COLAB: A Collaborative Multi-factor Scheduler for
Asymmetric Multicore Processors

Teng Yu
yutxie@hotmail.com
University of St Andrews
St Andrews, UK

Hugh Leather
hleather@ed.ac.uk
University of Edinburgh
Edinburgh, UK

Abstract

Increasingly prevalent asymmetric multicore processors (AMP)
are necessary for delivering performance in the era of limited
power budget and dark silicon. However, the software fails
to use them efficiently. OS schedulers, in particular, handle
asymmetry only under restricted scenarios. We have efficient
symmetric schedulers, efficient asymmetric schedulers for
single-threaded workloads, and efficient asymmetric sched-
ulers for single program workloads. What we do not have
is a scheduler that can handle all runtime factors affecting
AMP for multi-threaded multi-programmed workloads.

This paper introduces the first general purpose asymmetry-
aware scheduler for multi-threaded multi-programmed work-
loads. It estimates the performance of each thread on each
type of core and identifies communication patterns and bot-
tleneck threads. The scheduler then makes coordinated core
assignment and thread selection decisions that still provide
each application its fair share of the processor’s time.

We evaluate our approach using the GEM5 simulator
on four distinct big.LITTLE configurations and 26 mixed
workloads composed of PARSEC and SPLASH2 benchmarks.
Compared to the state-of-the art Linux CFS and AMP-aware
schedulers, we demonstrate performance gains of up to 25%
and 5% to 15% on average depending on the hardware setup.

CCS Concepts « Computer systems organization —
Multicore architectures; Real-time operating systems; « Soft-
ware and its engineering — Runtime environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CGO °20, February 22-26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7047-9/20/02...$15.00
https://doi.org/10.1145/3368826.3377915

Pavlos Petoumenos
pavlos.petoumenos@manchester.ac.uk
University of Manchester
Manchester, UK

Vladimir Janjic
vj32@st-andrews.ac.uk
University of St Andrews
St Andrews, UK

John Thomson
j.thomson@st-andrews.ac.uk
University of St Andrews
St Andrews, UK

Keywords Asymmetric Multicore Processor, OS Scheduler,
Multi-threaded Multi-programmed Workloads

ACM Reference Format:

Teng Yu, Pavlos Petoumenos, Vladimir Janjic, Hugh Leather, and John
Thomson. 2020. COLAB: A Collaborative Multi-factor Scheduler
for Asymmetric Multicore Processors. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Op-
timization (CGO °20), February 22-26, 2020, San Diego, CA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3368826.
3377915

1 Introduction

Energy and power constraints are central in designing new
processors. Most processors will end up in energy-limited
devices, such as smartphones and IoT sensors. The power
wall limits how much switching activity we can have on each
chip. In such a setting, heterogeneous systems provide energy-
efficeint processing for different types of workloads [25].

Initial heterogeneous systems combined, usually distinct,
devices with different Instruction Set Architectures (ISA)
but single-ISA asymmetric multicore processors (AMP) are
becoming increasingly popular. AMPs introduce new op-
portunities and challenges. Since all processors share the
same ISA, we do not have to prematurely tie a program’s
implementation to a specific type of processor. We can let
the OS scheduler make this decision at runtime, based not
only on which processor is appropriate for the workload but
also based on which processors are under-utilized. On the
other hand, this introduces an extra degree of freedom to
the already complex scheduling decision space. As a result,
efficient AMP scheduling has attracted a lot of attention in
the literature [22]. The three main factors influencing the
decisions of a general purpose AMP scheduler are:

Core sensitivity: Each core type is designed to handle dif-
ferent kinds of workloads. For example, in ARM big LITTLE
systems big cores serve latency-critical workloads or work-
loads with Instruction Level Parallelism (ILP). Running other
kinds of workloads on them would not improve performance

https://doi.org/10.1145/3368826.3377915
https://doi.org/10.1145/3368826.3377915
https://doi.org/10.1145/3368826.3377915

CGO 20, February 22-26, 2020, San Diego, CA, USA

significantly while consuming more energy. To build an ef-
ficient AMP scheduler, we need to predict which threads
would benefit the most from running on each kind of core.

Thread criticality: Executing a thread faster does not
always translate into better performance. If the threads of
the application are unbalanced or are executed at different
speeds, e.g. because different threads run on different types
of cores, the application will be only as fast as the most
critical thread. A good AMP scheduler would accelerate that
thread as much as possible, regardless of core sensitivity.

Fairness: In multiprogrammed environments, making
decisions to accelerate each application in isolation is not
enough. Decisions should not only improve the utilization
of the system as whole, but should also not penalize any
application disproportionately. Ideally, we need to spread
the negative impact of resource sharing equally across all
applications, we need fairness. For traditional systems this is
easy: just give applications CPU slots of equal time in a round
robin manner. AMPs make this simple solution unworkable.
The same amount of CPU time results in completely different
amounts of work on different processors.

Prior research [7, 8, 10, 13, 27] has explored bottleneck
and critical section acceleration, others have examined fair-
ness [20, 21, 29, 30, 33], or core sensitivity [2, 6, 19]. More
recent studies [14-16, 24, 28] have improved on previous
work by optimizing for multiple factors. Such schedulers are
good only for specific kinds of workloads. Only one previous
work, WASH [12], can handle general workloads composed
of multiple programs, each one single- or multi-threaded,
with potentially unbalanced threads, and with a total num-
ber of threads that may be higher than the number of cores.
While a significant step forward, WASH only controls core
affinity and does so through a very fuzzy heuristic. The for-
mer means that we cannot handle core allocation and thread
dispatching holistically to speed up the most critical threads.
The latter means that WASH has only limited control over
which threads run where, leaving much of the actual decision
making to the underlying Linux CFS scheduler.

Motivating Example: To demonstrate the problem, con-
sider the example shown in Figure 1, with an AMP system
that has a high performance big core, P, and a low perfor-
mance little core, P;. Three applications are being executed -
a and f that have two threads, and y that is single threaded.
The first thread of each application, ¢; and f;, blocks the
second thread of their application, a; and f,, respectively. oy
and y enjoy a high speedup when executed on P,. WASH [12],
the existing state-of-the-art multi-factor heuristic, would be
inclined to assign the high speedup thread and the two block-
ing threads to the big core. The thread selector of P, has no
information about the criticality of the threads assigned to it,
so the order of execution depends on the underlying Linux
scheduler. A much better solution is possible if we control
both core allocation and thread selection in a coordinated,
AMP-aware way. In this case, we map the two threads that

Teng Yu, et al.

a 2-thread program where thread a1 has

a (a1,a2) high speedup and blocks thread az

. —> Speedup priority

B(B1,B) — Zé;t/ﬁwsretiife ggog;am where thread B1 o— Block priority

H — Speedup & Block

Y — a single-thread program with H . peiorityp
highspeedup H

Runtime Scheduling

Multi-factor Multi-factor
mixed Model Coordinated Model
All high priorities High priorities
threagdsponly on threads distributed
Core big cores on both cores
Allocation:
» 900 » 9@
P a B2 P: B) a2 p2
idali Detailed guidelines
No guideline from
slllrcet?gw .. RG] et coorc}{n:;etc:]model
e (@08 VY i @ @
PL? {ap } P1—(@)—~{oz 52}

Figure 1. Motivating Example: Multi-threaded multipro-
grammed workload on asymmetric multicore processors
with one big core Pp, and one little core P;. Controlling only
core affinity results in suboptimal scheduling decisions.

benefit the most from the big core, y and «a;, to P, while
we map the other bottleneck thread, 1, to P;. This will not
impact the overall performance of . The thread selector
knows f; is a bottleneck thread and executes it immediately.
So, what we lose in execution speed for f;, we gain in not
having to wait for CPU time. Similarly, this coordinated pol-
icy guarantees that a; will be given priority over y.

