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ABSTRACT
Minimum Routing Cost Clustered Tree Problem (CluMRCT) is ap-
plied in various fields in both theory and application. Because the
CluMRCT is NP-Hard, the approximate approaches are suitable to
find the solution for this problem. Recently, Multifactorial Evolu-
tionary Algorithm (MFEA) has emerged as one of the most efficient
approximation algorithms to deal with many different kinds of
problems. Therefore, this paper studies to apply MFEA for solving
CluMRCT problems. In the proposed MFEA, we focus on crossover
and mutation operators which create a valid solution of CluM-
RCT problem in two levels: first level constructs spanning trees for
graphs in clusters while the second level builds a spanning tree for
connecting among clusters. To reduce the consuming resources,
we will also introduce a new method of calculating the cost of
CluMRCT solution. The proposed algorithm is experimented on nu-
merous types of datasets. The experimental results demonstrate the
effectiveness of the proposed algorithm, partially on large instances.
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1 INTRODUCTION
The class of problems related to finding minimum cost clustered
trees is among the most widely studied problems in applied mathe-
matics and theoretical computer science. In general, clustered tree
problems have many applications in the field of computer network
design, computational biology, transportation and logistics as well
as water resource management [12, 13]. Numerous problems with
different cost function has received much attention such as Clus-
tered Minimum Steiner Tree [21], Clustered Shortest-Path Tree [7]
and Minimum Routing Cost Clustered Tree Problem (CluMRCT)
[12].

Among those mentioned problems, CluMRCT is one of the most
newly investigated problems. This problem has been formally for-
mulated in [12]. Concretely, consider a connected, undirected graph
G = (V ,E,w) with nonnegative edge length functionw : E → R+.
The vertices V are partitioned into k clusters R = {R1,R2, . . . ,Rk }.
A spanning tree T of G is a clustered spanning tree if T can be cut
into k subtrees by eliminating k − 1 edges such that each subtree
is a spanning tree for only one cluster. The CluMRCT problem
focuses on the routing cost, which is the sum of shortest path dis-
tance between any pairs of vertices given a clustered spanning
tree T . The CluMRCT problem is finding on graph G a clustered
spanning treeT having the minimum routing cost. One practical re-
alization of this problem is in computer network application where
the communication terminals are vertices, and they are partitioned
into many clusters. The communication between those terminals
are restricted within a cluster and only a few terminals can be
connected to another cluster for maximizing efficiency and other
security concerns. Solving CluMRCT is equivalent to facilitate the
network architecture that consumes the minimum peer-to-peer
communication resources.
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The CluMRCT has been proven to be NP-Hard by showing its
relationship with an equivalent problem named clustered st-path
problem, which is also proven to be NP-Hard [12]. However, it is a
pressing problem and approximate solutions are acceptable in prac-
tice. There are various approaches for finding approximate solutions
for these type of intractable problem such as approximation algo-
rithms, heuristic algorithms or meta-heuristic algorithms. However,
methods to solve CluMRCT are limited to only a 2-approximation
algorithm for the case of three clusters [12]. In the practical appli-
cation of CluMRCT for computer network, there would be multiple
designs of the computer network topologies with various ways to
set up the clusters constraint, thereby arising the problem of solving
not only one CluMRCT but multiple CluMRCT instances. These
instances do not exist in isolation; thus, effectively sharing the un-
derlying pattern of minimum cost clustered tree for one instance
may result in a better solution in another instance.

Motivated by that practical indication, this paper aims to de-
sign a Multifactorial Evolutionary Algorithm (MFEA) [9] to simul-
taneously solve multiple minimum cost clustered trees problem
instances together. MFEA is a variant of Evolutionary Algorithm
(EA) [15, 17], which is classified as a meta-heuristic algorithm that
capable to provide a near-optimal solution for those mentioned
hard problems in an acceptable timing limit. It is also being an
algorithmic realization of a widely-study multitasking optimiza-
tion scheme. It is attracting considerable interest because of its
capability to optimize and facilitate better solutions for multiple
related problems. The driving force behind MFEA is its genetic
transfer using crossover across different tasks that share a partial
proportion of high-quality solution from one task to another [8]. If
problems optimized by MFEA having the highly correlated fitness
landscape and near global optima, the high-quality solution from
one task will definitely having high performance in another, leading
to significant improvement in every constitutive task [1, 10].

