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ABSTRACT

Large-scale high performance computing (HPC) systems typically
consist of many thousands of CPUs and storage units, while used
by hundreds to thousands of users at the same time. Applications
from these large numbers of users have diverse characteristics, such
as varying compute, communication, memory, and I/O intensive-
ness. A good understanding of the performance characteristics of
each user application is important for job scheduling and resource
provisioning. Among these performance characteristics, the I/O
performance is difficult to predict because the I/O system software
is complex, the I/O system is shared among all users, and the I/O
operations also heavily rely on networking systems. To improve
the prediction of the I/O performance on HPC systems, we propose
to integrate information from a number of different system logs
and develop a regression-based approach that dynamically selects
the most relevant features from the most recent log entries, and
automatically select the best regression algorithm for the predic-
tion task. Evaluation results show that our proposed scheme can
predict the I/O performance with up to 84% prediction accuracy in
the case of the I/O-intensive applications using the logs from CORI
supercomputer at NERSC.
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1 INTRODUCTION

Due to a large amount of data produced by both traditional HPC
applications and recent machine learning and big data applications,
the I/O performance on HPC systems has a major impact on overall
application performance. Understanding the I/O performance and
predicting it on HPC systems paves the path to optimizing appli-
cations. Accurately predicting the I/O performance of HPC jobs
would also allow the systems to better allocate CPU, I/O and net-
working resources, and enable computer centers to better provision
the resources when they purchase the systems. In this paper, we
focus on understanding the performance characteristics of the jobs
running on these HPC systems, in particular, the I/O performance
that is known to be hard to predict.

The I/O performance on HPC systems mainly depends on I/O
libraries and underlying parallel file systems, such as Lustre [29]
and IBM’s SpectrumScale (previously known as GPFS) [26]. Parallel
file systems allow parallel access to a large number of I/O servers.
However, this introduces a new challenge in managing a large num-
ber of separate storage servers and providing the consistency of
the file system. There are many ways that an application might
experience a poor I/O performance, for example, heavy metadata
accesses, unexpected data traffic from other applications, or net-
work traffic passing through portions of the I/O data path. Thus,
it is important to understand the performance of applications in
large HPC environments and orchestrate them in the perspective
of efficiency and priority.

HPC systems are continuously monitored by a number of dif-
ferent tools. For example, Slurm workload manager [37] records
the progress of each job, Lustre Monitoring Tool (LMT) [35] logs
the file system activities, and system monitoring tools such as Dar-
shan [31] monitor the I/O activities of each application. These tools
continuously collect the system status such as CPU usage and the
application I/O behavior such as access pattern. However, these
systems produce log files that are separate from each other. There
is no easy way to combine them to provide coherent information
for understanding the application behavior.

To understand the I/O performance using HPC system logs, there
have been many studies. Lockwood et al. [15] ran I/O-intensive
scientific benchmarks and studied the logs to find various factors
that impact the performance. Using application I/O and scheduler
logs, TOKIO [16] provides a comprehensive graphical display that
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Figure 1: Overall architecture of CORI supercomputer.

helps users to understand the I/O behavior of the application and
its impact on the overall system. There are various efforts to predict
the I/O performance. For instance, I/O performance models [2, 3]
based on specific applications estimate I/O performance tuning
parameters. In contrast to these efforts, in this paper, we analyze a
large number of logs in a large HPC system (CORI at NERSC), find
key features that impact the I/O performance, and predict the I/O
performance using the features.

Overall, we analyze system and I/O logs from a large system
and propose a performance prediction scheme to predict the I/O
performance of HPC applications. Our analysis results showed
that the I/O performance of applications is affected by not only
the application behavior but also the file system behavior. Also,
the correlation between features and the I/O performance changes
according to the I/O intensity of applications. Though the analysis,
our paper presents deep understanding on I/O systems in a large
HPC environments and help both system administers and users
to understand the system and coordinate multiple I/O intensive
applications to avoid performance degradation. With the findings
from analysis, we proposed I/O performance prediction scheme
that selects the features that impact the I/O performance from the
logs and uses combinations of various regression algorithms to
predict the I/O performance. Our evaluation using logs from the
example system showed that combinations of regression algorithms
can predict the performance with the accuracy of up to 84%.

Our contributions are as follows:

e We propose the I/O performance prediction scheme for HPC
environments (Section 3.3 and 3.4) using system logs (Section
3.1 and 3.2) to help users understand the performance in
complex systems.

o We analyze various system logs and the correlation between
application behavior (Section 4.1 and 4.3), file system behav-
ior (Section 4.2) and the relation to overall I/O performance
(Section 4).

e We evaluate our prediction scheme using logs from a large
scale HPC environment and applications with different char-
acteristics (Section 5).

The rest of this paper is organized as follows: Section 2 describes
the background. Section 3 presents our proposed performance pre-
diction scheme. Section 4 describes the analysis results in CORI
supercomputer at NERSC. Section 5 presents the evaluation results.
Section 6 presents related works. Section 7 concludes the paper.

2 HPC ENVIRONMENT AND TOOLS

2.1 HPC environment and parallel file system

In Figure 1, we show the architecture of CORI supercomputer at
NERSC with compute nodes, network interconnects (e.g., Infini-
band), and a storage system. The storage subsystem we show is
based on Lustre parallel file system [29]. Lustre contains Metadata
Servers (MDS) to manage file operations such as file create, modify
and permission operations. MDS is responsible for maintaining a
global and consistent view of the file system and every metadata
operation is handled by MDS. Lustre’s Object Storage Servers (OSS)
are responsible for storing and retrieving user data. It is equipped
with 248 OSSes and each OSS is connected to 1 Object storage tar-
get (OST) which is a set of HDDs that are grouped by RAID. The
computation and storage systems are connected via Infiniband [25]
providing a fast storage area network between the computation
server and storage server.