In this paper, we introduce COLAB, an OS scheduling pol-
icy for asymmetric multicore processors that can make such
coordinated decisions. Our scheduler uses three collaborat-
ing heuristics to drive decisions about core allocation, thread
selection, and thread preemption. Each heuristic optimizes
primarily one of the factors affecting scheduling quality: core
sensitivity, thread criticality, and fairness respectively. Work-
ing together, these multi-factor heuristics result in much
better scheduling decisions. We integrated COLAB in the
Linux scheduler module, replacing the default CFS policy
for all application threads. The main contributions of our
work are: (1) The first AMP-aware OS scheduler targeting
general multi-threaded multiprogrammed workloads. (2) A
set of collaborative heuristics for prioritizing thread based
on core sensitivity, thread criticality, and fairness. (3) Up to
25% and 21% lower turnaround time, 11% and 5% on average,
compared to the Linux CFS and WASH scheduler.

2 Background and Related Work

Initially described by Kumar et al. [17, 19], single-ISA het-
erogeneous multicore processors allow for more efficient
processing, but to realize this we need the OS scheduler to
match threads with cores more suited to their requirements.
A straightforward way to determine good matches is based
on the IPC of the application on each kind of core. While

COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

Table 1. Qualitative Analysis on Related Work

Approaches Core Fairness Bottle- Collaborative
Sens. neck

Kumar, et al [19] v

Li, et al [20] v

Suleman, et al. [27] v

Saez, et al. [24] v v

Craeynest, et al. [28] v

Cao, et al. [6] v

Joao, et al [14] v v

ARM [11] v v

Kim, et al [16] v v

Jibaja, et al [12] v v v

COLAB v v v v

easy to understand and perform, IPC is a reliable metric of
performance only for single threaded applications, the eval-
uation of all possible mappings might be lengthy, and it will
be affected by resource sharing and phase changes.

To work around some of these problems, other approaches
have used performance models to predict the speedup due to
executing a thread on another core type. Saez et al. [24] build
such a model based on ILP and LLC miss rates, Craeynest et
al. [29] used CPI stack, ILP, and MLP, while Jibaja et al [12]
applied Principal Component Analysis to select the perfor-
mance counters most closely correlated with performance
and built a linear model out of them. In all cases, the predicted
speedup is used to decide Core Sensitivity, how sensitive the
thread’s performance is on the type of core used. The more
sensitive threads are assigned to high performance cores
exclusively, the rest can be assigned to any type of core.

Acceleration of bottleneck and critical threads is also nec-
essary for high performance on AMPs. Kumar et al. [18]
early on identified the benefit of executing Amdahl’s serial
bottlenecks on high performance cores, while executing par-
allel code in low performance, low power cores. Suleman et
al. [27] proposed accelerating critical code sections too, in
order to minimize the time a thread works on shared data
and keep such data on the big core caches. Joao et al. [13, 14]
generalized this idea by identifying and accelerating bottle-
neck functions dynamically. Using programmer hints and
hardware support, they measure the number of cycles spent
by each thread waiting on data from a (potential) bottleneck
function. If above a waiting cycle threshold, the function
is accelerated. Jibaja et al. [12] proposed finding bottleneck
Java threads by measuring waiting time on contended locks.

Maintaining scheduling fairness is an additional challenge
introduced by AMPs. Fair schedulers try to balance the pro-
cessing time given to each thread, process, or process group.
Most implementations regard all sources of processing time
as equivalent, which is not the case with AMPs. Li et al [21]
introduced asymmetry-aware load balancing where the load
assigned to each core is proportional to its processing power.

CGO 20, February 22-26, 2020, San Diego, CA, USA

Runtime Factor Scheduler Element

Core Sensitivity Factor Relative Speedup
A ore Allocator ---
avaend®® c
\LO
Fairness Factor
Relativg equar.
“Progress Thread Selector
10 i
ok acee®”® i
Bottleneck Factor “gote™®
A
Avoid mixed priority

Avoid inefficient migrations

Figure 2. A diagram of Performance Factors and Relation-
ships with Scheduling Functions

Craeynest et al. [28] built an equal progress scheduler. Us-
ing their performance model they were able to estimate the
amount of small core processing time that each core should
be given to progress as much as it has. The scheduler then pri-
oritized threads so that the progress of all threads is the same.
Multiple other scheduling heuristics have tried to maximize
fairness on AMPs [16, 30, 33] but for restricted scenarios.

Among all previous work on AMP schedulers, only ARM
GTS [11], Kim and Huh [16] and Jibaja et al. [12] targeted
the general case of multi-threaded multi-programmed work-
loads. ARM GTS only controls the affinity of threads based
on each thread’s load average. High load threads run on big
cores, low load threads run on little cores. GTS does not
handle other aspects of heterogeneous scheduling, such as
fairness and inter-thread communication. The uniformity
fairness policy used in [16] focuses only on fairness and core
sensitivity, without provision for bottleneck acceleration.
WASH [12] is the closest existing scheduler to ours. It han-
dles core sensitivity, bottlenecks, and maintains fairness for
the general scheduling case but controls only core affinity,
leaving all other decisions to the baseline Linux scheduler.
We use a WASH-like implementation for the Linux scheduler
as our state-of-the-art. A summary with qualitative compar-
ison on the related work is shown in Table 1.

3 Multi-factor Coordinated Scheduler

In this section we analyze the performance impact of multi-
ple runtime performance factors and their relationship with
different scheduler components. We then build a scheduler
which addresses these performance problems in a coordi-
nated way.

3.1 Runtime Factor Analysis

Figure 2 shows the relationship between runtime perfor-
mance factors and the scheduler components that address
them. In order to achieve runtime collaboration, both the
core allocator and the thread selector share information and
account for all measured performance factors, including core

CGO 20, February 22-26, 2020, San Diego, CA, USA

sensitivity, bottleneck acceleration and fairness,as illustrated
below:

Core Allocator: AMP-aware Core allocators are mainly
directed by the core sensitivity factor — migrating a high
speedup thread (with a large differential between big and lit-
tle core execution time) from a little core to execute on a big
core will generally provide more benefit than migrating a low
speedup thread. However this heuristic is overly simplistic.
Issues are revealed when the bottleneck factor is considered
simultaneously on multiprogrammed workloads. Previous
approaches [12] simply combine the calculation from bottle-
neck acceleration and predicted speedup together, but this
can result in suboptimal scheduling decisions - both locking
threads and high speedup threads may be accumulating in
the runqueues of big cores as described in the motivating
example. More intelligent core allocation decisions can be
made by avoiding a simple combination of bottleneck accel-
eration and speedup - the overall schedule can benefit from
a more collaborative execution environment where big cores
focus on high speedup bottleneck threads, and little cores
handle other low speedup bottlenecked threads without ad-
ditional migration. Furthermore, core allocators attempt to
achieve relative fairness on AMPs by efficiently sharing het-
erogeneous hardware and avoiding idle resources as much as
possible. Simply mapping ready threads uniformly between
different type of cores can not achieve true load-balancing -
the number of ready threads prioritized on different type of
core is different and thus a hierarchical allocation should be
applied to guarantee overall fairness, which avoids the need
to frequently migrate threads to empty runqueues.