In particular, our contributions can be summarized as follow:
• We proposed a novel evolutionary algorithm to solve the
CluMRCT, including a two levels meta-heuristic crossover
and mutation operators on adjacency list representation of
the problem.
• By following the generic procedure of MFEA, we expanded
the representation and operators to facilitate a common plat-
form for facilitating knowledge exchange between different
instances of CluMRCT of the various number of clusters and
cluster size.

This paper is organized as follows. Section 2 again reformulates
the CluMRCT and presents comprehensive details on the way to
efficiently compute its cost function. Section 3 examines the litera-
ture of the considered problem and the development of MFEA. The
next section provides the two proposed algorithms. An empirical
study to analyze the effectiveness of the proposed approaches is
provided in Section 5. A discussion of the result and future direction
is presented in Section 6

2 PROBLEM FORMULATION
Given a weighted undirected graphG = (V ,E,w). V and E are the
vertex and the edge sets, respectively. In particular, all paths in the
graphG are simple path. A path inG is simple if no vertex appears

more than once on it. w is a nonnegative edge length function
w : E → R+. An edge between vertices u and v , where u,v ∈ V , is
denoted by (u,v). The weight of edge (u,v) is denoted byw(u,v).
A graph G is connected if all pairs of vertex within the graph is
connected. A pair of vertices (u,v) is connected ifG contains a path
from u to v. For a graph G, V (G) and E(G) denote the vertex and
the edge sets, respectively. For a vertex subset U , the subgraph of
G induced byU is denoted by G[U ].

The authors define the H-graphG ′ = (V ′,E ′) where each vertex
represents a cluster Ri . An edge connecting two vertices of Gfi
exists if the two corresponding clusters in G are connected by at
least one edge. A spanning tree T of the graph G is a clustered
spanning tree if all the vertices in the same cluster Ri are clustered
together inT . It means thatT can be cut into k subtrees by removing
k − 1 edges such that each subtree is a spanning tree for one cluster
Ri .

The objective of CluMRCT problem mainly focuses on the rout-
ing cost c(T ). The routing cost c(T ) is the total distance over all
pairs of vertices in the connecting path defined by the clustered
spanning tree T :

c(T ) =
∑

u,v ∈V (T )
dT (u,v) (1)

where dT (u,u) is the distance between u andv onT . The CluMRCT
problem searches for the clustered spanning tree T that minimize
the routing cost:

minimize
T

c(T ) =
∑

u,v ∈V (T )
dT (u,v) (2)

3 RELATEDWORK
In recent years, there has been considerable interest in solving the
minimum cost clustered tree problem and its variants [12]. Major
developments have been carried out in developing approximate
algorithms for solving the NP-hard Clustered Steiner Tree Problem
(CluSteiner) variant and deriving the Steiner ratio of the problem
[21]. Chen subsequently proposed another approximate algorithm
that improved the performance ratio by 40% under the condition of
distance metric satisfying the triangular inequality. Another NP-
hard variant of the general class of minimum cost clustered tree
problem called Clustered Shortest-Path Tree Problem (CluSPT) has
also been widely investigated in recent literature, under theoretical
viewpoint [7] as well as developing approximation algorithms for
this problem [4, 19]. Following studies from Thanh et al. suggested
another approach for solving this class problem more effectively
by adopting the evolutionary multitasking paradigm [18, 20].

