
PRF: A Framework for Building Automatic Program Repair
Prototypes for JVM-Based Languages

Ali Ghanbari
University of Texas at Dallas
Richardson, TX 75080, USA
ali.ghanbari@utdallas.edu

Andrian Marcus
University of Texas at Dallas
Richardson, TX 75080, USA
amarcus@utdallas.edu

ABSTRACT
PRF is a Java-based framework that allows researchers to build
prototypes of test-based generate-and-validate automatic program
repair techniques for JVM languages by simply extending it with
their patch generation plugins. The framework also provides other
useful components for constructing automatic program repair tools,
e.g., a fault localization component that provides spectrum-based
fault localization information at different levels of granularity, a
configurable and safe patch validation component that is 11+X
faster than vanilla testing, and a customizable post-processing com-
ponent to generate fix reports.
A demo video of PRF is available at https://bit.ly/3ehduSS.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Automatic Program Repair, Framework, Fault Localization, Patch
Validation
ACM Reference Format:
Ali Ghanbari and Andrian Marcus. 2020. PRF: A Framework for Building
Automatic Program Repair Prototypes for JVM-Based Languages. In Pro-
ceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),
November 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3368089.3417929

1 INTRODUCTION
Automatic program repair (APR) [8] is one of the recent advances
in automated software engineering that holds the promise of re-
ducing debugging costs by suggesting high-quality patches that
either directly fix the bugs or help the developers during manual
debugging [12]. In the last decade, APR has been the subject of
intense research and still remains an active area of research [4, 16].

Generate-and-validate (G&V) refers to the class of APR tech-
niques that attempt to fix the bug by repeatedly generating patches
to produce program variants that subsequently get validated against

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417929

certain rules or checks. A patch is called plausible if it passes all
the checks. Validating a patch can be accomplished via a spectrum
of techniques ranging from sound formal verification techniques
[20] to testing [6, 14, 21]. However, in real-world situations, formal
specification of software is usually absent and automating formal
verification is theoretically impossible. Testing, on the other hand,
remains as the prevalent, economic method of getting more con-
fidence about the quality of software, and a vast majority of G&V
APR techniques use tests as correctness criteria.

By examining the architecture of state-of-the-art test-based G&V
APR tools [4], we observed that most of them have components
for fault localization (FL) [23], patch generation, and patch filter-
ing/prioritization. During fault localization a suspiciousness value is
assigned to each executed program location. During patch genera-
tion, a subset of these locations are transformed, resulting in a set of
patches. Since test cases do not perfectly specify the software, many
of the generated patches happen to pass all the tests without fixing
the bugs. Such patches are known as overfitted patches [19]. There-
fore, the APR process is usually followed by a post-processing phase
to filter out overfitted patches or prioritize patches that are more
likely to be correct. Different program repair techniques usually dif-
fer in the way they generate patches to produce program variants,
while the other components remain more or less the same and are
reused from one implementation to another or reinvented. Even
reusing these processes takes a considerable amount of program-
ming effort for the APR researchers when building their prototypes.

This paper presents PRF (Program Repair Framework), a frame-
work for building APR prototypes by extending it with a patch gen-
eration plugin for transforming the identified suspicious locations.
PRF provides the APR tool programmer with spectrum-based FL
information at different levels of granularity (e.g., line-/statement-,
method-, or class-level). The framework also provides a safe, fast,
and configurable facility for patch validation, and a customizable fix
report generation component for prioritization/filtering of plausible
patches. The patch validation component employs an assortment of
techniques to safely accelerate patch validation process; it reorders
test cases and does test selection. The component also implements
a novel work-stealing algorithm [22] so that the patches can be
validated concurrently, thereby maximizing CPU utilization. This
compensates for the overhead of repeated creation of Java Virtual
Machine (JVM) processes to achieve safety in patch validation. Al-
though PRF is shipped with a default fix report generation plugin,
the APR tool programmers can construct their own patch prioriti-
zation/filtering plugins for a customized fix report generation.

PRF depends solely on runtime information, so it is useful not just
for prototyping Java APR tools but also for building tools targeting
other JVM-based programming languages such as Kotlin, Scala, etc.

ar
X

iv
:2

00
9.