Thread Selector: The thread selector makes the final de-
cisions on which thread will be executed during runtime. It
is usually the responsibility of the thread selector to avoid
bottlenecking by thread blocking. In a multi-thread multi-
programmed environment, multiple bottleneck threads from
different programs may need to be accelerated simultane-
ously with constrained hardware resources. Instead of simply
detecting the bottleneck threads and assigning all of them
to big cores, as previous bottleneck acceleration schedulers
do [12-14], the thread selector needs to make collaborative
decisions — ideally, both big cores and little cores select bot-
tlenecks to run simultaneously. Core sensitivity is usually
unimportant to the thread selector — whether a thread can
enjoy a high speedup from a big core compared with a little
core is unrelated to which runqueue it is on, or came from.
Therefore the thread selector should separate thread priority
caused by core sensitivity and solely base decisions on bottle-
neck acceleration. One exception is that when the runqueue
of a big core is empty and the thread selector is invoked -
the speedup factors from core sensitivity of ready threads
should be considered only in this case. Big cores may even
preempt the execution of little cores when necessary. The
final concern of thread selector concerns fairness. Scaling
time slice of threads by updating the time interval of thread

Teng Yu, et al.

Models. > Multi-factor Thread Label :":.Relative

Speedup, i Equal-Progress
Blocking Counts i

Core Allocator Thread Selector

Big Cores Priority: High_Speedup
_______ [High_blocking High Priority
Local_waiting
Little Cores Priority: Low_Speedup o} ——————
4 + Low_blocking
[global_running Low Priority

Periodically Updating
Performance Counters

Relative H
% Load-Balancing

Co-execution of Multi-threaded
Multiprogramed Workloads

Figure 3. Coordinated Model by Multi-factor Collaboration

selector has been shown to efficiently guarantee the equal
progress [28] in multi-threaded single-program workloads
and achieve fairness. Problems occur when targeting multi-
threaded multi-programmed workloads. Simply keeping a
thread-level equal progress is not enough to guarantee the
multi-application level fairness — the thread selector should
ensure the whole workload is in equal progress without pe-
nalizing any individual application. In fact, multi-bottleneck
acceleration by both big and little cores does provide an
opportunity for this - the thread selector makes the best
attempt to keep fairness on all applications by accelerating
bottlenecks from all of them and as soon as possible.

3.2 Collaboration

To address the problems detailed above, we designed a coor-
dinated multi-factor scheduler in which the core allocator
and the thread selector collaborate to achieve high perfor-
mance and high fairness, when compared to WASH [12]. The
flowchart of our model is shown in Figure 3. Collaboration
is facilitated by periodically labeling ready threads in two
different categories, based on runtime models of speedup
prediction and bottleneck identification:

Labels for Core Allocation: Threads with high predicted
speedup between big and little cores will be labeled as high
priority on big cores. Threads with both low predicted speedup
and blocking levels — non-critical threads — will obtain high
priority on little cores (and low priority on big cores). Re-
maining threads obtain equal priority on either big or little
cores — these threads can then be allocated freely to balance
the load of cores.

Labels for Thread Selection: Threads with high blocking
level will be labeled as high priority on local thread selection.
The same priority will be given on these blocking threads
whether the issuing cores are big or little, so the labels of
thread selection do not distinguish the type of cores.The
label nevertheless records the type of the current core -
threads always have priority to be selected by the same type
of cores if there exists a core of the same type with an empty
runqueue. Running threads on little cores are also labeled as
they may be preempted to migrate and execute on big cores

COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

when suited, but running threads will never have priority
over waiting ready threads.

After the labeling process, fairness, core sensitivity and
bottleneck acceleration are represented by labels on threads
can be handled by either the core allocator or the thread
selector or both together. Based on this coordinated model,
the core allocator and thread selector handle different priori-
ties queues from the set of ready threads — their decisions
are not greedy on a mixed multi-factor ranking like WASH,
rather provide a collaborative schedule. Another important
issue handled by the collaborative multi-factor model is to
ensure equal-progress of threads as shown in the upper-right
corner of Figure 3. Instead of interfering with the priority
and decisions of thread selection, we achieve equal progress
in threads by our scaled time slice approach, based on the
predicted speedup value of threads running on big cores. The
slices of threads on big cores are relative shorter than on little
cores. The thread selection function is triggered more often
to swap executing threads on big cores, which guarantees
the relative equal-progress of threads executed on all cores.
The runtime model periodically extracts the performance
counters, which represents the current execution environ-
ment of multi-threaded multi-programmed workloads on
the AMPs. The model then computes the updated runtime
factors, including the predicated speedup value and block-
ing counts. This information is attached to the threads and
reported back to the multi-factor labeler for next round. We
present our runtime implementations in the section below.

4 Runtime Design and Implementation

We implement our approach on the GEM5 simulator [5],
modifying the simulator and constructing interfaces between
the Linux kernel v3.16 with the CFS scheduler.

4.1 Runtime Factors Implementations

To implement the runtime multi-factor model, we update
the main scheduler function __sched__schedule() of the
Linux kernel by adding a thread labeling process as described
in section 3.2 above. A similar approach is followed by our
WASH re-implementation when updating thread affinities.
Machine Learning based Speedup Prediction: Predict-
ing the relative speedup of each thread between different
core types is central for any scheduler targeting AMPs. Our
prediction uses an offline trained speedup model to estimate
speedups online. This is a common approach in previous
works [12, 24, 28]. To construct the training set, we run all
applications in single-program mode with two symmetric
configurations, using either only little cores or only big cores.
We first record all 225 performance counters of the simulated
big cores and the relative speedup between the two configu-
rations. Since on a real system, we do not have access to all
performance counters simultaneously, we apply Principal
Component Analysis (PCA) technique [31] to select the six
performance counters with the largest effect on speedup
modeling. We then normalize all counters to the number of

CGO 20, February 22-26, 2020, San Diego, CA, USA

Table 2. Selected performance counters and Speedup Model

Selected GEM5 performance counters by PCAT
Index | Name Description [5]
fp_regfile_writes # integer regfile writes

fetch.Branches # branches encountered
rename.SQFullEvents # SQ-full blocks
quiesceCycles # interrupt waiting cycles

dcache.tags.tagsinuse # tags of dcache in use
fetch.IcacheWaitRetryStallCycles | # MSHR-full stall cycles
commit.committedInsts # instructions committed

QIO OF >

Linear predictive speedup model
2.6109+((0.0018*-0.185A)+(0.0259*0.187B)+
(0.10470.194C)+(-0.023+0.238D)+(0.0492*-0.299E) +(-0.1388*-0.227F))/G

committed instructions and use linear regression to build
the final model, shown in Table 2.