2.2 System analysis tools in HPC

In this study, we use resource scheduler logs, I/O logs, and file
system logs. Slurm workload manager [37] is a workload manager
to allocate compute nodes and processes on HPC systems. It stores a
complete history of jobs, username, number of processes and other
information as logs. Slurm can provide a history of application
execution using a JobID.

Darshan I/O characterization tool [6] is an I/O characterization
tool that stores I/O information of a job. It stores I/O characteris-
tics such as the number of bytes written, a histogram of request
size, time spent in I/O operations, and more. As Darshan stores
the detailed I/O information for each application execution, it is a
crucial tool for users to analyze the I/O behavior of applications and
understand the bottlenecks that are orthogonal to other application
behavior.

While Darshan is focused on the single application, Lustre mon-
itoring tool (LMT) [35] is designed to monitor the file system activ-
ities. It collects information such as MDS CPU usage, MDS oper-
ations per second, OSS write throughput and more. For example,
LMT is used to determine the file system performance after a major
update to the system by analyzing abnormal MDS or OSS usage.
This information can give insight into the abnormal behavior of
the file system.

3 I/O0 PERFORMANCE PREDICTION METHOD

To predict the I/O performance of HPC applications, it is crucial to
understand the existing logs in the system and process the infor-
mation. In this section, we first describe storing information from
various system logs into a database and then describe the prediction
method.

3.1 Integrated database for system logs

Slurm, Darshan, and LMT logs have different fields and stored in dif-
ferent locations. For using them, we first store them in an integrated
SQLite database to collect, store, and access the information during
the prediction phase. In Figure 2, we show the overall procedure
of building an integrated database. We build the database using
entries of Darshan logs, which create an I/O log for each program
execution. We use the JobID as a unique key in the database. We
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Figure 3: Availability of features in perspective of applica-
tion run time.

first process Darshan logs by using the Darshan-parser [6] tool that
parses a Darshan compressed format and the output is written to a
text file format. We then read the output file and extract I/O related
information such as StartTime, RunTime, and TotalBytesWritten.
To extract the information from a Slurm log, we use the JobID
from the Darshan log to search the entry in the Slurm database. As
Slurm stores the history of jobs using MySQL, we perform a simple
select operation with JobID and store the fetched information to
the integrated database. In contrast to Darshan and Slurm, LMT
continuously collects the information using the time information.
Thus, it is impossible to collect information using the JobID. To
overcome this issue, we use the StartTime and RunTime acquired
from the Darshan log to select the time interval related to the ap-
plication. Using TOKIO tool [16], we extract the file system usage
from the StartTime and end time (StartTime + RunTime) of the
application. By continuously updating the integrated database with
information collected from these three logs, our proposed scheme
can effectively collect and access the I/O behavior of applications
and the file system.

3.2 Selecting the features

In Figure 3, we show the availability of information when running
an application. At the start of execution when the prediction has to
be made, there is only limited information available. For example,
although LMT collects the file system information continuously
in 5-second intervals, information collected before the application
execution can be irrelevant and the information reflecting the appli-
cation behavior is not available until the end of execution. Similar
to LMT, Darshan collects information at the termination of the
application. While Darshan intercepts the I/O requests during the
execution, it reports the information at the end of run time. Thus,
the information from LMT and Darshan is only available after the
application execution.

In contrast to LMT and Darshan, Slurm and Lustre require users
to specify the resources at the start of execution. For example, when
executing an application, a user has to specify the resources such
as the number of processes and the number of nodes. In addition
to Slurm, users need to specify the stripe size and stripe count of

output directory on Lustre before the application execution by us-
ing a Lustre command. Darshan logs from the previous executions
of the same application can be used for analysis. Darshan collects
the I/O information of all applications that executed in the same
environment. This information is important because many HPC ap-
plications, especially the I/O-intensive applications, have a similar
I/O behavior such as access patterns and request size. In addition
to the information from the same environment, if the application
history with the identical application name exists, we can utilize
that information for the prediction. Execution history with iden-
tical application name represents that the application is executed
multiple times with similar I/O characteristics. For example, out of
3,543,538 application executions we have studied, there are only
2,039 distinct application names, suggesting that only a small set
of applications are executed multiple times in the example system.
This allows our scheme to utilize the information such as access
pattern and request size from the previous executions to predict
the performance of a target application,

In addition to the availability of information, it is also important
to determine which information is important when predicting the
I/O performance of an application. While many features are avail-
able, using many irrelevant features can reduce the accuracy of
prediction and increase the computational overhead based on both
our experiments and previous studies [10, 22]. To determine which
information to use, we calculate the correlation factor between file
system activity and information that is available. According to our
analysis, the relevant information is different in every condition. For
example, the correlation between stripe count and write throughput
is far greater in a set of I/O-intensive applications than a set of other
applications. This is because I/O-intensive applications can exploit
high available throughput provided by the high number of storage
devices. However, this is not the case for computation-intensive
applications as the I/O requirement of those applications is already
minimal and using more storage devices does not improve the I/O
performance. Thus, to determine which information to use, we
calculate the correlation factor at the start of prediction rather than
using a set of predefined features.

