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ABSTRACT
Researchers who wish to benchmark the detectability of stegano-
graphic distortion functions typically simulate stego objects. How-
ever, the difference (coding loss) between simulated stego objects,
and real stego objects is significant, and dependent on multiple
factors. In this paper, we first identify some factors affecting the
coding loss, then propose a method to estimate and correct for
coding loss by sampling a few covers and messages. This allows
us to simulate suboptimally-coded stego objects which are more
accurate representations of real stego objects. We test our results
against real embeddings, and naive PLS simulation, showing our
simulated stego objects are closer to real embeddings in terms of
both distortion and detectability. This is the case even when only a
single image and message as used to estimate the loss.
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1 INTRODUCTION
There are two ways to test a steganographic algorithm that min-
imises an additive cost function: embed messages using a Syn-
drome Trellis Code (STC) [14], or simulate an optimal code that
meets the rate-distortion bound [12]. In a survey of several top
venues for steganography and steganalysis research, we found
significantly more work where researchers had simulated [1, 3–
5, 9, 15–17, 22, 24–28, 30, 35–43, 47], as opposed to creating real
stego objects [10, 11, 18–20, 44, 45]. There are two reasons that may
have motivated them. First, the STC algorithm is complex to imple-
ment and slow to run on very large data sets. Second, separation of
concerns suggests testing the cost function in isolation from the
coding.

However, it is well known that the state-of-art STC method
does not meet the rate-distortion bound. As we shall see, this cod-
ing loss is variable, depending on parameters of the STC and the
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cost function itself. When authors simulate embedding, instead of
performing genuine coding, the simulations have less distortion
than genuine stego objects. Furthermore, this may advantage one
distortion function over another.

In this paper we propose a simple method to estimate the coding
loss from a small number of genuine encodings – in fact, we shall
see that one is sufficient – and correct the simulation so that the
realised distortion is close to that of STCs. It could be applicable to
other codingmethods as well. The relative error in the simulated dis-
tortion is reduced by an order of magnitude. Thus, for a very small
overhead, researchers can simulate accurate levels of distortion
and detectability. We only consider the binary case throughout this
work, but our method could be applied to non-binary embedding.

1.1 Notation
We shall denote vectors as lowercase boldface 𝒙 , the 𝑖𝑡ℎ element of
𝒙 denoted 𝑥𝑖 , and the size of the set as |𝒙 |.

2 BACKGROUND
Stego objects can be simulated as follows. We briefly summarise the
discussion in[13]. For a cover 𝒙 = {𝑥1, . . . , 𝑥𝑛 } a distortion function:

𝐷 (𝒙,𝒚) =
𝑛∑
𝑖=0

𝑐𝑖 [𝑥𝑖 ≠ 𝑦𝑖 ] | 𝑐𝑖 ∈ R, (1)

returns the sum of the additive change costs 𝒄 = {𝑐1, . . . , 𝑐𝑛}, for
a stego object 𝒚 = {𝑦1, . . . , 𝑦𝑛}; changes are binary and indepen-
dent. Suppose that we communicate a message with entropy𝑚 bits.
The rate-distortion bound arises from the solution to the Payload-
Limited Sender (PLS) optimisation problem:

Minimise
𝑝1,...,𝑝𝑛

𝑑 =

𝑛∑
𝑖=1

𝑝𝑖𝑐𝑖 subject to𝑚 ≤
𝑛∑
𝑖=1

𝐻 (𝑝𝑖 ), (2)

where 𝐻 is the binary entropy function, and then 𝑝𝑖 is the optimal
probability of changing 𝑥𝑖 . Throughout this paper, we denote the
minimum objective 𝑑 by PLS(𝒄,𝑚), where PLS : covers × R →
R. The same probabilities are the solution to the dual Distortion-
Limited Sender (DLS) problem

Maximise
𝑝1,...,𝑝𝑛

𝑚 =

𝑛∑
𝑖=1

𝐻 (𝑝𝑖 ) subject to
𝑛∑
𝑖=1

𝑝𝑖𝑐𝑖 ≤ 𝑑, (3)

where 𝑑 a distortion budget; in this case the aim is to communicate
the maximum entropy𝑚. We denote this maximum objective by
DLS(𝒄, 𝑑), where DLS : covers × R→ R.

The solution to (2) and (3) is 𝑝𝑖 = 1/(1 + 𝑒_𝑐𝑖 ), for some _ such
that the payload- or distortion-constraint is equality. Suitable values
of _ can be found by conducting a binary search. Stego objects can
be simulated by making each change 𝑐𝑖 with probability 𝑝𝑖 .
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Figure 1: Comparison of per-cover distortion coding loss (𝑙𝑑 ) for WOW, S-UNIWARD, and Mi-POD.

