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ABSTRACT
The current large selection of cloud instances that are functionally
equivalent makes selecting the right cloud service a challenging
decision. We envision a model driven engineering (MDE) approach
to raise the level of abstraction for cloud service selection. One way
to achieve this is through a domain specific language (DSL) for mod-
elling the service level objectives (SLOs) and a brokerage system that
utilises the SLOmodel to select services. However, this demands an
understandingof theproviderSLAsand thecapabilitiesof thecurrent
cloudmodelling languages (CMLs). This paper investigates the state-
of-the-art for SLO support in both cloud providers SLAs andCMLs in
order to identify the gaps for SLO support. We then outline research
directions towards achieving the MDE-based cloud brokerage.

CCS CONCEPTS
•Computer systemsorganization→Cloudcomputing; •Soft-
ware and its engineering→Domain specific languages.
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1 INTRODUCTION
Cloud computing’s major success over recent years has resulted in a
significant expansion in the provider market and the number of ser-
vices they provide. The growing expansion of this market, however,
poses a challenge to its customers. Theory and practice are in agree-
ment that such wide range of choice overwhelms customers [14],
leading them to select suboptimal instances [21].

The problem of cloud service selection is application-specific, but
provider guarantees are understandably broad and generic. Such
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guarantees come in the form of service level agreements (SLAs) that
specify a set of service level objectives (SLOs) as commitments from
theprovider regardingquantitative aspects of their service [1].When
cloud services are functionally equivalent, SLOs play a focal role in
the decision of selection. This demands thorough understanding of
the SLOs and how they would affect an application. However, this
problem is complex and, worse, variable across providers [15, 23].
Therefore, the current practice ofmanually inspecting SLAs to select
services with matching SLOs is a cumbersome one.
We believe that a model driven engineering (MDE) approach

would be appropriate to make it easier for cloud customers to iden-
tify the services that best suit their applications. Specifically, we
envision that modelling languages should aid customers to model
their applications’ functional requirements and SLOs. An interme-
diary brokerage system could then utilise such models to select
services that suit the application.
In the literature, a handful of cloud modelling languages (CMLs)

have been proposed. A CML uses modelling concepts to raise the
level of abstraction, enabling customers to describe their specific ap-
plication needs. These could then be systematically matched against
specific cloud service offerings. With this purview, we investigated
the capabilities of the CMLs in terms of SLOmodelling. Our inves-
tigation discovered the following significant shortcomings.

• Current CMLs provide limited support for SLOmodelling, i.e. a
large portion of SLOs that cloud customers need are not sup-
ported by current CMLs. This is because they have been designed
mainly for modelling the structure and functional requirements
of an application.

• There is a lack of post-deployment optimisation of the service se-
lection based on the actual performance of the application. Recent
studies show surprising results of inconsistent performance of
promised cloud services [27].

• Some CMLs allow attaching non-functional requirement models
to the functional ones they support. However, these are expressed
using standards that were designed for providers to specify their
SLOs, e.g.WS Policy [28]. We believe that SLOmodelling should
adopt the customer application perspective. Customers are more
concerned about the actual performance levels of their applica-
tions rather than that the provider promises [14].

Therefore, we conclude that customer SLO specification using such
standards is inadequate as they are primarily designed for cloud
provider policies rather than customer operational requirements.

In addition, we also found that providers do not commit to many
SLOs that customers might need. For example, there is no cloud
compute service that specifies an SLO of ‘mean time to recover’.
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(a) Current state of affairs (b) Envisioned approach
Figure 1: High-level view of the envisioned approach

The above observations are based on a wide study we conducted
to identify the limits of SLO specification. We examine the suitabil-
ity of current CMLs in supporting different SLOs, finding several
major deficiencies. It also identifies the various SLO constituents of
major cloud provider SLAs, those specified in SLA standardisation
documents, and those proposed in academic research efforts. Fig. 1a
shows that with the current state of the art, cloud customers still
need to manually fill the gap between CML capabilities and service
SLAs. Our vision is to automate this manual approach through an
intelligent MDE-based brokerage system as shown in Fig. 1b. As
such, we distill our observations to draw a set of research directions
that our envisioned MDE approach needs to follow in order to de-
liver assistance to cloud customer SLO-driven service selection. In
summary, in this paper, we:

(1) Investigate the level of CML support for SLOmodelling (§2);
(2) Explore the SLOs provided in the cloud market (§3);
(3) Identify the gap in the state of the art that developers are cur-

rently filling using manual methods (§4); and
(4) Provide insight intowhat research is needed to attain SLO-driven

service selectionusingMDEmethods, and comment on theobsta-
cles in the road to such envisioned future cloud development (§5).