CluMRCT that we are focusing on this study is also a typical
variant of the general minimum-cost clustered tree that having
numerous practical applications. For instance, applications of CluM-
RCT problem arise in the fields of network design, computational
biology and transportation [12]. CluMRCT is proven NP-hard by
a transformation to the equivalent problem of. Because of its NP-
hardness, a popular method to tackling the CluMRCT would be
developing approximation algorithm, heuristic or meta-heuristic
algorithm. However, to the best of our knowledge, there are no
published study has proposed such method for this problem.
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In recent literature, MFEA [3] is a newly founded meta-heuristic
algorithm that has been gaining much attention due to its ability to
solve multiple hard problems more effectively than the traditional
EA [9]. Some preliminary work was carried out suggesting that
MFEA is being able to capitalize the knowledge overlap across
relevant tasks to facilitate better objective value on solving multiple
combinatorial problems concurrently [11, 22]. Other studies attempt
to investigate the theoretical foundation ofMFEA aswell as improve
this algorithm such that its performance would not be impeded
by solving tasks that are two conflicting in their fitness landscape
and global optima [2, 5]. Also, there is no prior attempt to design a
MFEA for solving CluMRCT.

4 PROPOSED ALGORITHM
In this section, we introduce MFEA to solve multiple CluMRCT
problems simultaneously. A CluMRCT problem corresponding to
a particular task in MFEA. Tasks are different number of clusters
and different dimension is encoded into a unified individual. Each
unified individual is divided into two-level, the first deal with con-
structing the spanning tree inside the clusters, the second problems
deal with constructing tree connect between clusters. In the entire
optimization process, we introduce novel two-levels genetic opera-
tors to construct spanning tree starting from the smallest task to
the biggest task. As a result, the unified individual is the biggest
tree contains the solution of all tasks.

4.1 Individual encoding, Population
Initialization and Decoding method

An individual in the unified search space encompassing the genetic
material of all of the tasks. An individual in the unified search
space consists of the different solutions of CluMRCT problems cor-
responding to tasks. An individual is a spanning tree which is the
number of clusters is the maximum number of the clusters from
all of the tasks, and the cluster inside takes the maximum number
of vertices from the all of all tasks. The clusters in each instance
of CluMRCT problem is ascending sorted by the number of ver-
tices before encoding into a unified individual to maximize the
number of overlapping dimensions of different tasks. As a result, a
unified individual captures solution for all task and the decoding
method only finds the corresponding sub-graph with the task to
produce valid solution for particular CluMRCT task. After defining
structures of an individual, we generate a new individual for the
CluMRCT problem. Initial individual is constructed randomly by
applying PrimRST algorithms in the smallest task, all initial bigger
tasks are generated from the smaller task and input graph by detect-
ing and delete cycle until gaining spanning tree for the biggest task.
The detail about encoding, decoding, and initializing individual are
presented in [20].

4.2 Crossover operator
We introduce a new crossover operator for individuals in unified
search space. In particular, the novel crossover operator generates
two offsprings from two parents. Two offsprings are constructed
from the set of edges of two parents. The crossover operator starts
by selecting two individuals in unified search space from the cur-
rent population to determine the common edges belong to each

Algorithm 1: Proposed crossover operator
Input: Two parents: Tt = (V ,Et ,C) , t = 1, 2;
Output: Two offspring S1 = (Vs ,Es1 ) and S2 = (Vs ,Es2 );

1 begin
2 Vs ← V ; θ ← |C | ;
3 foreach cluster jth do S

j
1, S

j
2 ← DSTX (T1,T2) ;

4 Determine two H-Graphs G ′1 and G
′
2 from T1 and T2,

respectively;
5 T ′1 ,T

′
2 ← DSTX (G ′1,G

′
2);

6 Es1 ← (∪θj=1E(S
j
1)) ∪ E(T

′
1 ); Es2 ← (∪

θ
j=1E(S

j
2)) ∪ E(T

′
2 );

7 return S1, S2
8 end

individual, the length of this set represents the similarity of two
parents. If two individuals have more common edge meaning that
two individual close similarities. The algorithm determines the set
of edges the only belong to a particular parent.