06
84

8v
1

 [
cs

.S
E

]
 1

5
Se

p
20

20

https://bit.ly/3ehduSS
https://doi.org/10.1145/3368089.3417929
https://doi.org/10.1145/3368089.3417929

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ali Ghanbari and Andrian Marcus

Patch Validator

Work-stealing executor

To do list

Buggy
project

Original
class files

101010
101110

101010
101110

101010
101110

Patch Generator

C
om

pi
la

tio
n

Compilation

JVM

Instrumentation agent

Instrumented code Profiling API

Profiler

Tests Timing
Failing Tests

Patch 1
Patch 2

...

JVM 1

JVM n

...

Orderer

Fix Report
Generator

...

Patch i

Patch j

Patch k

Ranked fix
report

Patch prioritization
or filtering plugins

Patched
source files

...

101010
101110

101010
101110

...

Patched
class files

FL Information

Patch
generation
plugins

Coverage Info.

Figure 1: An overview of PRF

It also comes in the form of a Maven plugin so that it can be reliably
applied on different Maven-based projects.

We have constructed a patch generation plugin by specializing
CapGen APR tool proposed by Wen et al. [21]. Our experiments
with CapGen show that patch validation is responsible for 77.7%
of the total repair time, on average, and our integration with PRF
results in 3.1X speedup when reordering test cases while validating
patches sequentially without any test selection. In addition, we
obtained an 11.4X speedup in patch validation when using 8 CPU
cores combined only with test reordering.

Constructing a plugin for CapGen is as simple as making a wrap-
per for the tool and disabling the patch validation and prioritization
processes that are to be delegated to PRF. We expect that with the
help of APR libraries like ASTOR [14], APR researchers will be able
to make fast and reliable prototypes easily. This will, in turn, greatly
help the reproducibility of APR experiments. Such a customizable
framework has the added benefit of simplifying studies that com-
pare different algorithms used in certain aspects of APR (e.g., fault
localization [13] or patch classification/prioritization [24]).

PRF and its documentation, together with experimental result
for CapGen, are publicly available on GitHub [7].

2 OVERVIEW OF PRF
Inspired by the steps common to state-of-the-art test-based G&V
APR techniques, we build PRF with four components responsible
for profiling, patch generation, patch validation, and fix report gen-
eration. Figure 1 shows PRF’s main components. We next describe
each component in more details.

2.1 Profiler
Any non-trivial G&V APR tool needs information about the pro-
gram under repair so as to make sensible transformations, validate
the generated patches efficiently, or to generate high-quality fix
reports. For example, in most cases, it makes sense to mutate only
suspicious program locations, and in order to achieve performance
in patch validation the tool might reorder test cases based on their
execution time. We use the term profiling to refer to the task of ob-
taining information about the program under repair. These include
test results and execution time, coverage information, dynamic call
graph, and fault localization information that are used in different
components for various purposes such as patch generation, test
selection, test reordering, and patch prioritization.

Since APR tool programmer, or the end users, might opt for
other sources for these information, except for test execution time

measurement and recording test results, which becomes freely
available once PRF executes the tests, all features of the profiler
component are optional.

During profiling, the program is instrumented for recording
the aforementioned runtime information. PRF uses Java Agent
technology and the ASM bytecode manipulation framework [17] to
instrument the input program. Besides constructing dynamic call
graph and recording test results, test execution time and, depending
on the user configuration, coverage information of test cases at
different levels of granularity (i.e., class-, method-, or line-level)
are recorded. If the user selects a certain level of granularity and
specifies a certain FL formula [23], then the collected coverage
information is used to calculate the suspiciousness values for the
program elements based on the specified formula.

2.2 Patch Generator
Patch generation is an integral part of G&VAPR algorithmswherein
the patches are constructed via transforming a subset of program
locations. Different APR algorithms mostly differ in the way they
generate the patches, and the philosophy behind PRF is to separate
patch generation phase from the rest of phases and create a generic,
customizable program repair framework.

In PRF, the patch generator component is responsible for gen-
erating patches which is customizable via a user provided patch
generation plugin. Depending on the patch generation algorithm,
the program source code and/or compiled class files of the original
buggy program are transformed by the specified patch generation
plugin. Thus, the framework passes the path name of the source
files, test sources, and compiled binaries to the plugin. Additionally,
depending on which feature of the profiler component are activated,
test coverage information, dynamic call graph, and FL information
with the specified level of granularity shall be fed to the plugin.