Genuine stego objects, on the other hand, can be created using
the STC algorithm, which is based on the Viterbi algorithm [14].
The trellis has a parameter ℎ, the constraint height, and its realised
distortion approaches the rate-distortion bound asymptotically as
ℎ → ∞; however, the time complexity is 𝑂 (2ℎ): in practice, ℎ ∈
(6, 10) provides an acceptable trade-off [14]. In this paper we use
the notation STCℎ (𝒄,𝒎) for the distortion realised by an STC of
constraint height ℎ encoding message 𝒎 into cover with costs 𝒄 .

We might hope that the distortion realized by STCs is close to
the bound, i.e.

STCℎ (𝒄,𝒎) ≈ PLS(𝒄, |𝒎 |) . (4)

Indeed, for some𝒎 the STC distortion can even be lower (for exam-
ple a cover which already happens to contain message 𝒎). But we
typically witness coding loss: in the case of PLS, the STC distortion
exceeds the bound; in the case of DLS, the STC can only embed a
message shorter than𝑚. Whilst we commonly see steganographic
coding loss expressed as the entropy coding loss 𝑙ℎ [12, 14, 19]

𝑙ℎ = 1 − 𝑚

DLS(𝒙, STCℎ (𝒙,𝒎))
, (5)

for the purpose of indicating loss on a distortion level, we also will
use a slight variant, distortion coding loss 𝑙𝑑 :

𝑙𝑑 =
STCℎ (𝒙,𝒎)
PLS(𝒙,𝑚) − 1. (6)

In practice, the coding loss is not only dictated by the constraint
height ℎ but is also a product the embedding rate (𝛼 = 𝑚/𝑛) and
the distortion function 𝐷 . We illustrate this in Fig. 1, showing
coding loss (here measured by 𝑙𝑑 ) for 25 images from BOSSBase [2]
(𝑛 = 262144), with payload rates 𝛼 = {0.1, 0.4}, constraint heights
ℎ ∈ {7, 10}, and commonly-used spatial-domain steganographic
distortion functions: two that derive costs from filters WOW [21],
S-UNIWARD [23], and one based on a model MiPOD [34]. It is
evident that ℎ, 𝛼 , and 𝐷 , all affect coding loss, which also depends
on the cover.

The existence of coding loss is well understood, and some litera-
ture has compared STC embedding with simulated embedding [21,
23, 29, 31, 32, 46]. However, most researchers continue to use simu-
lated stego objects: as well as neglecting the coding loss that must
occur in practice, this could advantage one distortion function more
than another.

3 PROPOSED METHOD
Our method aims to increase the entropy used in simulated embed-
ding, to reflect the coding loss of STCs. We estimate the coding loss
by embedding 𝑛𝑚 random messages in each of 𝑛𝑐 randomly-chosen
covers.

Rather than estimating 𝑙ℎ directly, we estimate 𝑙 = 1/(1 − 𝑙ℎ)
as the average over covers and messages. For a given distortion
function, constraint height ℎ, and embedding rate 𝛼 , let the 𝑛𝑐
covers be {𝒙1, . . . , 𝒙𝒏𝒄 }. Over a set of 𝑛𝑚 messages we get the
average STC cost as:

1
𝑛𝑚

𝑛𝑚∑
𝑗=1

STCℎ (𝒙,𝒎 𝑗 ), (7)

where |𝒎𝒋 | = 𝛼 |𝒙 |. Using the average STC cost as a distortion
budget, we can find the covers maximum entropy:

DLS
(
𝒙,

1
𝑛𝑚

𝑛𝑚∑
𝑗=1

STCℎ (𝒙,𝒎 𝑗 )
)
. (8)

Finally, averaging over the set of 𝑛𝑐 covers, we can express 𝑙 as the
average per cover ratio between maximum entropy and original
message length, normalised per cover length:

𝑙 =
1
𝑛𝑐

𝑛𝑐∑
𝑖=1

DLS
(
𝒙 𝒊,

1
𝑛𝑚

∑𝑛𝑚
𝑗=1 STC

ℎ (𝒙 𝒊,𝒎𝒋)
)

𝛼 |𝒙 𝒊 |
. (9)

Having estimated 𝑙 , we can use it to correct the entropy in simulated
embedding, solving (2) for𝑚 = 𝑙𝛼 |𝒙 𝒊 | rather than𝑚 = 𝛼 |𝒙 𝒊 |. Our
expectation is that

STCℎ (𝒄,𝒎) ≈ PLS(𝒄, 𝑙 |𝒎 |), (10)

for any cover 𝒄 from the same source, and any message 𝒎. Hence,
𝑙 |𝒎 | will be called the corrected entropy, and objects simulated using
it will be termed corrected stego objects.

