC Coverage Criteria

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Experience and Lessons
	5.1 Experience
	5.2 Lessons

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