After that, a new offspring is constructed based on the combi-
nation of a set of common edges and a set of edges only belong
to its parent. The crossover operator is process in two-levels: the
first is applying for spanning inside cluster and the seconds one is
applying for spanning tree which is connect among clusters. The
details as presenting in Algorithm 1.

The steps of the DSTX algorithm is presented in Algorithm 2.
DSTX generates two spanning trees S1, S2. Line 2, 3 define two sets
of edges only belong to a particular parent. Line 8→ 23 generates
two offsprings spanning tree from the smallest task to the biggest
task. Line 9→ 15 to generate offspring S1. In each particular task,
the algorithm detects the cycles which are created by adding new
edges to parents solution, then delete an edge in each cycle path
to obtain the new solution. Removing an edge will be created a
new valid solution for the current task but without disrupting the
solution for the smaller task.

The Figure 1 illustrates the crossover operator on two parents.
The Figure 1(b-d) presents crossover for each cluster, other figures
present crossover steps for H-Graphs. Figure 1(b) depicts the sub-
graph when combine the sub-graph on clusters in Parent 1 and
the set of edges E ′2 only belong to Parent 2. The red dash edges in
Figure 1(d) belong to parent 2 obtained by performing the DSTX.
Figure1(e) illustrates the sub-graph after building the spanning tree
for clusters. Figure 1(d) and Figure 1(g) show graph after combining
H-Graphs in second stages. The offspring obtained by crossover
operator is depicted in Figure 1(h) after combining two graph in
Figure 1(d) and Figure 1(g).

4.3 Mutation operator
This mutation operator to generate new individual based on apply-
ing small variation on the original individual. The main idea of the
proposed mutation operator (PMO) is that the PMO adds an edge
in the input graph G but not in the individual to create a cycle and
then removes an edge in the cycle to create a new spanning tree.
The details of the MPO is presented in Algorithm 3.
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1: An example of crossover process applying two parents for MFEA with two tasks

Algorithm 2: DSTX
Input: Two spanning trees T1 = (V ,E1) and T2 = (V ,E2)

where V = Vh ⊇ Vh−1 ⊇ . . . ⊇ V1
Output: Two spanning tree S1 = (V ,Es1 ) and S2 = (V ,Es2 )

1 begin
2 E ′1 ← E1\E2; E ′2 ← E2\E1; t ← |E ′1 |;
3 k ← Generate a random number k from [1, t] ;
4 Es1 ← Add k random edges from E ′1 to T2 ;
5 Es2 ← Add k random edges from E ′2 to T1 ;
6 for i ← 1 to h do
7 foreach edge e = (v1,vl ) in E ′1 do
8 if v1,vl ∈ Vi then
9 Find the path P = (v1,v2, . . . ,vl ) between v1

and vl in the set of edges E(T1) − {e} ;
10 Choose a vertex vj ∈ P such that vj ∈ Vi\Vi−1;
11 Delete edge (vj ,vj+1) from S1 ;
12 end
13 end
14 foreach edge e = (v1,vl ) in E ′2 do
15 if v1,vl ∈ Vi then
16 Find the path P = (v1,v2, . . . ,vl ) between v1

and vl in the set of edges E(T2) − {e} ;
17 Choose a vertex vj ∈ P such that vj ∈ Vi\Vi−1;
18 Delete edge (vj ,vj+1) from S2 ;
19 end
20 end
21 end
22 return S1, S2 ;
23 end

Algorithm 3: Proposed mutation operator
Input: Input graph G = (VG ,EG ,CG ) where

CG = C
1 ∪C2 ∪ . . . ∪Cθ ,Cp ∩Cq = ∅, ∀p , q; An

individual T = (V ,E,C)
Output: A Tree T ′ = (V ′,E ′)