The patch generation plugin is intended to generate a pool of
patches that are stored on the disk. PRF expects the patches to be
compiled into class files and it is the responsibility of the patch
generation plugin to compile the generated patches using the ap-
propriate JVM-based compiler. Furthermore, in order to do test
selection in patch validation phase, PRF relies on the patch gen-
eration plugin to determine which test cases cover the patched
location for each patch. If the plugin does not specify the covering
tests for a given patch, then during the subsequent patch validation
phase, all the test cases shall be executed against the patch and no
test selection will take place.

PRF: A Framework for Building Automatic Program Repair Prototypes for JVM-Based Languages ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

2.3 Patch Validator
The patch generator component sends the list of generated patches
to the patch validator component wherein (a subset of) the test
cases are executed against the patches to identify plausible patches.
Depending on the degree of parallelism specified by the user, the
component validates the patches sequentially or in parallel. Fur-
thermore, depending on the user preferences, patch validation can
be stopped after the first plausible patch is found, or the entire
search space will be explored and the identified plausible patches
will get prioritized and/or filtered later.

It is worth noting that patch validation takes up a large portion
of the end-to-end repair time. For example, Figure 2 shows the
time that an existing APR tool, CapGen [21], spends on generating
patches vs. on validating the generated patches, for each of the
22 Defects4J [10] bugs that it is able to fix. Our measurements
indicate that patch validation takes up 77.7% of total repair time, on
average. Similar observations are also reported in previous research
by Mehne et al. [15]. As we shall discuss in §4, there are a number
of methods to reduce patch validation time, but in this work we
employ a novel approach: (1) each patch is validated in a separate
process; (2) only the tests covering patched location are executed;
(3) unless otherwise instructed by the user, PRF reorders test cases
to run shorter tests first and also originally failing tests before
originally passing ones; (4) unless otherwise instructed by the user,
PRF runs patch validating processes in parallel.

Since patch validation involves running test cases and test exe-
cution have side-effects, PRF validates each patch in a separate JVM
instance to contain the side-effects as much as possible. Repeated
creation of JVM instances is expensive as initializing a JVM session,
besides process creation overhead, involves costly tasks of class
loading, linking, and JIT-optimization. These costs are compensated
for by the speedup gained through test selection, test reordering,
and parallelism.

By using test selection and test reordering methods from regres-
sion testing, which have been successfully applied in APR [6, 15],
PRF runs only the test cases that cover the patched locations and
runs the failing test cases before the passing ones as they are more
likely to fail again and invalidate the incorrect patch as soon as
possible. PRF aims for further speeding up patch validation process
by overlapping JVM process creation with the effective work done
during patch validation phase, namely running test cases. This is
achieved via an implementation of work-stealing algorithm [22]
which ensures CPU utilization is maximized by always keeping its
cores busy doing different tasks in parallel.

Sometimes patching may create infinite loops and this causes
tests to run forever during patch validation. To avoid this issue,
PRF uses test execution time recorded during profiling phase to
identify patches that are likely to have entered an infinite loop, by
setting a timeout for each test case. We use the formula β + (1 +
α)τt to calculate the time budget for a test t , based on the original
execution time τt of the test and the user-defined parameters α
and β . Following heuristics determined during our experiments,
we set β = 5, 000 and α = 0.5, meaning that a test taking more
than 1.5 times its original execution time plus 5 seconds is deemed
timed out. A patch for which at least one test times out, is deemed
non-plausible and will not be passed to the next component.

Defects4J Bug Id

Ti
m

e
(lo

g
sc

al
e)

0

5

10

15

20

C
ha

rt-
11

C
ha

rt-
1

C
ha

rt-
24

C
ha

rt-
8

La
ng

-2
6

La
ng

-4
3

La
ng

-5
7

La
ng

-5
9

La
ng

-6
M

at
h-

30
M

at
h-

33
M

at
h-

53
M

at
h-

57
M

at
h-

58
M

at
h-

59
M

at
h-

5
M

at
h-

63
M

at
h-

65
M

at
h-

70
M

at
h-

75
M

at
h-

80
M

at
h-

85

Patch Generation Patch Validation

Figure 2: Patch generation time for CapGen and validation
time for the generated patches, for 22 bugs in Defect4J.

2.4 Fix Report Generator
The fix report generator component produces a list of patches to
be examined by the user of APR techniques. It may use a patch
prioritization and/or filtering plugin to first display the patches
that are more likely to be correct or filter out plausible but likely
incorrect patches. Such a plugin would be provided by the user.
The current implementation of the fix report generator prints the
list of plausible patches in an arbitrary order which might be time
consuming and boring. We plan to integrate our JVM language
agnostic patch prioritization tool ObjSim [5], which has shown
promising results in our experiments with the APR tool PraPR [6].