3.3 Tools for prediction

Regression algorithms are typically used to estimate an unknown
value from known values. The unknown value can be either the
unavailable information such as file system activity or the target
metric such as I/O We have selected various regression algorithms
that have distinct characteristics. For statistical regressions, we
use linear and polynomial regression methods. While statistical
regressions are simple and fast, the prediction accuracy may suffer
when the data records do not fit in a linear or polynomial equa-
tion. For more traditional machine learning-based regressions, we
use k-Nearest Neighbor (kNN) [8] and Random Forest (RF) [14]
algorithms. Finally, we used Multi-layered Perceptron (MLP) [23]
and Convolutional Neural Network (CNN) [11] regression algo-
rithms for multi-neuron based machine learning regressions. We
use multiple of these algorithms because it is hard to select a single
algorithm due to the complexity of data records. Our evaluation
result shows that the accuracy of the algorithm is dependent on
the information. Thus, rather than statically choosing a single al-
gorithm, our proposed scheme predicts the I/O performance using



PROCEDURE 1 Overall algorithm of proposed prediction scheme.

1: /* Predefined variables */

2: RegressionAlgorithms = [Linear, Polynomial, kNN, RF, MLP, CNN]
3: DB = integrated database

4: AvailableFeatures, UnavailableFeatures = []

5: ApplicationFeatures = [Features from Darshan logs]

6: FileSystemFeatures = [Features from LMT logs]

7:

8: Function SelectFeatures (TargetFeature)

9: /* Feature selection phase */

10: HistoryRecords, SelectedFeatures = []

11: If UnavailableFeatures.find(TargetFeature) == false

12: HistoryRecords = SELECT * FROM DB

13: Else

14: HistoryRecords = SELECT AvailableFeatures FROM DB
15: SelectedFeatures = Correlation(TargetFeature, HistoryRecords)
16: /* Sort and Select the correlated features */

17: return SelectedFeatures

18:

19: Function DataPreperation (SelectedFeatures, TargetFeature)
20: /* Data for building a model */

21: X_train = SELECT (SelectedFeatures) FROM DB

22: Y_train = SELECT (Target) FROM DB

23: /* Data for the prediction */

24: TargetRecords = SelectedFeatures of the target application

25: For FeatureValue in TargetRecords

26: If FeatureValue != Available and FeatureValue.Feature == ApplicationFeatures

27: MissingFeatureValue = SELECT FeatureValue.Feature FROM DB WHERE Prog-

Name == Target.ProgName AND UserName == Target.UserName AND GroupID == Tar-
get.GroupID ORDER BY StartTime

28: If MissingFeatureValue == [] ///No records

29: /* Relax the select condition until the record exist */

30: FeatureValue = MissingFeatureValue[0] //Value from the most recent execution
31: If FeatureValue != Available and FeatureValue.Feature == FileSystemFeatures
32: TempFeatureList = SelectFeatures(FeatureValue.Feature)

33: X_train, Y_train, X_test = DataPreperation(TempFeatureList, FeatureValue.Feature)
34: MissingFeatureValue = Prediction(X_train, Y_train, X_test)

35: TargetRecords.replace(FeatureValue, MissingFeatureValue)

36: X_test = TargetRecords

37: retrun X_train, Y_train, X_test

38:

39: Function Prediction (X_train, Y_train, X_test)

40: /* Prediction phase */

41: Prediction, Coefficient = 0

42: For Algorithm in in RegressionAlgorithms

43: Algorithm fit(X_train, Y_train)

44: TempPrediction = Algorithm.predict(X_test)

45: TempCoefficient = Algorithm.predict(X_test).Coefficient

46: If TempCoefficient > Coefficient

47: Prediction = TempPrediction

48: return Prediction

49:

50: /* Main procedure */

51: Target = [StartTime, ProgName, UserName, GroupID] //Information of the target application
52: TargetFeature = Read/Write Throughput

53: If Select Target.ProgName From DB == [] //No previous record of the target application

54: AvailableFeatures = [Features from Slurm logs]

55: UnavailableFeatures = [Features from LMT and Darshan logs]
56: Else

57: AvailableFeatures = [Features from Slurm and Darshan logs]
58: UnavailableFeatures = [Features from LMT logs]

59: TargetFeatureList = SelectFeatures (Target.Feature)
60: X_train, Y_train, X_test = DataPreperation (TargetFeatureList, Target.Feature)
61: PredictionResult = Prediction (X_train, Y_train, X_test)

various combinations of regression algorithms that exhibit different
characteristics.

3.4 I/O prediction algorithm

To predict the I/O performance from system logs, we first select
the important features, prepare the data, and perform prediction
using the data. In Procedure 1, we show the simplified algorithm
of the proposed method. Note that in this algorithm, we represent
the name of the selected feature (e.g., SeqWritePct) as an example
feature and the actual value of the feature (e.g., 99%). as a feature
value.

As shown in the procedure, our scheme has three functions (Se-
lectFeatures, DataPreperation, and Prediction) as well as the main
procedure. At the start of the main procedure, we first initialize the

values (e.g., TargetProgName) from the target application and fea-
ture. We then check whether the target application was previously
executed by searching for the application name in the database.
This is to determine which feature values are available at the start
of an execution. As mentioned before, if any previous records exist
(i.e., recurring application), we use the feature values of Slurm logs
and Darshan logs for the most recent record to make a prediction.
However, if there are no previous executions, we cannot use Dar-
shan log of the previous records, so we set the available features to
only features from the corresponding Slurm logs.

In the feature selection function, our proposed scheme selects
the features that are correlated to the target feature (TargetFeature)
that needs to be predicted. To do this, we select the list of features
that can be used to predict the target feature. The target feature can
be either the read/write throughput or an unavailable feature that
has a strong correlation with the read/write throughput based on
the prediction model but the value is not available until the end of
the execution. In the case of the read/write throughput, we select all
features that exist in our integrated database as the possible features
that can have a correlation with the target feature. However, in
the case of the unavailable feature, we select the features that are
already available and can be used to predict the unavailable feature.
With the records selected from the features (HistoryRecords), we
determine the correlation between the target feature and other
features using the Pearson correlation coefficient [5], which is a
widely used algorithm to quantify the correlation between features.
We report the selected features that have a strong correlation with
the target feature.