2 SLOs IN CLOUDMODELLING LANGUAGES
CMLs have long been proposed to raise the level of abstraction and
increase the degree of automation in the development of cloud ap-
plications [10]. However, not all of them support SLO specification
in the process of modelling cloud applications. In this section, we
briefly introduce the CMLs that do and focus particularly on SLO
specification capabilities. We surveyed the cloud computing liter-
ature and identified a set of ten CMLs (Table 1). We found that only
four of them to either provide syntax for capturing SLOs or support
attaching such annotations. We briefly introduce these CMLs.

2.1 Blueprint
Blueprint [26] provides concepts for representing service-based ap-
plications to facilitate deployment and migration on cloud services.
The provided concepts also allow the representation of different
cloud service offerings. Then both the application and service de-
scriptions are submitted to an assumed marketplace that is meant to
match them.With respect to SLOmodelling, Blueprint does not pro-
vide concepts for capturing the service levels required by customers.
However, this approach assumes that policy profiles can be attached
to the Blueprint, and these can be written in any policy specification
language such asWS-Policy [28], SLAng [22], etc.

2.2 TOSCA
The Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [12] is anOASIS standard for describing the structure
of cloud applications. It provides an exchange format to describe the
composite application components, their relationships, and func-
tionalities. The description, called a service template, is to be realised
by an orchestration tool that is able to parse and understand the
service template and, accordingly, deploy application components
on cloud services. Similar to the Blueprint approach, TOSCA does
not provide concepts to capture SLOs. Instead, a policy profile is
assumed to be attached to the service template.

2.3 MULTICLAPP
MULTICLAPP [19] introduces a UML-based profile to model cloud
applications. The application components are represented as UML
artefacts that can be annotatedwith deployment information. The in-
tention is to create a provider-independent model of the application,
which can then be transformed and customised into a provider-
specificmodel using a transformation engine. Such engine, however,
is not proposed in the MULTICLAPP paper.

In MULTICLAPP, the application is modelled as a set of Artefacts,
each of which corresponds to an application component. Further-
more, QoS requirements can bemodelled as UML-basedQoSParame-
ter expressions. Thereby, the specification of SLOs in MULTICLAPP
is carried out by associating the application artefactswith theQoSPa-
rameter expressions. Each expression consists of three tagged values,
namely: Property, Operator and Value.

2.4 GENTL
The GENeralized Topology Language (GENTL) [7] is another lan-
guage to describe the topology of cloud applications. It borrows the
modelling concepts of other languages like Blueprint andTOSCA for
the sake of generalising the cloud applicationmodelling process. The
main motivation here, though, is to enable the mapping from other
languages into a unified model so that additional information can
be attached to the model in the form of annotations. The annotation
scheme supported by GENTL enables users to attach information to
the application topology itself. These annotations can be used to at-
tach SLOs to the application topology components. The annotations
are assumed to be used by the GENTL Environment to find services
that satisfy the SLOs. However, it is not clear how the authors’ claim
of specifying QoS levels using annotations can be realised.

The main observation from the above is that current CMLs focus
on structural and functional aspects ofmulti-cloud applicationswith
limited support for customer-oriented SLO specification.

3 SLOs IN CLOUD SLAs
Wenowexplore the SLO contents that are expected to exist in a cloud
provider’s SLA, and contrasts them to those that currently exist.

3.1 A cloud SLA contentmodel
A cloud service agreement is a document that contains terms that
govern the provided services [1]. These terms are typically specified
by the provider and in some cases are negotiable. The part of this
document that is concerned by the quality levels of the service is
called the SLA. This part contains SLOs, which are quantitative char-
acteristics of the cloud services. These are measured during service
operation, and are obligations that the provider must adhere to.



Table 1: An overview of the studied CMLs (in chronological
order) and their SLO specification capabilities.