1 begin
2 T ′ ← T ; Select a random cluster C j ;
3 e = (u,v) ← Select randomly an edge in E(G[C j ]) but not

in E(T ′[C j ]);
4 PT ′(u,v) ← Path between vertex u and vertex v in T ′;
5 e ′ ← Select randomly an edge in PT ′(u,v);
6 E(T ′) ← (E(T ) − {e}) ∪ {e ′} ▷ exchange edges e and e ′;
7 return T ′;
8 end

4.4 Evaluation method
In this sub-section, we present a method to calculate the cost of
CluMRCT solution in O(n) time complexity. The cost function of
CluMRCT is the sum of connectivity cost between all pairs of ver-
tices in the graph. The solution of CluMRCT is spanning tree, thus,
traveling all vertices in O(n) time complexity and removing an
edge from spanning tree will create two connected components.
Given T = (E,V ) is the CluMRCT solution, the cost of two adja-
cency vertices on solutionT are calculated as the following formula
C(v1,v2) = |V 1| ∗ |V 2| ∗w(v1,v2) where |V 1| is the number of ver-
tices in connected component contains v1 after remove e = (v1,v2)
fromT . |V 2| is the number of vertices in connected component con-
tains v2 after remove e = (v1,v2) from T . w(v1,v2) is connecting
cost between two adjacency vertices v1 and v2.

The cost of CluMRCT solution T is calculated as following four-
step procedure:
• Step 1: Assign a random vertex as start vertex s .
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• Step 2: BFS algorithms start with s vertex then store the
order of visiting to the visited list.
• Step 3: The cost of two adjacency veritices on solutionT are
calculated as following: Travel bottom-up (leaves to root) in
visited list to update the label of current vertex to l = d + 1,
where d is the number of descendant vertices of current
vertex. Update the label of ancestor vertex to la = la + l .
The cost between current vertex v1 and its ancestor v2 is
calculated by formulaC(v1,v2) = l ∗(n−l)∗w(v1,v2). Where,
l is the current vertex label, n is the number of vertices,
w(v1,v2) is connecting cost between current vertex v1 and
its ancestor v2.
• Step 4: The cost function of CluMRCT is calculated follow
as:

∑
v1∈V

∑
v2∈V C(v1,v2). Where, C(v1,v2) is the cost of

two adjacency v1 and v2 in CluMRCT solution T .

5 EXPERIMENTAL RESULTS
5.1 Problem instances
To the best of our knowledge, there is no publicly available set of
benchmark for the CluMRCT problem. Therefore, we utilized a set
public test instances for an equivalent clustered tree problem which
is the CluSPT dataset version 3 on Mendeley [16]. This dataset
included six distinct types of instances that were generated by var-
ious algorithms [4] and categorized into two types conformable
to their dimension. The instances were appropriate for evaluating
cluster problems [14]. However, to test the effectiveness of pro-
posed algorithms to solving the CluMRCT instead of CluSPT, we
ignore the information of the global source vertex of this CluSPT
dataset. For evaluation of the proposed algorithms, instances with
dimensionality from 30 to 500 were selected.

5.2 Experimental setup
To evaluate the performance of the proposed algorithm for the
CluMRCT, the authors implemented the metaheuristic algorithm
EA andMFEA. Then, the results of two algorithms for each instance
were compared with each other in term of the best and average
fitness of the optimized solutions.

Each scenario was simulated for 30 times on the computer (In-
tel Core i7 âĂŞ 4790, 16GB RAM), with a population size of 100
individuals evolving through 500 generations. The random mating
probability is 0.5 and the mutation rate is 0.05. The source codes
were installed by Java programming language.

5.3 Experimental criteria
Criteria for evaluating the quality of the result of the algorithms
are presented in the following table:

Criteria Description
Average (Avg) Average function value over all runs
Best-found (BF) Best function value achieved over all runs
Relative Percentage
Differences (RPD)

The diffrence between the average costs of
two algorithms

In order to compare the quality of the CluMRCT solutions re-
ceived from EA and MFEA, RPD is used to compute the difference
between the average costs of two algorithms. The RPD is calculated

by the following formula: RPD(A,B) = CB −CA
CB

∗ 100% where CB
is the average cost of a solution obtained from EA,CA is the average
cost of a solution obtained from MFEA.