In the data preparation function, our scheme prepares two types
of data: data for building a model (training phase) and data for
the prediction (testing phase). In the training phase, records from
the previous executions are used to build a model between the
selected features and the target feature. To do this, we select all
the records of selected features (X_train) from the feature selection
function and target feature (Y_train). In the testing phase, records
of the target applications are used as input for a model to find the
value of the target feature. However, the information of selected
features related to the application (from Darshan) and file system
(from LMT) behavior is not available until the end of execution.
To overcome this issue, for the unavailable features related to the
application behavior, we use the values from the most recent execu-
tion in the case of recurring application!. We first select the records
that share the application name, user name, and group ID. If there
are no records that share all the information, we relax the select
condition to find the records that share any of the three conditions.
Finally, we select the record from the most recent execution since
the application behavior can change from the application library
and system update. For the unavailable features related to the file
system behavior, we use the predicted file system values by per-
forming the prediction using the available information to predict
the file system behavior. By recursively calling the SelectFeatures,
DataPreperation, and Prediction function, our scheme selects the
features that are available and related to the unavailable file system
feature, uses the values from current (from Slurm) and the most

!In the case of a new application that has no previous records, only the available
information (i.e., Slurm logs) are selected from the feature selection function. Thus,
there is no unavailable information related to the application behavior.
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recent execution (from Darshan), and makes the prediction of the
unavailable feature. Thus, by using the application features from
the recent execution and performing the prediction of file system
features, our scheme can prepare the data for building a model
(X_train, Y_train) and the prediction (X_test)

With the prepared data, we perform the prediction using a pre-
defined set of regression algorithms (RegressionAlgorithms). The
prediction procedure is identical in all six regression algorithms.
We first build a model using the information of selected features
(X_train) and target feature (Y_train) from the database. With the
model based on the history of all applications, we predict the target
feature using the model and information of the selected feature
(X_test) related to the target application. Finally, by comparing the
coefficient of determination, we select the regression algorithm with
the highest coefficient of determination and return the prediction
result of that regression algorithm.

For the implementation, we used python to build our proposed
prediction algorithm. For the database operations, we used sqlite3
DB-API provided in Python. For the Pearson correlation factor, we
used the algorithm provided by Pandas dataframes [20]. In the case
of the regression algorithms, we used scikit-learn library [24] with
the exception of CNN using TensorFlow [1, 7].

4 ANALYSIS OF I/0 LOGS

In this section, we present our analysis results on the I/O behavior
of HPC applications and the correlation between their I/O charac-
teristics and performance. We used application logs acquired from
CORI system. There are 3,543,538 logs from October 2017 to Janu-
ary 2018. Note that this is not the number of distinct applications
but the number of jobs dispatched to the system. For example, if an
application is executed for 10 occasions, it creates 10 different logs.

4.1 Application I/O characteristics

While the I/O performance of an application is affected by many
factors, there is no doubt that the I/O behavior of application itself
is one of the key factors in both small and large scale system [12,
21, 30]. To find the effect of the I/O behavior on the performance,
we conducted an analysis using the information acquired by Slurm
and Darshan. In Table 1, we show the information extracted from
Slurm and Darshan logs. The top four features in the table are from
Slurm logs and the other features are from Darshan logs.

Table 1: List of information extracted from Slurm and Dar-
shan logs.

[ Name [ Description |

ProgName Name of the program

UserName Name of the user

GroupID Group ID of the user

NumProcs Number of processes

NumNodes Number of computation nodes

StripeCount Number of OSTs used by the write bursts of
the application

StripeSize Amount of data written to an OSS per request

NumFile Number of Files used by the application

Seq[Read/Write]Pct Percentage of read/write requests that are
sequential

Consec[Read/Write]Pct Percentage of read/write requests that are
consecutive

[Read/Write]Less1M Number of read/write requests that are less
than 1M

TotalMetaReq Number of metadata requests

Total[Read/Write]Req Number of read/write requests

[Read/Write]BytesTotal
[Read/Write] Throughput

Total bytes read/written by the application
Read/Write throughput by the application
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WriteThroughput (Each color represents a group of ap-
plications that share similar characteristic)s.

In Figure 4, we show the correlation between the access pattern
(SeqWritePct) and write throughput. The sequential write percent-
age is distributed fairly evenly from 0 to 100%. However, the write
throughput has no correlation with sequential write throughput
since the write throughput of higher sequential write percentage
is not significantly higher than that of lower sequential write per-
centage. This suggests that although there might be a correlation
between the access pattern and write throughput, it is not deter-
ministic.

We illustrate the correlation between the request size (Write-
Less1M) and write throughput in Figure 5. WriteLess1M refers to
the percentage of write requests that have a request size of less
than 1 megabyte. Thus, if the WriteLess1M is higher, the appli-
cation issues more write requests with a small request size. The
distribution of WriteLess1M is skewed towards 0 and 100 percent.
This suggests that HPC applications can be categorized into small
and large I/O applications. Similar to SeqWritePct, the correlation
between request size and write throughput is not deterministic.
Note that some data points at 0 percent have extremely high write
throughput because many applications have very short write time,
yielding very high write throughput. However, the sustained write
throughput should be lower.

