skip to main content
10.1145/3368474.3368493acmotherconferencesArticle/Chapter ViewAbstractPublication PageshpcasiaConference Proceedingsconference-collections
research-article

Dual-Plane Isomorphic Hypercube Network

Authors Info & Claims
Published:15 January 2020Publication History

ABSTRACT

We propose a multi-plane isomorphic network that increases network throughput and reduces network latency by effectively configuring multi-plane networks. In the proposed network, each plane adopts the same graph topology but different switch-to-switch connections. We evaluate the dual-plane isomorphic hypercube network by graph analysis and cycle level simulation. Results of the graph analysis show that the dual-plane isomorphic 8-hypercube reduces the average shortest path length by 22% and improves throughput by 28% compared with the dual-plane hypercube. Similar improvements are confirmed from the results of the cycle level simulation. We also examine the dual-plane isomorphic folded-hypercube network. Finally, we discuss the effect of longer cable length caused by the isomorphic network on the network cost and latency.

References

  1. N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. A. Bright, J. Brunheroto, C. Cascaval, J. Castanos, W. Chan, L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. M. Cipolla, P. Crumley, K. M. Desai, A. Deutsch, T. Domany, M. B. Dombrowa, W. Donath, M. Eleftheriou, C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain, M. E. Giampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. A. Haring, D. Heidel, P. Heidelberger, L. M. Herger, D. Hoenicke, R. D. Jackson, T. Jamal-Eddine, G. V. Kopcsay, E. Krevat, M. P. Kurhekar, A. P. Lanzetta, D. Lieber, L. K. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti, L. Mok, J. E. Moreira, B. J. Nathanson, M. Newton, M. Ohmacht, A. Oliner, V. Pandit, R. B. Pudota, R. Rand, R. Regan, B. Rubin, A. Ruehli, S. Rus, R. K. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song, V. Srinivasan, B. D. Steinmacher-Burow, K. Strauss, C. Surovic, R. Swetz, T. Takken, R. B. Tremaine, M. Tsao, A. R. Umamaheshwaran, P. Verma, P. Vranas, T. J. C. Ward, M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak, C. T. Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel, M. K. Seager, J. S. Vetter, and K. Yates. 2002. An Overview of the BlueGene/L Supercomputer. In SC '02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. 60--60. https://doi.org/10.1109/SC.2002.10017Google ScholarGoogle ScholarCross RefCross Ref
  2. Kevin J. Barker, Alan Benner, Ray Hoare, Adolfy Hoisie, Alex K. Jones, Darren K. Kerbyson, Dan Li, Rami Melhem, Ram Rajamony, Eugen Schenfeld, Shuyi Shao, Craig Stunkel, and Peter Walker. 2005. On the Feasibility of Optical Circuit Switching for High Performance Computing Systems. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC '05). IEEE Computer Society, Washington, DC, USA, 16--. https://doi.org/10.1109/SC.2005.48Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Maciej Besta and Torsten Hoefler. 2014. Slim Fly: A Cost Effective Low-diameter Network Topology. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '14). IEEE Press, Piscataway, NJ, USA, 348--359. https://doi.org/10.1109/SC.2014.34Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid Gurvits. 2001. Using multi-rail networks in high-performance clusters. In Proceedings 2001 IEEE International Conference on Cluster Computing. 15--24. https://doi.org/10.1109/CLUSTR.2001.959946Google ScholarGoogle ScholarCross RefCross Ref
  5. A. R. Curtis, T. Carpenter, M. Elsheikh, A. LÃşpez-Ortiz, and S. Keshav. 2012. REWIRE: An optimization-based framework for unstructured data center network design. In 2012 Proceedings IEEE INFOCOM. 1116--1124. https://doi.org/10.1109/INFCOM.2012.6195470Google ScholarGoogle ScholarCross RefCross Ref
  6. COLFAX DIRECT. 2019.. Retrieved July 31, 2019 from https://colfaxdirect.com/store/pc/home.aspGoogle ScholarGoogle Scholar
  7. Hewlett Packard Enterprise. 2019. HPE SGI 8600 System. Retrieved July 31, 2019 from https://www.hpe.com/jp/ja/product-catalog/detail/pip.hpe-sgi-8600-system.1010032504.htmlGoogle ScholarGoogle Scholar