CML Capability SLO specification
Blueprint [26] Supports Attaching policy file
MULTICLAPP [19] Provides UML-based Notation
TOSCA [12] Supports Attaching policy file
GENTL [7] Provides Annotations
MOCCA [25] n/a n/a
CloudMIG [18] n/a n/a
RESERVOIR [13] n/a n/a
StratusML [20] n/a n/a
CAML [11] n/a n/a
CloudML [17] n/a n/a

Considering the contents of cloud SLAs that relate to quantitative
service levels,weaimto identify themainSLOareas that areexpected
in SLAs. For this purpose, we surveyed relevant ISO standards, NIST
and ETSI publications, and well-cited SLA surveys [1, 6, 9, 15, 16].
As a result, we identified the following SLO areas. Table 2 presents
a complete list of specific SLOs for each area.
• Availability: quantifies the degree to which service function-
ality is obtainable and useful in response to user requests. Any
downtime, whether scheduled or failure-caused, contributes to
the inability of users to access service functionality, reducing avail-
ability. Quantification can take many forms – one approach is to
divide the downtime over a longer period of service time.

• Performance: is a general property that can be interpreted vari-
ouslyaccording to the concernsof theprovider and thecustomer. It
includes different components that can have alternative or collec-
tive SLOs to measure. For example, responsiveness of a cloud ser-
vice can be measured using response time. Performance can also
include other attributes such as machine capacity, scalability, etc.

• Reliability: reflects the ability to provide consistent functionality.
It can include many aspects such as fault tolerance, data backup,
and disaster recovery. For instance: providers can commit SLOs to
set a limit for recoveringa service after failure.1Other relatedSLOs
pertain to frequency of making backups, the period of keeping
backups, the time to restore data, among others.

• Cost: This property specifies the pricing model of the cloud ser-
vice and the price that the customer pays per service usage. It also
specifies the penalty rates that the provider pays to the customer
in compensation if the service violates of any SLA items.

• Terminationofservice: relates to situationswhere thecustomer
decides to stop using the service. Related SLOs such as the period
after which the customer data and logs should be deleted from the
provider’s storage can also be set in the SLA.

• Support: As one of themotivations for adopting cloud computing
is to remove the burden of maintaining physical infrastructure
from the customer, providers are required to provide technical sup-
port for customers to resolve any emerging issues during service
operation. Consequently, the cloud SLA can contain SLOs related
to the support property including support hours, the Maximum
First Support Response Time, and more.

• Changemanagement: Changes to service features and function-
alities may affect the customers that use that service. Therefore,
some SLOs can be included to ensure that the customer will be

1The Recovery Time SLO specifies the acceptable time to restore service functionality
after a severe failure, whereas the Recovery Point SLO specifies the amount of time
to which data loss is acceptable before the occurrence of the failure.

prepared for such changes. An example is the Minimum Service
Change Notification Period, which is the minimum time period
the customer should be notified before a change is implemented.

• Datamanagement: This property includes procedures related
to how a provider should deal with customer data with respect to
access, control, storage, etc. These procedures can generally be
specified using qualitative measures. However, SLOs can also be
used to specify quantitative objectives related to those procedures.
For example, the Data Deletion SLO specifies time period during
which the provider should delete the customer data upon request.

3.2 SLO contents in current provider SLAs
We also studied the SLOs provided in the SLAs of six market leading
cloud providers: Amazon AWS, DigitalOcean, Google Cloud, Joyent,
MicrosoftAzure [5], andRackspace. The SLOs adopted are as follows:
• Monthly Uptime Percentage (MUP) is widely adopted to ex-
press availability. There are various ways to calculate this, how-
ever, dependingon the service features andattributes. For example,
for Microsoft Azure Virtual Machines the calculation of MUP de-
pends onwhether the VM is deployed as a single-instance or as an
instance of an availability set, whereas for Microsoft Azure Stor-
age MUP is a function of the Average Error Rate where the Error
Rate is defined as "the total number of Failed Storage Transactions
divided by the Total Storage Transactions during a set time interval".

• MonthlyAvailabilityPercentage specifies theacceptable avail-
ability percentage of a cloud service in terms of the average error
rate. The error rate is calculated as the percentage of failed re-
quests in a time interval. This SLO is adopted in Azure Cosmos
DB [5] and Amazon DynamoDB [2].

• MaximumProcessing Time is defined as the time period after
which a service will be considered unavailable if all requests to
access that service return error or no response. It is used as a factor
to calculate the availability of the service (i.e. MUP) in the SLAs
of Microsoft Azure’ Network Watcher, Storage, and Container
Registry services [5].

• MonthlyRecoveryTimeObjective specifies the acceptable av-
erage period of time beginning from the time a customer initiates
a control transfer from an instance experiencing an outage to the
time when the instance is running. This SLO is adopted only by
the Microsoft Azure Site Recovery [5].