5.4 Experimental results
The experimental results show that the quality of the CluMRCT
solution of MFEA algorithm is better than EA algorithm in most
scenario. Particularly, MEFAâĂŹs results are better than EAâĂŹs
results in all instances in Type 3, Type 4, Type 1 Large, Type 5
Large and Type 6 Large. It means that the larger instance’s size, the
more MFEA tends to outperform than EA. There is a noteworthy
point that with large instances, the results obtained by MFEA are
always better than one obtained by EA in both average result and
best-found in any Type. The comparison of results obtained by
EA and results obtained by the proposed algorithm is presented in
detail in the Table 1.
Table 1: The summarized results demonstrate the propor-
tion of instances that MFEA outperformed EA in term of
number of instances having higher best-found fitness and
average fitness

Type 1 Type 3 Type 4 Type 5 Type 6
Small Large Large Large Small Large Small Large

BF 22 10 5 8 15 14 33 13
Avg 20 10 5 8 15 14 33 13
Total 24 10 5 8 16 14 34 13

The details results obtained by algorithms are presented in Ta-
ble 2 – Table 5. In this table, the italic red cells on a column to show
that on those instances, this algorithm outperforms than the other
algorithm. The biggest RPD(MFEA, EA) is 98.59% while the biggest
RPD(EA, MFEA) is 16.9.

5.5 Convergence trend
The functions in [9] was used for computing the normalized and
averaged normalized objectives for analyzing the proposed MFEA
algorithmâĂŹs convergence trends.

The convergence trend during the initial stages of the multi-tasks
is depicted in Figure 2(a) for instances 10berlin52 and 10eil51 in
Type 1; instances 4berlin52-2x2 and 42rat99-6x7 in Type 6. In this
figure, multi-tasks (MT) converges faster than Single task (ST) at
any time in the test instances of Type 1. With Type 6âĂŹs instances,
ST converges faster than MT at the begin but MT has gradually
surpassed ST from evaluation 100 to the end. In summary, the MT
performance suggests better overall convergence characteristics
than the ST performance.

With the same instances and genetic operators were used in ST
and MT, the improvement can be reached because of the exploita-
tion of multiple function landscapes via implicit genetic transfer,
such as the evolutionary multitasking paradigm affords.

Refer to Figure 2(b) and Figure 2(c) for a better understanding of
the improved performance because of MT. The figure depicts the
convergence trends corresponding to each constitutive task. As you
can see, in most instances, the convergence of MT is faster in com-
parison with ST as instances 10berlin52 and 10eil51 in Figure 2(b).
But, some case, like 4berlin52-2x2 in Figures 2(c), the convergence
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(a) (b) (c)

Figure 2: Comparing convergence trends of f̃ , f̃1 and f̃2 in multi-tasks and serial single task for instances in Types 1, 6.

of MT was slower than the one of ST. In this case, 4berlin52-2x2 and
42rat99-6x7 are simultaneously solved, but two instances are very
different structure of solution. 4berlin52-2x2 has 4 clusters and 52
vertices, meanwhile 42rat99-6x7 has 42 clusters and 99 vertices. In
unified search space, the shared representation of two solutions is
very small, only 4 clusters 42rat99-6x7 impact to 4berlin52-2x2. As
a result, the two instances are less impacting each other in process
of transferring knowledge during multitasking is the cause of ST
outperform than MT.

6 CONCLUSION AND DISCUSSION
This paper proposed amultitask optimization algorithm in the realm
of the general MFEA to solve the multiple instances of CluMRCT
problem together. Evolutionary operators and a new method for
reducing consuming resource of evaluating the solution are also
described. The proposed multitasking algorithm is tested on many
datasets. Experimental results showed that the proposed MFEA
outperforms its single-task variant in most test cases.
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