As shown in both figures, our analysis results show that the
correlation between each I/O behavior metric and write through-
put is inconclusive. As we analyzed the correlation between write
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throughput and metrics shown in table 1, the results can be catego-
rized into two categories similar to two figures. The first category
is similar to SeqWritePct where the distribution of data points is
fairly uniform. In other cases, they are similar to WriteLess1M
where the distribution is skewed towards very low and high ends.
In both cases, the correlation between independent metric and write
throughput was inconclusive.

To find the correlation between the I/O behavior and write
throughput more comprehensively, we analyzed the correlation
using all the metrics presented in table 1. By clustering the history
of logs in clusters, we created clusters with a distinct I/O behavior
and check the correlation between a set of I/O behavior and write
throughput. We used the Gaussian mixture model [33] from the
Scikit-learn python library [24] to build clusters. Also, to reduce
the difference in the unit for different metrics, we used a minmax
scaler and scaled the values between 0 and 1.

Figure 6 shows the analysis result using the clustering algorithm.
As shown in the figure, there are 5 clusters represented by each line
and two clusters represented as purple and light green line have
high write throughput compared to others. The common features
of two clusters are that they have a relatively high number of files,
sequential/consecutive write percentage, and total bytes written. In
contrast, the request size which is represented by writeLess1M is
different. However, the analysis result is inconclusive because other
clusters share similar trends in a few metrics. If a metric or combi-
nation of metrics has a strong correlation with write throughput, a
cluster that shares the trend must have similar write throughput.
However, other clusters that share similar metrics have low write
throughput suggesting that in addition to the application behav-
ior, the effect of other applications and file system activity must
be considered to accurately predict the I/O performance in HPC
environments.

4.2 File system activities

The analysis results from the previous subsection suggested that
to understand the I/O performance, analysis of the file system
activities is needed in addition to the application behavior itself. For
example, when the application is scheduled during a busy interval
such as a massive backup period, the application can show very
unusual performance [15]. Thus, we focused on the LMT which
collects the lustre file system information in a 5-second interval.
Table 2 shows the list of information extracted from the LMT
logs. As LMT collects the file system status continuously, we first

Table 2: List of information extracted from LMT logs.

[ Name [ Description ]
mdsCPU[Mean/95] mean and 95 percentile CPU usage of a MDS server
during the application runtime
mdsOPS[Mean/95] mean and 95 percentile operations per second of a
MDS server during the application runtime
0ssCPU[Mean/95] mean and 95 percentile CPU usage of OSS servers

during the application runtime

mean and 95 percentile write throughput of OSS
servers during the application runtime

mean and 95 percentile read throughput of OSS servers
during the application runtime

ossWrite[Mean/95n]

ossRead[Mean/95]
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Figure 7: Correlation between mdsCPU95 and write
throughput.
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Figure 8: Correlation between ossWrite95 and write
throughput.

collect the start time and run time of the job from the Darshan
log and collect system activity during the application run time. To
analyze the system activity in both normal and abnormal cases, we
use the average value (e.g., mdsCPUmean) and the 95 percentile
of the highest value (e.g., mdsCPU95) during the run time. This
is because even if the system is stable in most of application run
time, a single peak can degrade the overall performance of the
application.

Figure 7 shows the correlation between MDS CPU activity and
write throughput. As shown in the figure, while the MDS CPU
usage is uniformly distributed, there is no correlation between write
throughput. It is important to notice that there are only a handful of
cases where MDS CPU usage is over 80 percent. This result suggests
that the file system is rarely experiencing the bottleneck caused by
MDS and the file system has sufficient computing power to handle
the metadata request from multiple users.

Figure 8 shows the correlation between the file system activity
(0ssWrite95) and write throughput. As shown in the figure there is
no correlation between the OSS write activity and write throughput.
However, we focus on the linear data points starting from 0 to
1,000. These linear data points suggest that in certain types of
applications, as the write activity of the file system increases, the
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Figure 9: I/0 heatmap of the file system when IOR bench-
mark is running.

write performance of the application increases as well. Thus, while
not all the HPC applications follow identical correlation with write
throughput, in certain applications, the general activity of the file
system can have a strong correlation with write throughput.

4.3 1/O-intensive applications

To further investigate the analysis results presented above, we fo-
cused on the correlation between OSS write activity and write
throughput. From figure 8, we observed that there can be a corre-
lation between two metrics in a certain group of applications. To
do this, we analyzed applications with various I/O characteristics
and how the file system activity such as mdsOPS and ossWrite was
affected.

Figure 9 shows the write activity heatmap of the file system
when an instance of IOR benchmark [4] is running. In the example
system, benchmarks such as IOR are scheduled to run every day to
observe the impact of the file system upgrade. Thus, by studying
regularly scheduled applications, we can observe the impact of
the file system on the performance of applications. The graph was
generated using the pytokio tool which is TOKIO tool based on
python [16]. Each snx11168-OST of the y-axis represents an OST,
and the x-axis represents the time. The graph includes the file
system activity of 5 minutes before the application start time and 5
minutes after the application run time which are labeled as Start
Time and Run Time, respectively. Note that each line parallel to the
x-axis represents the busyness of an OST, with red representing a
busy OST.

As shown in the figure, the write activity of the file system
increases during the run time of the IOR benchmark. From our
analysis, there are 16 applications that were running during the run
time of the IOR benchmark. However, while multiple applications
are running in the system, we are certain that file system activity is
increased due to the IOR benchmark because of two observations.
First, the write activity increases as soon as the benchmark was
executed and decreases as soon as the benchmark was terminated.
Second, the number of bytes written during the high activity period
is similar to the total number of bytes written by the benchmark,
and the other 16 applications have very a small number of bytes
written. When an application has a very low I/O activity, it is hard to
investigate the I/O behavior of the application from the perspective
of the file system due to its low impact on the file system. Thus,
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Figure 10: Correlation between ossWrite95 and write
throughput on high I/O intensity applications.

the correlation between file system activity and application write
throughput is more significant when the write activity of certain
application dominates the file system activity.