3 PRF USAGE
PRF comes in the form of a Maven plugin. After checking out
the source code from the GitHub repository [7] and installing the
Maven plugin and the core library for PRF on the local Maven
repository, the framework will be ready to use. The following XML
snippet shows the minimal amount of configuration in the POM
file of the target buggy project.
<plugin >

<artifactId >prf -maven -plugin </artifactId >

<groupId >edu.utdallas </groupId >

<version >1.0- SNAPSHOT </version >

</plugin >

Once mvn edu.utdallas:prf-maven-plugin:run is executed
through the command-line, PRF shall use a default patch generation
plugin named DummyPatchGenerationPlugin which simply looks
for a directory named patches-pool under the base directory of
the project. This directory is expected to contain the pool of the
generated patches, and the class file(s) for each patch must reside in
a separate sub-directory. Names of the sub-directories shall be used
as patch identifiers during the fix report generation. Similarly, PRF
uses a default patch prioritization plugin named DummyPatchPri-
oritizationPlugin that does not have any effect. Furthermore,
by default, only test execution time and test result collector is active
in the profiler, and patch validator uses all the available CPU cores
to validate patches in parallel.

These default choices can be overridden by the user through the
POMfile for the program under repair. Such configurations go under
the <configuration> tag in plugin description in the above XML
code. Table 1 summarizes the options that the users can tune. More
details about using PRF is available in the project documentation
[7] and in the companion demo video https://bit.ly/3ehduSS.

https://bit.ly/3ehduSS

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ali Ghanbari and Andrian Marcus

Table 1: Summary of PRF options configurable through the POM file

Option Descriptions
<flOptions> Takes values OFF for no FL, or CLASS_LEVEL, METHOD_LEVEL, or LINE_LEVEL for class-/method-/line-level FL
<flStrategy> Takes the values OCHIAI or TARANTULA, for Ochiai or Tarantula spectrum-based FL [23], respectively
<testCoverage> If true, line-level coverage information for tests will be collected and passed to other components
<failingTests> If left empty, failing tests will be inferred. Each failing should be in a <failingTest> tag
<cgOptions> Takes values OFF (default) or DYNAMIC to enable/deactivate dynamic call graph construction

<patchGenerationPlugin> The name of patch generation plugin. By default, this is set to dummy-patch-generation-plugin
<parallelism> Degree of parallelism for patch validation. By default, it is 0, and all CPU cores will be used

<patchPrioritizationPlugin> The name of patch prioritization plugin. By default, this is set to dummy-patch-prioritization-plugin

<timeoutConstant> Constant part of the timeout value calculation, i.e., β in §2.3
<timeoutPercent> Percent part of the timeout value calculation, i.e., α in §2.3

4 RELATEDWORK
FLAIR is a proprietary framework used in Fujitsu Labs America
to construct the APR system ELIXIR [18]. However, this system is
not publicly available. PRF is the first open-source framework that
provides all the functionalities offered by a framework like FLAIR,
plus PRF offers an efficient patch validation facility.

ASTOR [14] is a general-purpose library for developing source
code level, Java-based APR tools. Unlike ASTOR, PRF is a customiz-
able framework upon which different patch generation algorithms
can be installed as plugins and different strategies for patch pri-
oritization and/or filtering can be employed. PRF is not intended
to replace ASTOR, instead, PRF complements the library in that it
enables APR researchers focus on taking full advantage of ASTOR’s
features to implement more reliable patch generation algorithms,
and better understand the impact of different fault localization,
patch prioritization and/or filtering strategies on the effectiveness
of their implementation. As a toolset for prototyping APR tech-
niques, PRF can be seen as a step similar in nature to [3].

