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ABSTRACT

Consider a region that requires to be protected from unauthorized penetrations. The border of the
region, modeled as a unit line segment, consists of high priority segments that require the highest
level of protection separated by low priority segments that require to be visited infinitely often. We
study the problem of patrolling the border with a set of k robots. The goal is to obtain a strategy
that minimizes the maximum idle time (the time that a point is left unattended) of the high priority
points while visiting the low priority points infinitely often. We use the concept of single lid cover
(segments of fixed length) where each high priority point is covered with at least one lid, and then
we extend it to strong double-lid cover where each high priority point is covered with at least two
lids, and the unit line segment is fully covered. Let λk−1 be the minimum lid length that accepts a
single λk−1-lid cover with k− 1 lids and Λ2k be the minimum lid length that accepts a strong dou-
ble Λ2k-lid cover with 2k lids. We show that 2min(Λ2k,λk−1) is the lower bound of the idle time
when the max speed of the robots is one. To compute Λ2k and λk−1, we present an algorithm with
time complexity O(max(k,n) logn) where n is the number of high priority sections. Our algorithm
improves by a factor of min(n,k) the previous O(kn logn) running time algorithm. For the upper
bound, first we present a strategy with idle time λk−1 where one robot covers the unit line, and the
remaining robots cover the lids of a single λk−1-lid cover with k−1 lids. Then, we present a simple
strategy with idle time 3Λ2k that splits the unit line into not-disjoint k segments of equal length that
robots synchronously cover, i.e., reaching the leftmost and rightmost point simultaneously. Then,
we present a complex strategy that split the unit line into k non-disjoint segments that robots asyn-
chronously cover. We show that combining strategies one and two attain an approximation of 1.5
the optimal idle time and combining strategy one and third attain optimal idle time.

1 Introduction

Consider a region that requires to be protected from unauthorized penetrations. A team of robots can patrol (perpetually
move along) the border of the region looking for intruders. The problem is known as the patrolling problem and has
been extensively studied. See for example [1, 2, 3, 4, 5]. Most of the previous works assume that all the points in
the border have the same priority to be visited. However, the border may consist of sections with different priority
of patrolling such as static guards protecting some sections of the border that are required to be visited regularly to
detect points of failure. On the other side, every high priority point is required to be visited as often as possible. What
strategy must the robots follow to give the maximum protection to the points of the high priority sections while visiting
infinitely often every point of the border? To answer this question, we consider the idle time to measure the efficiency
of a strategy. Intuitively, the idle time of a given strategy with k robots measures the maximum period that any high
priority point remains unvisited. We are interested in providing strategies that achieve optimal idle time.

Results of the Paper and Contributions. In this paper, we study the problem of minimizing the idle time of high
priority sections in a unit segment while low priority segments are visited infinitely often using k mobile robots. Let

ar
X

iv
:1

91
0.

01
25

0v
1 

 [
cs

.D
C

] 
 2

 O
ct

 2
01

9



Optimal Patrolling of High Priority Segments While
Visiting the Unit Interval with a Set of Mobile Robots A PREPRINT

I∗ denote the minimum idle time that any strategy can attain. We use the concept of lids (segment of fixed length) to
characterize the problem. We use the single lid cover proposed in [2] where each high priority point is covered by at
least one lid, and then we extend to strong double lid cover where every high priority point is covered by at least two
lids and the unit segment is fully covered. Unlike strong double lid covers a double lid cover would not need to fully
cover the unit segment. Let Λ2k denote the minimum lid length such that the unit segment admits a strong double lid
cover with 2k lids and let λk−1 denote the minimum lid length such that the unit segment admits a single lid cover
with k− 1 lids. We show that I∗ ≥ 2min(λk−1,Λ2k). The proof is based on finding k+ 1 points at distance at least
min(λ,Λ) where k points are high priority.

Then, we present a O(max(k,n) logn) running time algorithm that determines the minimum lid length of a strong
double lid cover as well as the single lid cover where n is the number of high priority segments and k is the number
of robots. First, we present a O(max(k,n)) running time algorithm that given a length l it decides whether the unit
segment accepts a strong double cover with lid length lmin ≤ l. Then, we use a binary search to find the optimal value.
The algorithm improves by a factor of min(k,n) the running time of O(kn logn) in [2].

Regarding the upper bound, we present three strategies: Given a single cover with k− 1 lids of length λk−1 the first
strategy with idle time 2λk−1 assigns a robot to each lid, and one robot covers the unit segment. The second and third
strategies rely on a strong double lid cover with 2k lids of length Λ2k. In particular, the second strategy with idle time
of at most 3Λ2k assigns robots to k equal segments of length at most 2Λ2k. Each robot is, then, assigned to one segment
where they move synchronously back and forth. The third strategy with idle time 2Λ2k assigns each robot to two lids.
Robots cover one of the lids and asynchronously move to the other lid.