From the analysis, we found that I/O-intensive applications can
have a dominant effect on the file system. However, finding applica-
tions that induce heavy I/O activity is difficult since Darshan does
not record the relative I/O usage. To do this, we extract the list of
OSTs that are used by an application. Although the Lustre usage is
not available for all logs, applications that are compiled with the
Lustre information flag have the Lustre usage information such as
which OSTs are used by the application. With the list of used OSTs,
we propose a new metric called WriteBytesPct.

WriteBytes
WriteBytesPct = - S EoUsedOSTs (1)
WriteBytesa1108Ts

Equation 1 shows how we calculate WriteBytesPct. As shown in
the equation, WriteBytesPct represents the number of written bytes
in OSTs used by a certain application over the number of written
bytes in all OSTs in the file system. While OSTs can be shared by
many applications, it is the closest estimation with available logs
and an I/O-intensive application should have a high WriteBytesPct.
Thus, we utilize this metric to select applications that have high
I/O intensity in terms of the effect on the file system.

With the new metric (WriteBytesPct), we revisit figure 8 and
select high I/O intensity applications. To find the applications that
have a high impact on the file system, we selected the high I/O
intensity applications that have WriteBytesPct of 80 percent or
higher which suggests that the application accounts for more than
80% of file system activity. Figure 10 shows the correlation between
OSS write activity and application write throughput on high I/O
intensity applications. As shown in the figure, the performance of
applications has a very strong correlation with file system activity.
This is because when an application dominates the I/O activity of
the file system, the performance of the file system is the perfor-
mance of the application itself.

Based on our analysis, there are two major observations on the
1/O characteristics of HPC applications. First, no single I/O charac-
teristic is dominant enough to observe a clear correlation between
write throughput. This demonstrates that HPC systems have a
very complex I/O performance model. Second, there is a strong
correlation between the OST usage and application write perfor-
mance in I/O intensive applications. These observations suggest
that while the correlation between the I/O characteristics and write
throughput is complex, in certain scenarios where I/O performance



is dominant in overall application performance, the I/O characteris-
tics can be used to accurately predict the I/O performance of HPC
applications.

5 EVALUATION
5.1 Preparation of the data

For evaluation, we used identical logs as mentioned in Section 4.
To validate our proposed scheme and compare the predicted perfor-
mance with the actual performance, we divided our logs into two
groups. For the training phase to build the prediction model, we
used the data from October 1st to November 30th of 2017. For the
test phase to validate our prediction, we used the data from Decem-
ber 1st of 2017 and January 31st of 2018. Thus, our scenario was
that while we have a set of logs from training phases, we are trying
to predict the application performance of test data and validate the
prediction accuracy.

Another important consideration is how to normalize our data
since features collected have different units. For example, percent-
age values such as SeqWritePct are between 0 and 100 while byte
values such as WriteBytesTotal can be any positive integers. To
standardize the values, we used a standard scaler to balance the
values with the different units. Note that although we standardized
the values, we did not change the unit of write throughput when re-
porting prediction result to easily estimate our prediction accuracy
and application performance.

5.2 High I/O intensity applications

We first performed the evaluation using the application with high
I/O intensity. During the feature selection phase, we selected the
top three features that have a strong correlation with write through-
put during the evaluation. By using the correlation algorithm, oss-
Write95, WriteBytesTotal, and SeqWritePct had the most correlation
with write throughput. While WriteBytesTotal and SeqWritePct are
available from Darshan logs of previously executed applications,
0ssWrite95 is not available until the application finishes running.
Thus, to predict the unavailable feature, we performed another
correlation algorithm to find the top three most correlated features
with ossWrite95. Our evaluation gave NumFile, WriteBytesTotal,
and StripeCount. Thus, we used NumFile, WriteBytesTotal, and
StripeCount to predict the ossWrite95, and used the predicted os-
sWrite95, WriteBytesTotal, and SeqWritePct to predict the write
throughput.

Figure 11 shows the prediction results of ossWrite95 using Num-
File, WriteBytesTotal and StripeCount. While the x-axis represents
the measured ossWrite95 from LMT log, the y-axis represents the
predicted ossWrite95. Thus, the prediction is more accurate if the
data points are placed near the black dotted line. For evaluation,
we used the six regression algorithms mentioned in Section 3. As
shown in the figure, random forest (RF) regression had the most
accurate prediction while linear, polynomial and convolutional neu-
ral network (CNN) regression showed a skewed prediction result.
This is because the ossWrite95 does not have a data pattern that
can be accurately estimated using simple linear and polynomial
equations.

With the predicted ossWrite95, we performed the prediction of
write throughput. Table 3 shows the list of regression algorithms

Table 3: List of regression algorithms and their coefficients
of determination on high I/O intensity applications.