Bottleneck Identification: On modern Linux systems
synchronization primitives are almost always implemented
using kernel futexes, regardless of the threading library used.
Futex-based mechanisms use a single atomic instruction in
user space to acquire or release the futex, if it is uncontested.
Otherwise, it triggers system calls to forces the thread to
sleep or to wake up sleeping threads. This gives us a conve-
nient single point for monitoring blocking patterns between
threads. We first add code in futex_wait_queue_me() and
futex_lock_pi(), right before the active thread starts wait-
ing on a futex. We record the current time and store it
in the task_struct of the thread. We then insert code in
wake_futex() and wake_futex_pi(), right before the wait-
ing task is woken up by the thread releasing the futex. There
we calculate the length of the waiting period and we accumu-
late it in the task_struct of the thread releasing the futex.
This way we are able to measure the cumulative time each
thread has caused other threads to wait. We use this as our
metric of thread criticality for the rest of the paper.

Speedup based Scale-slice Preemption: Although we
implement our scheduler on Linux kernel by fully re-writing
both the core allocator and thread selector, the underlining
preemption mechanism of Linux is applying the virtual run-
time vruntime in CFS with red-black tree data structure -
whenever a new task is enqueued, a preemption wake-up
function is invoked to check whether the new coming task
should preempt the current task by computing the difference
in vruntime and comparing with a boundary. To achieve
equal-progress on AMPs, threads running on different types
of cores should have different time slices instead of trying
to achieve complete fairness on time. We update the default
preemption function wakeup_preempt_entity() in Linux
by constructing an interface to the GEM5 simulator. To en-
sure relative equal progress, we apply our runtime speedup
model to update the vruntime of the task by dividing it by
the its speedup value if the triggering core is a big core.

4.2 Scheduling Algorithm Implementation

CGO 20, February 22-26, 2020, San Diego, CA, USA

Algorithm 1 Collaborative Multi-factor Scheduler targeting
Asymmetric Multicore Processors

_core_alloctor_(thread_struct t){
if thigh_speedup

return rr_allocator_(big_cores)
if tlow_speedup & tlow_block

return rr_allocator_(little_cores)
else return rr_allocator_(cores) }
_thread_selector_(core_struct c){
if lempty(c.rq)

return max_block_(c.rq)
if lempty(c.sched_domain.rq)

return max_block_(c.sched_domain.rq)
if c.cpu_mask == big

return max_block_(c.sched_domain_little.cur)
else return idle }

Our scheduling algorithm (see Alg. 1) is implemented by over-
riding the default task selector pick_next_task_fair()
and core allocator select_task_rq_fair() in Linux kernel
supported by the runtime factors. In line with standard Linux
notation, we use rq and cur to represent runqueue and the
current task of a core, respectively. We describe the two main
functions followed by a discussion on scheduling overhead:
Hierarchical Core Allocator: When a spawned or wo-
ken thread is ready to be executed, the core allocator will be
invoked to assign this thread to a core’s runqueue. To achieve
relative load balancing and consider the influence from the
core sensitivity factor, we involve a hierarchical round-robin
mechanism rr_allocator_().Indicated by the speedup and
blocking labels, threads are allocated to different core groups.
Threads with high speedup will be round-robin assigned in
big core clusters. Low speedup and low blocking threads
will only be assigned in little core clusters. Remaining ready
threads (usually with average speedup level and little block-
ing) will be relatively equally allocated to both core types by
rr_allocator_(). This final round-robin decision helps to
keep both core clusters equally occupied and load balanced.
Biased-global Thread Selector: The thread selector is
based on the principle of accelerating the most critical/blocking
thread as soon as possible. The selector always tries to choose
a thread from the local runqueue first. When there are no
ready threads and migration is beneficial, the core triggers
the migration of a candidate thread waiting in another run-
queue. The highest blocking thread will be selected. To re-
duce the overhead of accessing state in other runqueues, we
follow the same principle as the default Linux CFS scheduler,
returning the best candidate thread from the local core group
first. Further, we allow a big core to select and preempt a
running thread on a little core to accelerate it. Big cores are
allowed to go idle only when there is no ready thread left -
for instance, we do not allow a little core to preempt a big
core’s execution. The equal-progress for achieving fairness
is addressed by the scale-slice preemption checker — we give

Teng Yu, et al.

each thread a maximum time slice relative to its expected
performance on the asymmetric core.

Scheduling Overhead: The overhead of the performance
model is small. It is updated only every 10 msec and it re-
quires the evaluation of the linear regression equation for
each thread. To maintain per task performance counter infor-
mation we need to access the hardware performance coun-
ters every time we context switch. The cost of doing so is
negligible, around 100 cycles on big.LITTLE. The rest of
scheduling overhead comes from labeling all threads based
on predicted speedup and blocking level every 10 msec. This
is similar to the scheduling overhead of WASH and is infre-
quent enough to not affect us.

5 Experimental Evaluation
5.1 Experimental Setup

Experimental Environment: We ran our experiments on
GEMS5, simulating an ARM big.LITTLE-like architecture. The
big cores are similar to out-of-order 2 GHz CortexA57 cores,
with a 48 KB L1 instruction cache, 32 KB L1 data cache and 2
MB L2 cache. The little cores are similar to in-order 1.2 GHz
CortexAb53 ones, with a 32 KB L1 instruction cache, 32 KB L1
data cache and 512 KB L2 cache. We evaluated four distinct
hardware configurations: 2B2S, 2B4S, 4B2S, 4B4S, where B
denotes big cores and S denoted little cores. We chose to
use a simulated environment to make it easier to evaluate
our approach on multiple different hardware configurations.
While we targeted simulated ARM cores, the underlying
general procedure and model can be implemented on any
real processor as long as they provide enough hardware
performance monitor units (PMU). All hardware counters
used by our model are supported by the real ARM Cortex-
A57/A53 [1] PMU.

Table 3. Benchmarks categorization [4, 26, 32]

Name Sync. Rate Comm/Comp Ratio
blackscholes low high
bodytrack medium high
dedup medium high
ferret high medium
fluidanimate very high low
freqmine high high
swaptions low low
radix low high
lu_ncb low low
lu_cb low low
ocean_cp low low
water_nsquared | medium medium
water_spatial low low
fmm medium low

ftt low high

COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors CGO 20, February 22-26, 2020, San Diego, CA, USA

Table 4. Multi-programmed Workloads Compositions

Synchronization-intensive VS Non-synchronization-intensive Workloads

Index Workload Composition Synchronizations Threads

Sync -1 water_nsquared - fmm intensive 4

Sync - 2 dedup - fluidanimate intensive 18

Sync - 3 water_nsquared - fmm - fluidanimate - bodytrack | intensive 9

Sync - 4 dedup - ferret - fmm - water_nsquared intensive 20

NSync - 1 water_spatial - lu_cb non-intensive 4

NSync - 2 blackscholes - swaptions non-intensive 16

NSync - 3 radix - fft - water_spatial - lu_cb non-intensive 8

NSync - 4 blackscholes - ocean_cp - lu_ncb - swaptions non-intensive 20
Communication-intensive VS Computation-intensive Workloads