4 EXPERIMENTAL RESULTS
We can evaluatewhether ourmethod is successful by testingwhether
equation (10) holds more closely than (4). Because, over a set of im-
ages and messages, distortion will vary across orders of magnitude,
average or RMS error is an inappropriate benchmark dominated
by a few stego objects with large distortion. Instead, we use a Root



Mean Square Relative Error (RMSRE),

RMSRE =

√√
1
𝑁

∑
𝑖

(𝑑𝑖 − 𝑑𝑖

𝑑𝑖

)2
, (11)

where 𝑑𝑖 is the true STC cost, 𝑑𝑖 is the simulated (uncorrected or
corrected) cost, and 𝑁 is the number of samples.

This will be measured across a set of covers, either the 10,000
standard steganography cover images BOSSBase [2] (all images the
same size, 𝑛 = 262144), or 10,000 images from the ALASKA [7] data
set (image sizes vary from 𝑛 = 262144 to 𝑛 = 1048576).

4.1 Determining 𝑛𝑚 and 𝑛𝑐

Table 1: Variance 𝜎2 of the corrected entropy 𝑙𝛼 |𝒙𝑖 |, for val-
ues of 𝑛𝑚 , and 𝑛𝑐 , using S-UNIWARD, ℎ = 7, 𝛼 = 0.1.

𝑛𝑚 \ 𝑛𝑐 1 2 4 8 16 32
1 45 270 21 439 7716 6655 2322 1851
2 44 543 22 329 10 653 5506 3213 1466
4 46 152 21 213 10 217 6256 2814 1451
8 34 695 25 433 11 884 5162 1891 1203
16 40 921 20 078 13 772 5796 2916 1419

We first explore the parameters 𝑛𝑚 and 𝑛𝑐 . To determine which
has more effect on the stability of the results, we measured the
variance of 𝑙𝛼 |®𝑐 | for 𝛼 = 0.1. We tested 𝑛𝑚 ∈ {1, 2, 4, 8, 16}, and
𝑛𝑐 ∈ {1, 2, 4, 8, 16, 32} against an STC with ℎ = 7, repeating 100
times the selection of covers from BOSSBase. In Table 1 we see that
𝑛𝑚 has an almost negligible effect, so that we might as well set
𝑛𝑚 = 1. On the other hand, the variance of the corrected entropy is
approximately inversely proportional to𝑛𝑐 . This would be predicted
by standard sampling theory [33, §7.3].

Having settled on 𝑛𝑚 = 1, we can determine the lowest suitable
value of 𝑛𝑐 , as the user will want to perform the smallest sufficient
number of STC embeddings. We expected that very small values of
𝑛𝑐 would incorrectly estimate the entropy correction, or be subject
to large deviations depending on the covers that were sampled.

Using S-UNIWARD, the BOSSBase cover-set, and an STC (ℎ =

7), we found the average STC distortion (true cost) for 16 ran-
domly generated messages for each of the embedding rates 𝛼 =

{0.1, 0.2, . . . , 0.5}. Using (2) we found the uncorrected simulated
distortion for the original payload rates. For each value of 𝑛𝑐 ∈
{1, 2, 4, 8, 16} we found the cover-subset coding loss factor approxi-
mation using (9) for 𝑛𝑚 = 1, then the per-cover corrected simulated
distortion using (10), calculating the RMSRE for each combination
of parameters. This experiment was performed 100 times for differ-
ent random selections of 𝑛𝑐 covers.

In Table 2 we show the RMSRE (above), minimum and maximum
(below) RMSRE over all simulations for various values of 𝑛𝑐 . We
achieve a RMSRE that is at least an order of magnitude lower than
uncorrected PLS embedding. Higher values of 𝑛𝑐 have only a small
effect on the average outcome, but to our surprise, it is also the case
that even 𝑛𝑐 = 1 – a single sample of cover and message – did not
cause large deviations in the accuracy of the simulated distortion.
Even in the worst case (out of 100) selection of a single cover, in
most cases, an order of magnitude reduction in RMSRE is observed.

Table 2: RMSRE of per cover distortion values (simu-
lated versus true cost) for uncorrected, and corrected, S-
UNIWARD, ℎ = 7.

𝛼
RMSRE ×10−2

Uncorrected 𝑛𝑐 = 1 𝑛𝑐 = 2 𝑛𝑐 = 4 𝑛𝑐 = 8 𝑛𝑐 = 16

0.1 16.89 1.36 1.20 1.06 1.02 1.00
(0.95, 2.53) (0.95, 2.32) (0.95, 1.48) (0.95, 1.24) (0.95, 1.20)

0.2 18.28 0.97 0.83 0.78 0.73 0.72
(0.69, 1.68) (0.69, 1.64) (0.69, 1.21) (0.69, 0.91) (0.69, 0.85)

0.3 14.25 0.55 0.51 0.44 0.42 0.41
(0.40, 0.98) (0.40, 1.00) (0.40, 0.70) (0.40, 0.56) (0.40, 0.46)