Regression Algorithm Coefficient of Deter-

mination
Linear -> RF 0.84
Polynomial -> RF 0.83
kNN -> RF 0.81
MLP -> RF 0.81
RF -> kNN 0.79
kNN -> MLP 0.40
RF -> MLP 0.39
Polynomial -> Linear 0.35
kNN -> Linear 0.34
MLP -> Linear 0.33

used in prediction and their coefficients of determination when
predicting write throughput. The coefficient of determination rep-
resents the variance in predicted values from measured value [27].
If the value is closer to 1, the prediction is identical to the measured
value and the number decreases if the distance between the predic-
tion and the measured increases. Note that the first algorithm before
the arrow represents the algorithm used to predict ossWrite95 and
algorithm after the arrow represents the algorithm used to predict
write throughput. As shown in the table, the prediction is the most
accurate when linear regression is used to predict ossWrite95 and
RF regression is used to predict write throughput. This is interest-
ing because as shown in Figure 11, linear regression had two data
points that have very low prediction accuracy. However, since a
combination of linear and RF regression has the lowest conceptual
overhead, using the combination is beneficial not only from the
perspective of the accuracy but also the computational overhead.
Also, multi-layer perceptron (MLP) and CNN regression which are
considered as more modern algorithms did not perform particu-
larly well when predicting both ossWrite95 and write throughput.
Finally, the accuracy was not great when an identical algorithm
was used twice which suggests that a different approach is needed
when predicting ossWrite95 and write throughput. Thus, in the
case of this evaluation scenario, no algorithm is superior to another
in every cases and combinations of regression algorithm must be
evaluated for different sets of application data to accurately predict
the I/O performance.

Figure 12 shows graphs of prediction results using different com-
binations of regression algorithms. The top three figures show the
combinations with high accuracy and the bottom three figures show
those with low accuracy. As shown in Table 3, combinations listed
in Figure 12a, Figure 12b and Figure 12c have coefficients of deter-
mination of 0.84, 0.83 and 0.81, respectively, while combinations
listed in Figure 12d, Figure 12d and Figure 12f have coefficients
of determination of 0.35, 0.34 and 0.33, respectively. Figure 12a,
Figure 12b and Figure 12c have data points close to the black dotted
line which represents 100 percent accuracy. This suggests that in
the case of high I/O intensity applications, the write throughput
can be predicted accurately which is in line with our observation
from the analysis. However, the inaccurate data points are shared
among predictions that suggest that either prediction of ossWrite95
or other inputs used to predict write throughput does not follow
the model accurately. In case of combinations with low accuracy,
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Figure 11: Prediction results of global file system activity (ossWrite95) on high I/O intensity applications.
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Figure 12: Prediction results of Write throughput (WriteThroughput) on high I/O intensity applications.

while combinations listed in Figure 12d and Figure 12f are similar
and the prediction results are inaccurate, the combination listed in
Figure 12e seems more accurate. This suggests that while different
combinations can have a similar coefficient of determination, some
might have fairly accurate predictions with few vastly inaccurate

predictions.

5.3 Medium I/O intensity applications

To evaluate our scheme in a different scenario, we evaluated our
scheme by predicting the I/O performance of applications that have
less I/0 activity. This is important because our analysis already con-
firmed that features of high I/O intensity applications have a strong

correlation with write throughput. However, it is also important
to verify our scheme in a different scenario where the correlation
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Figure 13: Prediction results of Write throughput (WriteThroughput) on medium I/O intensity applications.

Table 4: Top five regression algorithms and their coefficients
of determination on medium I/O intensity applications.

Regression Algorithm Coefficient of Deter-
mination

Polynomial -> kNN 0.48

Polynomial -> RF 0.45

MLP -> RF 0.44

RF -> RF 0.44

Linear -> RF 0.41

between the features and write throughput is less significant. To
do this, we used applications that have WriteBytesPct between
30% and 80%. This suggests that OSTs used by applications were
generating 30% to 80% of file system activity.

For evaluation, we used identical logs and divided training and
test data equally. Through the correlation analysis, the three most
correlated features with write throughput were WriteBytesTotal,
SeqWritePct, and ossWrite95. While the features remain identical
from high I/O intensity applications, the ordering changed, espe-
cially the order of ossWrite95, suggesting that the importance of
file system activity decreased. From the correlation analysis on
ossWrite95, we have selected WriteBytesTotal, WriteLess1M, and
StripeCount. Thus, similar to the evaluation of high I/O intensity
applications, we first predicted the ossWrite95 and used that value
to predict write throughput.

Table 4 shows the top five regression algorithms which had
the highest coefficient of determination when predicting write
throughput. As shown in the table, the overall accuracy decreased
compared with the evaluation with high I/O intensity applications.
This is because the features used to predict both ossWrite95 and
write throughput had less correlation than that of high I/O inten-
sity applications. While the high I/O intensity applications have
a similar I/O behavior and effect on the file system, medium I/O
intensity applications have diverse characteristics. Thus, while the
regression algorithms are identical, the overall accuracy decreased
significantly.

Figure 13 shows the prediction graph of the top three combina-
tions of algorithms that have the highest coefficient of determina-
tion as listed in Table 4. As shown in the figure, while most of the
predictions were accurate, the prediction result of two data points
at 60,000 of x-axis decreased the overall accuracy. It is also notewor-
thy that although Figure 13a seems to show more inaccurate results
than that of Figure 13b and Figure 13c, the coefficient of determi-
nation is higher. This is because the coefficient of determination is

calculated by computing the distance between the predicted and
measured value. Thus, since the combination of Figure 13a leads to
a more accurate prediction of the two most inaccurate data points
compared with the combinations of Figure 13b and Figure 13c, the
overall distance value is smaller even though the overall prediction
accuracy is lower. In conclusion, the correlation between I/O charac-
teristics and the performance is lower when the I/O performance is
not the key factor in application performance. However, the results
showed that by analyzing other factors, our scheme can accurately
predict the I/O performance.

5.4 I/O performance of individual application

Through the evaluation of high and medium I/O intensity applica-
tions, we discovered that the prediction accuracy is related with
the correlation between the application I/O behavior and the I/O
performance. While categorizing applications based on I/O activity
enabled us to explore how the I/O behavior of applications in each
category are correlated with the performance, it also revealed that
it can be difficult to accurately predict the performance of an appli-
cation that has different I/O behavior from the other applications
in the same category. To validate that our proposed scheme works
if we categorize the applications by application name rather than
relative I/O activity to file system, we performed evaluation by
selecting target applications and predict the performance of each
targeted application using system logs of the application.