Index Workload Composition Comm/Comp Threads

Comm - 1 water_nsquared - blackscholes Communication-intensive | 4

Comm - 2 ferret - dedup Communication-intensive | 16

Comm - 3 water_nsquared - fft - radix - bodytrack Communication-intensive | 9

Comm - 4 blackscholes - dedup - ferret - water_nsquared Communication-intensive | 20

Comp - 1 water_spatial - fmm Computation-intensive 4

Comp - 2 fluidanimate - swaptions Computation-intensive 17

Comp -3 lu_ncb - fmm - water_spatial - lu_cb Computation-intensive 8

Comp - 4 fluidanimate - ocean_cp - lu_ncb - swaptions Computation-intensive 20

Random-mixed Multi-programmed Workloads

Index Workload Composition Threads|| Index Workload Composition Threads

Rand - 1 lu_cb - dedup 19 Rand - 6 | water_spatial - fmm - fft - fluidanimate 21

Rand - 2 Iu_ncb - bodytrack 10 Rand - 7 fmm - water_spatial - ferret - swaptions 20

Rand - 3 ferret - water_spatial 9 Rand - 8 | water_spatial - water_nsquared - ferret - freqmine | 17

Rand - 4 ocean_cp - fft 8 Rand - 9 blackscholes - bodytrack - dedup - fluidanimate | 55

Rand -5 freqmine - water_nsquared | 6 Rand - 10 | lu_cb - lu_ncb - bodytrack - dedup 53

Workloads: For our workloads we used 15 different bench-
marks (Table 3), pulled from PARSEC3.0 [3] and SPLASH2 [32].
To keep the simulation time reasonably short, we use the
simsmall inputs. We group the benchmarks based on two
criteria: a) synchronization intensity and b) communication
vs computation intensity. For each group, we randomly gen-
erate workloads with variable numbers of benchmarks and
threads. These workloads allow us to investigate the behav-
ior of the three scheduling policies under different extremes.
To explore the general case of scheduling for an AMP system,
we also randomly generate 10 workloads with benchmarks
from all groups. Table 4 shows the selected workloads. For
all of them, the experiment starts from a checkpoint taken
after all benchmarks have completed their initialization.

Each individual result represents the average over two
simulations with different core orders - either big cores first
or little cores first. Even small variations in the initial state
of the system can have a significant effect on scheduling
decisions and thus performance. For the Linux scheduler R R
1nhpart1cular, the ord?r of ?t%l’.tlng begchmarks yvﬂl de?lde H ANTT = 1 Z T;, H STP = Z T,_
which benchmarks will be initially assigned to big and little n £ TSB i TM
cores. By varying the initial state and measuring average s s
runtimes over multiple simulations, we minimize the effect
of randomness on our evaluation.

Turnaround Time (H_ANTT) and Heterogeneous System Through-
put (H_STP). They are based on ANTT and STP, as intro-
duced in [9]. Both ANTT and STP use as their baseline the
runtime of each application when executed on its own, i.e.
when there is no resource sharing and scheduling decisions
have little effect. ANTT is the average slowdown of all appli-
cations in the mix relative to their isolated baseline runtime.
STP is the sum of the throughputs of all applications, relative
to their isolated throughput.

For AMPs, these two metrics fail to work as intended. The
runtime when executed alone is still affected by scheduling
decisions, e.g. which threads to run on big cores. To overcome
the problem, our modified metrics H_ANTT and H_STP use
the runtime of each application in the mix when executed
alone on a system where there are only big cores. If the turn-
around time of each application i while being co-scheduled is
TM and the turnaround time for the same application when
running alone on a big-only system is T2, then:

When we evaluate a single benchmark on its own, we use
the Heterogeneous Normalized Turnaround Time (H_NTT):
Metrics: Our evaluation uses two metrics to quantify

M
scheduling efficiency: Heterogeneous Average Normalized H NTT = T
= TSB

CGO 20, February 22-26, 2020, San Diego, CA, USA

Heterogeneous Normalized Turnaround Time

HLINUX mWASH mCOLAB
3.5

11.5
0

H_NTT
.

§F L @ & & c‘}‘ 3 R &
SFFSF T FFTSITEF I EE
N s & Q F & ¢ S
A NN t{" & ¢ ¢
& 9 \3\ 3 o)
& S

Single-program worklads on the 2-big-2-little configuration

Figure 4. Performance of single program workloads on a
2-big 2-little system. Lower is better.

H_ANTT and H_NTT are better when lower, H_STP is bet-
ter when higher. For most figures, we further normalize our
results relative to the Linux CFS results for the same config-
uration and workload.

Schedulers: We evaluate COLAB by comparing it against
the default Linux CFS scheduler [23] and a state-of-the-art
realistic scheduler based on WASH [12]. CFS is the default
Linux scheduler and it provides fairness while trying to
maximize the overall CPU resource utilization. The origi-
nal WASH was implemented inside a Java VM to control
Java thread affinities. In our re-implementation of WASH,
we use the same heuristic but we drive it with a core sensi-
tivity model that fits the simulated system and we use it for
controlling all application threads.

5.2 Single-programmed Workloads

Much of the research on AMP scheduling focuses on single-
programmed workloads, where fairness and load balancing
are not important and the focus is on core sensitivity and
bottleneck acceleration. In this section, we examine how
COLAB fares under this scenario. Figure 4 shows H_NTT
under Linux (blue), WASH (red) and COLAB (violet), for
our multi-threaded benchmarks when executed alone on a
2-big-2-little hardware configuration. We do not consider
the three SPLASH2 benchmarks fimm, water_nsquared and
water_spatial, since they do not support more than 2 threads
with simsmall input size on GEM5 and scheduling them
optimally for performance is trivial.

The AMP-agnostic Linux scheduler is inappropriate for
most benchmarks. COLAB improves H_NTT by up to 58%
and by 12% on average and up to 173% over Linux CFS for
ferret, where most computation happens in a pipeline pat-
tern with unbalanced stages. AMP-aware schedulers take
advantage of that by scheduling the longest stages, the bot-
tleneck threads, on big cores. As a result, COLAB does only
13% worse than running on a system with four big cores.
Compared to WASH, COLAB achieves its best result for flu-
idanimate. Previous work [4] has shown that fluidanimate

Teng Yu, et al.

has around 100x more lock-based synchronizations than
other PARSEC applications. Our collaborative core alloca-
tion and thread selection policy is much better than WASH at
prioritizing bottleneck threads. As a result, we reduce turn-
around time by 30% compared to Linux and 20% compared
to WASH. In some cases, such as bodytrack, lu_ncb, or fre-
qmine, AMP-awareness has little effect on performance. Such
benchmarks split work dynamically between threads, which
then all have the same core sensitivity and the application
adapts automatically to asymmetries in processing speed.
AMP-aware policies offer no benefit while introducing over-
heads, as was also noted in [12]. The pipeline benchmark
dedup has five stages to stream the input set. When there
are more threads than available cores, both heterogeneous-
aware schedulers can not service the excess threads in time,
resulting in a certain impact on overall system performance.
There is only one case where COLAB performs significantly
worse than WASH. For swaptions, we perform as well as the
AMP-agnostic Linux scheduler while WASH improves turn-
around time by 31%. This is because the bottleneck threads
of swaptions are core insensitive while the non-bottleneck
threads are core sensitive. This being the ideal case for WASH,
it improves turnaround time while we fail to do the same.
On average, WASH and COLAB perform similarly well
and improve performance by 12% compared to Linux when
handling single program workloads. This is a limited sce-
nario, with no need for fairness and a simple decision space.
COLAB was not expected to perform much better than the
state-of-the-art, doing as well as it is a positive result.