0.4 14.13 0.18 0.14 0.12 0.11 0.10
(0.09, 0.55) (0.09, 0.32) (0.09, 0.25) (0.09, 0.21) (0.09, 0.14)

0.5 7.06 0.42 0.38 0.34 0.32 0.32
(0.03, 0.81) (0.03, 0.66) (0.03, 0.50) (0.03, 0.42) (0.04, 0.36)

4.2 Cover distortion accuracy
Using the values 𝑛𝑚 = 1 and 𝑛𝑐 = 1, in Fig. 2 and Fig. 3 we show
the per-cover-message: uncorrected, corrected (averaged over 100
simulations), and corrected (worst-case maximum RMRSE simula-
tion) distortion values plotted against the true per-cover-message
average distortion values using ℎ = 7, and ℎ = 10 respectively. It
is clear that our method predicts accurate distortion values which
negate the coding loss in the estimation. We emphasise that for
each combination of distortion function, constraint height, and
embedding rate we performed only a single true STC embedding
to estimate the corrected entropy 𝑙𝛼 |®𝑐 |, which was then used to
simulate our adjusted stego objects: a small overhead to find an
accurate estimation of the true cost.

To summarise the results, in Fig. 4 we compare our corrected
distortion method to the uncorrected PLS method, using 10,000
covers from BOSSBase, and again with 10,000 more heterogeneous
images from ALASKA. We chose ALASKA as our second cover set
to show that our method can be used on different sized covers. For
a set of distortion functions, constraint heights, and embedding
rates we show the deviation from the true cost using RMSRE. Our
method reduces, typically by an order of magnitude or more, the
relative error in distortion compared with a plain PLS method,
across all combinations of distortion functions, constraint heights,
embedding rates and cover sets.

4.3 Detectability
So far we have only tested whether our correction method achieves
the STC-realized distortion; now we test briefly whether it does the
same for detectability. We benchmarked our corrected method (𝑙
values as per Table 3), the uncorrected PLS method, and real STC
stego objects, embedding in 10,000 BOSSBase covers at embedding
rates 𝛼 = {0.1, 0.3, 0.5}. For STC embedding we used ℎ = {7, 10},
and for the correction we used a single STC realization: 𝑛𝑐 = 1 and
𝑛𝑚 = 1. For the detector, we use the Spatial Rich Model with Single
Quantization (SRMQ1) [16] feature sets with 12,753 dimensions,
with the Low-complexity Linear Classifier (LCLSMR) [8], using half
the cover and stego features for training, and the rest for testing and
repeating under 10 splits of training and testing data. We measure



Figure 2: Corrected, and uncorrected simulated distortion
versus realised distortion values. S-UNIWARD distortion
function, STC ℎ = 7, 𝑛𝑐 = 1, 𝑛𝑚 = 1.

Figure 3: Corrected, and uncorrected simulated distortion
versus realised distortion values. S-UNIWARD distortion
function, STC ℎ = 10, 𝑛𝑐 = 1, 𝑛𝑚 = 1.

detector error by the minimal total probability of error under equal
Bayesian priors, 𝑃𝐸 .

Table 3: Values of 𝑙 used for Section 4.3, 𝑛𝑐 = 1, 𝑛𝑚 = 1.

Cover set ℎ 𝛼 S-UNIWARD WOW MiPOD

BOSSBase

7
0.1 1.144 1.131 1.147
0.3 1.112 1.101 1.110
0.5 1.071 1.067 1.074

10
0.1 1.101 1.085 1.090
0.3 1.070 1.066 1.075
0.5 1.044 1.041 1.045

ALASKA

7
0.1 1.159 1.148 1.153
0.3 1.112 1.111 1.104
0.5 1.074 1.075 1.070

10
0.1 1.106 1.104 1.110
0.3 1.075 1.068 1.073
0.5 1.047 1.045 1.045

Table 4: Average detection error 𝑃𝐸 , as well as standard
deviation amongst folds, for corrected (𝑛𝑐 = 1, 𝑛𝑚 = 1),
and uncorrected simulated, compared to STC embedding, S-
UNIWARD. All numbers are expressed as percentage points
of error.

Method 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5
Uncorrected PLS 39.82% (± 0.08) 23.34% (± 0.11) 12.49% (± 0.10)
STC ℎ = 7 38.64% (± 0.07) 21.37% (± 0.06) 11.04% (± 0.09)
Corrected ℎ = 7 38.55% (± 0.12) 21.30% (± 0.12) 11.03% (± 0.08)
STC ℎ = 10 38.99% (± 0.08) 21.99% (± 0.08) 11.50% (± 0.13)
Corrected ℎ = 10 38.96% (± 0.08) 21.85% (± 0.11) 11.62% (± 0.10)

In Table 4 we show the error rates, as well as the standard de-
viation amongst the 10 training/testing splits. As expected, under
the larger constraint height ℎ = 10 the detectability of the STC
is slightly closer to a pure PLS simulation, but a significant gap
still remains: the simulation was under-distorting the stego objects
compared with genuine STC-embedded stego objects. Although
the absolute difference between error rates of 23.34% and 21.99%
(taking, for example, the case 𝛼 = 0.3) does not seem large, it is sta-
tistically significant with 𝑝 < 10−6 if we treat the folds as a random
sample. Moreover, it is not uncommon for detection differences of
around 1% to be treated as significant when incrementally-better
detectors are published [6].