For the target applications, we have selected a quantum chem-
istry application and two biology applications that ran continu-
ously in the system and have medium to high I/O intensity. For
the quantum chemistry application, the write throughput was cor-
related with WriteBytesTotal, TotalMetaReq and mdsCPUMean.
Since mdsCPUMean is not available at the start of execution, we
used TotalMetaReq, ReadBytesTotal, and StripeCount to predict
mdsCPUMean. For the biology applications (e.g., biology1 and biol-
ogy2), we used WriteLess1m, TotallOReq, & NumFile, and NumFile,
WriteBytesTotal, & SeqWritePct, respectively. In the case of biology
applications, all the correlated features were available. Thus, we
did not perform additional prediction to predict the unavailable
information.

Figure 14 shows the prediction result of write throughput on
targeted applications. Using the RF algorithm in all phases, our
proposed algorithm predicted the write throughput of quantum
chemistry, biology1, and biology2 applications with 0.83. 0.73, and
0.77 coefficients of determination, respectively. Similar to high I/O
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Figure 14: Prediction results of write throughput (WriteThroughput) on targeted applications.

intensity applications, our prediction algorithm predicted the write
throughput with high accuracy. This is because, in contrast to
medium I/O intensity applications, the I/O behavior of applications
remains relatively stable between each execution which enables
accurate prediction solely based on the characteristics of the tar-
get applications. Thus, the evaluation result shows that while the
prediction result using the logs of the entire application can be
inaccurate due to diverse characteristics, the prediction accuracy
can be improved if we can capture a set of applications that share
I/O characteristics.

In the perspective of the regression algorithm, in the case of our
evaluation, RF regression showed the most accurate prediction re-
sult compared with other regression algorithms in all the evaluation
scenarios. We believe that while linear and polynomial regression is
simple, the pattern between the low performing executions and the
high performing execution can be different and these algorithms
cannot build a model reflecting the dynamic changes. Similarly,
MLP and CNN regressions tend to overfit to either low or high
performing executions. In contrast, since RF regression divides the
inputs into small subsets and performs the decision tree algorithm
for each subset, it can build a model reflecting both the low and
high performing executions. Thus, according to our evaluation re-
sults, we think that using RF regression with linear or polynomial
regression which has low computational and conceptual overhead
can be a good starting point when adapting our proposed scheme
to different HPC environments.

6 RELATED WORK

6.1 Understanding I/O characteristics of HPC
applications

There have been many studies that explore the characteristics of
HPC applications. Lang et al. [13] analyzed hardware and software
libraries and their effect on application performance. By performing
experiments with different configurations, they found the corre-
lation between configurations and scalability in the perspective
of hardware and software components in the HPC system. Teng
et al. [34] proposed a method for integrating I/O logs from the
HPC system and performed analysis on the system. Their analysis
showed that comprehensive log analysis is needed to find the root
cause of performance degradation. Lockwood et al. [15] presented
a year-long analysis of the HPC file system. By running an identical
benchmark, they analyzed the performance while controlling the
I/0 behavior of the application. Their analysis showed that factors

such as system upgrade and continuous execution of I/O-intensive
applications can affect the application performance. Kim et al. [9]
performed an analysis of the distributed file system used in the HPC
environment. They discovered that most of the applications are
not utilizing parallelism provided by the distributed file system and
proposed an autonomous algorithm to improve I/O performance.
Our paper is in line with these studies in terms of analyzing I/O per-
formance of the application in the HPC environment. In contrast,
we focus on both I/O behavior of application and file system and
propose a scheme that predicts the performance of the application
using the history of logs.

6.2 Prediction using system characteristics

There have been several studies on predicting the performance
of the application to minimize interference and improve the user
experience. Ernest [32] is a framework to predict the performance
of large scale analytical applications by building a model based
on resources. By studying hardware and application, it predicts
the performance of application that is designed for the distributed
system. Lux et al. [17] proposed a model by analyzing a benchmark
with different configurations. The analysis showed that their mul-
tivariate model can accurately predict the I/O performance of the
HPC system. Schmidt et al. [28] proposed a prediction scheme using
artificial neural network in HPC system. Other works [18, 19, 36]
also tried to predict various performance metrics for large clusters.
Similar to these studies, our scheme aims to predict the performance
of the application using characteristics of the HPC environment.
However, we focus on analyzing the system using various logs
and make the prediction based on the history of logs collected in
the same environment. This enables our proposed scheme to make
an adjustment for various system activities that can cause sudden
changes in the model and make a prediction based on I/O behavior
of complex HPC applications.

7 CONCLUSION

In this paper, we propose a regression based I/O performance pre-
diction scheme for HPC environments. To do this, we collect the
multiple system logs into a single integrated database and use
various combinations of regression algorithms to predict the I/O
performance using the database. Our analysis of logs from the
example HPC system showed that no single I/O feature can be
used to accurately predict the I/O performance of applications. By
selecting the most relevant features, the most recent history of



application, and the best regression algorithm, our scheme can pre-
dict the I/O performance of applications with up to 84% accuracy
according to our evaluation results. We believe that the presented
analysis results can help users to predict the I/O performance of
their applications and schedule their applications efficiently, avoid-
ing I/O interference by other applications. Also, our scheme can
help system administers to understand I/O behaviors in a large HPC
system and efficiently allocate and manage resources in a complex
system. We share our code and sample data set in following link:
https://bitbucket.org/berkeleylab/piop
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