5.3 Multi-programmed Workloads

The main aim of the COLAB scheduler is to target workloads
of multiple multi-threaded programs, which represents the
most general case for CPU scheduling. In this section, we
evaluate the performance of COLAB in this setting. Overall,
our scheduler is able to outperform both the Linux CFS and
WASH when there is room for improvement. This is par-
ticularly true when we have a limited number of big cores
and/or many communication-intensive benchmarks. In such
cases, we need to consider at the same time both core affinity
and thread bottlenecks. COLAB can do that, while CFS and
WASH cannot, leading to significant performance improve-
ments. In the rest of this subsection, we examine the behavior
of COLAB under four different hardware configurations for
the five different classes of workloads shown in Table 4.
Synchronization-intensive vs Synchronization Non-
intensive workloads: The synchronization-intensive group
contains workloads where all programs have high synchro-
nization rates. Because of this, we expect them to have a large
number of bottleneck threads, so COLAB should be able to
schedule them better than CFS and WASH. Conversely, syn-
chronization non-intensive workloads should provide few
opportunities for COLAB to improve on CFS and WASH.

COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

B WASH m COLAB
11

1.05

0.95
0.9
E]
£ 085
-
Ee os
zo
<& o7
g
E 07
2 & g & 2 g & g & g 8
el el Qo o (] e e o2 Q2 (]
w w < < £ w w i i £
o [=}
L3 L3
O] 0]
Sync N_Sync

x
3
£
3
oL
[

28
L'y
©
E
o
z

0 %) 1 123 c 0 1%} 0 1%} =4

N < N < [N < N < [

e el el o (] el e o e} [

w w i i £ w w i i £

o o

Q Q

O] (O]

Sync N_Sync

Figure 5. Performance of Synchronization-Intensive and
Non-Synchronization-Intensive Workloads. All results are
normalized to the Linux CFS ones. Lower is better for
H_ANTT and higher is better for H_STP.

Figure 5 show the performance of all three schedulers
for each workload class and hardware configuration. The
two plots show the average H_ANTT (top) and the average
H_STP (bottom). The left and right half of each plot con-
tain the results for the synchronization-intensive (Sync) and
synchronization non-intensive (N_Sync) workload classes,
respectively. The results agree with our expectations. We
observe that COLAB improves the turnaround time of Sync
workloads by around 15% and 4% on average compared to
CFS and WASH, respectively. We also see that hardware
configurations with low core counts, such as 2B2S, favor
COLAB. We reduce turnaround time by up to 20% over CFS
and by up to 16% over WASH. With fewer cores, the pressure
from co-executed applications rises and properly balancing
bottleneck acceleration and core sensitivity across multiple
programs becomes increasingly difficult. WASH places all
bottleneck threads onto the big cores, which results in these
threads having to wait for CPU time in busy run queues,
ending up with only 3% of performance improvement over
Linux. COLAB handles these bottleneck threads in a more
holistic way, improving turnaround time by 20% and system
throughput by 27%, compared to Linux.

As for N_Sync workloads, there are few bottleneck threads
to be accelerated, making scheduling decisions much eas-
ier. As a result, both COLAB and WASH perform similarly

CGO 20, February 22-26, 2020, San Diego, CA, USA

HWASH = COLAB

H_ANTT
Normalized to Linux
o =} o
© 3 9 % © ©
N g o G o a

& 3 & 2] & 2 & 2 8
e el e e [e e Qo e [
N « < < £ ~ w i < £
[=] o
Jod o)
o (O]
Comm Comp
13
1.25
1.2
115
« 11
3
£
3 105
a e
53 1
'8
g 095
S
z 0.9
& < & 2] & 2 & 2 8
el el el el [} e 2 e e Q
N N < < £ Y R < < £
o =}
Q Q
o 0]
Comm Comp

Figure 6. Performance of Communication-Intensive and
Computation-Intensive Workloads. All results are normal-
ized to the Linux CFS ones. Lower is better for H_ANTT and
higher is better for H_STP.

to Linux, with COLAB improving average turnaround time
by 6% and average system throughput by 12% compared
to Linux. An interesting point is that COLAB does signif-
icantly better (10% and 15% improvement on turnaround
time) than WASH and Linux for N_Sync workloads on the
4B2S configuration. In this case, where we have sufficient
big core resources without enough critical threads, WASH
keeps migrating predicted critical threads on big cores even
when there is no actual need. However, COLAB will make
intelligent decisions by keeping relatively more threads on
little cores, which gives more chance for big cores to always
execute the limited really critical threads as soon as possible.
Communication-intensive vs Computation-intensive

workloads: When handling programs with high communication-

to-computation ratios, bottleneck threads are likely to arise
and accelerating them is critical. This is an ideal scenario for
COLAB. On the other hand, workloads with little communi-
cation are easier to schedule, so CFS and WASH should do
reasonably well, leaving little space for improvement.
Figure 6 shows the evaluation results for these two classes
of workloads, Comm and Comp. Both COLAB and WASH im-
prove over the Linux scheduler for communication-intensive
workloads. They, however, offer different advantages on dif-
ferent hardware configurations. COLAB distributes the bot-
tleneck threads to both big and little cores which is extremely

CGO 20, February 22-26, 2020, San Diego, CA, USA

BWASH ® COLAB
11 12

1.05 1.15

1 11
0.95 1.05
0.9
0.85 e
08 0.95
0.7 0.85

Random-mix

inux

H_ANTT
Normalized to Linux
<)
~
a
H_STP
Normalized to L|

o
©

2b2s
2b4s
4b2s
4b4s
Geomean
2b2s
2b4s
4b2s
4bds
Geomean

Random-mix

Figure 7. Performance of 2- and 4-programmed Workloads.
All results are normalized to the Linux CFS ones. Lower is
better for H_ANTT and higher is better for H_STP.

important when having only two big cores (2B2S, 2B4S). CO-
LAB improves the turnaround time by up to 21% compared
to Linux and 15% compared to WASH on the 2B4S configura-
tion. When more big cores are available, WASH does better
as it keeps all bottleneck threads on big cores. On these con-
figurations, WASH improves turnaround time by up to 18%
over Linux (on the 4B4S configuration) and up to 10% over
COLAB (on the 4B2S configuration). On average, COLAB
reduces turnaround time by around 12% compared to Linux
and 1% compared to WASH for the communication-intensive
workload class. Figure 6 also confirms that there are few op-
portunities for better scheduling with computation-intensive
workloads. Still, COLAB does better than WASH and Linux.
Its turnaround time and system throughput are improved
by around 10% and 15%, respectively, compared to Linux
and 5% compared to WASH. This is, again, due to a fact that
multiple bottlenecks are distributed both to big and little
cores, which results in more efficient use of the available
hardware resources for the few bottlenecks that are present.