But when we use our proposed method to increase the PLS
entropy to match the STC distortion, PLS embedding gives an error
rate of 21.85% that is practically identical to that of real stego objects,
and the difference is either not- or marginally-significant (𝑝 > 0.05
or 𝑝 > 0.01, depending on 𝛼 and ℎ). Thus our method is simulating
stego objects with detectability that matches that of STC-embedded
objects, as intended.

5 CONCLUDING REMARKS
We have shown that our method can create simulated stego objects
which are closer, in terms of distortion and detectability, to actual
stego objects than those created by traditional PLS embedding. Our
method can efficiently sample the coding loss of real stego objects
and derive an adjusted estimate of the entropy which must be in-
troduced to the simulated stego object, to match the real world
stego objects. Even as few as one real stego object is sufficient



Figure 4: Comparison of uncorrected, and corrected RMSRE from achieved distortion, for BOSSBase (top) and ALASKA (bot-
tom), 𝑛𝑐 = 1, 𝑛𝑚 = 1. Error bars indicate minimum and maximum RMSRE values obtained over all simulations.

to find an accurate entropy correction. The result is a low-cost
sampling technique which significantly minimises the divergence
between simulated and real-world stego objects, allowing the ben-
efits in terms of speed and simplicity of simulating, with a closer
representation to actual coding.

Our method also allows the researcher to simulate how their dis-
tortion function may behave under different conditions (constraint
heights, cover sources), not just embedding rates. Further work
may apply similar corrections for aspects not covered in this paper;
non-additive distortion functions, JPEG steganography, and q-ary
embedding. A method of analysis not included in this paper, but
would yield interesting results, is the divergence of the per-element
change probabilities to real embedding.

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sci-
ences Research Council [1744549]. We thank the reviewers for their
helpful advice and comments.

REFERENCES
[1] P. Bas. 2016. Steganography via Cover-Source Switching. In 2016 IEEE Interna-

tional Workshop on Information Forensics and Security (WIFS). IEEE, Abu Dhabi,
United Arab Emirates, 1–6. https://doi.org/10.1109/WIFS.2016.7823905

[2] P. Bas, T. Filler, and T. Pevný. 2011. ‘Break Our Steganographic System’: The
Ins and Outs of Organizing BOSS. Information Hiding (2011), 59–70. https:
//doi.org/10.1007/978-3-642-24178-9_5

[3] B. Chen, W. Luo, and P. Zheng. 2019. Enhancing Steganography via Stego Post-
Processing by Reducing Image Residual Difference. In Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security (IH&MMSec ’19). ACM,
New York, NY, USA, 63–68. https://doi.org/10.1145/3335203.3335716

[4] K. Chen, W. Zhang, H. Zhou, N. Yu, and G. Feng. 2016. Defining Cost Functions
for Adaptive JPEG Steganography at the Microscale. In 2016 IEEE International
Workshop on Information Forensics and Security (WIFS). IEEE, 1–6. https://doi.
org/10.1109/WIFS.2016.7823900

[5] K. Chen, H. Zhou, W. Zhou, W. Zhang, and N. Yu. 2019. Defining Cost
Functions for Adaptive JPEG Steganography at the Microscale. IEEE Trans-
actions on Information Forensics and Security 14, 4 (April 2019), 1052–1066.
https://doi.org/10.1109/TIFS.2018.2869353

[6] M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich. 2017. JPEG-Phase-Aware
Convolutional Neural Network for Steganalysis of JPEG Images. In Proceedings of
the 5th ACMWorkshop on Information Hiding andMultimedia Security (IH&MMSec
’17). Association for Computing Machinery, New York, NY, USA, 75–84. https:
//doi.org/10.1145/3082031.3083248

https://doi.org/10.1109/WIFS.2016.7823905
https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1145/3335203.3335716
https://doi.org/10.1109/WIFS.2016.7823900
https://doi.org/10.1109/WIFS.2016.7823900
https://doi.org/10.1109/TIFS.2018.2869353
https://doi.org/10.1145/3082031.3083248
https://doi.org/10.1145/3082031.3083248


[7] R. Cogranne, Q. Giboulot, and P. Bas. 2019. The ALASKA Steganalysis Challenge:
A First Step Towards Steganalysis. In Proceedings of the ACM Workshop on Infor-
mation Hiding and Multimedia Security (IH&MMSec ’19). ACM, New York, NY,
USA, 125–137. https://doi.org/10.1145/3335203.3335726

[8] R. Cogranne, V. Sedighi, J. Fridrich, and T. Pevný. 2015. Is Ensemble Classifier
Needed for Steganalysis in High-Dimensional Feature Spaces?. In 2015 IEEE
International Workshop on Information Forensics and Security (WIFS). IEEE, 1–6.
https://doi.org/10.1109/WIFS.2015.7368597

[9] T. Denemark and J. Fridrich. 2015. Side-Informed Steganography with Additive
Distortion. In 2015 IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 1–6. https://doi.org/10.1109/WIFS.2015.7368589

[10] T. Denemark and J. Fridrich. 2017. Steganography With Multiple JPEG Images of
the Same Scene. IEEE Transactions on Information Forensics and Security 12, 10
(Oct 2017), 2308–2319. https://doi.org/10.1109/TIFS.2017.2705625

[11] B. Feng, W. Lu, and W. Sun. 2015. Secure Binary Image Steganography Based
on Minimizing the Distortion on the Texture. IEEE Transactions on Information
Forensics and Security 10, 2 (Feb 2015), 243–255. https://doi.org/10.1109/TIFS.
2014.2368364

[12] T. Filler and J. Fridrich. 2010. Gibbs Construction in Steganography. IEEE
Transactions on Information Forensics and Security 5, 4 (2010), 705–720.

[13] T. Filler and J. Fridrich. 2011. Design of Adaptive Steganographic Schemes for
Digital Images. In Media Watermarking, Security, and Forensics III, Vol. 7880.
International Society for Optics and Photonics, 78800F.

[14] T. Filler, J. Judas, and J. Fridrich. 2011. Minimizing Additive Distortion in Steganog-
raphy Using Syndrome-Trellis Codes. IEEE Transactions on Information Forensics
and Security 6, 3 (2011), 920–935. https://doi.org/10.1109/tifs.2011.2134094

[15] J. Fridrich. 2013. Effect of Cover Quantization on Steganographic Fisher Infor-
mation. IEEE Transactions on Information Forensics and Security 8, 2 (Feb 2013),
361–373. https://doi.org/10.1109/TIFS.2012.2235832

[16] J. Fridrich and J. Kodovsky. 2012. Rich Models for Steganalysis of Digital Images.
IEEE Transactions on Information Forensics and Security 7, 3 (June 2012), 868–882.
https://doi.org/10.1109/TIFS.2012.2190402

[17] M. Goljan, J. Fridrich, and R. Cogranne. 2014. Rich Model for Steganalysis of
Color Images. In 2014 IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 185–190. https://doi.org/10.1109/WIFS.2014.7084325

[18] L. Guo, J. Ni, and Y. Q. Shi. 2012. An Efficient JPEG Steganographic Scheme using
Uniform Embedding. In 2012 IEEE International Workshop on Information Forensics
and Security (WIFS). IEEE, 169–174. https://doi.org/10.1109/WIFS.2012.6412644

[19] L. Guo, J. Ni, and Y. Q. Shi. 2014. Uniform Embedding for Efficient JPEG Steganog-
raphy. IEEE Transactions on Information Forensics and Security 9, 5 (May 2014),
814–825. https://doi.org/10.1109/TIFS.2014.2312817

[20] L. Guo, J. Ni, W. Su, C. Tang, and Y. Shi. 2015. Using Statistical Image Model
for JPEG Steganography: Uniform Embedding Revisited. IEEE Transactions on
Information Forensics and Security 10, 12 (Dec 2015), 2669–2680. https://doi.org/
10.1109/TIFS.2015.2473815

[21] V. Holub and J. Fridrich. 2012. Designing Steganographic Distortion using Direc-
tional Filters. In 2012 IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 234–239. https://doi.org/10.1109/WIFS.2012.6412655

[22] V. Holub and J. Fridrich. 2013. Random Projections of Residuals for Digital Image
Steganalysis. IEEE Transactions on Information Forensics and Security 8, 12 (Dec
2013), 1996–2006. https://doi.org/10.1109/TIFS.2013.2286682

[23] V. Holub, J. Fridrich, and T. Denemark. 2014. Universal Distortion Function for
Steganography in an Arbitrary Domain. EURASIP Journal on Information Security
2014, 1 (2014). https://doi.org/10.1186/1687-417x-2014-1

[24] D. Hu, H. Xu, Z. Ma, S. Zheng, and B. Li. 2018. A Spatial Image Steganography
Method Based on Nonnegative Matrix Factorization. IEEE Signal Processing
Letters 25, 9 (Sep. 2018), 1364–1368. https://doi.org/10.1109/LSP.2018.2856630

[25] X. Hu, J. Ni, and Y. Shi. 2018. Efficient JPEG Steganography Using Domain
Transformation of Embedding Entropy. IEEE Signal Processing Letters 25, 6 (June
2018), 773–777. https://doi.org/10.1109/LSP.2018.2818674