Le Goues et al. [11] highlight the high cost of patch validation in
test based G&V APR. Mehne et al. [15] report that patch validation
can take between 40% to 92% of total repair time and propose to
prune the patches needed to be tested as well as test case selection
to reduce this cost. A recent line of research [6, 9], proposes to
use the HotSwap trick offered by the JVM to validate the patches
on-the-fly, without restarting the JVM. This was previously used in
mutation testing systems like PIT [2]. It has the benefit of avoiding
the high costs of restarting JVM for each patch, but the patches that
involve altering the class structure (e.g., addition or removal of class
members) are not eligible for being HotSwapped. The approach in
order to be effective needs proper isolation of test execution side-
effects (e.g., [1]). However, such a method does not solve the current
limitations of a HotSwap-based approach. In this work, we follow a
different approach that proves to be fast, reliable, and more effective.
PRF validates each patch in a fresh JVM session, thereby containing
the side-effects of test execution and also avoiding restrictions
of a HotSwap-based approach, and instead of dealing with the
internals of JVM, we rely on test selection and reordering, as well
as parallelism to speedup patch validation.

5 CONCLUSIONS AND FUTUREWORK
With PRF, APR researchers will be able to build research prototypes
by simply providing a patch generation plugin and fine tuning the
framework’s existing components for multi-granularity level fault
localization, patch validation, and fix report generation. PRF uses
a novel patch validation technique, relying on test selection and

prioritization as well as parallelism, that achieves 11+X speedup
compared to vanilla testing. PRF is publicly available at [7].

We are working on integrating our JVM language agnostic patch
prioritization system ObjSim [5] in PRF and release the framework
with an effective built-in patch prioritization mechanism.

REFERENCES
[1] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In ICSE.
[2] Coles, Henry. 2020. PIT Mutation Testing. http://pitest.org/ Accessed: 06/20.
[3] Gregory Gay and Rene Just. 2020. Defects4J as a Challenge Case for the Search-

Based Software Engineering Community. In SSBSE. to appear.
[4] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software

repair: A survey. TSE (2017).
[5] Ali Ghanbari. 2020. ObjSim: Lightweight Automatic Patch Prioritization via

Object Similarity. In ISSTA. 541–544.
[6] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program

Repair via Bytecode Mutation. In ISSTA.
[7] Ali Ghanbari and Andrian Marcus. 2020. https://bit.ly/37z5RES. Accessed: 06/20.
[8] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

Program Repair. CACM (2019).
[9] Rongxun Guo, Tianxiao Gu, Yuan Yao, Feng Xu, and Xiaoxing Ma. 2019. Speedup

Automatic Program Repair Using Dynamic Software Updating: An Empirical
Study. In APSI. 1–10.

[10] René Just, Darioush Jalali, and Michael Ernst. 2014. Defects4J. https://bit.ly/
2PY3yDa Accessed: 06/20.

[11] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. SQJ (2013), 421–443.

[12] Jingjing Liang, Jiru Yi, Jiajun Jiang, YIling Lou, Yingfei Xiong, and Gang
Huang. 2020. Interactive Patch Filtering as Debugging Aid. arXiv preprint
arXiv:2004.08746 (2020).

[13] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You cannot fix what you cannot find! an investigation
of fault localization bias in benchmarking automated program repair systems. In
ICST. 102–113.

[14] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java (Demo). In ISSTA.

[15] Ben Mehne, Hiroaki Yoshida, Mukul R Prasad, Koushik Sen, Divya Gopinath,
and Sarfraz Khurshid. 2018. Accelerating search-based program repair. In ICST.
227–238.

[16] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

[17] OW2 Consortium. 2020. ASM. https://bit.ly/3fsPL2r Accessed: 06/20.
[18] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:

Effective object-oriented program repair. In ASE. 648–659.
[19] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure

worse than the disease? overfitting in automated program repair. In FSE.
[20] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair

for heap properties. In ICSE. 151–162.
[21] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-aware patch generation for better automated program repair. In ICSE.
[22] Wikipedia contributors. 2020. Work stealing —Wikipedia, The Free Encyclopedia.

https://bit.ly/2XZEhwc Accessed: 06/20.
[23] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A

survey on software fault localization. TSE (2016), 707–740.
[24] He Ye, Matias Martinez, and Martin Monperrus. 2019. Automated Patch Assess-

ment for Program Repair at Scale. arXiv (2019).

http://pitest.org/
https://bit.ly/37z5RES
https://bit.ly/2PY3yDa
https://bit.ly/2PY3yDa
https://bit.ly/3fsPL2r
https://bit.ly/2XZEhwc

	Abstract
	1 Introduction
	2 Overview of PRF
	2.1 Profiler
	2.2 Patch Generator
	2.3 Patch Validator
	2.4 Fix Report Generator

	3 PRF Usage
	4 Related Work
	5 Conclusions and Future Work
	References