Mixed workloads: This class of workloads represents the
general case of different applications with different needs,
affinities, and communication patterns competing for the
same cores. Figure 7 shows the results for 10 such workloads.
COLAB performs very well for these workloads: more di-
verse programs mean more asymmetry, more bottlenecks,
more critical threads, and more potential for acceleration.
Our collaborative multi-factor scheduler carefully balanc-
ing all scheduling aims (core sensitivity, thread criticality
and fairness) leads to a significant performance gain against
WASH and Linux. COLAB improves turnaround time and
system throughput by around 12% and 11% compared to
Linux and around 8% and 7% compared to WASH.

Thread and program count: To examine the impact of
thread and program count on the behavior of each scheduler,
we grouped our experimental results based on these two
properties. Figure 8 shows the performance of all schedulers
both for workloads with a low thread count (less than the
core count for that hardware configuration) and for work-
loads with a high thread count (at least double higher than

Teng Yu, et al.

B WASH = COLAB
11
1.05
1

0.95
0.9
0.85
0.8
0.75
o7 |

x
E}
=
=
Ee
Z T
48
I® %] (%] 17 %) c 7] (%) 17 %) c
£ N < N < [} Y < N < [
= e el el o Q o el e e ()
S N N 5 i £ Y N < < £
z IS S
Q Q
[0} _ o]
Thread-low Thread-high
1.6
15
14
1.3
L 12
3
£ 11
a8
1
53
'S 09
£ os = -
= & 2 & 2 8 & 2 & 2 s
o Q2 o 2 [Qo Fel e Q o
39 N 53 53 £ N Y 53 53 £
o o
[jo3
O] O]
Thread-low Thread-high

Figure 8. Performance of low number of application threads
and high number of application threads Workloads. All re-
sults are normalized to the Linux CFS ones. Lower is better
for H_ANTT and higher is better for H_STP.

HWASH m COLAB
11
1.05

0.95

0.75
0.7

H_ANTT
Normalized to Linux
<)
O e O
© O ©

Geomean
2b2s
2b4s
4h2s
4b4s

2b2s
2b4s
4h2s
4b4s
Geomean

2-programmed 4-programmed
1.4
1.35
1.3
1.25
12
1.15
11
1.05

H_STP

Normalized to Linux
=

0.95
0.9

4-programmed

2b2s
2b4s
4b2s
4b4s

n 17 n %)
o < N <
Q pe] o pe]
Y ~ S 53

2-programmed

c
<
)
£
S
@

o

Geomean

Figure 9. Performance of 2- and 4-programmed Workloads.
All results are normalized to the Linux CFS ones. Lower is
better for H_ANTT and higher is better for H_STP.

COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

the maximum core count). We observe that both COLAB and
WASH perform significantly better than Linux for workloads
with a low number of threads. Fewer threads make it easier
to identify bottleneck threads and give them the resources
they need - either by migrating them to big cores (WASH
and COLAB) or by prioritizing them on little cores (COLAB).
With limited big core resources, COLAB does much better
than WASH since it distributes bottleneck threads on all
available cores, avoiding overloading the few big cores and
keeping the little cores idle. COLAB outperforms Linux by
up to 25% (2B4S) and WASH by up to 21% (2B4S) on turn-
around time. On average, COLAB improves turnaround time
and system throughput by around 20% and 35% compared to
Linux and around 8% and 11% compared to WASH for work-
loads with a low number of threads. For workloads with a
high thread count, neither Linux nor WASH are able to im-
prove much on Linux. Overloading the system with threads
means that, regardless of where we place threads, cores will
have long runqueues. In this case, all cores will have long run
queues and COLAB and WASH increase the management
overhead (including more frequent thread migrations) with
little benefit, leading to performance degradation. Of the two
heterogeneity-aware schedulers, COLAB, with its scale-slice
technique, more frequently migrates threads, which results
in a slightly worse performance than WASH. On average,
COLAB improves turnaround time and system throughput
by less than 2% and 3% compared to Linux, while WASH
slightly outperforms COLAB by 2% on turnaround time and
0.2% on system throughput.

We see a similar picture when we considered workloads
with different number of programs in them. Figure 9 shows
the performance of all schedulers for 2-programmed and
4-programmed workloads. As in the case of high and low
thread counts, increasing the number of co-executed pro-
grams gives higher pressure on the scheduler, increasing the
waiting time of threads in runqueues and reducing the di-
rect benefit of migration between waiting threads. But more
programs also cause more bottlenecks and provide new op-
portunities for co-acceleration instead of only increasing
data-parallel threads. By intelligently distributing bottleneck
threads from different programs between big and little cores,
COLAB faces less problems than WASH from the pressure
of increasing programs.

As a result, both COLAB and WASH outperform Linux by
more than 10% on 2-programmed workloads on turnaround
time and COLAB can keep the 10% performance gain also
on 4-programmed workloads, while WASH reduced to only
have 5% performance gain on 4-programmed workloads. As
for system throughput, COLAB improves by 23% and 12% on
2-programmed and 4-programmed workloads compared to
Linux while improves by 5% and 6% on 2-programmed and
4-programmed workloads compared to WASH.

Summary of Experiments: Our experiments showed that
the state-of-the-art heterogeneous-aware WASH scheduler

CGO 20, February 22-26, 2020, San Diego, CA, USA

struggles to make better scheduling decisions that the Linux

schedules for synchronization-intensive workloads, computation-

intensive workloads, low threads number workloads, high
program number workloads, mixed multi-class workloads
and limited big cores configurations. Trying to handle both
core sensitivity, bottleneck acceleration and fairness through
thread affinity alone may lead to too many threads assigned
to big cores. Instead, we assign on big cores only threads
which run significantly faster on them and we prioritize run-
ning bottleneck threads regardless of their thread affinity.
This leads to improved turnaround time, higher throughput,
and better use of the processor resources compared to both
Linux and WASH. In summary from all 312 experiments, CO-
LAB improves turnaround time and system throughput by
11% and 15% compared to Linux and by 5% and 6% compared
to WASH.

6 Conclusion

We presented the novel COLAB scheduling framework that
targets multi-threaded multiprogrammed workloads on asym-
metric multicore processors (AMPs) which occupy a signifi-
cant part of the processor market today, especially in embed-
ded systems. COLAB is the first general-purpose scheduler
that, by making collaborative decisions on core sensitivity,
thread criticallity and scheduling fairness, optimises all these
three factors that affect the AMP scheduling - core affinity,
thread criticality, and scheduling fairness.

We have demonstrated on a number of different workloads
comprised of benchmarks taken from the state-of-the-art
parallel benchmark suites PARSEC3.0 and SPLASH-2, simu-
lating a number of different AMP configurations using the
well-known GEM5 simulator, that the COLAB scheduler out-
performs state-of-the-art WASH and Linux CFS schedulers
by up to 21% and 25%, respectively, in terms of turnaround
time (5% and 11% on the average). We also demonstrate im-
provements of 6% and 15% in terms of system throughput
on the average. This demonstrates the applicability of our
approach in realistic scenarios, allowing better execution
times for parallel workloads on AMP processors without
additional effort from the programmer.