• Monthly Consistency Attainment Percentagemeasures the
percentage of successful requests that do not exhibit consistency
violation and thus achieve the required consistency level. It is
adopted only by the Microsoft Azure Cosmos DB SLA [5].

• MonthlyLatencyAttainmentPercentage specifies theaccept-
ablepercentageof successful requestsexperiencing latencygreater
than a certain threshold. It, too, is adopted only byMicrosoftAzure
CosmosDB [5] tomeasure the latency for the database read, write,
and configuration operations.

• Monthly Throughput Percentage specifies the acceptable per-
centage of requests that consume rates higher than the ones allo-
cated by the service. Again, this SLO is adopted only by Microsoft
Azure Cosmos DB [5].

• Data Delivery Time specifies the acceptable time from when
the service receives customer data to when the customer receives
data back from the service. This SLO is used only in the Google
BigQuery Data Transfer Service [4], a data analytics service.

• Time to Repair specifies the acceptable time required to restore
the functionality of a failed cloud server or cluster beginning from



Table 2: Cloud SLA contents and their SLOs

Content Sub-content SLOs
Availability n/a • Availability, Interval-availability, Maximum Processing Time
Performance Response time •MaximumResponseTime, ResponseTimeMean, ResponseTimeVariance

Capacity • Maximum number of simultaneous connections, Disk space, CPU power,
Memory size, Page view, Throughput, Bandwidth

Elasticity • Elasticity speed threshold, Elasticity Precision threshold
Migration • Migration Time
Consistency • Monthly Consistency Attainment Percentage
Monitoring • Monitoring Alert Notification Time

Reliability Service resilience / fault tolerance • Time to Service Recovery, Mean Time to Service Recovery, Maximum
Time to Service Recovery, Number of Service Failures

Customerdatabackupand restore • Backup Interval, Retention Period for Backup Data, Number of Backup
Generations, Backup Restoration Testing

Disaster recovery • Recovery Time Objective, Recovery Point Objective
Migration • Migration Notification Time

Cost n/a • Cost per Time Unit, Revenue per Request, Cost per kW, Penalty rate
Termination of service n/a • Data Retention Period, Log Retention Period
Support n/a • Support Hours, Service Incident Support Hours, Service Incident

Notification Time, Maximum First Support Response Time, Maximum
Incident Resolution Time

Change management n/a • Minimum Service Change Notification Period, Minimum Time Before
Feature/Function Deprecation

Data management Data Deletion • Data Deletion Time

Table 3: SLOs currently adopted by cloud provider SLAs.

SLO SLA content Microsoft
Azure

Amazon
AWS

Google
Cloud Rackspace Digital-

Ocean Joyent

Monthly Uptime Percentage Availability ✓ ✓ ✓ ✓ ✓ ✓
Monthly Availability Percentage Availability ✓ ✓
MaximumProcessing Time Availability ✓
Monthly Recovery Time Objective Reliability ✓
Consistency Attainment Percentage Performance ✓
Latency Attainment Percentage Performance ✓
Monthly Throughput Percentage Performance ✓
Data Delivery Time Performance ✓
Time to Repair Reliability ✓
Monitoring Alert Notification Time Reliability ✓
Migration Notification Time Reliability
Migration Time Performance ✓
Disk space Capacity ✓ ✓ ✓ ✓ ✓ ✓
CPU power Capacity ✓ ✓ ✓ ✓ ✓ ✓
Memory size Capacity ✓ ✓ ✓ ✓ ✓ ✓
Bandwidth Capacity ✓ ✓ ✓ ✓ ✓ ✓

the failure detection time. This SLO is adopted only by Rackspace
Cloud Server Hosts [3].

• Monitoring Alert Notification Time is the acceptable time to
generate an alert to notify the customer of a violation of a pre-
defined error condition exhibited by the cloud service. This SLO
is adopted only by the Rackspace Cloud [3] for monitoring their
database services.

• Migration Notification Time describes the acceptable time to
notify customers if servicemigration is required. It is adopted only
by Rackspace [3] when host server degradation is detected.

• Migration Time specifies the acceptable time duration to com-
plete the migration of a cloud service. This SLO is adopted only
by Rackspace [3].