  8. Nikhil Jain, Abhinav Bhatele, Louis H. Howell, David Böhme, Ian Karlin, Edgar A. León, Misbah Mubarak, Noah Wolfe, Todd Gamblin, and Matthew L. Leininger. 2017. Predicting the Performance Impact of Different Fat-tree Configurations. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '17). ACM, New York, NY, USA, Article 50, 13 pages. https://doi.org/10.1145/3126908.3126967Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. John Kim, William J. Dally, and Dennis Abts. 2007. Flattened Butterfly: A Cost-efficient Topology for High-radix Networks. In Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA '07). ACM, New York, NY, USA, 126--137. https://doi.org/10.1145/1250662.1250679Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA '08). IEEE Computer Society, Washington, DC, USA, 77--88. https://doi.org/10.1109/ISCA.2008.19Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank Hsu, and Henri Casanova. 2012. A Case for Random Shortcut Topologies for HPC Interconnects. In Proceedings of the 39th Annual International Symposium on Computer Architecture (ISCA '12). IEEE Computer Society, Washington, DC, USA, 177--188. http://dl.acm.org/citation.cfm?id=2337159.2337179Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Charles E. Leiserson. 1985. Fat-trees: Universal Networks for Hardware-efficient Supercomputing. IEEE Trans. Comput. 34, 10 (Oct. 1985), 892--901. http://dl.acm.org/citation.cfm?id=4492.4495Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K. Panda. 2004. Building Multirail InfiniBand Clusters: MPI-Level Design and Performance Evaluation. In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing (SC '04). IEEE Computer Society, Washington, DC, USA, 33--. https://doi.org/10.1109/SC.2004.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Satoshi Matsuoka. 2017. TSUBAME3 and ABCI: Supercomputer Architectures for HPC and AI/BD Convergence. Retrieved July 31, 2019 from http://on-demand. gputechconf.com/gtc/2017/presentation/S7813-Matsuoka-scalable.pdf.pdfGoogle ScholarGoogle Scholar
  15. Jayaram Mudigonda, Praveen Yalagandula, and Jeffrey C. Mogul. 2011. Taming the Flying Cable Monster: A Topology Design and Optimization Framework for Data-center Networks. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference (USENIXATC'11). USENIX Association, Berkeley, CA, USA, 8--8. http://dl.acm.org/citation.cfm?id=2002181.2002189Google ScholarGoogle Scholar
  16. NASA. 2019. Pleiades Supercomputer. Retrieved July 31, 2019 from https://www.nas.nasa.gov/hecc/resources/pleiades.htmlGoogle ScholarGoogle Scholar
  17. Tom Papatheodore. 2018. Summit System Overview. Retrieved July 31, 2019 from https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdfGoogle ScholarGoogle Scholar
  18. Mellanox Technologies. 2017. Deploying HPC Cluster with Mellanox InfiniBand Interconnect Solutions. Retrieved July 31, 2019 from http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-interconnect-solutions-archive.pdfGoogle ScholarGoogle Scholar
  19. Mellanox Technologies. 2018. SB7700 InfiniBand EDR 100Gb/s Switch System. Retrieved July 31, 2019 from http://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7700.pdfGoogle ScholarGoogle Scholar
  20. Noah Wolfe, Misbah Mubarak, Nikhil Jain, Jens Domke, Abhinav Bhatele, Christopher D. Carothers, and Robert B. Ross. 2017. Preliminary Performance Analysis of Multi-rail Fat-tree Networks. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid '17). IEEE Press, Piscataway, NJ, USA, 258--261. https://doi.org/10.1109/CCGRID.2017.102Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dual-Plane Isomorphic Hypercube Network

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          HPCAsia '20: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region
          January 2020
          247 pages
          ISBN:9781450372367
          DOI:10.1145/3368474

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 January 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate69of143submissions,48%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader