
8

On the Language of Nested Tuple Generating Dependencies

PHOKION G. KOLAITIS, UC Santa Cruz and IBM Research - Almaden

REINHARD PICHLER, TU Wien

EMANUEL SALLINGER, TU Wien and University of Oxford

VADIM SAVENKOV, Vienna University of Economics and Business

During the past 15 years, schema mappings have been extensively used in formalizing and studying such crit-

ical data interoperability tasks as data exchange and data integration. Much of the work has focused on GLAV

mappings, i.e., schema mappings specified by source-to-target tuple-generating dependencies (s-t tgds), and

on schema mappings specified by second-order tgds (SO tgds), which constitute the closure of GLAV map-

pings under composition. In addition, nested GLAV mappings have also been considered, i.e., schema map-

pings specified by nested tgds, which have expressive power intermediate between s-t tgds and SO tgds. Even

though nested GLAV mappings have been used in data exchange systems, such as IBM’s Clio, no systematic

investigation of this class of schema mappings has been carried out so far. In this article, we embark on such

an investigation by focusing on the basic reasoning tasks, algorithmic problems, and structural properties

of nested GLAV mappings. One of our main results is the decidability of the implication problem for nested

tgds. We also analyze the structure of the core of universal solutions with respect to nested GLAV mappings

and develop useful tools for telling apart SO tgds from nested tgds. By discovering deeper structural proper-

ties of nested GLAV mappings, we show that also the following problem is decidable: Given a nested GLAV

mapping, is it logically equivalent to a GLAV mapping?

CCS Concepts: • Theory of computation → Data exchange; • Information systems → Mediators and

data integration;

Additional Key Words and Phrases: Schema mappings, data integration, data exchange, nested dependencies,

second-order dependencies

The research of Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov was supported by the Austrian Science Fund,

projects (FWF):P25207-N23 and (FWF):Y698, and the Vienna Science and Technology Fund, project ICT12-015. The research

of Phokion Kolaitis on this article was partially supported by NSF Grant IIS-1217869. The full version was completed while

Kolaitis was visiting the Simons Institute for the Theory of Computing during the fall of 2016. The research of Emanuel

Sallinger was supported by the EPSRC programme grant EP/M025268/1, the Horizon 2020 grant 809965 and the Vienna

Science and Technology Fund (WWTF) WWTF grant VRG18-013.

Authors’ addresses: P. G. Kolaitis, University of California, Santa Cruz, Computer Science and Engineering Department,

CA 95064, USA and IBM Research - Almaden, San Jose, CA 95120, USA; email: kolaitis@ucsc.edu; R. Pichler, TU Wien,

Faculty of Informatics, Institute of Logic and Computation, Database and Artificial Intelligence Group, 1040 Vienna, Aus-

tria; email: pichler@dbai.tuwien.ac.at; E. Sallinger, TU Wien, Faculty of Informatics, Institute of Logic and Computation,

Database and Artificial Intelligence Group, Knowledge Graph Lab, 1040 Vienna, Austria and University of Oxford, Depart-

ment of Computer Science, OX1 3QD, Oxford, United Kingdom; email: sallinger@dbai.tuwien.ac.at; V. Savenkov, Vienna

University of Economics and Business, Institute for Information Business, Welthandelsplatz 1, 1020 Vienna, Austria; email:

vadim.savenkov@wu.ac.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2020/07-ART8 $15.00

https://doi.org/10.1145/3369554

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3369554
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3369554&domain=pdf&date_stamp=2020-07-13

8:2 P. G. Kolaitis et al.

ACM Reference format:

Phokion G. Kolaitis, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. 2020. On the Language of

Nested Tuple Generating Dependencies. ACM Trans. Database Syst. 45, 2, Article 8 (July 2020), 59 pages.

https://doi.org/10.1145/3369554

1 INTRODUCTION

Schema mappings are high-level specifications, typically expressed in some logical formalism, that
describe the relationship between two database schemas, called the source schema and the target
schema. During the past 15 years, schema mappings have been extensively used in formalizing
and studying such critical data interoperability tasks as data exchange and data integration. Much
of the work has focused on two classes of schema mappings: GLAV mappings and mappings spec-
ified by SO tgds. A GLAV mapping is specified by a finite set of source-to-target tuple-generating
dependencies (s-t tgds), which are first-order formulas of the form ∀�x (φ (�x) → ∃�yψ (�x , �y)) with
φ (�x) a conjunction of atoms over the source schema and ψ (�x , �y) a conjunction of atoms over the
target schema. As the name suggests, a second-order tuple-generating dependency (SO tgd) is a
second-order formula; it starts with a string of existential function quantifiers that is followed by
a conjunction of first-order formulas that resemble s-t tgds, but allow function terms in atomic
formulas and also equalities between such terms. As shown in Reference [11], SO tgds are the
right language for expressing compositions of GLAV schema mappings. The study of GLAV map-
pings and mappings specified by SO tgds has spanned a wide range of problems, from expressive
power and algorithms to optimization and structural properties; for comprehensive overviews of
the literature, see References [1, 19, 21, 25, 27].

In addition to GLAV mappings and mappings specified by SO tgds, two other classes of schema
mappings of intermediate expressive power have also been considered. The first is the class of
nested GLAV mappings that are specified by finitely many nested tgds, that is, first-order formulas
that, informally, are obtained by a finite “nesting” of s-t tgds inside other s-t tgds. For example, the
expression

∀x1x2 (S (x1,x2) → ∃y (R (y,x2) ∧ ∀x3 (S (x1,x3) → R (y,x3))))

is a nested tgd. The second is the class of plain SO tgds, which consists of those SO tgds that contain
no nested terms (i.e., no functional terms that have other functional terms as arguments) and no
equalities between terms. For example, the expression

∃f ∀x∀y (S (x ,y) → R (f (x), f (y)))

is a plain SO tgd. We now describe the different reasons and motivation that led to the introduction
of these two classes of schema mappings.

Nested GLAV mappings were introduced in Reference [13] and demonstrated in Reference [18]
as an enhancement of the specification language of the Clio system, which, at that time, was be-
ing developed at the IBM Almaden Research Center and later became part of IBM’s InfoSphere
BigInsights suite. Richer nested mappings, including nested XML mappings and nested second-
order tgds, were subsequently used in the Clip system [26]. In the peer data management context,
in which data are exchanged between several different peer nodes (instead of between a single
source schema and a single target schema), the Piazza system [16] was capable of performing query
reformulation over XML data sources. As pointed out in Reference [6], the underlying mapping
language Piazza XML (syntactically a fragment of XQuery) is essentially the language of nested
tgds. Nested schema transformations in the peer data integration context were also used in the
HePToX system [5].

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

https://doi.org/10.1145/3369554

On the Language of Nested Tuple Generating Dependencies 8:3

The main argument in favor of nested GLAV mappings over GLAV mappings given in Refer-
ences [13, 18] is that they produce specifications that are more compact and also reflect more
accurately the correlations between data; moreover, since they are specified in first-order logic,
nested GLAV mappings give rise to transformations that, like those arising from GLAV mappings,
can be implemented using SQL queries. Compared to SO tgds, nested GLAV mappings “offer a
more natural programming paradigm for mapping tasks” [13]. This state of affairs suggests that
there are situations in which it is important to determine if an SO tgd can be replaced by an equiv-
alent nested GLAV mapping. Sufficient conditions under which such a rewriting is possible have
been identified in Reference [4] and, very recently, in Reference [15].

Plain SO tgds were introduced and studied in depth in Reference [2] as a language particu-
larly well suited for handling both composition and inversion of GLAV mappings. The results in
Reference [2] make a strong case that plain SO tgds form the right language for handling CQ-
composition and inversion of GLAV mappings, where CQ-composition is a variant of the compo-
sition operator in which two schema mappings are considered to be equivalent if they give rise to
the same certain answers for conjunctive queries (the notion of CQ-composition was introduced
in Reference [24]).

In terms of expressive power, nested GLAV mappings are strictly more expressive than GLAV
mappings and strictly less expressive than mappings specified by plain SO tgds. As a matter of
fact, it is known that the nested tgd given earlier is not logically equivalent to any finite set of s-t
tgds, while the plain SO tgd given earlier is not logically equivalent to any nested GLAV mapping.
Nested GLAV mappings and plain SO tgds share several desirable structural properties, such as
admitting universal solutions and being closed under target homomorphisms [2, 28]. These simi-
larities notwithstanding, it should be kept in mind that nested tgds and SO tgds belong to intrinsi-
cally different logical formalisms (first-order logic vs. second-order logic), a fact that may translate
to different algorithmic behavior. For instance, the data complexity of the model checking prob-
lem of nested tgds is in LOGSPACE, while the data complexity of plain SO tgds is NP-complete.
As regards reasoning tasks, the decidability of the implication problem for plain SO tgds remains
open, whereas the logical equivalence problem for SO tgds (hence, also the implication problem
for SO tgds) is undecidable. In fact, there is no algorithm even for deciding whether a given SO
tgd is logically equivalent to a given finite set of s-t tgds (see References [3, 12]). Coping with this
complexity motivates the research on simplifying SO tgds and, in particular, plain SO tgds with
first-order nested tgds [4, 15].

In spite of the uses and applications of nested tgds, no systematic investigation of nested tgds
in their own right has been carried out to date. Our goal in this article is to embark on such
an investigation by focusing on the basic reasoning tasks, algorithmic problems, and structural
properties of nested GLAV mappings.

The implication problem is a fundamental problem in mathematical logic and also one of the
central problems in database dependency theory. Our first main result is that the implication prob-
lem (and, hence, the equivalence problem) for nested tgds is decidable, in contrast to SO tgds. Our
decision procedure for the implication problem for nested tgds is rather elaborate and entails a
delicate analysis of the properties of the chase procedure for nested tgds.

After this, we address the problem of telling apart nested tgds from s-t tgds. To that end, we show
that the following problem is decidable: Given a nested GLAV mapping, is it logically equivalent
to some GLAV mapping? The situation is less clear regarding the problem of telling apart plain SO
tgds from nested tgds. Indeed, at present, it is not known whether or not the following problem
is decidable: Given a plain SO tgd, is it logically equivalent to some nested GLAV mapping? Even
though we do not settle the decidability of this problem here, we succeed in providing useful and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:4 P. G. Kolaitis et al.

easy-to-use sufficient conditions for telling that a given plain SO tgd is not logically equivalent to
a nested GLAV mapping.

The aforementioned algorithm for telling apart nested tgds from s-t tgds, as well as the afore-
mentioned sufficient conditions for telling apart a plain SO tgd from nested tgds, are derived by
discovering new properties of the structure of the cores of universal solutions with respect to
nested GLAV mappings. We believe that these properties are of interest in their own right and
may play a role in structural characterizations of schema-mapping languages.

Finally, we study settings where key dependencies or, more generally, equality generating de-
pendencies (egds) over the source schema are present. By revisiting the fundamental decision prob-
lems of logical equivalence and of telling apart schema mappings in different formalisms, we unveil
further significant differences between nested tgds and plain SO tgds. In Reference [12], the logi-
cal equivalence problem for plain SO tgds was shown undecidable if the source schema contains
key dependencies. In contrast, here, we show that the implication problem (and, hence, the logical
equivalence problem) for nested tgds remains decidable even in the presence of arbitrary source
egds. Likewise, we show that the problem of deciding if a given nested GLAV mapping is logically
equivalent to some GLAV mapping remains decidable if arbitrary source egds are allowed. Again,
this is in sharp contrast to plain SO tgds, for which we prove undecidability of the following prob-
lems in the presence of source key dependencies: Given a plain SO tgd, is it logically equivalent to
a GLAV mapping (or to a nested GLAV mapping, respectively)?

One of the chief goals in data exchange and data integration is to perform query answer-
ing. Hence, in addition to logical equivalence between mappings, one is also interested in CQ-

equivalence. By definition, two mappings are CQ-equivalent if for every target conjunctive queryq,
the certain answers of q are the same for the two mappings. In general, logical equivalence implies
CQ-equivalence, but not vice versa. However, logical equivalence and CQ-equivalence coincide for
plain SO tgds and, in particular, for nested GLAV mappings. This can be seen by combining results
from References [2] and [9]. More precisely, in Proposition 3.14 of Reference [9] the following
property is shown: LetM andM′ be schema mappings such that both are preserved under target

homomorphisms and both have the following property: For every instance I , if there is a solution for

I , then there is a universal solution for I . Then, the fact thatM andM′ are CQ-equivalent implies

that M and M′ are logically equivalent. Moreover, in Theorem 14 of Reference [2] it is shown
that plain SO tgds possess these properties. Thus, even though we state and prove our results for
logical equivalence only, they also hold for CQ-equivalence as well.

The remainder of the article is organized as follows: Section 2 contains the definitions of the
basic concepts and background material. Section 3 is devoted to the implication problem for
nested tgds. Section 4 contains the analysis of the core of the universal solutions with respect
to nested GLAV mappings, and the applications of this analysis to differentiating nested tgds from
s-t tgds as well as plain SO tgds from nested tgds. Section 5 revisits the problems studied in earlier
sections when source key constraints are also present in the specification of the schema map-
pings at hand. The article concludes with a discussion of open problems and directions for future
research.

Relationship to previous work. This article is the full version of the conference paper [20].
This full version represents a significant expansion over the conference proceedings version. In
particular, the body of the article includes detailed proofs of some of the main results and addi-
tional explanations. In addition, the present article contains an Appendix featuring some of the
more technical proofs and a number of figures that facilitate the understanding of these proofs. In
total, this submission contains roughly double the amount of material compared to the conference
paper.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:5

2 PRELIMINARIES

Schemas, Instances, and Homomorphisms. A schema R is a finite set {R1, . . . ,Rk } of relation
symbols, where each Ri has a fixed arity ≥ 1. An instance I over R, or an R-instance, is a set
RI

1 ∪ . . . ∪ RI
k

, where each RI
i is a finite relation of the same arity as Ri . We will often use Ri to

denote both the relation symbol and the relation RI
i that instantiates it, when instance I is clear

from the context.
The active domain dom(I) of an instance I is the set of values occurring in the relations of I .

We assume these values to be of two sorts, namely, constants and (labeled) nulls. By CONST and
NULLS, we denote the disjoint sets of all constants and all nulls, respectively. Intuitively, nulls
are used as placeholders for unknown constant values. We write const (I) and nulls(I) to denote,
respectively, the set of constants and the set of nulls in dom(I). A fact of an instance I over a
schema R is a tuple occurring in one of the relations Ri of I . Such a fact is denoted Ri (v1, . . . ,vm)
or, for short, R (�a). Here, �a = (v1, . . . ,vm) is a tuple of values from dom(I), every vi being either a
constant or a null. The empty tuple is denoted by ().

Let S and T be two schemas with no relation symbols in common. We refer to S as the source

schema, and T as the target schema. Similarly, we refer to S-instances as source instances, and T-
instances as target instances. We assume that the active domains of source instances consist of
constants; the active domains of target instances may consist of constants and nulls. Note that
variables (in logical formulas) should not be confused with nulls (in target instances).

Let J be a target instance. The Gaifman graph of facts of J is the graph whose nodes are the facts
of J and there is an edge between any two distinct facts if they have a null in common. We say that
a target instance J is connected if the Gaifman graph of facts of J is connected. A fact block (f-block)

of J is a connected component of the Gaifman graph of facts of J . The fact block size (f-block size)

of J is the cardinality of the largest f-block of J .
Let J1 and J2 be two target instances. A functionh that maps constants and nulls to constants and

nulls is a homomorphism from J1 to J2 if the following holds: (i) for every constant c , we have that
h(c) = c ; and (ii) for every relation symbol R in R and every tuple (a1, . . . ,an) ∈ R J1 , we have that
(h(a1), . . . ,h(an)) ∈ R J2 . We use the notation J1 → J2 to denote that there is a homomorphism from
J1 to J2. We say that J1 is homomorphically equivalent to J2, written J1 ↔ J2, if J1 → J2 and J2 → J1.
The core of an instance J , denoted core(J), is the smallest subinstance of J that is homomorphically
equivalent to J . If there are multiple cores of J , then they are all isomorphic [17]. A homomorphism
from J to J is called an endomorphism. An endomorphism is called proper if h(v) ∈ CONST holds
for at least one null v or h(v1) = h(v2) holds for two distinct nulls v1, v2.

Example 2.1. Consider the following instance I1 = C1 ∪C2 such that C1 = {A(u1,u2),A(u2,u3)}
with nulls ui and C2 = {A(v1,v2),A(v2,v3),A(v3,v1)} with nulls vj . Intuitively, I1 constitutes a
directed graph whereA is the edge relation and the nullsui andvj are the vertices. We see that the
smaller subinstance (i.e., subgraph) C1 can be homomorphically mapped to C2. This is witnessed
by the homomorphism that maps each ui to the respectivevi . Thus, we have that core (I1) = C2, as
C2 is homomorphically equivalent to the entire instance I1.

The core looks quite different if we add a single “self-loop” (i.e., a factA(w,w) for some nullw) to
the instance. More precisely, let I2 = I1 ∪ S with S = {A(w,w)} wherew is a null. Then bothC1 and
C2 can be homomorphically mapped to S , that is, core (I2) = S . In fact, it is a general observation
that arbitrary graphs containing a self-loop “collapse” to the self-loop in the core. �
Schema mappings. A schema mapping is a triple M = (S,T, Σ), where S is the source schema,
T is the target schema, and Σ is a set of constraints, which are logical formulas describing the
relationship between S and T. We say thatM is specified by Σ; often, we will identify the set Σ of
constraints with the mappingM.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:6 P. G. Kolaitis et al.

If I is a source instance and J is a target instance such that the pair (I , J) satisfies Σ (written
(I , J) |= Σ), then we say that J is a solution of I w.r.t.M. We say that J is a universal solution for

I w.r.t.M if J is a solution for I and for every solution J ′ for I , we have J → J ′. If C is a class of
schema mappings, we say that C admits universal solutions if for every schema mappingM in C
and every source instance I , a universal solution for I w.r.t.M exists.

s-t tgds. A source-to-target tuple-generating dependency (in short, s-t tgd) is a first-order sentence
of the form ∀�x (φ (�x) → ∃�yψ (�x , �y)), where φ (�x) is a conjunction of atoms over S, each variable in
�x occurs in at least one atom in φ (�x), and ψ (�x , �y) is a conjunction of atoms over T with variables
in �x and �y. For simplicity, we will often suppress writing the universal quantifiers ∀�x in the above
formula. We refer to φ (�x) as the left-hand side, or antecedent, and ∃�yψ (�x , �y) as the right-hand side,
or conclusion.

Another name for s-t tgds is global-and-local-as-view (GLAV) constraints (see Reference [22]).
We refer to a schema mapping specified entirely by a finite set of GLAV constraints as a GLAV

mapping.
As shown in Reference [8], the class of GLAV mappings admits universal solutions. Moreover, if

M is a GLAV mapping, then given a source instance I , the so-called “canonical” universal solution
chase(I ,M) can be produced via the oblivious chase procedure, defined next.

Let∀�x (φ (�x) → ∃�yψ (�x , �y)) be an s-t tgd inM. For a conjunction of atomsφ (�x), we use �a to define
an assignment for �x consisting of constants, such that the ith element of �a replaces the ith variable
of �x in φ (�x), resulting in the formula φ (�a). We write I |= φ (�x) if there exists an assignment �a for �x
such that for each atom R (a1, . . . ,ak) of φ (�a), the fact (a1, . . . ,ak) is in RI . Such an assignment �a
is called a satisfying assignment for φ (�x) w.r.t. I (we omit the phrase “w.r.t. I” if I is clear from the
context): this is denoted as I |= φ (�a). For every satisfying assignment �a for φ (�x) w.r.t. I , the oblivi-

ous chase adds to the instance chase(I ,M) all atoms ofψ (�a, �B) as facts, where �B is an assignment
replacing all variables y in �y with fresh, pairwise-distinct nulls. Such an extension of chase(I ,M)
is performed for each satisfying assignment of each s-t tgd inM.

egds. An equality generating dependency (egd) has the form ∀�x (φ (�x) → xi = x j), where the an-
tecedent φ (�x) is a conjunction of atoms and xi , x j are the ith and the jth elements of �x , respec-
tively. Sets of egds generalize functional dependencies. The chase of an instance I with the above
egd proceeds as follows: Whenever �a is a satisfying assignment for φ (�x) with ai � aj , then the
chase replaces in I each occurrence of ai with aj . Typically in data exchange, egds on the target
schema are defined, and only those unifications are allowed where at least one value of ai , aj is a
null: If ai and aj are distinct constants, then the chase halts with failure. This convention does not
apply here, since we use egds to specify admissible source instances.

SO tgds and Plain SO tgds. Second-Order tgds, or SO tgds, were introduced in Reference [11],
where it was shown that SO tgds are exactly the dependencies needed to specify the composition
of an arbitrary number of GLAV mappings. Before we formally define SO tgds, we need to define

terms. Given collections �x of variables and �f of function symbols, a term (based on �x and �f) is
defined recursively as follows: (1) Every variable in �x is a term; (2) If f is a k-ary function symbol

in �f and t1, . . . , tk are terms, then f (t1, . . . , tk) is a term.
Let S be a source schema and T a target schema. A second-order tuple-generating dependency (SO

tgd) is a formula of the form:

∃�f ((∀�x1 (φ1 → ψ1)) ∧ · · · ∧ (∀�xn (φn → ψn))),where

(1) �f is a sequence of function symbols.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:7

(2) Each φi is a conjunction of (i) relational atoms S (y1, . . . ,yk), where S is a k-ary relation
symbol of schema S and y1, . . . ,yk are variables in �xi , not necessarily distinct, and (ii)

equalities of the form t = t ′ where t and t ′ are terms based on �xi and �f .
(3) Each ψi is a conjunction of atoms T (t1, . . . , tl), where T is an l-ary relation symbol of

schema T and t1, . . . , tl are terms based on �xi and �f .
(4) Each variable in �xi appears in some relational atom of φi .

As an example, the formula

∃f (∀e (Emp(e) → Mgr (e, f (e))) ∧
∀e (Emp(e) ∧ (e = f (e)) → SelfMgr (e)))

expresses the property that every employee has a manager, and if an employee is the manager of
himself/herself, then this employee is a self-manager.

Note that SO tgds allow for nested terms and for equalities between terms. A nested term is a
functional term that contains a functional term as an argument. A plain SO tgd is an SO tgd that
contains no nested terms and no equalities. For example, the preceding SO tgd is not plain, while
the following SO tgd is plain:

∃f ∀x∀y (S (x ,y) → R (f (x), f (y))).

The properties of plain SO tgds were recently investigated in Reference [2]. It is easy to see that
every GLAV schema mapping is logically equivalent to a plain SO tgd. Moreover, as shown in
Reference [11], the class of SO tgds admits universal solutions, hence, the same holds true for the
class of plain SO tgds. In fact, the oblivious chase procedure can be extended to SO tgds, so that if
σ is an SO tgd and I is a source instance, then chase(I ,σ) is the canonical universal solution for I
w.r.t. σ .

In what follows, we will often suppress writing the existential second-order quantifiers and the
universal first-order quantifiers in front of SO tgds.

Nested tgds. Let X and Y be disjoint sets of variables. Consider the following recursive syntax
rule:

χ := ∀�x (β1 ∧ . . . ∧ βk → ∃�y (α1 ∧ . . . ∧ αn ∧ χ1 ∧ . . . ∧ χ�)), (1)

where (i) n, � are nonnegative integers, (ii) β1, . . . , βk with k ≥ 1 are constant-free atoms whose
relation names belong to the source schema, (iii) α1, . . . ,αn are constant-free atoms whose relation
names belong to the target schema, (iv) every variable that occurs in �x also occurs in some atom
among β1, . . . , βk , (v) every variable occurring in some atom in β1, . . . , βk also belongs to X ; and
(vi) every variable that occurs in �y belongs to Y .

An empty conjunction is understood to be equivalent to true. In particular, if � = 0, then χ1 ∧
. . . ∧ χ� ≡ true, which is the base case of the recursion.

A nested tgd is a first-order sentence that can be generated by the recursive syntax rule (1).
It can be assumed w.l.o.g. that every variable that occurs in a nested tgd is quantified exactly
once by either an existential or universal quantifier. By subformula τ of a nested tgd, we will
always denote an implication ∀�x (φ (�x0, �x) → ∃�y ψ (�x0, �x , �y0, �y)) generated by one of the symbols
χ1 . . . χ� in the syntax rule (1). Here, �x0 and �y0 are tuples of free variables, respectively, universally
and existentially quantified outside the subformula in the nested tgd. For instance, the conclusion
ψ (�x0, �x , �y0, �y) of τ may contain a conjunct τ ′ = ∀�x ′(φ ′(�x ′0, �x ′) → ∃�y ′ψ ′(�x ′0, �x ′, �y ′0, �y ′)) where �x ′0 is
a tuple of free variables containing both the free variables �x0 of τ and the universally quantified
variables �x of τ . Our convention is that variables in such a tuple �x ′0 follow the order in which they
are quantified in the nested tgd, that is, �x ′0 is the concatenation �x0·�x .

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:8 P. G. Kolaitis et al.

Fig. 1. Tree representation of σ .

Generating a nested tgd σ by the recursive syntax rule (1) yields a tree representation of σ ,
such that the root node of this tree is labeled by the subformula stemming from instantiating
∀�x (β1 ∧ . . . ∧ βk → ∃�y (α1 ∧ . . . ∧ αn)). Moreover, the root has � subtrees, which correspond to
the subformulas generated by χ1, . . . χ� . We refer to the subformulas labeling the nodes in this tree
representation as parts of σ . The child, parent, ancestor, and descendant relations of nodes in the
tree naturally carry over to the parts of σ . For a part σi of σ , we thus write parent (σi) to denote
the parent σj of σi (i.e., σj is the label of the parent node of the node labeled by σi) and we write
child (σi), anc (σi), and desc (σi) for the set of children, ancestors, and descendants, respectively, of
σi . The part labeling the root node will be referred to as the root part of σ . Every part of σ will be
assumed to be uniquely identified by a positive integer index. The notation σi (�xi) will be used to
explicitly specify the free variables �xi of the part σi . These are the variables quantified in anc (σi).

Example 2.2. Assume that the nested tgd σ has the following form:

∀x1

(
S1 (x1) → ∃y1

(
∀x2 (S2 (x2) → R2 (y1,x2)) ∧
∀x3

(
S3 (x1,x3) → (R3 (y1,x3) ∧

∀x4 (S4 (x3,x4) → ∃y2R4 (y2,x4)))
)))

.

There are four parts in σ (see Figure 1 for a tree representation of σ):

• σ0: ∀x1

(
S1 (x1) → ∃y1 (true)

)
• σ1 (x1,y1): ∀x2

(
S2 (x2) → R2 (y1,x2)

)
• σ2 (x1,y1): ∀x3

(
S3 (x1,x3) → R3 (y1,x3)

)
• σ3 (x1,x3,y1): ∀x4

(
S4 (x3,x4) → ∃y2 (R4 (y2,x4))

)

Skolemization. In the above examples, parts of a nested tgd contain free variables that corre-
spond to the existentially quantified variables of σ . More convenient is the Skolemized form of
the nested tgd, in which free variables of the parts correspond to the universally quantified vari-
ables of σ . We use the standard first-order Skolemization procedure. Let SK denote a set of Skolem
functional symbols disjoint from the set of variables, CONST and NULLS. These function symbols
are considered as existentially quantified. The Skolemization replaces each existentially quanti-
fied variable y in σ with a unique term f (�x), where f ∈ SK and �x is the tuple of those universally
quantified variables that occur in the same part as ∃y or in some ancestor thereof. For a part σi ,
the set vars(σi) contains all Skolem terms replacing variables that were existentially quantified in
σi before Skolemization.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:9

Example 2.2 (continued). The Skolemization of the nested tgd σ is:

∀x1

(
S1 (x1) →

(
∀x2 (S2 (x2) → R2 (f1 (x1),x2)) ∧
∀x3

(
S3 (x1,x3) → (R3 (f1 (x1),x3) ∧

∀x4 (S4 (x3,x4) → R4 (f2 (x1,x3,x4),x4)))
)))

.

The parts of σ after Skolemization are given below.

• σ0 = ∀x1 (S1 (x1) → (true)); vars(σ0) = { f1 (x1)},
• σ1 (x1) = ∀x2 (S2 (x2) → R2 (f1 (x1),x2)); vars(σ1) = ∅,
• σ2 (x1) = ∀x3 (S3 (x1,x3) → R3 (f1 (x1),x3)); vars(σ2) = ∅,
• σ3 (x1,x3) = ∀x4 (S4 (x3,x4) → R4 (f2 (x1,x3,x4),x4)); vars(σ3) = { f2 (x1,x3,x4)}.

From now on, we only consider Skolemized tgds unless explicitly specified otherwise. As has
become apparent in the previous example, after Skolemization, the parts no longer contain as
free variables the existentially quantified variables of ancestor parts. We conclude this section by
drawing a connection between nested tgds and SO tgds. Although syntactically, nested tgds differ
from SO tgds, which do not have nested implications, a nested tgd can be converted into an SO
tgd.

E.g., a conversion procedure in Reference [14] first performs a Skolemization and then extends
the antecedent in each subformula σi generated by the symbol χi in rule (1) by adding to it the
implication antecedents of all ancestor subformulas of σi as conjuncts. A nested tgd can be shown
equivalent to the resulting conjunction of its Skolemized parts, which is syntactically an SO tgd.

A nested GLAV mapping is a schema mappingM = (S,T, Σ), where Σ is a finite set of nested tgds.
Unless mentioned otherwise, in this article, we will always assume dependencies (tgds, nested tgds,
and SO tgds) to be source-to-target dependencies.

3 THE IMPLICATION PROBLEM

Let S, T be two relational schemas andM = (S,T, Σ),M′ = (S,T, Σ′) be schema mappings, where
Σ and Σ′ are expressed in some logical formalism (e.g., SO tgds or nested tgds). We say that Σ
implies Σ′, denoted by Σ |= Σ′, if for every instance I of S and every instance J of T such that
(I , J) |= Σ, we have that (I , J) |= Σ′. The implication problem asks: Given two finite sets Σ and Σ′ of
constraints, does Σ |= Σ′ hold? Analogously, the (logical) equivalence problem asks if Σ ≡ Σ′ holds,
i.e., if Σ and Σ′ are satisfied by exactly the same pairs (I , J) of source and target instances. In
Section 5, we will study the implication and equivalence problems of schemas in the presence of a

set Σs of source constraints. In this case, only those source instances I are considered that actually
satisfy Σs . For instance, we will then say that Σ implies Σ′ if for every instance I of S with I |= Σs

and every instance J of T such that (I , J) |= Σ, we have that (I , J) |= Σ′.
Note that, since all instances considered are finite, this is the implication (and equivalence)

problem in the finite. The main result of this section is as follows:

Theorem 3.1. The implication problem for nested tgds is decidable.

We start by giving an informal, high-level explanation of the implication algorithm. All concepts
used in this explanation (such as the chase with nested tgds) will be made precise below. Let σ be a
nested tgd and Σ be a set of nested tgds. The proof of Theorem 3.1 will establish that if Σ
 |= σ , then
there exists a pair of “canonical” source and target instances (Ip , Jp) that satisfies σ such that there
is no homomorphism from Jp to chase(Ip , Σ). The pair of instances (Ip , chase(Ip , Σ)) then satisfies
Σ and falsifies σ , witnessing Σ
 |= σ . The canonical instances are constructed as minimal and in a
sense most general instances enabling a chase of Ip with σ , such that the number of triggerings

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:10 P. G. Kolaitis et al.

of each part of σ is bounded and the pattern of the chase has a certain form. This bound and the
number of relevant chase patterns will appear quite high (in fact, non-elementary in the size of σ
and Σ). In Section 4, we will show that this limit exhibits a crucial and so far unexplored difference
between nested tgds and SO tgds.

The decision procedure behind Theorem 3.1 requires the introduction of several notions and
technical tools that are presented in what follows:

Chase Forest. The oblivious chase of an instance with a nested tgd can be described as a sequence
of recursive triggerings. To specify how an instance of the target schema T is produced by the chase,

we define an injective function μ taking a term f (�b) with f ∈ SK, �b ∈ CONST, and returning a null

v ∈ NULLS. To save parentheses, we denote the null μ (f (�b)) corresponding to the term f (�b), by

f̂ (�b). Note that so encoded function μ applies to the whole term f (�b), even though, for the sake of
readability, the hat symbol only appears over the function symbol f and not over the arguments.

Definition 3.2 (Triggering). Let I be an instance and σ a nested tgd. A triggering t of a part σi of σ
(in its Skolemized form) with σi = ∀�x (φ (�x0, �x) → ψ (�x0, �x)), is a triple (σi , �a0, �a), where �a is a tuple
of constants assigned to the variables �x and �a0 is a tuple of constants assigned to the free variables
�x0 of σi such that I |= φ (�a0, �a) holds. The set facts(t) consists of all facts in ψ (�a0, �a) obtained by

substituting each instantiation of a Skolem term f (�a′) inψ (�a0, �a) with f̂ (�a′) = μ (f (�a′)), where �a′

is a prefix of the tuple �a0·�a. We define the set nulls(t) to be ∅ if the tuple �x is empty, otherwise, we

set nulls(t) = { f̂ (�a0·�a) | f (�a0·�a) occurs inψ (�a0, �a)}. That is, nulls(t) is a set of nulls instantiating
Skolem terms that occur in the part σi but not in its ancestor parts in σ , that is, all Skolem terms
in the set vars(σi). �

Definition 3.3 (Chase with a nested tgd, Chase forest). Let I be an instance and σ a nested tgd.
Analogously to the tree structure of the parts of σ , we define the following tree structure of trig-
gerings: Let σi = ∀�x (φi (�x0, �x) → ψi (�x0, �x)) be a part of σ and let t = (σi , �a0, �a) be a triggering:

• if σi is the root part of σ (in which case �a0 is empty), then t is called a root triggering;

• if parent (σi) = σj and there is a triggering (σj , �b0, �b) with �a0 = �b0·�b, then (σj , �b0, �b) is called
the parent triggering of t .

The chase forest Fσ , I = (Vσ , I ,Tσ , I) of I with σ is a rooted forest (i.e., a forest with a distinguished
root for each connected component) whose set of verticesVσ , I is the set of all triggerings and where
Tσ , I contains an edge (t ′, t) if t ′ is the parent triggering of t . For a set Σ of nested tgds, the chase
forest FΣ, I of I with Σ is a pair (VΣ, I ,TΣ, I) with VΣ, I =

⋃
σ ∈ΣVσ , I and TΣ, I =

⋃
σ ∈ΣTσ , I .

The chase of I with a nested tgd σ , denoted as chase(I ,σ), is defined as the union of all facts of
all triggerings in Fσ , I , i.e., chase(I ,σ) =

⋃
t ∈Vσ , I

facts(t). Likewise, the chase of I with a set Σ of

nested tgds, denoted as chase(I , Σ), is defined as the union of all facts of all triggerings in FΣ, I , i.e.,
chase(I , Σ) =

⋃
t ∈VΣ, I

facts(t). �

Consider a triggering t in FΣ, I . We refer to the subtree of FΣ, I rooted at t as the chase tree of t .
The set of vertices in this subtree will be denoted as desc(t). Ancestor triggerings of t are all vertices
belonging to the path from the root to the parent of t in FΣ, I . As follows from Definition 3.3, free
variables �x0 of the part associated with t are bound in the ancestor triggerings of t to a tuple of
constants �a0. We shall refer to �a0 as the input assignment of t . If t is a parent triggering of t1, then
we call t1 a child triggering of t . If t1 and t2 are child triggerings of t , then we call t1 and t2 sibling

triggerings.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:11

Procedure Implies(Σ,σ)

Data: Set Σ of nested tgds, nested tgd σ
Result: true if Σ |= σ , false otherwise

1 Skolemize σ and Σ in a standard way;

2 Let vσ be the number of distinct Skolem functions in σ ;

3 Let wΣ be the maximum number of universally quantifiedvariables in a nested tgd in Σ;

4 Let k = vσ ·wΣ + 1;

5 Let Pk (σ) be the set of k-patterns of σ ;

6 for each k-pattern pk ∈ Pk (σ) do

7 Let Ipk , Jpk be the canonical source and, respectively, the canonical target instances of pk ;

8 if no homomorphism from Jpk to chase(Ipk , Σ) exists then

9 return false;

10 end

11 end

12 return true;

Proposition 3.4. Let I be a source instance and let Σ be a set of nested tgds. Then, the instance

chase(I , Σ) is a universal solution for I under Σ. Namely, (i) I ∪ chase(I , Σ) |= Σ and (ii) for each J
such that (I , J) |= Σ, we have chase(I , Σ) → J .

Proof. We refer to Reference [14] for a procedure converting a nested tgd into an equivalent
SO tgd, essentially by Skolemizing it, and taking a conjunction of all parts of a nested tgd, where
the antecedent of each nested part is extended with the antecedents of all its ancestors. From this,
we can conclude that Σ is logically equivalent to an SO tgd σ . It is easy to verify that the chase
of such an SO tgd [11] creates exactly the same instance (up to renaming of nulls) as the chase in
Definition 3.3. Since the chase of I with σ results in a universal solution for I under σ [11], and σ
is logically equivalent to Σ, we have that chase(I , Σ) is a universal solution for I under Σ. �

The second property of the chase, underpinning the decision procedure, is that facts produced
by triggerings in distinct chase trees share no nulls. A consequence of this observation is that
reasoning about nested tgds may be restricted to source instances that give rise to a single chase
tree. Finally, we will show that we only need to consider chase trees whose fan-out (i.e., the number
of child nodes of any vertex) has an upper bound that depends on the mapping but not on any
particular source instance.

Patterns, Canonical Instances of Patterns. The algorithm behind Theorem 3.1 is described in
the decision procedure Implies. We now introduce the notions used in this procedure.

Definition 3.5 (Pattern). Letσ be a nested tgd. A pattern ofσ is a vertex-labeled rooted tree whose
labels are the parts σ1,σ2, . . . of σ , such that if v is a child of v ′ in the pattern, then label (v) ∈
child (label (v ′)).

Let Σ be a set of nested tgds, σ ∈ Σ, let I be a source instance, and let T be a tree in the chase
forest FΣ, I of I with Σ. The pattern of T is the vertex-labeled tree obtained from T by relabeling
each vertex with label (σi , �a0, �a) by σi . �

Note that the pattern of any tree T in a chase forest FΣ, I is a pattern of some σ ∈ Σ. Con-
versely, not every pattern of a nested tgd σ is necessarily attainable as the pattern of some
tree T in the chase forest for some source instance I . For instance, consider the nested tgd
σ = ∀x1 (S1 (x1) → ((S2 (x1) → T (x1))) with a single nested part. This tgd can only generate chase
trees with patterns having at most two nodes. This is because the assignment of the only variable x1

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:12 P. G. Kolaitis et al.

Fig. 2. 1-patterns of the tgd σ with the parts σ0, . . . ,σ3 from Example 2.2.

is determined by the root triggering, and thus only a single triggering of the nested part is possible.
However, suppose that we modify σ to σ ′ = ∀x1 (S1 (x1) → (∀x2 (S2 (x2) → T (x1,x2))). Then, for
appropriately chosen source instance I , the chase forest Fσ ′, I can give rise to patterns with an ar-
bitrarily big number of nodes. For instance, for the source instance In = {S1 (a), S2 (b1), . . . , S2 (bn)},
we get a pattern whose root node has n child nodes.

We also use the notion of “subtree clones” in a pattern. Manipulating patterns by adding or
removing clones will be a basic technique in many proofs of this article.

Definition 3.6 (Pattern subtree, clone, k-pattern). Let σ be a nested tgd and let p be a pattern of
σ . By a subtree of a pattern p, we mean a complete subtree with all descendant nodes. We call t ′ a
clone of t if t , t ′ are isomorphic subtrees and their roots have the same parent node. Let Ct denote
the set containing t and all its clones in p. If for each subtree t , |Ct | ≤ k , we call p a k-pattern.
Pk (σ) is the set of all k-patterns of σ . �

Example 3.7. Recall the nested tgd σ with four parts from Example 2.2. The set P1 (σ) =
{p1, . . . ,p8} containing all 1-patterns of σ is shown in Figure 2. �

Proposition 3.8. For a positive integer k and a nested tgd σ , the set of k-patterns of σ is finite.

Proof. Note that each part σi of σ can be obtained from some subformula ∀�x (φ → ψ) of σ by
omitting conjuncts with implications from ψ . Let �·� denote the function taking the part index i
and retrieving the subformula of σ corresponding to the part σi : �i� = σi (�xi) where �xi denotes
the free variables of the subformula. Syntactically, the sentence ∀�xi σi (�xi) is a nested tgd. By slight
abuse of notation, we use Pk (�i�) to denote the set of k-patterns of this nested tgd. Clearly, Pk (�i�)
coincides with the set of all distinct subtrees in Pk (σ) with the root labeled by the part σi . We now
proceed by structural induction on σ to prove the proposition.

Base case: �i� contains no nested implications. The set of k-patterns Pk (�i�) then consists of a
single tree whose single node is labeled σi .

Now let �i� = ∀�x (φi → ψi) be such thatψi isψα ∧ �i1� ∧ . . . ∧ �in� whereψα is a conjunction of
atoms and �i1�, . . . , �in� are subformulas ∀�xi j

(φi j
→ ψi j

), for j ∈ {1 . . .n}. The inductive hypoth-
esis is that the sets Pk (�i1�), . . . ,Pk (�in�) of k-patterns are finite. The set Pk (�i�) contains all
patterns that have (i) the root node labeled with σi , and (ii) up to k copies of each pattern from
the set

⋃
j ∈{1...n } Pk (�i j �) as subtrees rooted at child nodes of the root. Since each set Pk (�i j �) is

finite, Pk (�i�) is finite as well. It follows that also the set Pk (σ) is finite (albeit non-elementary in
k). �

Definition 3.9 (Canonical chase tree, canonical instances of a pattern). Let p be a pattern of a
nested tgd σ . The canonical chase tree Tp of p is a labeled tree isomorphic to p: for every node
labeled σi in p, there is a unique triggering t = (σi , �a0, �a) inTp , such that �a assigns fresh, pairwise-
distinct constants to the universally quantified variables of σi , and �a0 is either empty if t is a root

triggering, or equal to �b0·�b if (σj , �b0, �b) is the parent triggering of t . The canonical source instance

Ip , respectively, canonical target instance Jp , of the chase tree Tp are defined as minimal instances

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:13

Fig. 3. Canonical chase tree of the pattern p8 and the facts of its canonical source instance Ip8 (above the

bars) and the canonical target instance Jp8 (below the bars).

Fig. 4. A 3-pattern and the facts constituting its canonical source instance.

such that for each node t = (σi , �a0, �a) ofTp with σi = ∀�x (φ (�x0, �x) → ψ (�x0, �x)), the atoms ofφ (�a0, �a)
are contained in Ip and the atoms of ψ (�a0, �a)—substituting every instantiation f (�a′) of a Skolem

term inψ (�a0, �a) by a fresh null f̂ (�a′)—are in Jp , i.e., facts(t) ⊆ Jp holds. �

Note that the canonical target instance Jp is, in general, not a solution of the canonical source
instance Ip , since it may not be fully chased. Moreover, note that we often speak of the canonical
source and target instances of a pattern p instead of Tp , even though the constants used to create
Tp from p can be arbitrary. The justification is that such instances are unique up to renaming of
constants, and the concrete names of the constants are irrelevant for our further considerations.

Example 3.10. Figure 3 shows the canonical chase tree Tp8 , canonical source instance Ip8 , and
the canonical target instance Jp8 of the 1-pattern p8 from Example 3.7. �

The next example shows the canonical source instance of a pattern containing clones of subtrees.

Example 3.11. One possible 3-pattern based on the 1-pattern p8 from Example 3.10, in which
one clone of the node σ1 and two clones of the node σ3 are added, is shown in Figure 4, along with
the facts of its canonical source instance. �

Finally, we have the stage set to put the procedure Implies into action.

Example 3.12. Consider the nested tgd τ and the s-t tgds τ ′ and τ ′′:

τ : ∀x1 (S1 (x1) → ∃y (∀x2S2 (x2) → R (x2,y))),
τ ′ : ∀x1∀x2 (S1 (x1) ∧ S2 (x2) → ∃zR (x2, z)),
τ ′′ : ∀x1∀x2 (S1 (x1) ∧ S2 (x2) → R (x2,x1)).

We now use the procedure Implies to test if any of τ ′, τ ′′ implies τ . The first step is the Skolem-
ization of τ :

τ1 : ∀x1

(
S1 (x1) →

τ2 : ∀x2 (S2 (x2) → R (x2, f (x1)))
)
.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:14 P. G. Kolaitis et al.

Fig. 5. Patterns used to test τ ′ |= τ and τ ′′ |= τ .

According to line 4 of the procedure, the bound k on the number of clones should be 3 for testing
τ ′ |= τ and τ ′′ |= τ , since we have vτ = 1 and w {τ ′ } = w {τ ′′ } = 2. The set P3 (τ) has two 1-patterns
{p ′,p ′′}, of which only p ′′ has a non-empty canonical target instance. Based on p ′′, the 2-pattern
p ′′2 and the 3-patternp ′′3 can be obtained. One can then check that the set {p ′,p ′′,p ′′2 ,p ′′3 } in Figure 5
is actually the complete set of 3-patterns of τ .

Let Ip and Jp denote the canonical source, respectively, canonical target instance, of a pattern
p of τ with p ∈ {p ′,p ′′,p ′′2 ,p ′′3 }. Let Σ be one of {τ ′} or {τ ′′}. To test if Σ |= τ holds, the procedure
Implies checks the existence of a homomorphism from Jp to chase (Ip , Σ) for all patternsp ∈ {p ′,p ′′,
p ′′2 , p ′′3 } (for the case Σ = {τ ′′}). For p ′, this check is trivial, since p ′ has an empty canonical target
instance. We illustrate the check for the pattern p ′′2 . The canonical source and target instances for
this pattern are as follows:

Ip′′2 = {S1 (a1), S2 (a2), S2 (a′2)}, Jp′′2 = {R2 (a2, f̂ (a1)),R2 (a′2, f̂ (a1))}.

The Skolemization of τ ′ yields∀x1∀x2 (S1 (x1) ∧ S2 (x2) → R (x2,д(x1,x2))) and the chase of Ip′′2 with

τ ′ results in Jτ ′ = {R (a2,д(a1,a2)), R (a′2,д(a1,a
′
2))}. There is no homomorphism from Jp′′2 to Jτ ′

and thus Implies({τ ′},τ) outputs false, indicating τ ′
|= τ . The failure of implication is because the
existentially quantified variable in τ ′ depends on both x1 and x2, but only on x1 in τ .

We now check if τ ′′ |= τ holds. The chase of Ip′′2 with τ ′′ results in Jτ ′′ = {R (a2,a1),R (a′2,a1)}.
The mapping [f̂ (a1) �→ a1] is a homomorphism from Jp′′2 to Jτ ′′ , and thus the test at line 8 of the
procedure Implies passes successfully for the pattern p ′′2 . One can verify that so do the checks for
the patterns p ′′ and p ′′3 . Therefore, Implies({τ ′′},τ) outputs true, indicating τ ′′ |= τ . Indeed, where
τ ′′ yields the value of x1, τ only requires some value (that is, a null) determined by the assignment
of x1, which is a strictly weaker condition. �

3.1 Proof of Theorem 3.1

Two ideas underlie the correctness of the procedure Implies. The first is a well-known property of
schema mappings that are closed under target homomorphisms and allow for universal solutions
for every source instance. Namely, Σ |= σ if and only if for every source instance I , there is a ho-
momorphism from a universal solution Jσ

I
for I under σ into all solutions for I under Σ. By Propo-

sition 3.4 it suffices to homomorphically embed chase(I ,σ) into chase(I , Σ), which is equivalent to
embedding every f-block of chase(I ,σ) in chase(I , Σ) independently [10]. This is not a feasible test,
however, since enumerating all source instances is required. Our main finding in this section is
how to address this issue for nested tgds: We show that for arbitrary I , chase(I ,σ) → chase(I , Σ)
holds if for every k-pattern pk ∈ Pk (σ), a homomorphism from Jpk to chase(Ipk , Σ) exists, where
k is a constant depending on σ and Σ, as defined at line 4 of the procedure Implies, and Ipk and

Jpk are the canonical source instance and, respectively, the canonical target instance of pk . That
is, instead of an infinite number of source instances, one can enumerate a finite set of patterns.

The proof of this latter idea makes use of special notation and basic facts about chase trees,
which we present next.

Active domain of the chase result. The chase with nested tgds identifies nulls with instantia-
tions of Skolem terms. By Definition 3.3, for every fact R (e1, . . . , em) in chase(I , Σ) and for every

i ∈ {1, . . . ,m}, ei is either a constant from dom(I) or a null f̂ (�a) = μ (f (�a)), where f (�x) is a Skolem

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:15

function in Σ, �a is a tuple of constants from dom(I) instantiating the variables �x during the chase,

and μ is an injective function mapping the Skolem term f (�a) onto the null f̂ (�a) ∈ NULLS. By the
injectivity of μ, we can define an inverse function μ−1 from NULLS to the set of Skolem terms
SK × CONST∗. This inverse function allows us to formally define an operation of extracting all
nulls used to build a chase instance.

Definition 3.13. Let J be a target instance produced by the chase with a nested tgd. We define the
set cst (J) as the set containing dom(J) ∩ CONST plus all constants occurring within terms μ−1 (e)
for every e ∈ dom(J) ∩ NULLS. �

The relationship between the sets dom(J) and cst (J) is thus the following: If J consists solely of
constants (e.g., J is a source instance), then we have dom(J) = cst (J). Otherwise, dom(J) \ cst (J)
is the set of nulls of J and cst (J) \ dom(J) is the set of constants that only occur in the tuple �a of
arguments of a term f (�a) associated by μ with some null in dom(J). As specified above, we use

f̂ (�a) as a shorthand for μ (f (�a)).

Independence of chase trees. Note that by the definition of the chase, nulls created by the chase

with nested tgds correspond to Skolem terms of a specific structure: If a null f̂ (�a) is introduced
by a non-root triggering t for the first time in the chase, then all the constants used in any of the
ancestor triggerings of t occur in a prefix of �a. This observation provides a means of restricting
the set of nulls that connect chase fragments generated by different triggerings.

Lemma 3.14. Let Σ be a set of nested tgds, let I be a source instance for Σ, and let J = chase(I , Σ).
Consider a triggering (σi , �a0, �a) in the chase forest of I with Σ and a subinstance J ′ of J defined as

follows: J ′ =
⋃{facts(t) | t ∈ desc((σi , �a0, �a))}. If a null f̂ (�b) occurs both in J ′ and in J \ J ′, then

(i) the variables �x in the Skolem term f (�x), which f (�b) instantiates, appear free in σi and (ii) �b is a

prefix of �a0.

Proof. We first prove by contradiction that �b is a prefix of �a0. Suppose that �b is not a prefix
of �a0. By the definition of triggering and the convention that variables in Skolem terms appear in
the order they are quantified in the nested tgd, each null in J ′ has the form д(�c) such that either
�c = �a0·�a or the shorter tuple in the pair (�c, �a0·�a) is a proper prefix of the longer one. Therefore,

it must be the case that �a0 is a proper prefix of �b. Since J ′ consists of facts generated by trigger-

ings in desc((σi , �a0, �a)), we have that �b must be prefixed by �a0·�a. From this and the assumption

f̂ (�b) ∈ dom(J ′), we have that the Skolem function f replaces a variable existentially quantified

in desc (σi). Let t ′ = (σj , �a
′
0, �a
′) be an arbitrary triggering such that f̂ (�b) occurs in facts(t ′) and

t ′ � desc(t). The existence of t ′ follows from the assumption of the lemma that f̂ (�b) occurs in the

subinstance chase(I , Σ) \⋃{facts(t) | t ∈ desc((σi , �a0, �a))}. Since σj ∈ desc (σi) and �b is prefixed by

�a0·�a, we have that t ′ must be contained in desc(t), which is a contradiction. We have shown that �b

must be a prefix of �a0, and since �a0 is the input assignment of (σi , �a0, �a), �b instantiates exclusively
the variables that occur free in σi . �

The following corollary of Lemma 3.14 is crucial for the correctness of the procedure Implies:

Corollary 3.15. Consider a finite set Σ of nested tgds, a source instance I , and subinstances J1, J2
of chase(I , Σ) produced by distinct chase trees in the chase forest of I with Σ. That is, J1 =

⋃{facts(t) |
t ∈ desc(t1)}, J2 =

⋃{facts(t) | t ∈ desc(t2)} for distinct root triggerings t1, t2. Then, J1 and J2 have

no nulls in common.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:16 P. G. Kolaitis et al.

Proof. By Lemma 3.14, a null f̂ (�b) occurring both in J1 and in J2 must be such that �b is a prefix

of the input assignment of both t1 and t2, and thus (since t1 and t2 are root triggerings) �b must be
the empty tuple. However, the arguments of a Skolem term have to be non-empty. �

Transforming patterns by increments. We now turn to k-patterns as the main tool of the
procedure Implies. The following definition facilitates the reasoning about patterns obtained by
inserting new clones of subtrees.

Definition 3.16 (k+-increment of a pattern). Let p be a pattern of a nested tgd σ . An increment of
p is obtained by (i) choosing a node ν of p, (ii) choosing a subtree π rooted at some child node of
ν , and (iii) adding to p a clone π ′ of π .

An increment is called a k+-increment of p if, in the above definition of an increment, the newly
inserted subtree π ′ has at least k clones in p (and thus becomes one of at least k + 1 isomorphic
subtrees rooted at ν).

We write p ≤ p ′ if pattern p ′ can be obtained from a pattern p by a sequence of zero or more
increments, and we write p ≤k p ′ if p ′ can be obtained from p by a sequence of zero or more
k+-increments. �

Equipped with this notation, we formulate a property of k-patterns that underpins the proof of
Theorem 3.1. It will also be used in the proof of Theorem 4.14 in Section 4 on the structure of the
core of nested tgds.

Lemma 3.17. For every positive integer k and for every pattern p of σ , there is a k-pattern pk ∈
Pk (σ) such that pk ≤k p holds. Moreover, p can be obtained from pk by applying k+-increment steps

in such a way that whenever a subtree t is added, then for every subtree t ′ of t , the setCt ′ of all clones

of t ′ (according to Definition 3.6) satisfies the condition |Ct ′ | ≤ k .

Intuitively, the above condition |Ct ′ | ≤ k for subtrees t ′ of cloned subtrees t means that the
k+-increment steps are applied in a top-down fashion, i.e., it cannot happen that some subtree t ′ is
cloned and later a subtree t containing t ′ is also cloned. This fact will be important in Theorem 4.14
to get an appropriate upper bound on the size of any cloned subtree t .

Proof. We consider the inverse operation of k+-increments, namely, k+-elimination defined as
follows: Let ν be a node in a pattern p such that there are k ′ > k isomorphic subtrees rooted at the
child nodes of ν . Then, we may delete k ′ − k of these subtrees.

Below, we will show that there exists a pattern pk ∈ Pk (σ) that can be obtained from p by a
sequence of k+-elimination steps in such a way that every subtree t ′ of an eliminated subtree
t satisfies the condition |Ct ′ | ≤ k . The desired transformation of pk into p is then obtained by
applying the sequence of corresponding k+-increment steps in inverse order.

The proof is by induction on the number n of “k-violations” in pattern p, i.e., the number of pairs
(ν ,Ct) where ν is a node in p andCt is a set of clones rooted at child nodes of ν such that |Ct | > k .

For the induction begin, if n = 0, then p ∈ Pk (σ) and we are done. For the induction step, sup-
pose that p has n > 0 k-violations. We choose a node ν at maximal depth in p, such that there are
k ′ > k isomorphic subtrees rooted at the child nodes of ν . By our assumption of maximal depth, we
conclude that every subtree t ′ of any of these isomorphic subtrees satisfies the condition |Ct ′ | ≤ k .
We can transform p into p ′ by a k+-elimination step that deletes k ′ − k of these isomorphic sub-
trees. The resulting pattern p ′ has only n − 1 k-violations. Hence, by the induction hypothesis, p ′

can be transformed into a pattern pk ∈ Pk (σ) via a sequence of k+-elimination steps such that
every subtree t ′ of an eliminated subtree t satisfies the condition |Ct ′ | ≤ k . Hence, by first trans-
forming p into p ′ and then p ′ into pk , we get the desired transformation from p into pk . �

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:17

Abstracting chase trees via canonical target instances. It turns out that, to test the condition
chase(I ,σ) → chase(I , Σ), it suffices to use canonical instances of patterns realized in the chase tree
of I with σ . This way one can, e.g., abstract away from undesired multiple occurrences of constants
in the facts of I .

Lemma 3.18. Let σ be a nested tgd, let Σ be a set of nested tgds, and let I be an arbitrary source

instance. Moreover, let P be the set of patterns of the chase forest of I with σ . Then, if for each pattern

p in P, Jp → chase(Ip , Σ) holds, where Ip , Jp are the canonical sources, respectively, target instances,

of p, then chase(I ,σ) → chase(I , Σ) holds as well.

Note that the opposite direction of the above lemma does, in general, not hold, i.e.: It is not
guaranteed that chase(I ,σ) → chase(I , Σ) implies Jp → chase(Ip , Σ). However, this is irrelevant,
since the only purpose of Lemma 3.18 is to restrict the set of source instances that have to
be considered in the implication test of nested tgds: In principle, we would have to test that
chase(I ,σ) → chase(I , Σ) holds for every possible source instance. Lemma 3.18 tells us that we may
restrict ourselves to canonical source instances. That is, we get rid of undesired double occurrences
of constants. Below, in Lemma 3.22, we will prove a further restriction of the source instances that
have to be considered. More precisely, we will show in Lemma 3.22 that we may restrict ourselves
to canonical source instances up to a certain size. The decidability of the implication problem of
nested tgds (see the proof of Theorem 3.1 at the end of this section) will then be an easy conse-
quence.

The proof of Lemma 3.18 uses a notion of homomorphism that affects the constants of an instance

and preserves function symbols in nulls, in contrast to the usual constant-preserving homomor-
phism acting on nulls, as defined in Section 2.

Definition 3.19 (C-mapping, c-homomorphism). A c-mapping is a function θ : CONST→ CONST

that is naturally extended to Skolem terms with arguments from CONST: For every f (a1, . . . ,ak),
we define θ (f (a1, . . . ,ak)) = f (θ (a1), . . . ,θ (ak)). For e ∈ NULLS, we then let θ (e) = μ (θ (μ−1 (e)))

or, using the shorthand notation, θ (f̂ (�a)) = f̂ (θ (�a)). The latter extension leads to a function θ [null] :
NULLS→ NULLS derived from the c-mapping θ . For tuples of constants and nulls, we define
θ ((s1, . . . , sk)) = (θ (s1), . . . ,θ (sk)). Finally, a c-mapping θ is called a c-homomorphism from J to J ′

if for every fact R (�s) ∈ J , there is a fact R (θ (�s)) ∈ J ′. �

Example 3.20. There is a c-homomorphism θ = [a �→ a′,b �→ b ′] transforming the instance J =

{R (a,b, f̂ (a,b))} into J ′ = {R (a′,b ′, f̂ (a′,b ′))}. �

Proof of Lemma 3.18. By Corollary 3.15, subinstances of chase(I ,σ) generated by distinct
chase trees have no nulls in common. Therefore, a homomorphism from chase(I ,σ) to chase(I , Σ)
exists if and only if for every chase tree T in Fσ , I , the condition J → chase(I , Σ) holds, where
J =
⋃{ facts(t) | t is a node of T }.

Fix an arbitrary chase treeT in Fσ , I with t0 denoting its root triggering, and let J =
⋃{ facts(t) |

t be a node of T }. We use p to denote the pattern of T , and we denote by Tp the canonical chase
tree of p, i.e., Tp is a chase tree where the triggerings assign fresh, pairwise-distinct constants to
variables. Furthermore, let Ip be the canonical source instance and let Jp be the canonical target
instance. Since the chase tree T is arbitrary, it is sufficient to show that Jp → chase(Ip , Σ) implies
J → chase(I , Σ). Under the assumption that a homomorphism h from Jp to chase(Ip , Σ) exists, we
will construct a homomorphism e from J to chase(I , Σ).

Since p is a pattern of T , there is a one-to-one correspondence θ [tr] between the triggerings in
T and those in the canonical chase tree Tp . Since triggerings in Tp assign fresh, pairwise-distinct

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:18 P. G. Kolaitis et al.

Fig. 6. Mappings used in the proof of Lemma 3.18.

constants to variables, there is a c-homomorphism θ from Ip to I , which, by extending its domain
to nulls according to Definition 3.19 is also a c-homomorphism from Jp to J . Specifically, for every

triggering (σi , �a0, �a) in T and triggering (σi , �a
′
0, �a
′) in Tp such that θ [tr] ((σi , �a

′
0, �a
′)) = (σi , �a0, �a),

θ maps the elements of �a′ to the respective elements of �a. Consider the mapping θ [null] on nulls of
Jp , derived from θ as in Definition 3.19. In Definition 3.2, the function nulls is defined, which, for a

triggering (σj , �b0, �b), retrieves all nulls f̂i (�b0·�b) instantiating Skolem terms from vars(σj). Note that⋃{nulls (t) | t a node of Tp } is exactly the set Np of nulls of Jp : Np = dom(Jp) ∩ NULLS. Similarly,
the set N of nulls of J is

⋃{nulls (t) | t a node of T }.
We claim that θ [null] is a bijection between the nulls Np in Jp and the nulls N in J . This can be

seen as follows: By Corollary 3.15, we know that any two different triggerings introduce disjoint
sets of nulls. Moreover, θ [tr] is a bijection between triggerings in Tp and in T . Hence, it suffices

to show that, for every single triggering t in Tp , the mapping θ [null] is a bijection from nulls(t) to

nulls(θ [tr] (t)). Let t = (σi , �a
′
0, �a
′)) and θ [tr] (t) = (σi , �a0, �a). Moreover, let �x0 denote the universally

quantified variables of all ancestors of part σi and let �x denote the universally quantified vari-
ables of part σi . Then the Skolem terms introducing nulls by a triggering of σi are all of the form
f1 (�x0, �x), . . . , fm (�x0, �x) for some m ≥ 0. We thus have nulls(t) = { f1 (�a′0, �a

′), . . . , fm (�a′0, �a
′)} and

nulls(θ [tr] (t)) = { f1 (�a0, �a), . . . , fm (�a0, �a)}. In other words, the triggering of such a part generates
m distinct nulls (corresponding to the m existentially quantified variables in the non-Skolemized
form) no matter if in this triggering some of the variables in (�x0, �x) are assigned the same constant.
Hence, θ [null] is indeed a bijection from nulls(t) to nulls(θ [tr] (t)).

This observation is crucial for our construction, which will be using θ [null], the inverse of θ [null],

that isθ [null] = (θ [null])−1 : N → Np . Specifically, our desired homomorphism e from J to chase(I , Σ)

will be defined as the composition of θ [null] with h and θ [null], where h is the homomorphism from
Jp to chase(Ip , Σ) from the assumption of the lemma:

e (s) =

{
s, if s is a constant

θ [null] (h(θ [null] (s))), if s is a null.

We need to show that this mapping e satisfies the definition of homomorphism: For an arbitrary
fact R (�s) ∈ J , we prove that R (e (�s)) ∈ chase(I , Σ) holds.

By the definition of canonical chase tree and bijectivity of θ [tr], θ is a surjective mapping. Thus,
for each fact R (�s) ∈ J , there exists a fact R (�s ′) in Jp such that θ (�s ′) = �s . The existence of the homo-
morphismh from Jp to chase(Ip , Σ) implies that for eachR (�s ′) there is a facth(R (�s ′)) ∈ chase(Ip , Σ).

Consider the chase forest FΣ, Ip
of Ip with Σ and let (τj , �b0, �b) be the triggering of some part τj in

a nested tgd of Σ that has produced the atom h(R (�s ′)). Since θ is a c-homomorphism from Ip

to I , there also exists a triggering (τj ,θ (�b0),θ (�b)) in the chase forest FΣ, I of I producing the fact
θ (h(R (�s ′))) ∈ chase(I , Σ). These facts and mappings are presented in Figure 6.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:19

Fig. 7. Chase tree of I in Example 3.21 (upper part) and its canonical chase tree of Ip (lower part).

We have shown that for an arbitrary fact R (�s ′) ∈ Jp such that θ (�s ′) = �s , there exists a fact
θ (h(R (�s ′))) in chase(I , Σ). It remains to show that this fact coincides with R (e (�s)). Recall that e

preserves constants and maps each null si to θ [null] (h(θ [null] (si))). For each term position i ≤ |�s ′ |
and for the ith element s ′i of �s ′, consider two cases:

Case 1: s ′i is a null. Then, also the corresponding element si of �s ∈ dom(J) is a null. Then,

θ (h(s ′i)) = θ (h(θ [null] (si))) = θ [null] (h(θ [null] (si))) holds, and thus θ (h(s ′i)) = e (si).
Case 2: s ′i is a constant. By the choice of�s ′, the equality θ (s ′i) = si holds. Note also thath preserves

constants, so θ (h(s ′i)) = θ (s ′i) = si = e (si).
We have demonstrated that, for an arbitrary factR (�s) ∈ J , there exists a factR (e (�s)) in chase(I , Σ)

and thus e is a homomorphism from J to chase(I , Σ). �

Example 3.21. Consider the nested tgds σ and σ ′:

σ : ∀x1∀x2 (S1 (x1) ∧ S2 (x2) → ∃y (∀x3 (S3 (x3) → ∃z (R (x2,y, z))))),
σ ′ : ∀x1 (S1 (x1) → ∃y (∀x2∀x3 (S2 (x2) ∧ S3 (x3) → ∃z (R (x2,y, z))))),

with the Skolemized forms given below:

σ : ∀x1∀x2 (S1 (x1) ∧ S2 (x2) → ∀x3 (S3 (x3) → R (x2, f1 (x1,x2), f2 (x1,x2,x3)))),
σ ′ : ∀x1 (S1 (x1) → (∀x2∀x3 (S2 (x2) ∧ S3 (x3) → R (x2,д1 (x1),д2 (x1,x2,x3)))).

Suppose that we want to test Σ |= σ with Σ = {σ ′} and consider the source instance I =
{S1 (a), S1 (b), S2 (a), S2 (b), S3 (a), S3 (b)}. Figure 7 shows a chase tree T of source instance I with
nested tgds σ and the corresponding canonical chase tree Tp . In these trees, apart from the trig-
gerings, we also display the relevant source atoms enabling each triggering (above the bar) and
the target atoms produced by each triggering (below the bar). In case ofTp , these are the canonical
source and target instances, respectively. In particular, we have

Ip = {S1 (c1), S2 (c2), S3 (c3), S3 (c4)},
Jp = {R (c2, f̂1 (c1, c2), f̂2 (c1, c2, c3)),R (c2, f̂1 (c1, c2), f̂2 (c1, c2, c4))}, and

J = {R (a, f̂1 (a,a), f̂2 (a,a,a)),R (a, f̂1 (a,a), f̂2 (a,a,b))}.

Moreover, we have chase(Ip , Σ) = {R (c2, д̂1 (c1), д̂2 (c1, c2, c3)),R (c2, д̂1 (c1), д̂2 (c1, c2, c4))}. Hence,

there exists a homomorphism h : Jp → chase(Ip , Σ) with h = [f̂1 (c1, c2) �→ д̂1 (c1), f̂2 (c1, c2, c3) �→
д̂2 (c1, c2, c3), f̂2 (c1, c2, c4) �→ д̂2 (c1, c2, c4)].

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:20 P. G. Kolaitis et al.

The bijection θ [tr] between the three triggerings inTp and the three triggerings inT is clear. The
c-homomorphism θ according to the proof of Lemma 3.18 is θ = [c1 �→ a, c2 �→ a, c3 �→ a, c4 �→ b]

and thus θ [null] = [f̂1 (c1, c2) �→ f̂1 (a,a), f̂2 (c1, c2, c3) �→ f̂2 (a,a,a), f̂2 (c1, c2, c4) �→ f̂2 (a,a,b)]. From
this, we define the mapping e : dom(J) → dom(chase(I , Σ)) as in the proof of Lemma 3.18:

e (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

s, if s is a constant

θ [null] (h(θ [null] (f̂1 (a,a)))) = θ [null] (h(f̂1 (c1, c2)))) = д̂1 (a), if s = f̂1 (a,a).

θ [null] (h(θ [null] (f̂2 (a,a,a)))) = д̂2 (a,a,a), if s = f̂2 (a,a,a).

θ [null] (h(θ [null] (f̂2 (a,a,b)))) = д̂2 (a,a,b), if s = f̂2 (a,a,b).

Moreover, chase(I , Σ) with Σ = {σ ′} contains eight atoms obtained by instantiating any of the vari-
ables x1,x2,x3 in σ ′ to either a or b. In particular, {R (a, д̂1 (a), д̂2 (a,a,a)),R (a, д̂1 (a), д̂2 (a,a,b))} ⊆
chase(I , Σ) holds. Hence, e is indeed a homomorphism from J to chase(I , Σ). �

Lemma 3.18 reduced checking chase(I ,σ) → chase(I , Σ) to a series of tests of Jp → chase(Ip , Σ),
for the canonical source and target instances Ip , respectively, Jp , of each pattern p, realized in the
chase forest of I with σ . The next Lemma 3.22 strengthens this result by showing that only patterns

up to a certain size (which is independent of a concrete source instance I) need to be considered.

Lemma 3.22. Consider the following setting:

• A set Σ of nested tgds and a nested tgd σ .

• Integer k > vσwΣ, where vσ is the number of existentially quantified variables (i.e., distinct

Skolem functions) in σ and wΣ is the maximum number of universally quantified variables in

any nested tgd in Σ.

• Patterns pk , p of σ where pk is a k-pattern and pk ≤k p holds.

• Pairs (Ipk , Jpk) and (Ip , Jp) of the canonical source and target instances of the patterns pk and

p, respectively. We assume Ipk ⊆ Ip and Jpk ⊆ Jp , that is, the same constants as in (Ipk , Jpk)

are used to instantiate the subtree pk of p in (Ip , Jp).

Then, every homomorphism hk from Jpk to chase(Ipk , Σ) can be extended to a homomorphism h from

Jp to chase(Ip , Σ).

The proof of Lemma 3.22 will require reasoning about parts of canonical instances correspond-
ing to clone subtrees in patterns. To this end, we first formulate an easy lemma that establishes
the relationship between such subinstances.

Definition 3.23. Let J be an instance resulting from a chase with nested tgds. For a subinstance
K of J , we define the set lcst (K) of local constants of K as cst (K) \ cst (J \ K). That is, local to K
are constants occurring in K and nowhere else in J , as non-functional terms (i.e., constants) or as
arguments of nulls. �

Lemma 3.24. Let p be a pattern of a chase tree T with a nested tgd σ and let Jp be its canonical

target instance; let ν1,ν2 be child nodes of some node ν of p such that the subtrees t1, t2 of p rooted

at nodes ν1,ν2 are isomorphic; finally, let K1, K2 denote the subinstances of Jp such that Ki consists

of the facts generated by any of the triggerings in the subtree ti with i ∈ {1, 2}. Then K1 and K2 are

equal up to a c-isomorphism (i.e., a bijection that is a c-homomorphism in both directions) that maps

constants from lcst (K1) to lcst (K2) and leaves all other constants unchanged.

Proof. The proof is straightforward. �

With Lemma 3.24, we can now prove Lemma 3.22 about extensions of homomorphisms to canon-
ical instances resulting from k+-increments.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:21

Proof of Lemma 3.22. The proof is by induction on the length i of the sequence of k+-
increments of pk transforming it to p. For the base case i = 0, the existence of h is an assumption
of the lemma. Take as induction hypothesis that for some i ≥ 0, a homomorphism hi from Jpi

to

chase(Ipi
, Σ) exists, s.t.hi extendshk . We show thathi can be further extended to a homomorphism

hi+1 from Jpi+1 to chase(Ipi+1 , Σ), where pi+1 is obtained from pi by a single k+-increment.
By the definition of k+-increment, pi+1 is obtained by inserting a copy of some node ν in

pi —including the full subtree πν rooted at ν—to the parent node of ν . Moreover, ν is one of �
nodes ν1, . . . ,ν� with � ≥ k having the same parent in pi and being roots to subtrees each of
which is isomorphic to πν . In the canonical chase tree Tpi

of pi this corresponds to a parent
triggering tρ of the part label (parent (ν)), with � ≥ k isomorphic subtrees rooted at triggerings
t1 = (σi , �a0, �a1), . . . , t� = (σi , �a0, �a�) of the same part σi with the same input assignment �a0.

The canonical chase tree Tpi+1 extends Tpi
with yet another subtree rooted at a triggering

t�+1 = (σi , �a0, �a�+1) placed directly under tρ . For j ∈ {1, . . . , � + 1}, we define Kj ⊆ Jpi+1 as Kj =⋃{ facts(t) | t ∈ desc(tj)}, i.e., Kj ⊆ Jpi
for each j ∈ {1, . . . , �} and K�+1 = Jpi+1 \ Jpi

.
Let F denote the set of nulls shared between any two distinct instances in the set {K1, . . . ,K�+1}.

By Lemma 3.14, each such shared null has the form f̂ (�b) where �b is a prefix of the common input
assignment �a0 of the triggerings t1, . . . , t�+1. Thus, the number of nulls in F is bounded: |F | ≤ vσ .
This observation pinpoints the key idea of the proof, formulated as the following claim:

Claim A. There exists at least one K̃ ∈ {K1, . . . ,K� } such that for every null f̂ (�a) ∈ F , with

hi (f̂ (�a)) = д̂(�b), �b does not contain a local constant of K̃ . This claim is proved as follows: As ex-
plained above, there are at most vσ nulls in F , and each term in an instance obtained by the chase
with Σ is built using at most wΣ constants, namely: either a single constant or up to wΣ constants
serving as arguments of a null. Therefore, at mostwΣ instances among {K1, . . . ,K� } can contribute

their local constants to the term hi (f̂ (�a)), and thus local constants from at most vσwΣ instances
can occur in hi (F). However, by the assumption of the lemma, k > vσwΣ. Hence, by � ≥ k , a subin-

stance K̃ ∈ {K1, . . . ,K� } with the desired property exists. �
We now consider a subinstance K̃ ∈ {K1, . . . ,K� } from the claim above and the subinstance

K ′ = K�+1, distinguishing Jpi+1 from Jpi
. Our task is to extend the homomorphism hi to the nulls

of K ′, which are not present in the domain of Jpi
, to obtain a homomorphism hi+1 from Jpi+1

to chase(Ipi+1 , Σ). K̃ and K ′ represent two isomorphic sibling subtrees of the pattern pi+1 in its

canonical target instance. By Lemma 3.24 a renaming of local constants of K̃ into the local constants

of K ′ exists, transforming K̃ into K ′. We let θ be such a renaming extended with the identity

mapping on all other constants in Jpi
. That is, θ is the identity on cst (Jpi

) \ lcst (K̃). By definition

θ is a bijection between cst (K̃) and cst (K ′). Consider the function h′i+1 defined on dom(K ′) as

h′i+1 (x) = θ (hi (θ−1 (x))). Mapping h′i+1 can be used to extend hi in the following sense: For every

x ∈ dom(K ′) ∩ dom(Jpi
), we have h′i+1 (x) = hi (x). Indeed, θ−1 preserves the non-local constants

of K ′ and by Claim A, hi maps each null containing no local constants of K̃ to a term also using no

local constants of K̃ : Thus, by construction of θ for every null f̂ (�a) in the domain of hi , we have

θ (hi (θ−1 (f̂ (�a)))) = hi (f̂ (�a)). Moreover, for a constant a, we have θ (hi (θ−1 (a))) = θ (θ−1 (a)) = a.
We now take hi+1 = hi ∪ h′i+1 and show that hi+1 is a homomorphism. First note that θ is

a c-homomorphism from Ipi
to Ipi+1 . Extended to nulls as in Definition 3.19, θ is also a c-

homomorphism from Jpi
to Jpi+1 and from chase(Ipi

, Σ) to chase(Ipi+1 , Σ), analogously to the

proof of Lemma 3.18. In particular, θ (hi (K̃)) ⊆ chase(Ipi+1 , Σ) and, since K̃ = θ−1 (K ′), we have

θ (hi (θ−1 (K ′))) ⊆ chase(Ipi+1 , Σ). Note thathi preserves constants, and thereforeh′i+1 = θ
−1 ◦ hi ◦ θ

is a constant-preserving homomorphism fromK ′ to chase(Ipi+1 , Σ). Since hi+1 = hi ∪ h′i+1, we have

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:22 P. G. Kolaitis et al.

just shown thathi+1 is a homomorphism fromK ′ to chase(Ipi+1 , Σ) and with that, a homomorphism
from Jpi+1 to chase(Ipi+1 , Σ), as desired. �

We now have all properties required to prove Theorem 3.1:

Theorem 3.1. The implication problem for nested tgds is decidable.

Proof. The decision procedure Implies relies on the usual characterization of the implication
in the finite based on the chase, namely, Σ |= σ if and only if chase(I ,σ) → chase(I , Σ) holds for
every source instance I . This characterization is applicable to mappings that are closed under
target homomorphisms, which is the case for SO tgds [11], and hence, in particular for nested
tgds. Indeed, assume Σ |= σ . That is, for each pair (I , J) |= Σ, also (I , J) |= σ is the case. In other
terms, each solution J for I under Σ is also a solution for I under σ and chase(I ,σ) → J must hold.
In particular, this holds for J = chase(I , Σ), and therefore chase(I ,σ) → chase(I , Σ) is the case. In
the opposite direction, assume that for all source instances I , a homomorphism from chase(I ,σ) to
chase(I , Σ) exists. Since chase(I , Σ) is a universal solution under Σ, for arbitrary J such that (I , J) |=
Σ, chase(I , Σ) → J and thus chase(I ,σ) → J holds. Since σ is closed under target homomorphisms,
an arbitrary solution J for I under Σ is also a solution for I under σ , for arbitrary I . This concludes
the proof of the characterization of implication in the finite via the chase.

The completeness of the decision procedure is immediate: Σ
 |= σ is only returned if for some
k-pattern pk with the canonical source, respectively, target instances Ipk , Jpk , no homomor-

phism from Jpk to chase(Ipk , Σ) exists. Note that Jpk is a subinstance of chase(Ipk ,σ), and thus

chase(Ipk ,σ) � chase(Ipk , Σ) holds as well. This makes Ipk a witness for the failure of the impli-
cation.

It remains to show the soundness. Assume that for some nested tgd σ and a set Σ of nested
tgds the procedure returns true. Consider an arbitrary source instance I corresponding to the
target instance Jσ = chase(I ,σ). We show that a homomorphism from Jσ to JΣ exists, where
JΣ = chase(I , Σ). By Lemma 3.18, it suffices to show that for each pattern p in the chase forest
of I with σ , a homomorphism e from Jp to chase(Ip , Σ) exists, where Ip , Jp are the canonical source
and target instances of p, respectively.

Letpk be ak-pattern ofσ such thatpk ≤k p holds. By Lemma 3.17, suchk-patternpk exists. Since
the procedure Implies returned true, it follows that a homomorphism hk from Jpk to chase(Ipk , Σ)

exists, where Ipk and Jpk are, respectively, the canonical source and target instances of pk .

We now apply Lemma 3.22 to prove that hk can be extended to a homomorphism h from Jp to
chase(Ip , Σ), where Ip , Jp are, respectively, the canonical source and target instances of p. Since p is
arbitrary, by Lemma 3.18 this implies that a homomorphism from chase(I ,σ) to chase(I , Σ) exists
for every source instance I and, hence, Σ |= σ . �

We conclude this section by discussing an immediate consequence of Theorem 3.1.

Corollary 3.25. The logical equivalence problem for nested tgds is decidable.

In contrast, it is known that the logical equivalence problem for SO tgds is undecidable, ac-
cording to Theorem 1 in Reference [12], which builds on Reference [3]. As a matter of fact, an
examination of the proof of Theorem 1 in Reference [12] reveals that the following problem is
undecidable: Given an SO tgd σ and a finite set Σ′ of s-t tgds, is σ ≡ Σ′? Hence, the following
problem is undecidable as well: Given an SO tgd σ and a finite set Σ′ of nested tgds, is σ ≡ Σ′?
Therefore, Corollary 3.25 contributes to the delineation of the boundary between decidability and
undecidability for the logical equivalence problem.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:23

4 THE STRUCTURE OF THE CORE AND APPLICATIONS

As mentioned in Section 2, the class of nested GLAV mappings contains the class of GLAV map-
pings and is, in turn, contained in the class of (mappings specified by) plain SO tgds. Moreover, it
is known that both containments are proper. In this section, we produce powerful tools that allow
us to tell apart nested GLAV mappings from GLAV mappings, and also plain SO tgds from nested
GLAV mappings. The main result of this section is an algorithm for telling whether or not a given
nested GLAV mapping is logically equivalent to a GLAV mapping. In addition, we give useful suf-
ficient conditions for showing that a plain SO tgd is not logically equivalent to any nested GLAV
mapping. Moreover, these conditions are easy to apply in concrete instances, in the sense that they
give the user tools based on simple and natural concepts.

The results in this section are obtained by analyzing the structure of the core of the universal
solutions of nested GLAV mappings. We embark on this analysis next, which we believe is of
interest in its own right.

4.1 Nested GLAV Mappings vs. GLAV Mappings

Recall that every schema mapping M specified by an SO-tgd admits universal solutions. More-
over, for every source instance I , a canonical universal solution chase(I ,M) for I w.r.t.M can be
obtained via the chase procedure. Since all universal solutions for a given source instance I are
homomorphically equivalent, it follows that their cores are unique up to isomorphism, hence, we
can take core(chase(I ,M)) as the core of the universal solutions for I w.r.t. M [10]. Note that,
in general, core(chase(I ,M)) need not be a universal solution for I w.r.t.M [9]. However, ifM is
specified by a plain SO tgd, then core(chase(I ,M)) is a universal solution for I w.r.t.M. The reason
for this is that, as shown in Reference [2], every schema mappingM specified by a plain SO tgd is
closed under target homomorphisms, which means that if J is a solution for I w.r.t.M and if there is
a homomorphism from J to J ′ that is the identity on constants, then J ′ is also a solution for I w.r.t.
M. Moreover, core(chase(I ,M)) is the smallest universal solution for I w.r.t.M. In particular, the
above facts hold true for nested GLAV mappings (hence, also for GLAV mappings). We will make
extensive use of the following notion, which was introduced in Reference [9].

Definition 4.1. A schema mappingM specified by an SO tgd has bounded f-block size if there is
an integer b such that for every source instance I , the f-block size of core(chase(I ,M)) is at most
b, the smallest such b is then called the f-block size ofM; otherwise, we say thatM has unbounded

f-block size. �
The next result follows immediately from Proposition 3.14 and Theorem 4.10 in Reference [9].

Recall that every nested GLAV mapping is equivalent to some plain SO tgd.

Theorem 4.2 ([9]). A schema mappingM specified by a plain SO tgd is logically equivalent to a

GLAV schema mapping if and only ifM has bounded f-block size.

Proof. Theorem 4.10 [9] states: A schema mappingM specified by an SO tgd is CQ-equivalent

to a GLAV schema mapping if and only ifM has bounded f-block size. This is almost the statement
we need, except that it talks about CQ-equivalence instead of logical equivalence. However, as has
been detailed on page four in Section 1, by combining results from References [2] and [9], we may
conclude that CQ-equivalence and logical equivalence coincide for plain SO tgds. �

The preceding Theorem 4.2 will be used to prove the main result in this section, which we now
state formally.

Theorem 4.3. The following problem is decidable: Given a nested GLAV mapping M, is there a

GLAV mappingM′ such thatM is logically equivalent toM′?

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:24 P. G. Kolaitis et al.

In view of Theorem 4.2, it suffices to give an algorithm that, given a nested GLAV schema map-
ping M, determines whether or not M has bounded f-block size. To this end, we introduce a
crucial property of mappings and show that nested GLAV mappings have this property.

Definition 4.4. Let C be a class of schema mappings. We say that C has effective threshold for

f-block size if there exists a recursive function f : C → N , where N is the set of natural numbers,
s.t. every mappingM ∈ C either has f-block size at most f (M) or has unbounded f-block size. �

Before showing that nested GLAV mappings actually have effective bounded threshold for f-
block size, let us give the following lemma and introduce some useful notation:

Lemma 4.5. For every nested GLAV mapping specified by a set Σ of nested tgds, there exists a single

nested tgd σ , such that Σ and σ have the same f-block size. Moreover, for every source instance I for

Σ, there is a source instance I ′ for σ with |I ′ | = |I | + 1, such that chase(I , Σ) = chase(I ′,σ).

Proof. Let Σ = {σi | 1 ≤ i ≤ k } be a set of nested tgds. Let R denote a relation symbol not oc-
curring in Σ and let x be a variable not occurring in Σ. Then σ is given by

R (x) → (σ1 ∧ . . . ∧ σk).

We now claim that Σ and σ have the same f-block size. Indeed, since R is a fresh relation symbol,
the source instance I for Σ witnessing some f-block size can be extended to I ′ = I ∪ {R (a)} for σ
where a is an arbitrary constant. Thus, we know thatσ has at least the f-block size of Σ. Conversely,
σ has at most the f-block size of Σ, since the variable x does not occur anywhere in Σ, thus not
allowing f-blocks to be connected through a shared variable. �

In Section 3, we introduced several crucial notions for the analysis of nested tgds, such as chase
forests, chase trees, patterns, isomorphic subtrees in a pattern, k-patterns, and so on. To prove that
the class of nested GLAV mappings has effective threshold for f-block size, we have to relativize
these notions to a subinstance of the chase result.

Definition 4.6 (Chase tree with restricted conclusions). Let σ be a nested tgd and let I be a source
instance. Let Fσ , I be the chase forest of I with σ and letTσ , I = (V ,T) be a chase tree in this chase
forest. Moreover, let J ⊆ chase(I ,σ). Recall from Definition 3.3 that each vertex inTσ , I corresponds
to a triggering (σi , �a0, �a) and that σi is a Skolemized formula of the form ∀�x (φ (�x0, �x) → α1 (�x0, �x) ∧
· · · ∧ αn (�x0, �x)).

The chase tree with conclusions restricted to J (or, simply, the RC-chase tree w.r.t. J), which we
denote as Tσ , I (J), is obtained from Tσ , I by leaving the tree structure unchanged and extending
the triples (σi , �a0, �a) in the vertices with the fourth element C , defined as the following set of
conclusion atoms of the part σi : C = {αi (�x0, �x) | μ (αi (�a0, �a)) ∈ J }, where μ (αi (�a0, �a)) denotes the
fact obtained from the atom αi (�a0, �a) by replacing every Skolem term f (�a0, �a) in it by the null

μ (f (�a0, �a)) = f̂ (�a0, �a). �

In other words, the additional labelC of each vertex in an RC-chase tree adds to the chase tree the
information as to which target atoms are ultimately retained in the subset J of chase(I ,σ). We now
also extend the notion of patterns from Definition 3.5 to allow for restrictions of the conclusions.

Definition 4.7 (Patterns with restricted conclusions). Let σ be a nested tgd and let p be a pattern of
σ . Recall that a pattern is a rooted tree where each vertex is labeled by some part σi of σ . A pattern

with restricted conclusions (or, simply, an RC-pattern) obtained from p has the same tree structure
as p, and the label σi of each vertex is extended to the label (σi ,C), where C is an arbitrary subset
of the conclusion atoms {α1 (�x0, �x), . . . ,αn (�x0, �x)} of σi .

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:25

Let I be an arbitrary source instance and let J ⊆ chase(I ,σ) such that all atoms in J are generated
by a single chase treeTσ , I . Then the RC-pattern w.r.t. J is the RC-pattern obtained fromTσ , I (J) by
leaving the tree structure unchanged and restricting every label (σi , �a0, �a,C) to (σi ,C). �

Analogously to Definition 3.6, we can consider the notions of (isomorphic) subtrees of an RC-
pattern and clones of subtrees, which lead to the definition of RC-k-patterns.

Definition 4.8 (RC-k-patterns). Let σ be a nested tgd and let p be an RC-pattern of σ . Let (V ,T)
denote the tree structure of p, and let λ denote the vertex labeling of p. As in Definition 3.6, we
mean by a “subtree” a complete subtree with all its descendant nodes. Now letv be some vertex in
V and let t1 = (V1,T1) and t2 = (V2,T2) denote two subtrees of (V ,T) rooted at two different child
nodes of v . We call t1 and t2 isomorphic if they have the same tree structure and the same labeling,
i.e.: there exists an isomorphism h from (V1,T1) to (V2,T2) such that λ(v) = λ(h(v)) holds for every
v ∈ V1. If this is the case, we also say that t2 is an RC-clone of t1.

Let RC-Ct denote the set containing some subtree t and all its RC-clones in p. If for each subtree
t of p, |RC-Ct | ≤ k , we call p an RC-k-pattern. RC-Pk (σ) is the set of all RC-k-patterns of σ . �

Recall from Proposition 3.8 that for a positive integer k and a nested tgd σ , the set of k-patterns
of σ is finite. The proof was by structural induction on σ making use of the observation, that the
sets of k-patterns of immediate subparts σ ′1, . . . ,σ

′
n of some part σi in σ can only be combined in

finitely (but of course exponentially) many ways into k-patterns of σi . For RC-patterns, we get an
additional exponentiality, since, in addition to the parts of σ , we also have to take subsets of the
conclusions of each part into account. However, this does not affect the finiteness of RC-Pk . We
thus get the following result:

Corollary 4.9. For a positive integer k and a nested tgd σ , the set RC-Pk of RC-k-patterns of σ
is finite.

The definition of the canonical source instance Ip of a pattern (see Definition 3.9) is not af-
fected by the restriction of the conclusions in an RC-pattern p. The same applies to the canonical
chase tree (canonical RC-chase tree), with the provision that the triggerings at its vertices are
now specified by quadruples t = (σi , �a0, �a,C) rather than triples (σi , �a0, �a). The function facts(t)
applied to such a quadruple t returns the instantiation of atoms in C by �a0 and �a. The canon-
ical target instance Jp of the RC-pattern p with the canonical chase tree (V ,T) is the union⋃

(σi ,�a0,�a,C)∈V facts((σi , �a0, �a,C)).
Let T be a subtree of an RC-pattern and τ = (V ′,T ′) be the respective subtree of the canonical

chase tree. By the set of facts generated by T (respectively, by τ), we mean the set K =
⋃{facts(t) |

t ∈ V ′}, that is, the set of facts generated by triggerings in τ , restricted to the target atoms in the
sets C at each vertex in τ . The set of local constants of T (respectively, of τ) is

lcst (T) = lcst (τ) = {a | there exists �a such that a occurs in �a and (σi , �a0, �a,C) ∈ V ′},

that is, the set of constants occurring in the assignments of the triggerings in τ . Regarding K as
a subset of the canonical target instance Jp of the RC-pattern p, observe that lcst (T) ∩ cst (K) (the
local constants of T actually occurring in K) are exactly the local constants of K in the sense of
Definition 3.23, namely, those constants occurring inK and nowhere else in Jp . We say that a factA
contains a local constant from τ if at least one constant of lcst (τ) occurs inA: cst ({A}) ∩ lcst (τ) � ∅.
Finally, for every such RC-pattern subtree T , with the corresponding subtree τ of the canonical
chase tree and the set K of facts generated byT , we fix an order of local constants, which allows us

to speak of the tuple �b of local constants of τ (respectively, of K , respectively, of T). Note that, for
each triggering (σi , �a0, �a), the tuple notation �a assumes an order of the constants in �a anyway. This

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:26 P. G. Kolaitis et al.

order of local constants of individual triggerings can be extended to an order of the local constants
of T by fixing the order of the nodes in T (e.g., assume top-down, left-to-right order).

Now consider a pattern p and let K1, K2 be sets of facts generated by isomorphic subtrees of a
pattern such that the roots of these subtrees are siblings in p. Moreover, let the respective tuples

of local constants be �bK1 and �bK2 . Then, the c-homomorphism θ mapping the ith constant in �bK1

to the ith constant in �bK2 for every i clearly defines a c-isomorphism between K1 and K2. It is

convenient to denote this c-isomorphism by θ (�bK1) = �bK2 .

Theorem 4.10. The class of nested GLAV mappings has effective threshold for f-block size.

Proof. By Lemma 4.5, it suffices to consider mappings defined by a single nested tgd σ . We
have to show that there exists a recursive function д that, for a given nested tgd σ , returns an
integer д(σ) witnessing bounded f-block size for σ . The proof proceeds in several steps and is split
into three claims. We give the overall picture of the proof here. Detailed proofs of the claims are
given in the Appendix.

Given an arbitrary nested tgd σ , let n denote the maximum size of all RC-1-patterns of σ . Here,
we define the size of an RC-pattern p as the sum of the cardinalities of the sets C of conclusion
atoms in the labels of the vertices in p. By the finiteness of RC-Pk according to Corollary 4.9, this
maximum exists. We set the thresholdд(σ) toд(σ) = n + 1. Now suppose that there exists a source
instance I , s.t. core(chase(I ,σ)) has f-block size m ≥ д(σ). We will show that then there exists a
source instance I ′, s.t. core(chase(I ′,σ)) has f-block size ≥ m + 1. Since our construction of I ′ from
I can be iterated arbitrarily often, it follows immediately that σ has unbounded f-block size.

Considering canonical source instances only. By Corollary 3.15, we know that the facts in
some f-block B of core(chase(I ,σ)) must be generated by a single chase tree in the chase for-
est Fσ , I . Now suppose that f-block size m of core(chase(I ,σ)) is realized by some f-block B of
core(chase(I ,σ)) and that the facts in B are generated by RC-chase tree Tp with RC-pattern p. Let
Ip be the canonical source instance of p. Then the following property holds:

Claim 1. The f-block size of core(chase(Ip ,σ)) is at leastm.

The proof idea of this claim is as follows: Recall from the proof of Lemma 3.18 that there is
a one-to-one correspondence between the triggerings in (and the facts generated by) the chase
tree Tσ , I and the corresponding pattern p equipped with the variable bindings according to the
canonical source instance Ip . We can thus define the set Bp of facts in the canonical target instance
corresponding to the set B in chase(I ,σ). It can be shown that Bp or a superset thereof must also
be an f-block in the core of the canonical target instance. In the remainder of the proof, we may
thus assume w.l.o.g. that I is the canonical source instance of p.

Isomorphic subtrees in Tp with local constants in facts of B. By our definition of the size of
an RC-pattern p as the total number of conclusion atoms in the labels of p and by Corollary 3.15
recalled above, the size of p yields an upper bound on the cardinality of an f-block whose facts are
generated by chase tree Tp with pattern p. We are assuming that f-block B has cardinality greater
than the maximum size of all 1-patterns of σ . Hence, there exist (at least) two siblings in the pattern
p that are the roots of isomorphic subtreesT1 andT2, such that bothT1 andT2 generate some facts
of B. We strengthen this observation to the following claim:

Claim 2. For each i ∈ {1, 2}, there exists an atom Ai generated by Ti such that Ai ∈ B and Ai

contains a local constant of Ti . (Recall that in a canonical target instance, local constants do not
occur outside a subinstance generated by a subtree of a chase tree.)

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:27

By the considerations on the size of RC-1-patterns and of B, it is clear that p must be a k-pattern
with k ≥ 2, i.e., there must exist isomorphic subtreesT1 andT2 whose roots are siblings and which
generate some facts of B. For the proof of Claim 2, it only remains to show that it cannot happen
that the facts generated by T1 and T2 contain no local constants. Indeed, this can be excluded
by showing that otherwise there exists an endomorphism on core(chase(I ,σ)) that allows us to
“shrink” B by mapping all facts generated byT1 to the facts generated byT2 or vice versa. But this
contradicts the assumption that B is an f-block in core(chase(I ,σ)).

Construct another isomorphic subtree. Let �b and �c denote the tuples of the local constants of
T1 and of T2, respectively. By the above considerations, there exists a one-to-one correspondence

between these vectors of local constants. We now introduce a vector of fresh constants �d such
that we again have a one-to-one correspondence between this vector and �b. Let θ realize this one-

to-one correspondence, i.e.: θ (bi) = di for every bi in �b and di in �d . We extend I to I ′ = I ∪ θ (I).
Hence, the chase tree of I ′with σ is obtained from the chase tree of I by adding another isomorphic

subtree T3 to the RC-pattern p and taking �d as the local constants in the variable assignments in
T3. For the f-block size of core(chase(I ′,σ)) the following property can be shown:

Claim 3. The instance core(chase(I ′,σ)) has f-block size ≥ m + 1.
The proof of this claim essentially consists of two steps: First, we observe that the set of facts

generated by T1 and by T2 have labeled nulls of the form f̂ (�a) in common, where �a is a vector of
constants used in the variable instantiations at the joint ancestor triggerings of T1 and T2. This is
an immediate consequence of Lemma 3.14. It can then be shown that also the facts generated by
T3 contain these nulls. In other words, the facts generated by T3 in chase(I ′,σ) are connected to
the facts generated by T1 and by T2. To complete the proof of Claim 3, it remains to show that B
persists in the chase(I ′,σ) and that at least one more fact is connected to B and also persists in
the core. The latter property can be established for the factA3 generated byT3, which corresponds

to Ai in the facts generated by Ti for i ∈ {1, 2}. Since A3 contains a null f̂ (�a·�d ′) with �d ′ ⊆ �d , no
endomorphism on chase(I ′,σ) can map it to one of the facts in B ⊆ chase(I ′,σ). �

It is worth briefly reflecting on the different proof methods applied in Theorem 3.1 (in particular,
Lemma 3.22) and in Theorem 4.10 above. Recall that the proofs in Section 3 made use of k-patterns,
where k depends on the size of the nested tgds involved. In contrast, the proof of Theorem 4.10
above only uses 2-patterns—independently of the size of the nested tgds. In principle, the crucial
step in both cases is the extension of a homomorphism: In case of Lemma 3.22, the very essence of
the lemma is the existence of an extension of a given homomorphism. In case of Theorem 4.10, the
extension of a homomorphism is hidden in the proof of step 3. The important difference between
these two proofs is that in case of Lemma 3.22, the extension of the homomorphism has to be
constructed yet. In case of Theorem 4.10, we just need to prove certain properties of an assumed
extension of the original homomorphism. Obviously, actually constructing the extension of a given
homomorphism is more difficult than establishing certain properties of the assumed extension of
a given homomorphism. Hence, the former requires stronger tools, namely, k-patterns. It will turn
out that this is also the case in the proof of Theorem 4.14 below.

But first let us recall the following claim from Reference [7]:

Claim 1. There is an algorithm for the following problem: Given an SO tgd σ and a positive integer

b, is the f-block size of σ bounded by b?

Our desired Theorem 4.3 would follow immediately by combining Theorem 4.2 and Theo-
rem 4.10 with Claim 1. Though the algorithm for Claim 1 presented in Reference [7, Theorem
5.2] appears to be correct, the proof of correctness of the algorithm given there has a flaw, which

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:28 P. G. Kolaitis et al.

Fig. 8. The undirected cycle of length n on the left side and of length 3 on the right side.

will be pointed out in the sequel. It should be noted that the above claim would also follow from
Theorem 3 in Reference [24] together with Theorem 4.10 in Reference [9]; however, Theorem 3 in
Reference [24] is stated without proof. In view of this state of affairs, we prove that Claim 1 indeed
holds for nested GLAV mappings. For this purpose, we introduce the following concept:

Definition 4.11. A schema mapping M is said to have a bounded anchor if there exists an in-
teger a such that for every source instance I and for every connected target instance J with
J ⊆ core (chase(I ,M)), there are a source instance I ′ and a connected target instance J ′ such that

• |I ′ | ≤ a |J |;
• |J ′ | ≥ |J | and J ′ ⊆ core (chase(I ′,M)).

We say that the bounded anchor ofM is witnessed by a. �
We extend this notion to classes of schema mappings.

Definition 4.12. Let C be a class of schema mappings. We say that C has effective bounded an-

chor, if there exists a recursive function a : C → N such that every schema mappingM in C has
bounded anchor witnessed by a(M). �

For understanding the intuition behind the concept of bounded anchor, let us consider the fol-
lowing example:

Example 4.13. Let σ be the following plain SO tgd:

∃f ∀x∀y (S (x ,y) → R (f (x), f (y)) ∧ R (f (y), f (x))).

Suppose we want to determine whether σ has a bounded anchor. Intuitively, what a bounded
anchor gives is the following guarantee: If we find an f-block of a certain size in the target instance,
then there is a “small” source instance (the “anchor”) that also yields an f-block of at least that
certain size in the target instance. Here, “small” means that the source instance is of the same size
as the f-block up to a constant factor.

Showing that a schema mapping has bounded anchor is structurally not an easy task, as it
involves showing that for any source and connected target instance, we can find such an anchor.
All the more, it will be interesting to see that nested GLAV mappings indeed always have bounded
anchor. Let us now illustrate, based on our example SO tgds σ , why it is not even simple to find
such an anchor for a given source instance (or rather, class of source instances).

Let In = {S (1, 2), S (2, 3), . . . , S (n, 1)} be the source instance consisting of a directed cycle of
length n for some n ≥ 3. Then chase(In ,σ) is the undirected cycle of length n. Let n be an odd
number. It follows that core(chase(In ,σ)) is also the undirected cycle of length n, which we depict
on the left side of Figure 8 for n > 5 (each arc, whether it is solid or dashed, denotes an R-atom).
We now take J to be the subinstance of core(chase(In ,σ)) consisting of the dashed edges on the
left side of Figure 8 (i.e., six R-atoms denoted by the six dashed arcs). Intuitively, the definition of

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:29

bounded anchor requires us to find a “small” source instance I ′ that gives rise to a connected J ′ of
size at least |J | = 6 such that J ′ is contained in core(chase(I ′,σ)). Here, “small” means that the size
of I ′ may depend on the size of J but not on n. Now observe that no such small source instance can
be constructed using the atoms of In : If I ′ is any proper subinstance of In , then core(chase(I ′,σ))
is just an undirected R-edge. However, we can meet the requirements in the definition of bounded
anchor by taking I ′ = I3 (note that for each n > 3, I3 � In holds). Indeed, core(chase(I3,σ)) is the
undirected cycle of size 3, depicted on the right side of Figure 8. �

Note that Example 4.13 yields a counter-example to a step in the proof of correctness of the
algorithm in Theorem 5.2 in Reference [7], where the search for I ′ and J ′ was confined to subsets
of the given instances I and J .

We show next that the class of nested GLAV mappings indeed has effective bounded anchor.

Theorem 4.14. The class of nested GLAV mappings has effective bounded anchor.

Proof Idea. As before, by Lemma 4.5, it suffices to consider a single nested tgd σ . We have
to show that there exists a recursive function a that, for a given schema mapping specified by a
nested tgd σ , returns an integer a(σ) witnessing bounded anchor for σ . Let I be a source instance
and let J ⊆ core(chase(I ,σ)) be connected. We have to show that there exists a source instance I ′

with |I ′ | ≤ a(σ) |J | and connected J ′ ⊆ core(chase(I ′,σ)) with |J ′ | ≥ |J |.
The proof reuses the key ideas of the proof of Theorem 3.1: Analogously to Lemma 3.22, let

k = vσwσ + 1, and define a(σ) as the maximum size of the canonical source instance of any k-
pattern of σ . As in Lemma 3.18, we may restrict ourselves to canonical source and target instances,
referred to as I and J . Moreover, by Lemma 3.17, any pattern p can be obtained from a k-pattern
p0 by a sequence of k+-increments, i.e., we get a sequence of patterns p0, . . . ,pn with pn = p and
pi−1 ≤k pi for every i . By Lemma 3.22, we know that ifpi ≤k p holds, then certain homomorphisms
from Jpi

can be extended to homomorphisms from Jp . We use this fact to argue that any homo-
morphism h from Jpi

to core(chase(Ipi
,σ)) preserves the subinstance Jpi

∩ J of core(chase(Ipi
,σ)),

since, otherwise, the extension of h to a homomorphism from J to core(chase(I ,σ)) would also
reduce the subinstance J of core(chase(I ,σ)). �

Having shown that the class of nested GLAV mappings has effective bounded anchor, we can
now prove that Claim 1 indeed holds for the class of nested GLAV mappings.

Theorem 4.15. Let C be a class of schema mappings that has effective bounded anchor. Then the

following problem is decidable: Given a schema mapping M in C and a positive integer b, is the

f-block size ofM at most b?

Proof. Let a denote the witness of bounded anchor ofM. We test for all source instances I with
|I | ≤ a(b + 1) whether the f-block size of core(chase(I , Σ)) is at mostb. There are finitely many such
instances (up to isomorphism) and each test itself is decidable by computing and inspecting the
core. If at least one of these tests returns an f-block size greater than b, we return that the f-block
size is larger than b (“no”). Otherwise, we return that the f-block size is at most b (“yes”).

For the correctness, it is clear that in the “no” case, if we witness an f-block of size larger than b
for some source instance, then the f-block size is indeed larger thanb. We thus have to show that in
the “yes” case, if for all source instances K with |K | ≤ a(b + 1) the f-block size of core(chase(K , Σ))
is at most b, then also for all other, larger source instances the f-block size is at most b. We will
prove this by showing the following: If for source instance I with |I | > a(b + 1) we have that
core(chase(I , Σ)) has f-block size at least b + 1, then there is also some source instance I ′ with
|I ′ | ≤ a(b + 1) s.t. core(chase(I ′, Σ)) has f-block size at least b + 1.

Assume that core(chase(I ,M)) contains an f-block B of size at least b + 1. We take an arbitrary
connected J ⊆ B with |J | = b + 1. By assumption, J is connected. Since Σ has bounded anchor

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:30 P. G. Kolaitis et al.

witnessed by a, we know that there is I ′ with |I ′ | ≤ a |J | and connected J ′ ⊆ core(chase(I ′,M))
with |J ′ | ≥ |J |. Now, since |J | = b + 1, we know that |I ′ | ≤ a |J | = a(b + 1) satisfies the requirement
on the size of I ′. Since J ′ is connected, and |J ′ | ≥ |J | = b + 1, we also produce the required size of
the f-block. �

Now, by exploiting the fact that nested GLAV mappings have both effective threshold for f-block
size and effective bounded anchor, we show that there is an algorithm for deciding whether the
f-block size of a nested GLAV mapping is bounded.

Theorem 4.16. Let C be a class of schema mappings having both effective threshold for f-block

size and effective bounded anchor. Then the following problem is decidable: Given a schema mapping

M in C, doesM have bounded f-block size?

Proof. Let f be the recursive function providing the effective threshold for f-block size for
schema mappings in C. Consider the following algorithm: Given a mappingM in C, compute the
bound b = f (M) for the effective threshold for f-block size. Since C has effective bounded anchor,
we can use the algorithm in Theorem 4.15 to test whetherM has f-block size bounded by b. If it
does, return thatM has bounded f-block size; otherwise, return thatM has unbounded f-block
size. �

By assembling all the preceding machinery, we can now prove the main result of this section.

Proof of Theorem 4.3. By Theorem 4.10 and Theorem 4.14, the class of nested GLAV map-
pings has both effective threshold for f-block size and effective bounded anchor. Therefore, by
Theorem 4.16, the following problem is decidable: Given a nested GLAV mapping, does it have
bounded f-block size? Thus, together with Theorem 4.2, we get the decidability result stated in
Theorem 4.3. �

4.2 Plain SO Tgds vs. Nested GLAV Mappings

We have just seen that there is an algorithm to differentiate between nested GLAV mappings and
GLAV mappings. It is not known, however, whether there is an algorithm to differentiate between
plain SO tgds and nested GLAV mappings. In other words, it is not known whether or not the
following problem is decidable: Given a plain SO tgd σ , is there a nested GLAV mappingM such
that σ is logically equivalent toM?

What tools are there for showing that a particular plain SO tgd σ is not logically equivalent
to any nested GLAV mapping? Since plain SO tgds are expressible in second-order logic while
nested GLAV mappings are expressible in first-order logic, it suffices to show that σ is not first-
order expressible. The standard methods for doing this are Ehrenfeucht-Fraïssé games or locality
methods (see Reference [23]). In fact, this method is behind the proof in Reference [2] that the
plain SO tgd

∃f ∀x∀y (S (x ,y) → R (f (x), f (y)))

is not logically equivalent to any nested GLAV mapping. In what follows, we take a totally dif-
ferent approach and give two different sufficient conditions for showing that a given SO tgd is
not logically equivalent to any nested GLAV mapping. The idea behind these conditions is as fol-
lows: Suppose we suspect that a given plain SO tgd σ is not logically equivalent to any nested
GLAV mapping. In this case, σ is not equivalent to any GLAV mapping either and, hence, σ has
unbounded f-block size by Theorem 4.2. Now, a schema mapping may have unbounded f-block
size for a number of different reasons. However, we will show that a nested GLAV mapping can
have unbounded f-block size only for certain specific reasons that are not shared by all plain SO
tgds. Therefore, if the given SO tgd σ is contained in one of these categories, then we can conclude
that indeed σ is not logically equivalent to any nested GLAV mapping.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:31

F-Degree. Before stating the first result of this section, we need to relativize the notion of bounded
f-block size to a class of source instances. Assume thatM is a schema mapping specified by an SO
tgd and C is a class of source instances. We say thatM has bounded f-block size on C if there is a
positive integer b such that for every source instance I in C, the f-block size of core(chase(I ,M))
is at most b; otherwise, we say thatM has unbounded f-block size on C. Clearly,M has bounded
f-block size if it has bounded f-block size on the class of all source instances.

If G is an undirected graph and v is a node of G, then the degree of v is the number of edges
incident to v . The degree of G is the maximum degree of its nodes. We say that a schema mapping
has bounded f-degree on C if there is a positive integer d such that for every source instance I in
C, the degree of every f-block of core(chase(I ,M)) is at most d ; otherwise, we say that M has
unbounded f-degree on C.

Before illustrating the close connection between f-block size and f-degree for nested GLAV map-
pings, we show that there is no such close connection between f-block size and f-degree for plain
SO tgds. This simple proof for SO tgds allows the reader to get an intuition of the two concepts
before the more complex construction for nested GLAV mappings.

Proposition 4.17. There is a plain SO tgd τ and a class C of source instances such that τ has

unbounded f-block size on C, but bounded f-degree on C.

Proof. Let τ be the plain SO tgd ∃f ∀x∀y (S (x ,y) → R (f (x), f (y))) and let C be the class of all
source instances I such that S is a successor relation. If I ∈ C, then core(chase(I ,τ)) consists of a
single f-block of the same size as S in which no null occurs more than twice. Thus, the f-block size
of τ on C is unbounded, but the f-degree of τ on C is 2. �

We now show the close connection between f-degree and f-block size for nested GLAV map-
pings. From this it will immediately follow that the plain SO tgd τ in Proposition 4.17 is not logically
equivalent to any nested GLAV mapping.

Theorem 4.18. LetM be a nested GLAV mapping and C a class of source instances. ThenM has

bounded f-block size on C if and only ifM has bounded f-degree on C.

The theorem follows immediately from the following lemma. Note that the lemma holds even if
we consider the Gaifman graph of facts for arbitrary instancesnot just for the core of some chase
result. But for our purposes it will suffice to prove this restricted version.

Lemma 4.19. LetM be a nested GLAV mapping. The following claims hold:

(1) For an arbitrary source instance I , it holds that core(chase(I ,M)) has f-block size greater

than f-degree.

(2) For each integer k , there exists an integer mk , such that for an arbitrary source instance I , if

core(chase(I ,M)) has f-block size b ≥ mk , then it has f-degree д ≥ k .

Proof. (1) Since the f-degree д of core(chase(I ,M)) is the maximum number of facts sharing
at least one null with a given fact R (�c), the f-block size of core(chase(I ,M)) is at least д + 1. �

(2) We start by showing the following claim:

Claim A. For each integer n, there exists an integer mn such that for an arbitrary source instance

I , if core(chase(I ,M)) has f-block size b ≥ mn , then at least one null occurs at least n times in

core(chase(I ,M)).

Proof of Claim A. Let n be an arbitrary integer. We have to show that there exists an integer
mn such that for an arbitrary source instance I , if core(chase(I ,M)) has f-block size b ≥ mn , then
there are at least n occurrences of some null in core(chase(I ,M)).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:32 P. G. Kolaitis et al.

Letw denote the maximum conclusion size (i.e., number of atoms in the conclusion) of a part of a
nested tgd ofM. Let p denote the maximum number of parts in a nested tgd ofM. Let d denote the
maximum nesting depth of a nested tgd ofM. Let e denote the maximum number of existentially
quantified variables in a part of a nested tgd of M. Define mn = w (p �)d where � = nd e . In the
rest of the proof of this claim, we will show why this choice of mn yields our desired result.

Let I be an arbitrary source instance and assume that core(chase(I ,M)) has f-block size b ≥ mn .
Let JB be an arbitrary f-block of core(chase(I ,M)) of size b ≥ mn . LetT be the RC-chase tree w.r.t.
JB . Since JB has size at least mn = w (p �)d , and we know that a single triggering can produce at
mostw facts, we know that there must be at least �mn/w� = (p �)d triggerings inT . Since the height
of T is bounded by d , we know that some triggering in T must have at least p � child triggerings.
Note that by definition, the child triggerings of a triggering in a chase tree have the same input
assignment �a0. Of these p � triggerings, since there are at most p parts of nested tgds inM, one of
these parts σj must have at least � triggerings t1, . . . , t� .

Let Ji = {f acts (t) | t ∈ desc(ti)} denote the subinstance of JB generated by the subtree desc(ti)
rooted at ti . Note that all of these Ji are non-empty by the definition ofT . From Lemma 3.14, we can
conclude that J1 ∪ . . . ∪ J� can belong to the same f-block only if each of the facts in J1 ∪ . . . ∪ J�
contains a null f̂ (�c) with f from anc (σj) and �c a prefix of �a0. Observe that there are at most d e
Skolem functions f (as e denotes the maximum number of existentially quantified variables in a
part of a nested tgd inM and d bounds the depth)—and thus at most d e nulls instantiating the
Skolem terms in J1 ∪ . . . ∪ J� (since their arguments �c are a prefix of �a0). Observe that there are
at least nd e facts in J1 ∪ . . . ∪ J� (as � = nd e and all Ji are non-empty). Thus, there must exist at
least one null that occurs at least nd e/d e = n times, which was to be shown. �

It is not difficult to see that Claim A implies the second claim of the lemma. Indeed, let k be an
arbitrary integer. We have to show that there exists an integermk , such that for an arbitrary source
instance I , if core(chase(I ,M)) has f-block size b ≥ mk , then it has f-degree д ≥ k . Let r denote
the maximum arity of a relation in the target schema of M. We now invoke Claim A with n =
r (k + 1), yielding an integer mn such that for an arbitrary source instance I , if core(chase(I ,M))
has f-block size b ≥ mn , then at least one null occurs at least n times in core(chase(I ,M)). Define
mk =mn . Let I be an arbitrary source instance such that core(chase(I ,M)) has f-block size b ≥ mk

(and, equivalently, b ≥ mn). We thus know that there are at least n occurrences of some null in
core(chase(I , Σ)).

Since there are n = r (k + 1) occurrences of one null in a block of core(chase(I ,M)), there are at
least �n/r� = k + 1 facts in this block (as r is the maximum arity of a relation in the target schema).
Moreover, these facts give rise to a clique of the same size �n/r� in the Gaifman graph of facts of
core(chase(I ,M)), and thus the f-degree д of core(chase(I ,M)) is at least �n/r� − 1 = k . That is, it
holds that f-degree д ≥ k as desired in the second claim of the lemma, which was to be shown. �

Informally, the preceding theorem asserts that nested tgds can achieve unbounded f-block size
on a class of source instances only because some null value appears unboundedly often in the core
of the universal solutions of such instances. In contrast, plain SO tgds can achieve unbounded
f-block size in more complex ways, as evidenced by Proposition 4.17.

Altogether, f-degree is an easy-to-use tool for showing that a schema mapping is not logically
equivalent to a nested GLAV mapping (as we did in Proposition 4.17). However, it is not always
sufficient for dealing with more complex schema mappings, as the next example shows.

Example 4.20. Consider the following plain SO tgd σ :

∃f ∃д∀x∀y∀z (S (x ,y) ∧Q (z) → R (f (z,x), f (z,y),д(z))).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:33

Fig. 9. Gaifman graph of facts of Example 4.20 for a successor relation of length 5.

It will turn out that σ is not logically equivalent to any nested GLAV mapping. However, it is easy
to see that each f-block is a clique, which implies that for every class C of source instances, σ has
unbounded f-block size on C if and only if it has unbounded f-degree on C. For example, if C is the
class of source instances in which S is a successor relation and Q is a singleton, then each f-block
is a clique of the form depicted in Figure 9. Thus, Theorem 4.18 cannot be used to show that σ is
not logically equivalent to any nested GLAV mapping. �

The preceding example shows that, in addition to Theorem 4.18, a different structural tool is
needed to differentiate between plain SO tgds and nested GLAV mappings. To appreciate how
delicate this differentiation can be, we note that a plain SO tgd and a nested tgd may have the
same f-blocks (up to isomorphism) on some classes of instances, yet the plain SO tgd is not logically
equivalent to any nested GLAV mapping.

Example 4.21. Consider the following plain SO tgd σ ′:

∃f ∃д∀x∀y∀z (S (x ,y) ∧Q (z) → R (f (z,x ,y),д(z),x)).

This dependency is logically equivalent to the following nested tgd:

∀z (Q (z) → ∃u (∀x∀y (S (x ,y) → ∃v R (v,u,x)))).

For the source instances in which S is a successor relation, the f-blocks are isomorphic to those of
the plain SO tgd σ in Example 4.20, i.e., they are complete graphs (see Figures 9 and 11). Yet, as
we are about to discover, σ is not logically equivalent to any nested GLAV mapping. Intuitively,
the reason is that σ can “build arbitrarily long chains of nulls,” while σ ′ can not, but we shall now
introduce a concrete tool that allows one to make this distinction on a formal level. �
Path Length. To cope with this situation, we need to look beyond the Gaifman graph of facts.
Recall that the Gaifman graph of facts is the graph whose nodes are the facts and there is an edge
between two facts if they share a null. Let J be a target instance. The Gaifman graph of nulls of J
is the graph whose nodes are the nulls of J , and there is an edge between two nulls if they occur
in the same fact in J .

It turns out that properties of the Gaifman graph of nulls can be used to show inexpressibility in
situations where the structure of the Gaifman graph of facts is of no help. More formally, the path

length of an undirected graphG is the length of the longest simple path inG, where a simple path
is a path that visits each node inG at most once. We say that a schema mappingM specified by an
SO tgd has bounded path length if there is a positive integer l such that for every source instance I ,
the path length of the Gaifman graph of nulls of core(chase(I ,M)) is at most l ; otherwise, we say
thatM has unbounded path length.

Theorem 4.22. Every nested GLAV mapping has bounded path length.

Proof. Let M be a nested GLAV mapping. Let I be an arbitrary source instance. We show
that the length of the longest simple path in the Gaifman graph of nulls of core(chase(I ,M)) is
bounded by a constant only depending on M. Let y1, . . . ,yn be an arbitrary simple path in the

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:34 P. G. Kolaitis et al.

Fig. 10. Gaifman graph of nulls of Example 4.20 for a successor relation of length 5.

Gaifman graph of nulls of core(chase(I ,M)). We denote by ei the edge (yi−1,yi) of this path and
by Ai the atom in core(chase(I ,M)) where yi−1 and yi occur together (if there is more than one
such atom, we choose an arbitrary one).

Let A = A1 ∪ . . . ∪An and let T be the RC-chase tree w.r.t. A. Let d be the maximum depth of
a nested tgd ofM. Let e be the maximum number of existentially quantified variables in a part of
a nested tgd ofM.

Claim 1. In T , every node has at mostm = d e + 1 child nodes.

Proof of Claim 1. Consider an arbitrary node t inT . Suppose that t has s child nodes t1, . . . , ts .
By construction ofT , the subtree rooted at each tα contains at least one atomAiα

∈ A. If there are
several such atoms ofA in the subtree rooted at node tα , then we choose Aiα

arbitrarily. W.l.o.g.,
assume that the nodes t1, . . . , ts are arranged in such an order that i1 < i2 < · · · < is .

Letα ∈ {1, . . . , s − 1} be arbitrary. Consider tα and tα+1: There must exist atomsAj andAj+1 with
iα ≤ j < j + 1 ≤ iα+1 such that Aj is in the subtree rooted at tα and Aj+1 is outside this subtree.
By definition of the atoms Ai (i.e., the fact that they realize the edges of the path y1, . . . ,yn in the
Gaifman graph of nulls), Aj and Aj+1 contain the null yj . Since Aj is in the subtree below tα and
Aj+1 is outside this subtree, yj must be one of the nulls introduced in the branch from the root to

t , i.e., yj corresponds to a null f̂ (�c) where �c is a prefix of the input assignment �a0 of tα (which is
the same as the input assignment of tα+1, as sibling triggerings by definition have the same input
assignments).

Recall that we are considering a simple path y1, . . . ,yn . Hence, the nulls yj that exist for each
α must be pairwise-distinct for different values of α . The number of nulls yj (which, as discussed

before, are of the form f̂ (�c) where �c is a prefix of the input assignment �a0 shared by all tα) is
bounded by d e . Hence, the number s of child nodes tα of t must be bounded bym = d e + 1. �
By Claim 1, it holds that T has at most md nodes. Let w be the maximum conclusion size, i.e., the
maximum number of atoms in the conclusion of a part of a nested tgd ofM. Then A contains at
mostmd w atoms. Let r be the maximum arity of the relation symbols in the target schema. Thus,
since each atom can contain at most r nulls, and all nulls y1, . . . ,yn are contained in the atoms
A = {A1, . . . ,An }, we get the upper boundmd w r on the number n of nulls. �

Equipped with Theorem 4.22, we now have a tool to show that the plain SO tgdσ of Example 4.20
is not logically equivalent to any nested GLAV mapping. This is so because σ has unbounded path
length, which can be checked using successor relations in S as source instances (see Figure 10,
where the Gaifman graph of nulls contains a simple path of length 4, in contrast to Figure 12).

5 ADDING SOURCE CONSTRAINTS

In the previous section, we showed that it is decidable whether a schema mapping specified by
nested tgds is equivalent to a GLAV mapping. The decidability of whether an SO tgd is equivalent
to a GLAV mapping is still open. In this section, we give evidence that the problem may indeed be
harder for SO tgds: It is undecidable whether a plain SO tgd is equivalent to a GLAV mapping in
the presence of a single source key dependency. In contrast, we will show that for nested tgds and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:35

Fig. 11. Gaifman graph of facts of Example 4.21 for a successor relation of length 5.

Fig. 12. Gaifman graph of nulls of Example 4.21 for a successor relation of length 5.

in the presence of arbitrary source egds, equivalence to GLAV is still decidable. Completing the
picture, we also show that the implication problem of nested tgds discussed in Section 3 remains
decidable in the presence of source egds.

Recall that Theorem 4.2 reduces the problem of whether a plain SO tgd is equivalent to a GLAV
mapping to the problem of deciding whether it has bounded f-block size. This theorem, which is
derived from Proposition 3.14 and Theorem 4.10 in Reference [9], thus played an important role in
Section 4. A close inspection of the proofs of Proposition 3.14 and Theorem 4.10 in Reference [9]
shows that these results (and therefore Theorem 4.2) still hold in the presence of source egds. This
fact is used below.

Theorem 5.1. It is undecidable whether a given plain SO tgd is equivalent to a GLAV mapping in

the presence of a single source key dependency.

Proof. By the above comments it suffices to show the undecidability of the following prob-
lem: Given a schema mapping specified by a plain SO tgd and a source key dependency, does the
mapping have bounded f-block size? Our proof is by reduction from the halting problem.

Thus, for a given Turing machine, we construct an SO tgd that “simulates” the computation of
the Turing machine. We first describe the basic structure of our proof and then give the construc-
tion. The basic structure is to represent a run of a Turing machine (state and tape configurations)
together with a successor relation in the source instance. We construct a key dependency to ensure
that in the supposed successor relation, each element has a unique predecessor. The SO tgd then
guarantees that the f-block size is bounded if and only if the Turing machine halts.

The particular challenge of this reduction is how to handle incorrect and missing information
in the source instance. For incorrect information, we define “guards” that lead to a collapse of
f-block size. The more problematic part is missing information, for which we define a specific one-
dimensional enumeration of the two-dimensional (time and tape space) structure of the Turing
machine’s run in the target. When we reach a certain point of this enumeration, we know that no
essential information is missing up to that point.

The final challenge is how to handle the effects of unintended structure of the successor relation
given in the source instance. While the single key dependency gives us some control over the
structure, we define “traps” that address the effects of deviating from the successor relation in the
target in ways not handled by that single key dependency.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:36 P. G. Kolaitis et al.

Construction. We now show the reduction, and we give the correctness proof in the Appendix.
Let TM be a Turing machine. We now define a schema mapping from a source schema to a target
schema specified by an SO tgd σ . We assume w.l.o.g. that the Turing machine starts from the empty
tape, and that from the halting state, there are no further transitions possible.

Source Schema. For every alphabet symbol ai of the Turing machine, there is a unary predicateAi

in the source schema. The intended meaning is that if Ai (x) holds, then x equals ai . Furthermore,
we assume that a0 = � (i.e., the special symbol always marking the left end of the tape) and a1 = �
(i.e., the blank symbol). Similarly, for every state qi there is a unary predicate Qi in the source
schema, where q0 denotes the starting state and q1 the halting state. Also, we will use the unary
predicate C1 to represent a cursor being present, and C0 for the cursor being absent.

For describing time and space of the Turing machine computation, we add a unary predicate
Z (“zero”) as well as a binary predicate S (“successor”) to the source schema. The intended mean-
ing is for Z to be the root of a linear order, i.e., Z (0), and for S to describe the order itself, i.e.,
S (0, 1), S (1, 2), and so on. For describing the configurations of the Turing machine, we use predi-
cates state and tape. The intended meaning is that state(x ,q) denotes that at time x , the machine
is in state q. Similarly, tape(x ,y,a, c) denotes that at time x and tape position y, the symbol a is
stored and the cursor is at this position (c = 1) or not (c = 0).

Target Schema. The target schema contains a unary predicateO (“origin”) and a binary predicate
N (“next”). The intended meaning is to represent a linear order, rooted at O and the successor re-
lation stored in N . That is,O and N are comparable to Z and S of the source schema. However, the
target schema is intended to represent a one-dimensional enumeration of the two-dimensional
space-time structure of the Turing machine computation. We will illustrate this idea in detail
later.

Dependency. We will now construct the SO tgd σ by describing all parts of the tgd (where all
individual symbols are considered to be universally quantified). The final SO tgd is obtained by
constructing a conjunction of those parts and adding existential function quantifiers for all func-
tion symbols. We first define the abbreviation fail, which, when put on the right-hand side of an
SO tgd part and triggered, will lead to the core “collapsing.”

• fail := O (x) ∧ N (x ,x)

Chain Guards. We require that the start of our linear order described by Z has no predecessor
and thus add the following part to our SO tgd:

• Z (y) ∧ S (x ,y) → fail.

We also require S to be irreflexive:

• S (x ,x) → fail.

Note that we do not directly enforce functionality on S .

Uniqueness Guards. We need to make sure that for every time instant x there is only one distinct
state stored. Also, for every time instant x and tape position y, we require that only one distinct
tape symbol and cursor information is stored. For each i � j, we thus add the following parts:

• state(x ,qi) ∧ state(x ,qj) ∧Qi (qi) ∧Q j (qj) → fail,
• tape(x ,y,ai , _) ∧ tape(x ,y,aj , _) ∧Ai (ai) ∧Aj (aj) → fail,
• tape(x ,y, _, ci) ∧ tape(x ,y, _, c j) ∧Ci (ci) ∧Cj (c j) → fail.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:37

Transition Guards. The symbol stored at a specific tape position y and time instant x , as well as
the fact whether the cursor is located at this tape cell, depends only on the previous time instant
x ′, and there only on tape position y, the tape position on the left yl , and the one on the right yr .

We now need to check whether the configuration at time instant x and tape position y is
correct according to the definition of the Turing machine. We thus collect all required infor-
mation for current state qα , tape symbol aβ , and cursor information cβ (1). That is, the pre-
vious state qα ′ as well as tape symbol and cursor information at the middle (2), left (3), and
right (4) positions in the previous configuration (aβp and cβp for p ∈ {l ,m, r }). For such a set-
ting π = (qα ,qα ′,aβ ,aβ l ,aβm ,aβ r , cβ , cβ l , cβm , cβ r), we can thus define the following abbreviation

checkπ [x ,y]:

checkπ [x ,y] :=
state(x ,qα) ∧Qα (qα) ∧ tape(x ,y,aβ , cβ) ∧Aβ (aβ) ∧Cβ (cβ) (1)
∧ S (x ′,x) ∧ state(x ′,qα ′) ∧Qα ′ (qα ′) ∧ tape(x ′,y,aβm , cβm) ∧Aβm (aβm) ∧Cβm (cβm) (2)
∧ S (yl ,y) ∧ tape(x ′,yl ,aβ l , cβ l) ∧Aβl

(aβ l) ∧Cβ (cβ l) (3)
∧ S (y,yr) ∧ tape(x ′,yr ,aβ r , cβ r) ∧Aβr

(aβ r) ∧Cβ (cβ r). (4)

For an arbitrary setting π , we can clearly identify whether or not it correctly follows the de-
scription of the Turing machine. We thus build the two sets Πgood as the set of all π that follow the
definition of TM, and Πbad for those that do not. For later use, we also define the special setting
� = (_, _, _, _, _, _, _, _, _, _) containing anonymous variables instead of constants. The intuition
behind this setting is that it only checks for the existence of the relevant tuples and not in addition
checks for good or bad ones.

For instance, when in a setting π ∈ Πgood all cβ cursor markers have the value 0, then this setting
corresponds to an inertia rule (i.e., a rule that enforces that, unless changed, the configuration stays
the same). When at least one of cβ l , cβm , cβ r has the value 1, then this represents a transition rule.
A clear example of a π ∈ Πbad is when cβ l , cβm , cβ r all have the value 0 and cβ has the value 1.
Note that these sets Πgood and Πbad are clearly finite for a fixed Turing machine.

Now for all πbad ∈ Πbad, we add the part:

• checkπbad
[x ,y]→ fail.

Note that for the border cases of the two-dimensional configuration structure (initial time in-
stant, first tape position, the diagonal after which only blank symbols are present) adaptations
need to be made to checkπ [x ,y]. They are technical but do not provide deep insight. In particular,
(2) needs to be omitted in the initial time instant, (3) needs to be omitted at the first tape position,
and (4) needs to be omitted at the diagonal.

Constructing the Target. Our intention is for the target instance to represent an enumeration
of the configuration matrix of the Turing machine. The structure of this enumeration is illustrated
in Figure 13. The vertical axis represents time (starting at the top) and the horizontal axis the
tape (starting at the left). Note that it is only necessary to represent this triangular part of the
configuration matrix, as a Turing machine can in, e.g., 4 steps in time at most reach the 4th tape
cell. To realize this enumeration, we first need to materialize the origin O (corresponding to the
black square in Figure 13):

• Z (x) → O (f (x ,x)).

We also need to realize the arcs of the enumeration as N atoms. There are two possible cases.
The← step goes from the given tape position to the previous one at the same time instant. The↘

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:38 P. G. Kolaitis et al.

Fig. 13. Intended enumeration represented in the target instance. Arrows denote N atoms. The origin node

represented by O is marked by a rectangle.

step to the diagonal in the configuration matrix and the next time instant is made when the initial
tape position is reached. These are implemented as follows as SO tgd parts:

• check�[x ,y] ∧ S (y,y ′) → N (f (x ,y ′), f (x ,y)) (← transition),
• check�[x ′,x ′] ∧ S (x ,x ′) ∧ Z (y) → N (f (x ,y), f (x ′,x ′)) (↘ transition).

Note that the conditions in the antecedents of the above implications are mutually exclusive,
since for any y for which Z (y) holds, there cannot be a predecessor S (_,y).

The key fact about this enumeration is that it uses the successor relation, both in space and in
time, only in one direction (the “backwards” direction). This is necessary, because with a single key
dependency, we can only guarantee that one direction allows correct navigation (in our case, we
will guarantee unique predecessors). The only other navigation step we can ensure to be correct
is “jumping to the diagonal” (the time and space index coincide), as illustrated by the diagonal
arrows in Figure 13.

Unfoundedness Traps. The idea of the following parts is to get rid of “unfounded” paths, that
is, paths not beginning at an origin O . For each combination of time instant x and tape position
y, we add a self-loop in N using the function symbol h and then connect this self-loop to the
corresponding function symbol f . The effect is that in the core, paths that do not start at anO atom
can be “shrunk” into this self-loop, i.e., the core will only contain our self-loop and the connection,
but not an unfounded path of arbitrary length. We add:

• check�[x ,y]→ N (h(x ,y),h(x ,y)),
• check�[x ,y]→ N (h(x ,y), f (x ,y)).

Key Dependency. We now make sure that in the S relation there is no element with two prede-
cessors by adding the following key dependency:

• S (x ,y) ∧ S (x ′,y) → x = x ′.

Note that the S relation can still have a number of deviations from representing a linear order, in
particular an element can have more than one distinct successor. This concludes our construction.
Correctness is shown in the Appendix. �

The Turing machine construction of Theorem 5.1 can be used to give an alternative proof of
the undecidability of the equivalence of plain SO-tgds in the presence of source key dependencies,
which was originally shown in Reference [12] by a reduction from the domino problem.

Also, we note that the SO tgd simulating a Turing machine computation can produce a core
with f-blocks of arbitrary size but with bounded f-degree if the Turing machine does not halt.
In this case, by Theorem 4.18, the SO tgd cannot be equivalent to a nested GLAV mapping. This
immediately gives us the following undecidability result:

Theorem 5.2. It is undecidable whether a given plain SO tgd is equivalent to a nested GLAV map-

ping in the presence of a single source key dependency.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:39

Nested GLAV mappings. We now show that in contrast, the problem of deciding whether a
nested GLAV mapping is equivalent to a GLAV mapping is decidable even in the presence of source
egds.

The proof strategy of Theorem 4.3 is still valid, namely, showing that the class of schema map-
pings has (1) effective threshold, (2) effective bounded anchor, as well as that (3) a mapping is
logically equivalent to a GLAV mapping iff f-block size is bounded. We already mentioned that (3)
still holds in the presence of source egds. It thus remains to show that also (1) and (2) hold if source
egds are allowed.

We now show that nested tgds have effective threshold for f-block size also in the presence of
source egds. However, a straightforward extension of Theorem 4.10 is not possible, as the following
example illustrates:

Example 5.3. Consider the following nested tgd σ :

∀z (Q (z) → ∃y ∀x1∀x2

(P1 (z,x1) ∧ P2 (z,x2) → R (y,x1,x2)))

and the set Σs of source dependencies given by P1 (z,x1) ∧ P1 (z,x ′1) → x1 = x ′1.
Now consider the source instance I = {Q (a), P1 (a,b), P2 (a,b), P2 (a, c)}. The proof of Theo-

rem 4.10 depends on “cloning” parts of the source instance. Intuitively, in our example this means
constructing a source instance I ′ = I ∪ I [b �→ d], where [b �→ d] denotes replacing all occurrences
of b by d . That is, we have I ′ = I ∪ {Q (a), P1 (a,d), P2 (a,d), P2 (a, c)}. But while both I and I [b �→ d]
satisfy Σs , the combined instance I ′ does not. Indeed, {P1 (a,b), P1 (a,d)} violates Σs . �

Still, it is possible to show effective threshold also in this case. The key tool for this result and
further results in this section is an adapted notion of canonical instances that takes source de-
pendencies into account. To this end, it is convenient to allow source egds to unify two constants.
Formally, this simply means that we replace one of the constants by the other. We will say that in-
stance K ′ is obtained from instance K by an application of egd ϵ if a firing of ϵ unifies two domain
elements bi and bj , which means that K ′ is obtained from K by replacing every occurrence of bj

in K by bi .

Definition 5.4 (Legal canonical source/target instance). Consider a nested tgd σ defined for the
source schema S and a target schema T, such that a set of integrity constraints Σs consisting of
egds is associated with S. Given a pattern p of σ , we define the legal canonical source, respectively,

target instances I s
p and J s

p , as the instances obtained from the canonical source instance Ip and target
instance Jp as follows: Instance I s

p is obtained from Ip by chasing it with Σs . Each unification of
constants performed by this chase is also applied to the constants and instantiations of Skolem
terms occurring in Jp resulting in the instance J s

p . �

The following lemma is folklore, e.g., a similar property is shown in Lemma 3.4 of Reference [8].
Intuitively, it states that egd applications carry over from an instance to its homomorphic image.
For the sake of completeness, we give a proof of this lemma in the Appendix.

Lemma 5.5. LetK1 andK2 be instances and let θ be a c-homomorphism fromK1 toK2. Let Σ be a set

of egds and let K ′1 denote an instance that is obtained from K1 by a sequence S1 of applications of egds

from Σ. Then there exists a sequence S2 of applications of egds from Σ to instance K2, transforming K2

into instance K ′2, such that there exists a c-homomorphism θ ′ from K ′1 to K ′2. Moreover, whenever S1

leads to the unification of two domain elements s1, s2 ∈ dom(K1), then also S2 leads to the unification

of θ (s1),θ (s2) ∈ dom(K2).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:40 P. G. Kolaitis et al.

In Section 3, the cloning of subtrees in a patternp of some nested tgd σ played an important role.
Adding an isomorphic copy of some (complete) subtree in p and taking the canonical source/target
instance of the extended pattern was straightforward. As mentioned above, in the presence of
source egds, we have to consider legal canonical source/target instances. Hence, when adding an
isomorphic copy of some subtree in p, we have to make sure that we again get a legal canonical
source instance of the extended pattern. The following two lemmas show how this can be ensured
without explicitly carrying out the chase with the source egds.

Definition 5.6. Let σ be a nested tgd. Let K be a set of facts generated by a subtree T of some
(RC-)pattern p of σ , and �a be the tuple of local constants ofT (as defined in Section 4.1). The chase
with Σs unifies constants in Ip , transforming Ip , K , and �a, respectively, into the legal canonical
source instance I s

p , the set of facts Ks in the canonical target instance of p, and the tuple of

constants �as , which we call pseudolocal constants of T (respectively, of Ks).

Note that due to the source egds Σs , the elements of �as need not be pairwise-distinct.

Lemma 5.7. Let σ be a nested tgd and let Σs be a set of source egds. Let p be a k-pattern of σ with

k ≥ 2 and consider two isomorphic (complete) subtreesT1 andT2 in p such that the roots ofT1 and T2

are siblings. Let Ip denote the canonical source instance of p and let �b (respectively, �c) denote the local

constants used in the variable instantiations inT1 (respectively, inT2) to construct Ip . Let I s
p denote the

legal, canonical source instance of p and let �b ′ (respectively, �c ′) denote the pseudolocal constants used

in the variable instantiations inT1 (respectively, inT2) to construct I s
p . We write b ′i (respectively, c ′i) to

refer to the ith component of �b ′ (respectively, �c ′). Then �b ′ and �c ′ fulfill the following properties:

(1) for all i, j, if b ′i = b
′
j in I s

p , then also c ′i = c
′
j holds;

(2) for all i, j, if b ′i = c
′
j in I s

p , then also c ′i = c
′
j holds.

Note that the properties in Lemma 5.7 are symmetric in T1 and T2 and, hence, also in �b ′ and �c ′.
Property (1) can thus be strengthened to the equivalence that b ′i = b

′
j holds in I s

p if and only if c ′i =

c ′j holds. Moreover, by applying Property (1) to Property (2), we obtain that b ′i = c
′
j in I s

p implies all

of the equalitiesb ′i = c
′
i = c

′
j = b

′
j . We apply these properties to construct the legal canonical source

instance after adding a clone without explicitly carrying out the chase with the source egds.

Lemma 5.8. Let σ be a nested tgd and let Σs be a set of source egds. Let p be a k-pattern of σ with

k ≥ 2 and consider two isomorphic (complete) subtreesT1 andT2 in p such that the roots ofT1 and T2

are siblings. Let I s
p denote the legal, canonical source instance of p and let �b ′ (respectively, �c ′) denote

the pseudolocal constants used in the variable instantiations inT1 (respectively, inT2) to construct I s
p .

As in Lemma 5.7, we write b ′i (respectively, c ′i) to refer to the ith component of �b ′ (respectively, �c ′).

Let r be obtained from p by adding another isomorphic subtree T3 as sibling of T1 and T2. Let �d
denote the vector of fresh, pairwise-distinct constants used in the variable instantiations of the parts

in T3 when constructing the canonical source instance Ir . Moreover, let I s
r denote the legal canonical

source instance of r . We claim that I s
r can be obtained from I s

p by leaving the variable instantiations at

all parts outside T3 unchanged and by constructing the vector �d ′ of pseudolocal constants in T3 from
�d as follows:

(1) for all i , if b ′i = c
′
i , then set d ′i = b

′
i ;

(2) for all i, j, if b ′i = b
′
j , then set d ′i = d

′
j .

Proof. We divide the proof in two steps, showing that the unifications required according to
(1) and (2) above are necessary and sufficient. Both steps rely on the one-to-one correspondence

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:41

between the triggerings inT1,T2, andT3 and, likewise, between the variable instantiations �b, �c , and
�d for the canonical source instance Ir .

Necessary unifications. Let p ′ be equal to pattern p but use �b and �d as local constants ofT1 andT2

to produce the canonical source instance Ip′ . Consider the c-homomorphism θ from Ip to Ip′ with
θ (ci) = di for every i and θ (s) = s otherwise. Now assume that the chase of Ip with Σ unifies the
elements bi and ci . Then, by Lemma 5.5, the chase of Ip′ with Σ unifies the elements θ (bi) and θ (ci)
with θ (bi) = bi and θ (ci) = di . By Ip′ ⊆ Ir , we thus also have in I s

r the equality d ′i = b
′
i as requested

by condition (1).
To show that the unifications according to condition (2) are also necessary, we again consider

pattern p ′ with canonical source instance Ip′ . By the isomorphism of Ip and Ip′ , if the chase of Ip
with Σ unifies bi and bj , then so does the chase of Ip′ with Σ. But then, by applying Lemma 5.7 to
Ip′ , we conclude that d ′i = d

′
j is enforced by the chase of Ip′ . By Ip′ ⊆ Ir , we thus also have in I s

r the

equality d ′i = d
′
j as requested by condition (2).

Sufficient unifications. The proof is indirect. Suppose that the chase of Ir with Σ enforces further
unifications. We distinguish several cases and derive a contradiction in each of them.

Case 1. Suppose that some di is unified with some dj although b ′i � b
′
j holds in Ip . Consider the c-

homomorphism θ from Ir to Ip with θ (di) = bi for every i and θ (s) = s otherwise. Since we assume
that the chase of Ir with Σ unifies di with dj , the chase Ip with Σ unifies bi with bj by Lemma 5.5.
This contradicts our assumption that b ′i � b

′
j holds in I s

p .

Case 2. Suppose that some di is unified with bi (or, symmetrically with some ci) although this
equality is not enforced by conditions (1) and (2). In particular, this means that b ′i � c

′
i in Ip . Con-

sider the c-homomorphism θ from Ir to Ip with θ (di) = ci for every i and θ (s) = s otherwise. By
Lemma 5.5 and by condition d ′i = b

′
i in I s

r , we conclude that c ′i = b
′
i holds in I s

p —a contradiction.

Case 3. Suppose that some di is unified with some bj (or, symmetrically with some c j) with
i � j although this equality is not enforced by conditions (1) and (2). Again, we consider the c-
homomorphism θ from Ir to Ip with θ (di) = ci for every i and θ (s) = s otherwise. By Lemma 5.5
and by condition d ′i = b

′
j in I s

r , we conclude that c ′i = b
′
j holds in I s

p . By Lemma 5.7, all the equalities

c ′i = b
′
i = b

′
j = c

′
j hold in I s

p . But then condition (1) is applicable and enforces the equalities d ′i = b
′
i

and d ′j = b
′
j . Together with b ′i = b

′
j , also the equality d ′i = b

′
j is thus enforced by condition (1)—a

contradiction.
Case 4. Suppose that some di is unified with some t in dom(Ir) outside �b, �c , and �d , although

this equality is not enforced by conditions (1) and (2). We consider two c-homomorphisms θ1 and
θ2 from Ir to Ip with θ1 (di) = bi and θ2 (di) = ci for every i and θ1 (s) = s and θ2 (s) = s otherwise.

We are assuming that di is unified with some t outside �b, �c , and �d by the chase of Ir with Σ. By
applying Lemma 5.5 to θ1, we conclude that ci is unified with t by the chase of Ip with Σ. By
applying Lemma 5.5 to θ2, we conclude that also bi is unified with t by the chase of Ip with Σ. But
then, in total, bi is unified with ci by the chase of Ip with Σ. Hence, by condition (1), we set d ′i = b

′
i .

Together with b ′i = s , we conclude that the unification of di with s is enforced by conditions (1)
and (2). �

Before we can lift Theorem 4.10 to the setting with source egds, we observe that the above
definitions and properties of legal canonical source instances can be literally carried over from
patterns to RC-patterns introduced in Definition 4.7. We are now able to show our desired result.

Theorem 5.9. The class of nested tgds with source egds has effective threshold for f-block size.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:42 P. G. Kolaitis et al.

Proof. The proof proceeds analogously to the proof of Theorem 4.10—replacing canonical in-
stances by legal canonical instances. Below, we describe how the proof of Theorem 4.10 has to be
adapted to take the set Σs of source egds into account.

Again, by Lemma 4.5, it suffices to consider a single nested tgd σ . Moreover, let σ be an arbitrary
nested tgd σ and let n denote the maximum size of all RC-1-patterns of σ . Then, we again set the
threshold д(σ) to д(σ) = n + 1. Now suppose that there exists a source instance I with I |= Σ, s.t.
core(chase(I ,σ)) has f-block size m ≥ д(σ). As in the proof of Theorem 4.10, it suffices to show
that, from I , we can construct a source instance I ′ with I ′ |= Σ, s.t. core(chase(I ′,σ)) has f-block
size ≥ m + 1.

Considering legal canonical source instances only. By Corollary 3.15, we know that the facts
in some f-block B of core(chase(I ,σ)) must be generated by a single chase tree in the chase for-
est Fσ , I . Now suppose that f-block size m of core(chase(I ,σ)) is realized by some f-block B of
core(chase(I ,σ)) and that the facts in B are generated by RC-chase tree Tp with RC-pattern p. Let
I s
p be the legal canonical source instance of p. Then the following property holds:

Claim 1. The f-block size of core(chase(I s
p ,σ)) is at leastm.

The proof idea of this claim is the same as in the proof of Theorem 4.10. We just need now in add
Lemma 5.5 to conclude that there exists a c-homomorphism from I s

p to I and that there again is a

one-to-one correspondence between the triggerings in (and the atoms generated by) the chase tree
Tσ , I and the corresponding pattern p equipped with the variable bindings according to the legal
canonical source instance I s

p . We can thus again define the set Bp of atoms in the legal canonical

target instance corresponding to the set B in chase(I ,σ). As in the proof of Theorem 4.10, it can
be shown that Bp or a superset thereof must also be an f-block in the core of the canonical target
instance. In the remainder of the proof, we may thus assume w.l.o.g. that I is the legal canonical
source instance of p.

Isomorphic subtrees inTp with local constants in atoms ofB. As in the proof of Theorem 4.10,
the considerations on the thresholdд(σ) allow us to conclude that there exist (at least) two siblings
in the pattern p, which are the roots of isomorphic subtrees T1 and T2, such that both T1 and T2

generate some facts of B. Note that now that we are considering legal canonical source instances,
it may happen that local constants of subtrees T1 and T2 are possibly unified by the source chase.
We therefore strengthen Claim 2 from the proof of Theorem 4.10 to rule out such unifications.

Claim 2. For each i ∈ {1, 2}, there exists an atom Ai generated by Ti such that Ai ∈ B, atom Ai

contains a pseudolocal constant bi ofTi , and b1 and b2 are not unified by the chase with the source
egds.

Again, the proof idea is the same as in the proof of Theorem 4.10, i.e., if no such atoms A1 and
A2 existed, then we would derive a contradiction by exhibiting an endomorphism on chase(σ , I),
which further shrinks the core.

Construct another isomorphic subtree. Let �b denote the pseudolocal constants of T1 and let
�c denote the pseudolocal constants of T2. By Lemma 5.8, we know which constant unifications

have to be carried out when adding another clone T3 with pseudolocal constants �d . Let θ be the

mapping that realizes the one-to-one correspondence between �b and �d , i.e., θ (bi) = di for every bi

in �b and di in �d . We extend I to I ′ = I ∪ θ (I). For the f-block size of core(chase(I ′,σ)), the following
property can be shown:

Claim 3. The instance core(chase(I ′,σ)) has f-block size ≥ m + 1.
Again, the proof of this claim follows the same pattern as the proof of Claim 3 in the proof of

Theorem 4.10, �

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:43

Lemma 5.8 shows how legal canonical instances of a pattern p can be obtained via extensions

of respective legal canonical instances of a smaller pattern p ′ ≤2 p, exactly as in the case when no
source egds are present. With this provision, we can lift Lemma 3.22 to the case of source egds.

Lemma 5.10. Consider the following setting:

• A set Σ of nested tgds and a nested tgd σ .

• Integerk > mσwΣ, wheremσ is the maximum number of nulls in the canonical target instances

of 1-patterns of σ and wΣ is the maximum number of universally quantified variables in any

nested tgd in Σ.

• Patterns pk , p of σ where pk is a k-pattern and pk ≤k p holds.

• Pairs (I s
pk , J

s
pk) and (I s

p , J
s
p) of the legal canonical source and the legal canonical target instances

of the patterns pk and p, respectively. We assume that I s
p and J s

p have been constructed by

extending I s
pk

and J s
pk

, as specified in Lemma 5.8.

Then, every homomorphism hk from Jpk to chase(Ipk , Σ) can be extended to a homomorphism h
from Jp to chase(Ip , Σ).

Proof. As in the case of the original Lemma 3.22, the proof is by induction on the length i of the
sequence of k+-increments of pk transforming it to p, with the trivial base case i = 0. Assume that
for some sequence length i , a homomorphism hi from J s

pi
to chase(I s

pi
, Σ) exists, s.t. hi extends hk .

We show that hi can be transformed to a homomorphism hi+1 from J s
pi+1

to chase(I s
pi+1
, Σ), where

pi+1 is obtained from pi by a single k+-increment.
We thus have trees T1, . . . ,Tk in pi that are instantiated, in the legal canonical target instance

J s
pi

, by the subinstances K1, . . . ,Kk . In particular, if T1, . . . ,Tk are rooted at nodes with the label
σi , the trees T1, . . . ,Tk represent chase trees resulting from the triggerings of the part σi with the
input assignment �a0. By �a1, . . . , �ak , we denote tuples of pseudolocal constants of T1, . . . ,Tk .

The pattern pi+1 adds another cloneTk+1 to the subtreesT1, . . . ,Tk . In the legal canonical target
instance, this corresponds to an addition of a further subinstance Kk+1 with a tuple of pseudolocal
constants �ak+1.

Let F denote the set of nulls shared between any two distinct instances in the set {K1, . . . ,Kk+1}.
In the absence of egds, in the proof of Lemma 3.22, we argued that each such shared null has the

form f̂ (�b) where �b is a prefix of the common input assignment �a0 of the triggerings corresponding
to the roots ofT1, . . . ,Tk+1. The effect of the source egds, however, may be a unification of constants

ar in �aj with a′
�

in �aj′ . Source egds may thus also lead to the unification of a null f̂ (�a0·�aj) in Kj

with a null f̂ (�a0·�aj′) in Kj′ . Hence, in the presence of source egds, the set F may be significantly
bigger than the number of distinct Skolem functions vσ . However, Lemma 5.8 allows us to derive
an upper bound on |F | also in this case. Indeed, Lemma 5.8 establishes precisely the form of the
tuple of pseudolocal constants �ak+1 ofKk+1. More specifically, if constants are positions r and � are
unified in �aj and �aj′′ , then the positions r and � contain the same constant in all tuples �a1, . . . , �ak+1.

By the same token, we may conclude that the unification of nulls f̂ (�a0·�ak+1) in Kk+1 and f̂ (�a0·�aj′)

in Kj′ is only possible if these nulls are also unified with the corresponding null f̂ (�a0·�aj) in Kj .
In other words, the number of nulls created by ancestor triggerings ofT1, . . . ,Tn plus the number
of nulls in Kj give us an upper bound on the number of nulls shared between any two distinct
subinstances Kj and Kj′ . That is, additional nulls contained in clones can be neglected for this
upper bound. But then we have |F | ≤ mσ . By Proposition 3.8, this maximummσ exists and can be
computed.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:44 P. G. Kolaitis et al.

Having obtained a new upper bound on |F |, the remainder of the proof of Lemma 3.22 can be
easily carried over to the setting with source egds. �

Applying Lemma 5.10 instead of Lemma 3.22, the argumentation in the proof of Theorem 4.14
that nested tgds have effective bounded anchor still holds in the presence of source egds by using
legal canonical instances. We can thus extend Theorem 4.3:

Theorem 5.11. It is decidable whether a given nested GLAV mapping is equivalent to a GLAV

mapping in the presence of source egds.

Finally, we show that also the implication is decidable in the presence of source egds.

Theorem 5.12. The implication problem for nested tgds is decidable in the presence of source egds,

i.e., the following problem is decidable: Given source and target schemas S, T, a set Σs of source egds,

a set Σ of nested tgds, and a nested tgd σ , does Σs ∪ Σ |= σ hold?

Proof. The proof uses exactly the same ideas as the proof of Theorem 3.1 (i.e, decidability of
implication without source constraints) with two crucial modifications:

(1) we have to use legal canonical (source and target) instances rather than arbitrary canonical
instances;

(2) the upper bound k on the k-patterns to be inspected in the procedure Implies in Section 3
has to be increased to match the precondition of Lemma 5.10.

The proof is analogous to the proof of Theorem 3.1:

Characterization of implication via the existence of homomorphisms. The implication
Σs ∪ Σ |= σ holds if every instance I over source schema S satisfying Σs and Σ also satisfies σ .
Analogously to the case without source dependencies, the latter condition is equivalent to the fol-
lowing: For every instance I over source schema S satisfying Σs , there exists a homomorphism
from chase(I ,σ) to chase(I , Σ). In other words, the source egds only play a role in restricting the
set of source instances I to be considered by this implication criterion. The criterion itself (namely,
characterizing implication via the existence of homomorphisms between the chase results of σ
and the chase results of Σ) is not affected.

Considering legal canonical source instances only. Recall that, in Lemma 3.18, we have shown
that it suffices to inspect canonical source instances I rather than all source instances over a given
source schema. Analogously, we can show that the following equivalence holds: Every instance I
over source schema S satisfying Σs and Σ also satisfies σ if and only if every legal canonical source
instance over source schema S satisfying Σ also satisfies σ . Clearly, we can drop the condition that
Σs must be satisfied, because every legal canonical source instance is guaranteed to do so. The
extension of the proof of Lemma 3.18 to the setting with source egds is straightforward.

Considering only k-patterns up to some fixed k . This is by virtue of Lemma 5.10.

Definition of a decision procedure. To sum up, we can define a decision procedure Impliess

for the implication problem of nested tgds in the presence of source egds by modifying the al-
gorithm Implies from Section 3 in two ways: (1) rather than defining k = vσ ·wΣ + 1, we set
k =mσ ·wΣ + 1, wheremσ denotes the maximum number of nulls in the target canonical instance
of any 1-pattern of σ ; and (2) we use legal canonical instances of k-patterns in place of canonical
instances. �

Theorem 5.12 separates the complexity of reasoning for nested and plain SO tgds, since as shown
in Reference [12], equivalence—and thus also implication—of plain SO tgds is undecidable even in
the presence of a single source key dependency.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:45

6 CONCLUDING REMARKS

In this article, we initiated the study of fundamental reasoning tasks and structural proper-
ties of nested tgds. On the positive side, we showed that the following problems are decidable:
the implication problem (and, hence, the equivalence problem) of nested tgds, and the prob-
lem of deciding whether a given nested GLAV mapping is equivalent to some GLAV mapping.
We also showed that these problems remain decidable even if source egds are allowed. In con-
trast, we established that the problem whether a given plain SO tgd is equivalent to some GLAV
mapping becomes undecidable as soon as a single key dependency is allowed in the source
schema.

For future work, the decidability of the equivalence problem for plain SO tgds and of the problem
of determining whether a given plain SO tgd is equivalent to some GLAV mapping (respectively,
to some nested GLAV mapping) remains open. Moreover, the aforementioned decidability results
for nested tgds call for further study: All of our decidability results depend on the notion of k-
patterns introduced in Section 3. As pointed out in that section, the number of k-patterns and
the maximum size of k-patterns for a given nested tgd are non-elementary in the depth of the
nested tgd, and so are all algorithms utilizing patterns. It is an important open question for future
work to find out whether this high complexity is inherent in these problems or more efficient
algorithms can be designed. Lemma 3.22 seems to be the key to investigating this question: There,
we managed to prove that any homomorphism can be extended from a k-pattern pk to a pattern
p obtained by an arbitrary sequence of k+-increments provided that k is chosen sufficiently big. It
remains to be analyzed if such an extension of homomorphisms can also be guaranteed for smaller
patterns.

Another direction for future research is concerned with structural characterizations of schema
mappings along the lines of Reference [28]. In this article, we discovered necessary conditions (via
the notions of unbounded f-degree and bounded path length) of schema mappings that are log-
ically equivalent to some nested GLAV mapping. These properties sometimes provide an easy
argument for telling apart plain SO tgds from nested GLAV mappings. It remains open whether
these properties can be extended to a sufficient condition. For instance, are all plain SO tgds with
unbounded f-degree and/or bounded path length equivalent to a nested GLAV mapping? A struc-
tural characterization of plain SO tgds (raised in Reference [2]) also remains an interesting open
problem.

APPENDICES

A PROOFS FOR SECTION 4

We first complete the proof of Theorem 4.10:

Theorem 4.10 The class of nested GLAV mappings has effective threshold for f-block size.

Proof. In the main body of the text, we have already presented the overall proof, which was
based on the following three claims:

Claim 1. The f-block size of core(chase(Ip ,σ)) is at leastm.

Claim 2. For each i ∈ {1, 2}, there exists an atom Ai generated by Ti such that Ai ∈ B and Ai

contains a local constant ofTi . (Recall that in a canonical target instance, local constants do not occur

outside a subinstance generated by a subtree of a chase tree.)

Claim 3. The instance core(chase(I ′,σ)) has f-block size ≥ m + 1.

It only remains to prove these claims.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:46 P. G. Kolaitis et al.

Proof of Claim 1. Let B be an f-block of size m of core(chase(I ,σ)) and suppose that the facts
in B are generated by RC-chase treeTp with RC-pattern p. Moreover, let Ip be the canonical source

instance of p. Recall from the proof of Lemma 3.18 that there is a one-to-one correspondence θ [tr]

between the triggerings in Tp and those in the canonical chase tree (i.e., the chase tree obtained
from p assuming that variables are instantiated to fresh, pairwise-distinct constants). Clearly, this
correspondence also carries over to chase trees with restricted conclusions. Moreover, there is a
c-homomorphism θ from Ip to I , which is also a c-homomorphism from Jp (the canonical target
instance of the RC-pattern p) to B. Specifically, for every triggering (σi , �a0, �a) in Tp and triggering

(σi , �a
′
0, �a
′) in the canonical chase tree such that θ [tr] ((σi , �a

′
0, �a
′)) = (σi , �a0, �a), mapping θ maps the

elements of �a′ and �a′0 to the respective elements of �a and �a0.

Recall also the mapping θ [null] on nulls of Jp , which sends each null f̂ (�a′0·�a′) ∈ nulls ((σi , �a
′
0, �a
′))

to a distinct null f̂ (�a0·�a) ∈ nulls ((σi , �a0, �a)). In other words, θ [null] : Np → N is a bijection between
Np andN , where we writeNp andN to denote the sets of nulls in Jp and in B, respectively. Mapping

θ [null] is bijective even in the case when θ is not injective. As in the proof of Lemma 3.18, we write

θ [null] to denote the inverse of θ [null].
We will now show that Jp is connected in (the Gaifman graph of facts of) chase(Ip ,σ) and that

Jp persists (up to variable renaming) in core(chase(Ip ,σ)). By Jp = θ
−1 (B), we have |Jp | ≥ m. In

total, we may thus conclude that core(chase(Ip ,σ)) has f-block size at least m. To see that Jp is

indeed connected, we observe that the c-homomorphism θ from Jp to B coincides with θ [null] when

restricted to the nulls in Jp and B, respectively. By the bijectivity of θ [null], θ [null] (and, hence,

also θ [null]) is a variable renaming. But then the connectedness of B implies the connectedness of
Jp = θ

−1 (B).
It remains to show that Jp persists (up to variable renaming) in core(chase(Ip ,σ)). To this end,

it suffices to show that every homomorphism h from Jp to chase(Ip ,σ) is a variable renaming.
Suppose to the contrary that there exists a homomorphism h from Jp to chase(Ip ,σ) that either
maps some null to a constant or maps two distinct nulls to the same null. From h, we construct
the homomorphism e from B to chase(I ,σ) as in the proof of Lemma 3.18, namely:

e (s) =

{
s, if s is a constant

θ [null] (h(θ [null] (s))), if s is a null.

As in the proof of Lemma 3.18, it can be shown that e is indeed a homomorphism from B to
chase(I ,σ). But then, since we are assuming that h is not a variable renaming, we conclude that
e is not a variable renaming either. This means that B can be further reduced in core(chase(I ,σ)),
which contradicts our original assumption that B is an f-block in core(chase(I ,σ)). �

Proof of Claim 2. In the remainder of the proof, we assume w.l.o.g. that I is the canonical source
instance of p. Let B be an f-block in core(chase(I ,σ)) of sizem and letT1 andT2 be two isomorphic
subtrees in the RC-pattern p, such that the roots of T1 and T2 are siblings. By the isomorphism
between T1 and T2, there exists a one-to-one correspondence between the facts generated by T1

and the facts generated byT2. Moreover, there exists a c-homomorphism ρ between the set of facts
generated byT1 and the set of facts generated byT2. Since we are dealing with the canonical source
instance, ρ is in fact bijective.

We have to show that, for each i ∈ {1, 2}, there exists an atom Ai generated by Ti such that
Ai ∈ B and Ai contains a local constant of Ti . Suppose to the contrary that in the facts generated
by one of the Ti ’s, the local constants only occur (if at all) as arguments of Skolem terms in these
facts. By the existence of the c-homomorphism ρ, which is in fact a c-isomorphism, it follows that

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:47

then none of the facts generated by eitherT1 orT2 contains a local constant as argument. But then
ρ is in fact a homomorphism (leaving constants unchanged) and not just a c-homomorphism.

We now define the endomorphism ρ ′ on B such that ρ ′(s) = ρ (s) if s is a null f̂ (�a) such that a
local constant generated byT1 occurs in �a, and ρ ′(s) = s otherwise. Clearly, ρ ′ is a homomorphism
(and, hence, an endomorphism), because it maps every atom generated byT1 to an atom generated
by T2 and maps all other atoms to themselves. But the existence of such a proper endomorphism
ρ ′ contradicts the assumption that B is an f-block in core(chase(I ,σ)). �

Proof of Claim 3. We partition the atoms in B into three subsetsA, B, C, such that B contains
the atoms generated by T1, C contains the atoms generated by T2, and A contains the remaining

atoms of B. Let �b denote the local constants of T1 and let �c denote the local constants of T2. Then

ρ from the proof of Claim 2 maps each constant bi in �b to the corresponding constant ci in �c . Let
�a denote the local constants of the atoms generated by any ancestor triggering of the roots of T1

and of T2. Then the atoms generated by T1 (respectively, T2) are of the form R[�a, �b] (respectively,

R[�a,�c]), i.e.: the arguments in these facts are either constants in �a and �b (respectively, in �a and

�c) or nulls resulting from instantiating the arguments of Skolem terms by constants in �a and �b
(respectively, in �a and �c). In particular, by Claim 2, there indeed exists an atom A1 (respectively,

A2) of the form R[�a, �b] (respectively, R[�a,�c]), such that at least one constant bi in �b (respectively,
ci in �c) occurs as argument in this atom.

We now introduce a new vector �d of fresh, pairwise-distinct constants, such that �d has the same

size as �b and �c . Moreover, we define a mapping θ that maps every bi in �b to the corresponding

constant di in �d . Let θ (I) be the instance obtained from I by applying θ to the constants occurring
in the facts of I . Moreover, we set I ′ = I ∪ θ (I). We claim that I ′ has the desired property according
to Claim 3, namely: core(chase(I ′,σ)) has f-block size ≥ m + 1.

Before we prove this claim, we make some observations and introduce some more terminology.
Let J = chase(I ,σ) and J ′ = chase(I ′,σ).We observe that θ can be extended to a c-homomorphism
from J to J ′ by applying θ also to the constants used to instantiate the arguments of Skolem terms.
By slight abuse of notation, we also use θ to refer to this c-homomorphism. Indeed, let F be a fact
of J . We have to show that θ (F) ∈ J ′. Let σi be the nested tgd part whose firing in the chase of I
generates F and let IF be the facts from I that trigger the firing of σi and all its ancestor parts. Let
I ′F = θ (IF). It is clear that I ′F ⊆ I ′ holds by construction of I ′. But then σi also fires on I ′F generating
θ (F). Thus, θ (F) ∈ J ′, which was to be shown.

Moreover, we can define a c-homomorphism θ̄ also in the opposite direction, i.e., from J ′ to J .
To this end, we define θ̄ as follows:

θ̄ (s) =
⎧⎪⎪⎨
⎪⎪
⎩

s, if s ∈ const (J)
θ−1 (s), if s ∈ const (J ′) \ const (J)

f̂ (θ−1 (�e)), if s is a null of the form f̂ (�e).

In the above definition, we write θ−1 (�e) to denote the application of θ−1 to every component
of vector �e . To show that θ̄ is a c-homomorphism, let F ′ be a fact in J ′. We have to show that
θ̄ (F ′) ∈ J . Let σi be the nested tgd part whose firing generates F ′ in the chase of I ′ with σ . Let I ′F ′
be the facts from I ′ that trigger the firing of σi and of all its ancestor parts. Let IF = θ

−1 (I ′F ′). It is
clear that IF ⊆ I by construction of I ′ as I ′ = I ∪ Iθ . But then σi also triggers on IF in the chase of
I with σ , and this triggering generates θ̄ (F ′). Thus, θ̄ (F ′) ∈ J , which was to be shown.

Now let us defineD := θ (B). By the above observations, we clearly haveA ∪ B ∪ C ∪ D ⊆ J ′.
We now prove Claim 3 by showing several properties of A ∪ B ∪ C ∪ D.

Property 1. A ∪ B ∪ C ∪ D is connected in J ′.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:48 P. G. Kolaitis et al.

Proof of Property 1. By assumption, A ∪ B ∪ C is an f-block and, hence, connected. It follows

from Lemma 3.14 that the connection of B and C is realized via nulls of the form f̂ (�a) occurring
both in the atoms of B and of C, where �a is a vector of constants used in the variable instantiations
of the triggerings at the joint ancestors of the roots of T1 and T2. But then all these nulls of the

form f̂ (�a) are also generated in D in the chase of I ′. Hence, the set D of atoms is connected to B
and C.

Property 2. Every endomorphism h′ on J ′ is a variable renaming on A ∪ B ∪ C, i.e., h′ maps no
null in A ∪ B ∪ C to a constant and h′ maps no two nulls in A ∪ B ∪ C to the same null.

Proof of Property 2. For the proof of both Properties 2 and 3, we make use of the following obser-
vation: Consider an arbitrary endomorphismh on J . Thenh is a variable renaming on the f-block B.
Indeed, letд be the endomorphism on J that reduces J to the core, i.e.,C = core(chase(I ,σ)) = д(J).
Now suppose that h is not a variable renaming on B, i.e., it either maps some null in B to a constant
or it maps two nulls in B to the same null. We can consider the composition д(h(·)) as a homomor-
phism from B to J . Clearly, д(h(·)) is not a variable renaming on B either. By definition of f-blocks,
the nulls in B form a connected component. Hence, we can define an endomorphism e on C by
setting e (s) = д(h(s)) for all nulls s in B and e (s) = s otherwise. Since h either maps some null in
B to a constant or it maps two nulls in B to the same null, so does e . But then e further reduces B,
which contradicts the assumption that B is an f-block in core(chase(I ,σ)).

We now prove Property 2 indirectly: Suppose that there exists an endomorphism h′ on J ′ that is
not a variable renaming onA ∪ B ∪ C. By restricting h′, we can consider h′ as a homomorphism
fromA ∪ B ∪ C to J ′. Moreover, we can compose h′ with θ̄ from above to get a c-homomorphism
θ̄ (h′(·)) from A ∪ B ∪ C to J . To complete the proof, it suffices to show that θ̄ (h′(·)) is in fact a
homomorphism, i.e., it is the identity on constants. It is easy to verify that this is the case: Let s be
a constant occurring inA ∪ B ∪ C. ByA ∪ B ∪ C ⊆ J , we have s ∈ const (J). By the definition of
homomorphisms, we have h′(s) = s . Hence, by the definition of θ̄ , we also have θ̄ (h′(s)) = s .

Since h′ is not a variable renaming onA ∪ B ∪ C, the homomorphism θ̄ (h′(·)) is not a variable
renaming either. Since B = A ∪ B ∪ C is an f-block, θ̄ (h′(·)) can be extended to an endomorphism
h on J , which again is not a variable renaming on A ∪ B ∪ C. This contradicts our above obser-
vation that such an endomorphism cannot exist.

Property 3. There is no endomorphism on J ′ that maps a labeled null in D to a constant.
Proof of Property 3. Suppose to the contrary that there exists an endomorphism h′ on J ′ that

maps a labeled null in D to a constant. We define a mapping h = θ̄ (h′(θ (·))). Clearly, h is a c-
homomorphism from J to J . By restricting h, we can consider h also as a c-homomorphism from
A ∪ B ∪ C to J . We claim that h restricted to A ∪ B ∪ C is in fact a homomorphism. To show
this, consider an arbitrary constant s occurring in some fact ofA ∪ B ∪ C. We have to show that
h(s) = s holds. We distinguish two cases as to whether s is equal to somebi from the local constants
of B or not. First consider the case s = bi for some i . Then θ (bi) = di . Since h′ is a homomorphism,
we have h′(di) = di . Finally, by the definition of θ̄ , we have θ̄ (di) = bi . In total, we thus have
θ̄ (h′(θ (bi))) = bi as desired. Now consider the case s ∈ const (J) \ lcst (B). In this case, we have
θ (s) = s . Since h′ is a homomorphism, we also have h′(s) = s . Finally, since s ∈ const (J), we also
have θ̄ (s) = s . In total, we thus again have θ̄ (h′(θ (s))) = s as desired.

By assumption, h′ maps some null in D to a constant. By definition, θ maps each null in B to a
null inD. Hence,h′(θ (·)) maps some null inB to a constant, and so doesh = θ̄ (h′(θ (·))). However,
by the above considerations, this contradicts the assumption that B = A ∪ B ∪ C is an f-block in
core(chase(I ,σ)). �

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:49

We are now ready to complete the proof of Claim 3: More specifically, we show that
core(chase(I ′,σ)) has f-block size at least m + 1. Let h′ be the endomorphism on J ′ that reduces
J ′ to core(chase(I ′,σ)). By Claim 1, we know that A ∪ B ∪ C ∪ D is connected. By Claim 2 and
3, no null in A ∪ B ∪ C ∪ D is mapped to a constant by h′. Hence, also h′(A ∪ B ∪ C ∪ D) is
connected. By Claim 2, h′ is a variable renaming on A ∪ B ∪ C. Hence, h′(A ∪ B ∪ C) has the
same size as A ∪ B ∪ C, namely, m. Finally, we also know that h′(D) contains at least one fact

h′(R[�a, �d]) � h′(A ∪ B ∪ C) such thath′(R[�a, �d]) is connected toh′(A ∪ B ∪ C). Thus, altogether,
h′(A ∪ B ∪ C ∪ D) is connected and has size at least m + 1 in core(chase(I ′,σ)). This concludes
the proof of Claim 3 and, hence, also of Theorem 4.10. �

We now also provide a detailed proof of Theorem 4.14:

Theorem 4.14. The class of nested GLAV mappings has effective bounded anchor.

Proof. As before, by Lemma 4.5, it suffices to consider a single nested tgd σ . We have to show
that there exists a recursive function a that, for a given schema mapping specified by a nested
tgd σ , returns an integer a(σ) witnessing bounded anchor for σ . Let I be a source instance and
let J ⊆ core(chase(I ,σ)) be connected. We have to show that there exists a source instance I ′ with
|I ′ | ≤ a(σ) |J | and connected J ′ ⊆ core(chase(I ′,σ)) with |J ′ | ≥ |J |.

By Corollary 3.15, we know that the facts in the connected subinstance J of core(chase(I ,σ))
must be generated by a single chase tree in the chase forest Fσ , I , i.e., J is generated by some
chase treeTp with pattern p. Let Ip be the canonical source instance of p. As in the proof of Theo-
rem 4.10, it can be shown that also core(chase(Ip ,σ)) contains a connected subinstance J ∗ of size at
least |J |. W.l.o.g., we may assume that J ∗ is a maximal connected subinstance of core(chase(Ip ,σ)).
Again by Corollary 3.15, J ∗ is actually a subinstance of the canonical target instance Jp of
pattern p.

Analogously to Lemma 3.22, letk = vσwσ + 1, wherevσ is the number of existentially quantified
variables (i.e., distinct Skolem functions) and wσ is the number of universally quantified variables
in σ . Then, we define a(σ) as the maximum size of the canonical source instance of any k-pattern
of σ .

If |Ip | ≤ a(σ) ≤ a(σ) |J |, then we set I ′ = Ip and J ′ = J ∗ and we are done. Otherwise,p cannot be a
k-pattern. By Lemma 3.17, there exists ak-patternp0 withp0 ≤k p, i.e., patternp is obtained fromp0

by a sequence ofk+-increments. More precisely, there exists a sequence of patternsp0,p1,p2, . . . ,pn

with pn = p, such that each pi is obtained from pi−1 by a adding a further clone of some subtree
t of pi−1, such that pi−1 already contains at least k clones of t and for every subtree t ′ of t , pi−1

contains at most k clones.
For i ∈ {0, . . . ,n − 1}, let Jpi

denote the canonical target instance of pi and define J ∗pi
= J ∗ ∩ Jpi

.
By the connectedness of J ∗, also J ∗pn−1

must be a connected subinstance of Jpn−1 , since adding an-
other clone cannot make two disconnected subinstances connected. By an easy induction argu-
ment, we conclude that J ∗pi

must be a connected subinstance of Jpi
for every i .

Moreover, for every i , J ∗pi
is (up to variable renaming) indeed a subinstance of core(chase(Ipi

,σ)),
i.e., every homomorphism h from Jpi

to core(chase(Ipi
,σ)) is a null renaming on the nulls of J ∗pi

.
The reason for this is that, otherwise, by Lemma 3.22, h can be extended to a homomorphism hp

from Jp to core(chase(Ip ,σ)), which is not a null renaming on J ∗ either. But this contradicts the
above assumption that J ∗ is a maximal connected subinstance of core(chase(Ip ,σ)).

By the definition ofa(σ), we clearly have |Ip0 | ≤ a(σ). If |J ∗p0
| ≥ |J |, then we are done with I ′ = Ip0

and J ′ = J ∗p0
. Otherwise, our sequence ofk+-increment steps keeps adding clones so that eventually

a pattern pi is reached for which |J ∗pi
| ≥ |J | holds. We thus set I ′ = Ipi

and J ′ = J ∗pi
. It remains to

show that |Ipi
| ≤ a(σ) |J | holds. To this end, we use the property shown in Lemma 3.17, that the

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:50 P. G. Kolaitis et al.

sequence of k+-increment steps adds clones in a “top-down” fashion, i.e., whenever a subtree t
is added, then all subtrees t ′ of t have at most k clones in t . In particular, this means that every
k+-increment step adds at most a(σ) atoms to the source instance, i.e., |Ipi

\ Ipi−1 | ≤ a(σ) for every
i . Moreover, the k+-increment steps may be arranged in arbitrary order as long as supertrees are
added before any subtrees of them are added. Hence, we may arrange the k+-increment steps in
such an order that subtrees containing at least one atom from J ∗ are added before the subtrees that
contain no such atom. In this way, it is guaranteed that at most |J | − 1 increment steps are needed
to reach a subinstance of size at least |J |. In total, this proves that the desired source instance Ipi

with |J ∗pi
| ≥ |J | indeed satisfies the condition |Ipi

| ≤ a(σ) |J |. �

B UNDECIDABILITY PROOFS FOR SECTION 5

In this section, we give the correctness proof for Theorem 5.1, as well as the proof for Theorem 5.2.
We start with the former:

Theorem 5.1. It is undecidable whether a given plain SO tgd is equivalent to a GLAV mapping in

the presence of a single source key dependency.

Proof. (Correctness). Having already shown the construction, we now proceed to showing the
correctness of our reduction in two parts.

Part 1 (If TM does not halt, then σ has unbounded f-block size). Assume that TM does not
halt. To prove that σ has unbounded f-block size, we show that for an arbitrary integer K , we can
find a source instance I such that the core of the canonical solution for I under σ has f-block size
of at least K . In particular, we show that for a computation of length n of TM, we can construct
instance I such that the core of the canonical universal solution has f-block size of at least n (in
actuality, at least n2/2, but the exact size is of no immediate concern here). Since a non-halting
Turing machine can have computations of arbitrary length, it then follows that σ has unbounded
f-block size.

LetC0,C1, . . . ,Cn denote the sequence of configurations of the run of TM with n + 1 configura-
tions, where we pad blanks so that for everyCi , we represent n + 1 tape cells. That is, for each time
instant 0 ≤ x ≤ n and tape position 0 ≤ y ≤ n, we have tape symbol axy and cursor information
cxy . We also have for every time instant x the corresponding state qx . Given such a run of TM, we
now construct a corresponding source instance I . We first represent the tape atoms:

tape(0, 0,a00, c00),
tape(1, 0,a10, c10), tape(1, 1,a01, c01),

...
...

. . .

tape(n, 0,an0, cn0), tape(n, 1,an1, cn1), . . . tape(n,n,ann , cnn),

We now represent the rest of the atoms contained in I :

state(0,q0), state(1,q1), . . . , state(n,qn),
Z (0), S (0, 1), . . . , S (n − 1,n),
A0 (a0), . . . ,Ak (ak), Q0 (q0), . . . ,Ql (ql), C0 (0),C1 (1).

We now show that J = chase(I ,σ) has f-block size at least n. Intuitively, the structure of J can be
seen in Figure 14.

Specifically, J contains the following atoms:

O (f̂ (0, 0)),

N (f̂ (0, 0), f̂ (1, 1)),

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:51

Fig. 14. Structure of a prototypical target instance.

Fig. 15. Abstract representation of the structure of J . Edges denote N facts. Bold font denotes the O fact.

N (f̂ (1, 1), f̂ (1, 0)),N (f̂ (1, 0), f̂ (2, 2)),

N (f̂ (2, 2), f̂ (2, 1)),N (f̂ (2, 1), f̂ (2, 0)),N (f̂ (2, 0), f̂ (3, 3)),
. . .
N (f̂ (n,n), f̂ (n,n − 1)), . . . ,N (f̂ (n, 1), f̂ (n, 0)).

We will call these atoms Jb . Already the first N atoms in each line of Jb witness the claim of
an f-block of size at least n, while the rest of each line shows that the atoms are indeed connected
through a “chain” of nulls. Intuitively, these N atoms contain f̂ (i, j) nulls, which correspond to the
contents of tape cell j at time instant i . Each N atom defines a connection between two cells, such
that the whole configuration is enumerated.

What we have shown so far is that the canonical solution Jb contains an f-block of size at least n.
What remains to show is that Jb is also part of the core J ∗ = core (J). First, observe that no guards
fire on I . That is, apart from the atoms in Jb , J only contains the following “self-loop” for each
labeled null X , N (X ,X), as required by the unfoundedness trap.

We now show that J is indeed a core (J = J ∗). In Figure 15, we give an abstract illustration of
the structure of J . Let us call an N -fact x the predecessor of an N -fact y, if—with N considered
as a graph—it is possible to reach y from x . Towards a contradiction, assume that there exists a
proper endomorphism mapping some N -fact η to another N -fact η′. Whenever this happens, also
all predecessors of η must be mapped to respective predecessors of η′. However, this is not possible
for the deepest predecessor, namely, the N -fact that has no predecessor: If η′ precedes η, there are
simply not enough predecessors of η′, and if η′ succeeds η, there is no fact connected to an O-fact
in the chain. Also, the self-loops using the h function symbol cannot be used as the images of our
proper endomorphism, since they do not start with an O-fact. That is, no proper endomorphism
of J can exist. Therefore, J is indeed a core and with that, Jb ⊆ J witnesses an f-block of size at
least n. Thus, follows the claim.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:52 P. G. Kolaitis et al.

Fig. 16. Direction of N relation (solid) and S relation (dashed) edges.

Part 2 (If σ has unbounded f-block size, then TM does not halt). Assume that σ has un-
bounded f-block size. We then have to show that TM does not halt. We will prove this in two
steps: First, we show that given that the size of the core of the universal solutions under σ is un-
bounded, there is an N -path of unbounded length in some core of σ (Claim A). Then, we show
that if there exists an N -path of unbounded length in some core of σ , then TM has a computation
of unbounded length (Claim B). We can then conclude that TM does not halt.

Let us first formalize some common constructs: We say that the size of the core under
σ is unbounded, if there is no integer b, such that for any source instance I , the number
of atoms contained in core(chase(I ,σ)) is at most b. We say that there exists an N -path of

length n in some core of σ , if there are distinct labeled nulls x1,x2, . . . ,xn such that the atoms
N (x1,x2),N (x2,x3), . . . ,N (xn−1,xn) are contained in core(chase(I , Σ)) for some source instance I .
We say that there exists an N -path of unbounded length in the core of σ , if for any integer b there
exists an N -path of length b ′ ≥ b in some core of σ .

Claim A. If the size of the core under σ is unbounded, then there exists an N -path of unbounded
length in some core of σ .

We will show the following, which implies the claim: If the S-relation in the source in-
stance I has no “join” nodes (i.e., no nodes with more than one predecessor; in this case
the S-relation forms a forest, where some of the roots are possibly not marked by Z), and
the N -relation of core(chase(I ,σ)) has k facts, then the N -relation of core(chase(I ,σ)) consists
of a founded simple path of size k/3 and of 2k/3 facts representing k/3 “traps” of the form

N (ĥ(x ,y), ĥ(x ,y)),N (ĥ(x ,y), f̂ (x ,y)), such that each node ĥ(x ,y) occurs in exactly two “trap”

atoms and f̂ (x ,y) occurs in the simple path. We call this structure a k-gadget and illustrate it
in Figure 17. The core of the universal solutions under σ is always a k-gadget (for some k). Hence,
if the k-gadget has unbounded size, so does the length of this founded simple path (k/3). Thus
follows the original claim.

Proof of Claim A. Consider a vertex f̂ (x ,y) in the N -relation of chase(I ,σ).

Case 1: if x = y, then the unique predecessor of f̂ (x ,y) is f̂ (x ′, 0), where x ′ is the unique pre-
decessor of x in the S-relation.

Case 2: if x � y, then the unique predecessor of f̂ (x ,y) is f̂ (x ,y ′), where y ′ is a successor of
y in the S-relation (see Figure 16 for an example of how the directions of the relations may look
like in a concrete instance). Assume that y is reachable from an element in Z . We will later discuss
the situation of this not being the case. In principle, there could be several successors of y. In our

extended example in Figure 18, consider f̂ (2, 1), which has as its two predecessors f̂ (2, 2) and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:53

Fig. 17. k-gadget: edges denote the N relation formed of k atoms. Of these, k/3 form a founded simple path

(solid) and 2k/3 are not part that founded simple path (dashed).

Fig. 18. The lower path splitting at f̂ (2, 1) must be unfounded. In particular, note that only the upper path

has a diagonal f̂ (2, 2) after the split, while the lower one containing f̂ (2, 2′) never reaches a diagonal after

the split.

f̂ (2, 2′). This corresponds to 1 having two successors in the S-relation, namely, 2 and 2′. However,
note that (x ,y) is reached by horizontal arcs (directed from right to left) from the diagonal point
(x ,x). In our example, this diagonal is already one of the predecessors, i.e., (2, 2). Hence, we have
the inequalities y < y ′ < x , where “<” denotes the transitive closure of the S-relation. Note that
there can be only one S-successor of y from which x is reachable, since, otherwise, we would have
first a “fork” (i.e., a node with two or more successors) and then a “join” (i.e., a node with two or

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:54 P. G. Kolaitis et al.

Fig. 19. Part of a canonical universal solution where a split occurs. In contrast to Figure 18, note that the

direction of the N -edge at the split is in the opposite direction, and the split occurs due to the first (time)

argument of f̂ (·, ·). Thus, we do reach a diagonal in both split paths. Since the direction of the N -paths at

the split are different, this split yields a tree.

more predecessors). Consider the S-successors of y from which x is not reachable. In our example,

this is 2′. Each of these S-successors gives rise to a simple N -path leading to f̂ (x ,y), which we
claim is not founded (i.e., cannot contain a node marked with O).

We now show that each node in the path connected to f̂ (x ,y) has the form f̂ (x , z) for some z.

Indeed, the only point where the first argument v in f̂ (v,w) changes is when v = w (at the diag-

onal). In our example, this is f̂ (2, 2). However, by our assumption, x is not reachable from y, so

we can never come to a node f̂ (x ,x). In our example, we see this in the lower branch containing

f̂ (2, 2′), and we know that 2 (x) is not reachable from 2 (y). Moreover, it holds that y < z, there-
fore z never coincides with the least element of the < order, thus we cannot reach the origin (by
traversing the S relation backwards). We thus know thaty ′ is uniquely determined by x andy and,

therefore, also f̂ (x ,y ′) is the unique N -predecessor of f̂ (x ,y), which is reachable from an origin
(see Figure 18 for an intuitive illustration of the situation discussed in this paragraph).

We thus have shown that each vertex f̂ (x ,y) in the N -relation of chase(I ,σ) has a unique pre-
decessor reachable from an origin. Note that all predecessors not reachable from an origin cannot
be part of the core, since they will be mapped to “traps.” In particular, this includes the situation
mentioned before in Case 2, where the assumption that y is reachable from an element if Z does
not hold. See Figure 19 for an example of part of such a chase result. Therefore, core(chase(I ,σ))
is a forest (plus traps connected to each non-origin node of the forest. Further note that all
founded paths in the forest collapse to the longest founded path. We therefore have shown that the
N -relation of core(chase(I ,σ)) can be decomposed into a founded simple path and a trap for each
non-origin node. �
Claim B. If there exists an N -path of unbounded length in some core of σ , then TM has a compu-
tation of unbounded length.

Proof Sketch of Claim B. Assume that J contains a path of length K̂ . If K̂ ≥ n (n+1)
2 + 1, then

the source instance contains an encoding of a correct TM computation of length n. The formula is

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:55

derived from the size of the lower triangle of the configuration matrix including the main diagonal,
plus a single O fact.

We proceed by induction on K̂ . We use as induction hypothesis that all entries of the config-
uration matrix corresponding to the path of length i are correct (i.e., correspond to the actual
configuration of the Turing machine).

For the base case, i = 2, we know that no guard constraint with conclusion “fail” has fired and
the guard constraints fully specify the first three configuration matrix entries (intuitively at (0, 0),
(1, 0), and (1, 1)). Thus, all entries of the configuration matrix up to that point are correct.

For the induction step, assume that all entries of the configuration matrix up to i are correct.
We then have to show that entry i + 1 is also correct. Configuration matrix entry i + 1 depends
only on three specific entries of the configuration matrix. By construction of the enumeration,
we know that the three configuration matrix entries that entry i + 1 depends on precede entry
i + 1 in the enumeration. In particular, by the fact that J contains only a single path defining
that enumeration (alternate paths stemming from forks or joins are prohibited by source con-
straints and guards as shown in Claim A), these three entries in the configuration matrix are
uniquely defined. Thus, by assumption, we know that they are correct. The guard constraints
fully specify the configuration matrix entry i + 1 by the fact that the Turing machine starts from
the empty tape and thus only has a single possible run. Therefore, we know that also entry i + 1 is
correct. �

Theorem 5.2. It is undecidable whether a given plain SO tgd is equivalent to a nested GLAV map-

ping in the presence of a single source key dependency.

Proof. In this proof, we use the same Turing machine simulation technique as described pre-
viously. Namely, the given TM is simulated as a plain SO-tgd σ , which, when run on an intended
source instance, produces a target instance whose core is a chain of binary N -facts, founded in an
O-fact. It remains to show that σ is logically equivalent to a nested GLAV mapping if and only if
the simulated Turing machine halts on the empty input.

Suppose that TM does not halt. We show that in this case, the simulating plain SO-tgd σ cannot
be logically equivalent to any nested GLAV mapping. To this end, we recall several facts from the
literature.

First, we recall the property of SO-tgds [11], stating that the chase with this class of depen-
dencies always terminates and delivers a universal solution. Since nested tgds are SO-tgds, this
property also holds for them. We further recall the concept of CQ-equivalence [9]. It follows from
Proposition 3.5 in Reference [9] that for mappings specified by SO-tgds (and thus also for mappings
specified by nested tgds) CQ-equivalence can be defined as follows: The mappings M1, M2 are
CQ-equivalent iff for arbitrary source instance I , core(chase(I ,M1)) � core(chase(I ,M2)) holds
(where � denotes isomorphism). By Proposition 3.6 in Reference [9], we know that logical equiv-
alence implies CQ-equivalence and, hence, also the failure of CQ-equivalence implies the failure
of logical equivalence. It thus suffices to show that for the mapping Mσ specified by the plain
SO-tgd σ simulating a non-halting TM, there exists a source instance I such that for any nested
GLAV mappingM, core(chase(I ,Mσ)) � core(chase(I ,M)) holds.

Let C be a class of “intended” source instances as described in the proof of Theorem 5.1, with
a forest in the S relation, in which all tree roots are marked by Z -facts. Assume that C contains
a family of instances {I1, I2, . . .}, in which every In contains a tree of depth n in the S relation. As
shown in the proof of Theorem 5.1, for every n, core(chase(In ,σ)) consists of a single f-block with
f-degree at most three. This is because each fact in the N -chain shares nulls with at most two other
N -facts belonging to the same chain, namely, with the predecessor and the successor facts. The

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:56 P. G. Kolaitis et al.

initial N -fact of the chain is marked with anO-fact. Finally, every other fact of the N -chain shares
a null with a single N -fact from a “self-loop trap.” From the proof of Theorem 5.1 it is easy to see
that the length of the N -chain and thus the f-block size of core(chase(In ,σ)) is greater than n, and
thus, we have that σ has bounded f-degree and unbounded f-block size on C.

From Theorem 4.18, we know that any nested GLAV mapping has bounded f-degree on C if
and only if its f-block size on C is bounded as well. Specifically, ifM is a nested GLAV mapping,
by Claim 2 of Lemma 4.19, we know that for each integer k , there exists an integer mk , such that
for arbitrary source instance I , if core(chase(I ,M)) has f-block size b ≥ mk , then it has f-degree
д ≥ k . Observe that, in our case, we have f-degree 3. Thus, we know that if core(chase(I ,M))
has f-block size b ≥ m3, then it has f-degree д ≥ 3. Given such number m3, it suffices to choose
n > m3 to ensure that f-block size of core(chase(In ,Mσ)) is greater than m3 as well. But then,
core(chase(In ,M)) � core(chase(In ,Mσ)) holds, since we have seen above that f-degree of Mσ

is bounded by three on C, and In ∈ C. The failure of CQ-equivalence betweenMσ and arbitrary
nested GLAV mappingM is demonstrated, as required. As a consequence, we obtain that no nested
GLAV mapping is logically equivalent to the mapping specified by σ , which simulates a non-
halting TM.

Now, suppose that the TM halts. In this case, core(chase(I ,Mσ)) has bounded f-block size, as
shown in the proof of Theorem 5.1. But then,σ is even logically equivalent to some GLAV mapping,
according to Reference [28], Theorem 3.11.

Thus, we have shown that TM halts iff the mapping based on its simulating plain SO-tgd σ
is logically equivalent to a nested GLAV mapping. The claim of the theorem follows from the
undecidability of the halting problem. �

C PROOF OF LEMMAS 5.5 AND 5.7

Lemma 5.5. LetK1 andK2 be instances and let θ be a c-homomorphism fromK1 toK2. Let Σ be a set

of egds and let K ′1 denote an instance that is obtained from K1 by a sequence S1 of applications of egds

from Σ. Then there exists a sequence S2 of applications of egds from Σ to instance K2, transforming K2

into instance K ′2, such that there exists a c-homomorphism θ ′ from K ′1 to K ′2. Moreover, whenever S1

leads to the unification of two domain elements s1, s2 ∈ dom(K1), then also S2 leads to the unification

of θ (s1),θ (s2) ∈ dom(K2).

Proof. Let K0
1 , . . . ,K

m
1 be the sequence of instances corresponding to the chase sequence S1

wherem is the length of S1: K0
1 = K1 and Km

1 = K ′1. For each i ≥ m, K i
1 is transformed into K i+1

1 by

a unification of two constants, which we denote ai ,bi ∈ dom(K i
1) such that K i+1

1 = K i
1[ai �→ bi].

We now recursively define a sequence of c-homomorphisms translating the instances pro-
duced by the chase of K1 into instances produced in the chase of K2. We define θ 0 = θ and
θ i+1 = [θ i (ai) �→ θ i (bi)] ◦ θ i . Finally, we obtain a sequence (K i

2) of instances corresponding to

the chase of K2. We set K2 = K0
2 and K i+1

2 = K i
2[θ i (ai) �→ θ i (bi)], for 0 < i < m. In total, we have

(1) a sequence of instances (K0
1 = K1), . . . , (Km

1 = K ′1),
(2) a sequence of constant pairs (a0,b0), . . . , (am−1,bm−1) such that K i+1

1 = K i
1[ai �→ bi],

(3) a sequence of c-homomorphisms (θ 0 = θ), . . . ,θ i+1 = θ i ◦ [θ i (ai) �→ θ i (bi)],
(4) a sequence of instances (K0

2 = K2), . . . ,K i+1
2 = K i

2[θ i (ai) �→ θ i (bi)].

By induction on i , we show that the instances K0
2 , . . . ,K

i
2 make up a beginning of a chase se-

quence of K2 with Σ, in which the same egds as in S1 are applied. (Note that it may happen that
the equality θ i (ai) = θ i (bi) already holds in K i

2, in which case the substitution [θ i (ai) �→ θ i (bi)]
is void and K i+1

2 = K i
2). Furthermore, we show that θ i is indeed a c-homomorphism from K i

1 to K i
2.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:57

The base case i = 0 is by the assumption of the lemma that θ = θ 0 is a c-homomorphism from
K1 = K0

1 to K2 = K0
2 , the corresponding chase sequence is empty.

Now assume that the claim holds for the first i egd applications in S1, namely, that θ i is a c-
homomorphism from K i

1 to K i
2 and that K i

2 can be obtained from K2 via i egd applications, where
the same egds as in the sequence S1 trigger. At step i + 1, an egd τ = ∀�x (ϕ (�x) → xr = xq) triggers

onK i+1
1 with an assignment �d for �x , in which the r th element is ai and theqth element isbi yielding

the instance K i+1
1 = K i

1[ai �→ bi]. Since K i
2 = θ

i (K i
1) and ϕ (�x) does not contain constants, K i

2 |=
ϕ (θ i (�d)) and thus the same egd τ applied to K i

2 yields the instance K i+1
2 = K i

2[θ i (ai) �→ θ i (bi)] =
θ i+1 (K i

1) = θ i+1 (K i+1
1), as desired.

At every step the substitution ai �→ bi in S1 corresponds to the substitution θ i (ai) �→ θ i (bi) and
that θ i = θ ◦ ϵi holds, where ϵi mimics the constant unifications in the chase sequence S2, i.e.,
ϵi = [θ i−1 (ai−1) �→ θ i−1 (bi−1)] ◦ · · · ◦ [θ 0 (a0) �→ θ 0 (b0)]. The desired c-homomorphism θ ′ from K ′1
to K ′2 is obtained as θm = θ ◦ ϵm , where ϵm mimics all unifications enforced by the sequence S2 of
applications of egds from Σ to K2.

Moreover, applying the substitution θ i (ai) �→ θ i (bi) also enforces the equality θ (ai) = θ (bi).
Ultimately, the sequence S2 of applications of egds from Σ to K2 results in the instance K ′2 = Km

2 ,

in which the equalities θ (ai) = θ (bi) have been enforced for every i ∈ {0 . . .m − 1}. Note that S1

may enforce further equalities by transitivity, e.g.: suppose that some bi and b j with i � j are the
same element from dom(K1). Then S1 also enforces the unification ai = aj . But then the analogous
unifications (e.g., θ (ai) = θ (aj) in our example) are of course also enforced by transitivity of the
equalities due to sequence S2. �

Lemma 5.7. Let σ be a nested tgd and let Σs be a set of source egds. Let p be a k-pattern of σ with

k ≥ 2 and consider two isomorphic (complete) subtreesT1 and T2 in p such that the roots ofT1 andT2

are siblings. Let Ip denote the canonical source instance of p and let �b (respectively, �c) denote the local

constants used in the variable instantiations inT1 (respectively, inT2) to construct Ip . Let I s
p denote the

legal, canonical source instance of p and let �b ′ (respectively, �c ′) denote the pseudolocal constants used

in the variable instantiations inT1 (respectively, inT2) to construct I s
p . We write b ′i (respectively, c ′i) to

refer to the ith component of �b ′ (respectively, �c ′). Then �b ′ and �c ′ fulfill the following properties:

(1) for all i, j, if b ′i = b
′
j in I s

p , then also c ′i = c
′
j holds;

(2) for all i, j, if b ′i = c
′
j in I s

p , then also c ′i = c
′
j holds.

Proof. Consider the canonical source instance Ip of p and let �b (respectively, �c) denote the local
constants used in the variable instantiations in T1 (respectively, in T2) to construct Ip . We write

bi (respectively, ci) to refer to the components of �b (respectively, �c). Moreover, we write B (re-
spectively, C) to denote the facts in Ip obtained from instantiating the antecedents of the parts in
T1 (respectively, in T2). Clearly, the facts in B (respectively, C) contain as arguments either local
constants of B (respectively, C) or constants used for instantiating variables from the antecedents
in parts at common ancestors of T1 and T2. Recall from Section 3 that there is a one-to-one corre-
spondence between the parts inT1 andT2. In particular, there exists a c-isomorphism θ between B
and C, such that θ (bi) = ci for every i . Moreover, θ can be extended to a c-homomorphism from

Ip to Ip \ B by setting θ (s) = s for all s � �b.
We now prove Property (1). Suppose that b ′i = b

′
j , i.e.: there is a chase sequence S1 with the

egds in Σ, which transforms Ip into I s
p , s.t. bi and bj are unified. We have to show that the chase

of Ip with Σ also unifies ci and c j . By considering the c-homomorphism θ and applying Lemma
5.5, we conclude that there exists a sequence S2 of applications of egds from Σ to transform Ip

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

8:58 P. G. Kolaitis et al.

into some instance I ∗, s.t. there exists a homomorphism θ ′ from I s
p to I ∗. Moreover, whenever

the sequence S1 unifies elements s1 and s2 from dom(Ip), then S2 unifies θ (s1) and θ (s2) from
dom(θ (Ip)). We are assuming that b ′1 = b

′
2 holds, i.e., the chase of Ip with Σ unifies b1 and b2. But

then the chase of θ (Ip) with Σ unifies c1 = θ (b1) and c2 = θ (b2). Note that θ (Ip) ⊆ Ip . Hence, the
sequence of egd firings in θ (Ip) is also applicable in Ip . Hence, the unification of c1 and c2 must
also be enforced when we construct I s

p from Ip via the chase with Σ, i.e., c ′i = c
′
j indeed holds in I s

p .

To prove Property (2), we again consider the c-homomorphism θ and apply Lemma 5.5. Note
that θ (bi) = ci and θ (c j) = c j . By assumption, the sequence S1 of egd applications to Ip unifies the
elements s1 = bi and s2 = c j from dom(Ip). Hence, the sequence S2 of egd applications in θ (Ip)
unifies ci and c j . By θ (Ip) ⊆ Ip , we conclude that the chase of Ip with Σ also unifies ci and c j . �

REFERENCES

[1] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. 2014. Foundations of Data Exchange. Cambridge

University Press, Cambridge, UK.

[2] Marcelo Arenas, Jorge Pérez, Juan Reutter, and Cristian Riveros. 2013. The language of plain SO-tgds: Composition,

inversion, and structural properties. J. Comput. Syst. Sci. 79, 6 (2013), 763–784.

[3] Marcelo Arenas, Jorge Pérez, and Cristian Riveros. 2009. The recovery of a schema mapping: Bringing exchanged

data back. ACM Trans. Datab. Syst. 34, 4 (2009), 22:1–22:48.

[4] Patricia C. Arocena, Boris Glavic, and Renee J. Miller. 2013. Value invention in data exchange. In Proceedings of the

SIGMOD Conference. ACM, 157–168.

[5] Angela Bonifati, Elaine Qing Chang, Aks V. S. Lakshmanan, Terence Ho, and Rachel Pottinger. 2005. HePToX: Mar-

rying XML and heterogeneity in your P2P databases. In Proceedings of the 31st International Conference on Very Large

Data Bases. 1267–1270.

[6] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. 11 - XML. In Principles of Data Integration. Morgan Kaufmann,

Boston, MA, 291–323.

[7] Ronald Fagin and Phokion G. Kolaitis. 2012. Local transformations and conjunctive-query equivalence. In Proceedings

of the Symposium on Principles of Database Systems. 179–190.

[8] Ronald Fagin, Phokion G. Kolaitis, Rene J. Miller, and Lucian Popa. 2005. Data exchange: Semantics and query an-

swering. Theor. Comput. Sci. 336, 1 (2005), 89–124.

[9] Ronald Fagin, Phokion G. Kolaitis, Alan Nash, and Lucian Popa. 2008. Towards a theory of schema-mapping opti-

mization. In Proceedings of the Symposium on Principles of Database Systems. 33–42.

[10] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. 2005. Data exchange: Getting to the core. ACM Trans. Datab.

Syst. 30, 1 (2005), 174–210.

[11] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. 2005. Composing schema mappings: Second-

order dependencies to the rescue. ACM Trans. Datab. Syst. 30, 4 (2005), 994–1055.

[12] Ingo Feinerer, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. 2015. On the undecidability of the equiva-

lence of second-order tuple generating dependencies. Inf. Syst. 48 (2015), 113–129.

[13] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho, Renée J. Miller, Paolo Papotti, and Lucian Popa. 2006. Nested

mappings: Schema mapping reloaded. In Proceedings of the International Conference on Very Large Data Bases. 67–78.

[14] Georg Gottlob, Reinhard Pichler, and Emanuel Sallinger. 2015. Function symbols in tuple-generating dependencies:

Expressive power and computability. In Proceedings of the Symposium on Principles of Database Systems. 65–77.

[15] Rihan Hai and Christoph Quix. 2019. Rewriting of plain SO tgds into nested tgds. Proc. VLDB Endow. 12, 11 (2019),

1526–1538.

[16] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. 2003. Piazza: Data management infrastructure for

semantic web applications. In Proceedings of the World Wide Web Conference. ACM, 556–567.

[17] Pavol Hell and Jaroslav Nešetřil. 1992. The core of a graph. Disc. Math. 109 (1992), 117–126.

[18] Mauricio A. Hernández, Howard Ho, Lucian Popa, Ariel Fuxman, Renée J. Miller, Takeshi Fukuda, and Paolo Papotti.

2007. Creating nested mappings with Clio. In Proceedings of the IEEE International Conference on Data Engineering.

1487–1488.

[19] Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt (Eds.). 2013. Data Exchange, Integration, and Streams.

Dagstuhl Follow-Ups, Vol. 5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[20] Phokion G. Kolaitis, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. 2014. Nested dependencies: Structure

and reasoning. In Proceedings of the Symposium on Principles of Database Systems. 176–187.

[21] Phokion G. Kolaitis, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. 2018. Limits of schema mappings.

Theor. Comput. Syst. 62, 4 (2018), 899–940.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

On the Language of Nested Tuple Generating Dependencies 8:59

[22] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceedings of the Symposium on Principles

of Database Systems. 233–246.

[23] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.

[24] Jayant Madhavan and Alon Y. Halevy. 2003. Composing mappings among data sources. In Proceedings of the Interna-

tional Conference on Very Large Data Bases. 572–583.

[25] Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. 2013. Relaxed notions of schema mapping equivalence

revisited. Theor. Comput. Syst. 52, 3 (2013), 483–541.

[26] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A. Hernández. 2008. Clip: A visual lan-

guage for explicit schema mappings. In Proceedings of the IEEE International Conference on Data Engineering. 30–39.

[27] Emanuel Sallinger. 2013. Reasoning about schema mappings. In Data Exchange, Information, and Streams. Dagstuhl

Follow-Ups, Vol. 5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 97–127.

[28] Balder ten Cate and Phokion G. Kolaitis. 2009. Structural characterizations of schema-mapping languages. In Pro-

ceedings of the International Conference on Database Theory. 63–72.

Received December 2018; revised September 2019; accepted October 2019

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 8. Publication date: July 2020.