Table 3 shows the SLOs adopted by each of the surveyed cloud pro-
viders. Note that the mark (✓) indicates that the corresponding SLO
is provided in at least one of the provider’s SLA, not necessarily in all.
In brief, the providers’ perspective is to provide the SLOs they

can guarantee for their ‘unary’ services. Providers do not commit
to many SLOs that are required for cloud applications.

4 ANALYSIS OF THE PROBLEM SPACE
Our investigationofSLOspecification in thecloudresearch literature,
cloud platform SLAs, and CML capabilities has revealed several in-
teresting observations, which we present and discuss in this section.



4.1 Lack of adopting SLOs
Clearly, there is a gap between the SLOs proposed by the cloud
community and those provided in commercial SLAs. Among 39
SLOs proposed by the cloud community and listed in Table 2, only
16 appear in current SLAs as shown in Table 3. This imbalance is
something that is well known in the cloud trade, and is partly behind
the rise of DevOps: the realisation that software development is not
sufficient and that there is aneed to integrate it closelywithoperation
management. What is remarkable, however, is the width of this
chasm in a market that has been established for over a decade now.
Moreover, SLO support is surprisingly low for some of the ma-

jor cloud providers. Amazon and Google are market dominators,
but offer no more than basic uptime and availability guarantees.
This is slightly better for other providers, such as Microsoft and
Rackspace, but still not nearly enough given the needs as identified
by the literature (§3.1). Furthermore, these latter providers only pro-
vide additional SLOs for some of their services. As a result, customer
applications that require strong guarantees (e.g. reliability) will fail
to find such guarantee for all cloud services.

4.2 Heterogeneity of SLOdefinitions in the SLAs
A key problem facing customer is the heterogeneity of SLO defini-
tion and calculation. In some cases, SLAs from different providers
contain SLOs that have similar names but are calculated differently.
Thismakes it difficult for customers to select services especiallywith
the lack of interoperability between the provider SLAs and between
the CMLs. As an example, both Microsoft Azure Cosmos DB and
Amazon DynamoDB express the availability SLO as the Monthly
Availability Percentage where availability is calculated in terms of
the Error Rate, i.e. the percentage of failed requests in a time interval.
However, Microsoft Azure Cosmos DB calculated the error rate in
one-hour intervals whereas Amazon DynamoDB uses five minutes.

4.3 Lack of SLOs support in current CMLs
The lack of support for SLOs in current CMLs is obvious. Among
the ten CMLs we studied, only four provide some kind of SLO spe-
cification support (Table 1). With respect to the CMLs that support
SLOs, the following shortcomings are identified:
• Complexity: Specifying SLOs is predominantly done through
XML schema. XML is verbose, with an angle-bracketed syntax
that is complex and not easily human comprehensible. This com-
plicates development and hinders the maintainability of cloud
applications [8, 10].

• Design perspective: TOSCA and Blueprint do not provide con-
cepts formodellingSLOs. Instead, theyprovideconcepts forattach-
ing policy files such as theWS-Policy and SLAng. TheWS-Policy
specification allows web services to publish their service levels,
while SLAng allows providers to define their SLAs. In a nutshell,
those specifications were designed taking the provider’s perspec-
tive instead of the customer’s. For example, Blueprint assumes the
presence of a marketplace where providers publish their service
descriptions and attachWS-Policy files.

• Multi-cloud deployment: The fact that some CMLs support
the attachment of policies for specifying non-functional require-
ments usingWS-Policy limits their capabilities of supporting SLO
specification for multi-cloud applications. The reason is that the
WS-Policy specification is designed for specifying non-functional
propertiesofunarywebservices.Thisalsoapplies toSLAng,which
is designed for providers to specify policies for unary services.

• Realisation: An engine is required to process the SLOs after be-
ing specified in order to satisfy them by selecting the appropriate
services. The engines developed to realise the above approaches
are limited to matching the service offerings with the customer
requirements. However, recalling that providers do not support
many of the SLOs, such search engines will not find any service if
the customer specified SLOs that no provider provide. This limita-
tion can be addressed by an intermediary as discussed in Section 5.

5 RESEARCHDIRECTIONS &CHALLENGES
In this section we describe steps towards our vision of SLO-driven
service selection, and comment on the main obstacles.