[26] S. Islam, M. R. Modi, and P. Gupta. 2014. Edge-Based Image Steganography.
EURASIP Journal on Information Security 2014, 1 (27 Apr 2014), 8. https://doi.
org/10.1186/1687-417X-2014-8

[27] J. Kodovsky and J. Fridrich. 2014. Effect of Image Downsampling on Stegano-
graphic Security. IEEE Transactions on Information Forensics and Security 9, 5
(May 2014), 752–762. https://doi.org/10.1109/TIFS.2014.2309054

[28] B. Li, S. Tan, M. Wang, and J. Huang. 2014. Investigation on Cost Assignment
in Spatial Image Steganography. IEEE Transactions on Information Forensics and
Security 9, 8 (Aug 2014), 1264–1277. https://doi.org/10.1109/TIFS.2014.2326954

[29] B. Li, M. Wang, X. Li, S. Tan, and J. Huang. 2015. A Strategy of Clustering
Modification Directions in Spatial Image Steganography. IEEE Transactions on
Information Forensics and Security 10, 9 (Sep. 2015), 1905–1917. https://doi.org/
10.1109/TIFS.2015.2434600

[30] W. Li, W. Zhang, K. Chen, W. Zhou, and N. Yu. 2018. Defining Joint Distortion
for JPEG Steganography. In Proceedings of the 6th ACM Workshop on Information
Hiding and Multimedia Security (IH&MMSec ’18). ACM, New York, NY, USA, 5–16.
https://doi.org/10.1145/3206004.3206008

[31] T Pevný, T. Filler, and P Bas. 2010. Using High-Dimensional Image Models
to Perform Highly Undetectable Steganography. In Information Hiding, Rainer
Böhme, Philip W. L. Fong, and Reihaneh Safavi-Naini (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 161–177.

[32] T. Pevný and A. Ker. 2018. Exploring Non-Additive Distortion in Steganography.
In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia
Security (IH&MMSec ’18). ACM, New York, NY, USA, 109–114. https://doi.org/
10.1145/3206004.3206015

[33] J. A. Rice. 1995. Mathematical Statistics and Data Analysis (2nd ed. ed.). Duxbury
Press, Belmont, Calif.

[34] V. Sedighi, R. Cogranne, and J. Fridrich. 2016. Content-adaptive Steganography
byMinimizing Statistical Detectability. IEEE Transactions on Information Forensics
and Security 11, 2 (Feb 2016), 221–234. https://doi.org/10.1109/TIFS.2015.2486744

[35] V. Sedighi and J. Fridrich. 2015. Effect of Imprecise Knowledge of the Selection
Channel on Steganalysis. In Proceedings of the 3rd ACM Workshop on Information
Hiding and Multimedia Security (IH&MMSec ’15). ACM, New York, NY, USA,
33–42. https://doi.org/10.1145/2756601.2756621

[36] T. Taburet, P. Bas, J. Fridrich, and W. Sawaya. 2019. Computing Dependencies
Between DCT Coefficients for Natural Steganography in JPEG Domain. In Pro-
ceedings of the ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec ’19). ACM, New York, NY, USA, 57–62. https://doi.org/10.1145/
3335203.3335715

[37] W. Tang, B. Li, W. Luo, and J. Huang. 2016. Clustering Steganographic Modifica-
tion Directions for Color Components. IEEE Signal Processing Letters 23, 2 (Feb
2016), 197–201. https://doi.org/10.1109/LSP.2015.2504583

[38] W. Tang, B. Li, S. Tan, M. Barni, and J. Huang. 2019. CNN-Based Adversarial
Embedding for Image Steganography. IEEE Transactions on Information Forensics
and Security 14, 8 (Aug 2019), 2074–2087. https://doi.org/10.1109/TIFS.2019.
2891237

[39] W. Tang, H. Li, W. Luo, and J. Huang. 2016. Adaptive Steganalysis Based on
Embedding Probabilities of Pixels. IEEE Transactions on Information Forensics and
Security 11, 4 (April 2016), 734–745. https://doi.org/10.1109/TIFS.2015.2507159

[40] W. Tang, S. Tan, B. Li, and J. Huang. 2017. Automatic Steganographic Distortion
Learning Using a Generative Adversarial Network. IEEE Signal Processing Letters
24, 10 (Oct 2017), 1547–1551. https://doi.org/10.1109/LSP.2017.2745572

[41] Z. Wang, X. Zhang, and Z. Yin. 2018. Joint Cover-Selection and Payload-
Allocation by Steganographic Distortion Optimization. IEEE Signal Processing
Letters 25, 10 (Oct 2018), 1530–1534. https://doi.org/10.1109/LSP.2018.2865888