Acknowledgments

This work was partially funded by the UK EPSRC grants
Discovery: Pattern Discovery and Program Shaping for Many-
core Systems (EP/P020631/1) and ABC: Adaptive Brokerage
for Cloud (EP/R010528/1). This work was also supported
by the Royal Academy of Engineering under the Research
Fellowship scheme.

References

[1] ARM. 2016. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

ddi0388e/ BEHEDIHLhtml. In ARM Cortex-A57 Technical Reference
Manual.

[2] Michela Becchi and Patrick Crowley. 2006. Dynamic thread assignment
on heterogeneous multiprocessor architectures. In Proceedings of the

CGO 20, February 22-26, 2020, San Diego, CA, USA

—
w
[utr}

(9]

(10]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

3rd conference on Computing frontiers (CF). ACM.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT).

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH Computer Architecture News 39, 2 (2011), 1-7.

Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley.
2012. The yin and yang of power and performance for asymmetric
hardware and managed software. In Proceedings of the 39th Annual
International Symposium on Computer Architecture (ISCA).

Kallia Chronaki, Alejandro Rico, Marc Casas, Miquel Moret6, Rosa M
Badia, Eduard Ayguadé, Jesus Labarta, and Mateo Valero. 2017. Task
scheduling techniques for asymmetric multi-core systems. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS) 28, 7 (2017), 2074—
2087.

Kristof Du Bois, Stijn Eyerman, Jennifer B Sartor, and Lieven Eeckhout.
2013. Criticality stacks: Identifying critical threads in parallel programs
using synchronization behavior. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA).

Stijn Eyerman and Lieven Eeckhout. 2008. System-level performance
metrics for multiprogram workloads. IEEE micro 28, 3 (2008).
Jian-Jun Han, Xin Tao, Dakai Zhu, Hakan Aydin, Zili Shao, and Lau-
rence T Yang. 2018. Multicore Mixed-Criticality Systems: Partitioned
Scheduling and Utilization Bound. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 37, 1 (2018),
21-34.

Brian Jeff. 2013. big.LITTLE technology moves towards fully hetero-
geneous global task scheduling. In ARM White Paper.

Ivan Jibaja, Ting Cao, Stephen M Blackburn, and Kathryn S McKinley.
2016. Portable performance on asymmetric multicore processors. In
Proceedings of the 2016 International Symposium on Code Generation
and Optimization (CGO).

José A Joao, M Aater Suleman, Onur Mutlu, and Yale N Patt. 2012.
Bottleneck identification and scheduling in multithreaded applications.
In Proceedings of the 17th international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
José A Joao, M Aater Suleman, Onur Mutlu, and Yale N Patt. 2013.
Utility-based acceleration of multithreaded applications on asymmetric
CMPs. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA).

Changdae Kim and Jaehyuk Huh. 2016. Fairness-oriented OS sched-
uling support for multicore systems. In Proceedings of the 2016 ACM
International Conference on Supercomputing (ICS).

Changdae Kim and Jaehyuk Huh. 2018. Exploring the Design Space
of Fair Scheduling Supports for Asymmetric Multicore Systems. IEEE
Transactions on Computers (TC) (2018).

Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ran-
ganathan, and Dean M Tullsen. 2003. Single-ISA heterogeneous multi-
core architectures: The potential for processor power reduction. In
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and Parthasarathy
Ranganathan. 2005. Heterogeneous Chip Multiprocessors. Computer
38, 11 (Nov. 2005), 32-38. https://doi.org/10.1109/MC.2005.379
Rakesh Kumar, Dean M Tullsen, Parthasarathy Ranganathan, Nor-
man P Jouppi, and Keith I Farkas. 2004. Single-ISA heterogeneous
multi-core architectures for multithreaded workload performance. In
Proceedings of the 31th Annual International Symposium on Computer
Architecture (ISCA).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Teng Yu, et al.

Tong Li, Dan Baumberger, and Scott Hahn. 2009. Efficient and scalable
multiprocessor fair scheduling using distributed weighted round-robin.
In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP).

Tong Li, Dan Baumberger, David A Koufaty, and Scott Hahn. 2007.
Efficient operating system scheduling for performance-asymmetric
multi-core architectures. In Supercomputing, 2007. (SC). Proceedings of
the 2007 ACM/IEEE Conference on. IEEE.

Sparsh Mittal. 2016. A survey of techniques for architecting and
managing asymmetric multicore processors. ACM Computing Surveys
(CSUR) 48, 3 (2016), 45.

Ingo Molnar. 2007. CFS scheduler. In Linux, Vol. 2. 36.

Juan Carlos Saez, Alexandra Fedorova, David Koufaty, and Manuel Pri-
eto. 2012. Leveraging core specialization via OS scheduling to improve
performance on asymmetric multicore systems. ACM Transactions on
Computer Systems (TOCS) 30, 2 (2012), 6.

Volker Seeker, Pavlos Petoumenos, Hugh Leather, and Bjorn Franke.
2014. Measuring qoe of interactive workloads and characterising
frequency governors on mobile devices. In 2014 IEEE International
Symposium on Workload Characterization (ISWC). IEEE, 61-70.
Gabriel Southern and Jose Renau. 2016. Analysis of PARSEC workload
scalability. In Performance Analysis of Systems and Software (ISPASS),
2016 IEEE International Symposium on. IEEE.

M Aater Suleman, Onur Mutlu, Moinuddin K Qureshi, and Yale N Patt.
2009. Accelerating critical section execution with asymmetric multi-
core architectures. In Proceedings of the 14th international Conference
on Architectural Support for Programming Languages and Operating
systems (ASPLOS).

Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel,
and Lieven Eeckhout. 2013. Fairness-aware scheduling on single-ISA
heterogeneous multi-cores. In Proceedings of the 22nd international
conference on Parallel Architectures and Compilation Techniques (PACT).
Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,
and Joel Emer. 2012. Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). In Proceedings of the 39th Annual
International Symposium on Computer Architecture (ISCA).

Xiaodong Wang and José F Martinez. 2016. ReBudget: Trading off
efficiency vs. fairness in market-based multicore resource allocation via
runtime budget reassignment. In Proceedings of the 21th international
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016.
Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. 1995. The SPLASH-2 programs: Characteri-
zation and methodological considerations. In Proceedings of the 22th
Annual International Symposium on Computer Architecture (ISCA).
Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C Lee. 2018. Amdahl$
Law in the Datacenter Era: A Market for Fair Processor Allocation.
In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE.

https://doi.org/10.1109/MC.2005.379

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Multi-factor Coordinated Scheduler
	3.1 Runtime Factor Analysis
	3.2 Collaboration

	4 Runtime Design and Implementation
	4.1 Runtime Factors Implementations
	4.2 Scheduling Algorithm Implementation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Single-programmed Workloads
	5.3 Multi-programmed Workloads

	6 Conclusion
	Acknowledgments
	References