5.1 SLO domain specific language
A language is required to enable customers to model their applica-
tion SLOs. It should provide a comprehensive syntax for capturing
service level requirements, supporting all SLOs currently used by
providers and those specified in industry standards. It should provide
customers with a high level of abstraction, whereby they can specify
SLOs for required cloud services regardless of the low level details of
those services. Moreover, the language should supports applications
in both single- and multi-cloud environments.
The challenge here is mostly technical in the form having a lan-

guage design that is based on the following principles:
(1) Customer-oriented. The language should enable customers

to specify their high-level operational requirements in a simple
declarative syntax. The provided modelling concepts should be
comprehensive for cloud application SLOs and not restricted to
the ones supported in the cloud SLAs.

(2) Independence.Toavoidvendor lock-in,SLOspecificationshould
be independent of cloud service specification. Furthermore, it
needs to be independent of cloud application development tech-
nology and implementation details.

(3) Abstraction. Customers should be able to specify SLOs regard-
less of the required type of cloud service, e.g. SaaS, PaaS, etc.

(4) Separation of concerns. It should be possible to maintain and
adapt isolated SLO specification at an application component
level. For example, a load-balancing component’s SLOs should
be separate from those of a data storage element.

(5) Mapping SLOs High-level SLOs specified by users should be
broken down to low-level ones, and then further mapped to the
application component level. For example, the response time of a
three-tier application consists of processing time for each layer.

5.2 Brokerage system
There is a need for a brokerage system to lie between the cloud
customer and providers in order to understand the customer SLOs,
select a matching infrastructure, and continually maintain appli-
cation deployment. In order to realise such system, a number of
requirements need to be considered:
(1) Intelligent selection.The problem of cloud service selection is

clearly application-specific. Internal characteristics of the appli-
cation, e.g. architecture and implementation, and external ones,
e.g. workload, affect performance. Therefore, the selection of
cloud services should go beyond the simple matching between
application SLOs and service SLOs. This requires novel bench-
marking techniques to identify and extract information that is
relevant to application performance. As such approach could



get expensive, here is where novel machine learning techniques
could help in making this approach practical.

(2) Post-deploymentoptimisation.Provider services exhibitper-
formance characteristics that are not fully defined, but could be
important to any real-world optimisation decision. In addition,
application characteristics may change at run-time. These chal-
lengesdemandanadaptation strategy tocontinuallyoptimise the
selection. This includes activelymonitoring cloud service perfor-
mance and costs to dynamically change deployment to satisfy a
multi-objective optimisation scenario. Such a solution is likely to
consist of both dynamic search strategies, and an accumulation
of knowledge about cloud workloads via predictive modelling.
Collectively, this can be used to intelligentlymanage the lifecycle
of customer applications and fully satisfy modelled SLOs.

Realising such brokerage as a third party is not trivial. First, it
raises legislative issues due to the position it stands as interme-
diary between customers and providers. Those issues include SLA
violation penalties, intellectual property and contractual issues, pri-
vacy and data protection rights, and green computing regulation,
among others. These issues need to be carefully assessed and, con-
sequently, a framework is required to manage customer-broker and
broker-provider contracts in order to mitigate any attached risks.
The second major challenge is economic feasibility. From the

customer perspective, the value that a broker adds is the ability to
make cost-effective service selection decisions. This added value is
not completely appreciated yet, thus economic models to compare
broker-assisted and broker-less decision making are needed to eval-
uate the cost-effectiveness of using the broker. Meanwhile, from the
broker’s perspective, economic models are needed to compare the
economical consequences of the alternative decisions and alterna-
tive decisionmaking techniques to maximise the profit of the broker
and thus achieve economic sustainability.

5.3 Knowledgemanagement
The matching of cloud services to customer needs requires contin-
ual processes to acquire, represent, utilise, and maintain knowledge
about thedifferentparts of the system.Knowledge required to inform
service selection can be broken down into three levels:

(1) Provider SLOs, i.e. the ‘book values’ obtained from SLAs.
(2) Service behavior observed by gathering low-level metrics.
(3) Real application performance as perceived by users, hence

map to high-level application requirements.

Amain challenge here relates to the dynamism of the cloudmar-
ket: althoughprovider landscape is relatively stable, service offerings
change from time to time. More importantly, the performance levels
of many cloud services is in a constant state of flux particularly due
to the number of hidden features at play [24]. This dynamismmakes
attaining knowledge a ‘moving target’ that evolves over time. Con-
tinuous evaluation and adaptation of the learnedmodels is necessary
to verify that they represent a true state of the system. Another re-
lated challenge is the trust of both accumulated knowledge and the
decisions made using it.
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