[42] J. Yang, D. Ruan, X. Kang, and Y. Shi. 2019. Towards Automatic Embedding
Cost Learning for JPEG Steganography. In Proceedings of the ACM Workshop on
Information Hiding and Multimedia Security (IH&MMSec ’19). ACM, New York,
NY, USA, 37–46. https://doi.org/10.1145/3335203.3335713

[43] J. Ye, J. Ni, and Y. Yi. 2017. Deep Learning Hierarchical Representations for Image
Steganalysis. IEEE Transactions on Information Forensics and Security 12, 11 (Nov
2017), 2545–2557. https://doi.org/10.1109/TIFS.2017.2710946

[44] W. Zhang, J. Liu, X. Wang, and N. Yu. 2010. Generalization and Analysis of
the Paper Folding Method for Steganography. IEEE Transactions on Information
Forensics and Security 5, 4 (Dec 2010), 694–704. https://doi.org/10.1109/TIFS.2010.
2065804

[45] Z. Zhao, Q. Guan, H. Zhang, and X. Zhao. 2019. Improving the Robustness of
Adaptive Steganographic Algorithms Based on Transport Channel Matching.
IEEE Transactions on Information Forensics and Security 14, 7 (July 2019), 1843–
1856. https://doi.org/10.1109/TIFS.2018.2885438

[46] Z. Zhao, Q. Guan, and X. Zhao. 2016. Constructing Near-Optimal Double-Layered
Syndrome-Trellis Codes for Spatial Steganography. In Proceedings of the 4th ACM
Workshop on Information Hiding and Multimedia Security (IH&MMSec ’16). ACM,
New York, NY, USA, 139–148. https://doi.org/10.1145/2909827.2930802

[47] W. Zhou, W. Zhang, and N. Yu. 2017. A New Rule for Cost Reassignment in
Adaptive Steganography. IEEE Transactions on Information Forensics and Security
12, 11 (Nov 2017), 2654–2667. https://doi.org/10.1109/TIFS.2017.2718480

https://doi.org/10.1145/3335203.3335726
https://doi.org/10.1109/WIFS.2015.7368597
https://doi.org/10.1109/WIFS.2015.7368589
https://doi.org/10.1109/TIFS.2017.2705625
https://doi.org/10.1109/TIFS.2014.2368364
https://doi.org/10.1109/TIFS.2014.2368364
https://doi.org/10.1109/tifs.2011.2134094
https://doi.org/10.1109/TIFS.2012.2235832
https://doi.org/10.1109/TIFS.2012.2190402
https://doi.org/10.1109/WIFS.2014.7084325
https://doi.org/10.1109/WIFS.2012.6412644
https://doi.org/10.1109/TIFS.2014.2312817
https://doi.org/10.1109/TIFS.2015.2473815
https://doi.org/10.1109/TIFS.2015.2473815
https://doi.org/10.1109/WIFS.2012.6412655
https://doi.org/10.1109/TIFS.2013.2286682
https://doi.org/10.1186/1687-417x-2014-1
https://doi.org/10.1109/LSP.2018.2856630
https://doi.org/10.1109/LSP.2018.2818674
https://doi.org/10.1186/1687-417X-2014-8
https://doi.org/10.1186/1687-417X-2014-8
https://doi.org/10.1109/TIFS.2014.2309054
https://doi.org/10.1109/TIFS.2014.2326954
https://doi.org/10.1109/TIFS.2015.2434600
https://doi.org/10.1109/TIFS.2015.2434600
https://doi.org/10.1145/3206004.3206008
https://doi.org/10.1145/3206004.3206015
https://doi.org/10.1145/3206004.3206015
https://doi.org/10.1109/TIFS.2015.2486744
https://doi.org/10.1145/2756601.2756621
https://doi.org/10.1145/3335203.3335715
https://doi.org/10.1145/3335203.3335715
https://doi.org/10.1109/LSP.2015.2504583
https://doi.org/10.1109/TIFS.2019.2891237
https://doi.org/10.1109/TIFS.2019.2891237
https://doi.org/10.1109/TIFS.2015.2507159
https://doi.org/10.1109/LSP.2017.2745572
https://doi.org/10.1109/LSP.2018.2865888
https://doi.org/10.1145/3335203.3335713
https://doi.org/10.1109/TIFS.2017.2710946
https://doi.org/10.1109/TIFS.2010.2065804
https://doi.org/10.1109/TIFS.2010.2065804
https://doi.org/10.1109/TIFS.2018.2885438
https://doi.org/10.1145/2909827.2930802
https://doi.org/10.1109/TIFS.2017.2718480

	Abstract
	1 Introduction
	1.1 Notation

	2 Background
	3 Proposed method
	4 Experimental Results
	4.1 Determining nm and nc
	4.2 Cover distortion accuracy
	4.3 Detectability

	5 Concluding remarks
	Acknowledgments
	References