Organization of the Paper. The remaining of the paper is organized as follows. In Section 2 we present the model,
define the problem formally and present an illustrative example with one high priority section and two robots that
provide the insights of the techniques to compute the lower and upper bounds. The related work is then presented
in Section 3. In Section 4 we introduce the concept of strong double lid cover and provide important properties that
we use in later sections. Then, the properties of the strong double and the single lid cover are used to provide the
lower bounds in Section 5. An algorithm with running time O(max(k,n) logn) is presented in Section 7 where k is
the number of robots and n is the number of high priority sections. We continue in Section 6 providing the strategies
that attain optimal idle time and a strategy that approximates within 1.5 the optimal idle time. The conclusion is then
presented in Section 8.

2 Model and Problem Statement

Without loss of generality, we model the border as a segment of unit length C = [0,1]. The segment is partitioned with
two subsets H and L where H represents the sections of “high priority", and L the sections of “low priority." We take
H to be a finite union of closed intervals.

We consider k identical robots with a maximum speed of one. In our model, we assume that the acceleration is infinite.
Hence, robots can change speed instantly.

Each robot ri follows a continuous function fi(t) that defines the position of the robot ri in the unit interval C at time t.
A strategy consists of k continuous functions. The idle time of the strategy is defined as the minimum-maximum time
that any point in H remains unvisited. Formally:

Definition 1 (Idle time). Let A be a strategy for k robots. The idle time induced by a strategy A at a point x ∈ H,
denoted by Ix(A), is the maximum time interval that x remains unvisited by any robot while the low priority points are
visited infinitely often:

Ix(A) = sup
{0≤T1<T2 : ∀i∀t∈(T1,T2) fi(t)6=x}

(T2−T1).

Let IA = sup∀x∈H(Ix(A)) denote the idle time of the strategy A.

We are interested in determining the minimum idle time that any strategy can attain. Formally, the problem that we
address is.

Problem 1. Given a partition (H,L) of the unit interval C = [0,1] and a set of k robots with the same maximum speed
of one, determine the optimal idle time that any strategy A can attain, i.e.,

I∗k = inf
∀A
(IA).
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2.1 Two Robots One High Priority Segment

Consider as an example a single high priority segment with two robots r1 and r2. Refer to Figure 1. Let a < b be the
left and right points of the high priority segment. Without loss of generality assume that a≤ 1−b.

a bα β0.50 1

Figure 1: One priority segment.

Proposed Strategy: r1 goes back and forth between 0 and β (with an appropriately chosen β≥ 0.5), and r2 goes back
and forth between α = 1−β and 1. We are mostly concerned with the idle time at the following points:

• Point a. When r1 visits a after visiting β, the idle time is 2(β−a) = 2(1−α−a)),
• Point b. When r2 visits α after visiting b, the idle time is 2(b− (1−β)) = 2(b−α).
• Point α− ε. When r1 visits α− ε after visiting 0. The idle time is 2(α− ε). Taking the supremum, the idle

time is 2α.
• Point β+ ε. When r2 visits β+ ε after visiting 1. The idle time is 2(1− (β+ ε)) = 2(α− ε). Taking the

supremum, the idle time is 2α.

Observe that since a < 1−b, the idle time 2(1−α−a) is at least 2(b−α). Therefore, we can calculate α = 1−a
2 by

setting 2(1−α−a) = 2α and factorizing α. Thus, the idle time of the strategy is 1−a. Note that the idle time of any
other high priority point is not greater than 1−a. A second strategy is that r1 covers [a,b] meanwhile r2 covers [0,1].
Clearly, the idle time of the strategy is 2(b−a).
Theorem 1. The optimal idle time with two robots when there is a single high priority segment [a,b] such that a≤ 1−b
is min(2(b−a),1−a).

Proof. We show that there is no strategy that attains idle time min(2(b−a),1−a)−ε. Consider first when 2(b−a)≤
1− a. Therefore, rearranging we have that b− a ≤ 1− b. Consider the time t0 when one robot visits 1. Such a time
exists since the low priority points are visited infinitely often. However, since b− a ≤ 1− b, the same robot cannot
visit b in the time interval [t0− (b− a− ε/2), t0 + (b− a− ε/2)]. Therefore, the other robot must visit b at time
t1 ∈ [t0− (b−a− ε/2), t0 +(b−a− ε/2)]. However, a remains being unvisited for 2(1−b)− ε which contradicts the
assumption.

Consider now when 1−a < 2(b−a). Therefore, rearranging we have that b > (1+a)/2. Take the points a,(1+a)/2
and 1. Since b > (1+ a)/2, (1+ a)/2 is a high priority point. Similar as before, there is a time that one robot visits
1, say t0. However, the same robot cannot visit b in the time interval t0− ((1− a)/2− ε/2), t0 +((1− a)/2− ε/2).
Therefore, the other robot must visit the point (1+ a)/2 at time t1 ∈ [t0 − (1− a)/2+ ε/2, t0 + (1− a)/2− ε/2].
However, a remains being unvisited for 1−a+ ε time which contradicts the assumption.

Let α = (1−a)/2 and β = (1+a)/2, we have the following observation.
Observation 1. The segments of length α (or α-lids thereafter) [0,α], [a,β], [α,2α] and [β,1] double cover [a,b], i.e.,
every point in [a,b] is in at least two different lids and the union of the lids covers the unit line segment.

In the sequel, we generalize the previous results and use Observation 1 to characterize the optimal idle time for any
number of high priority segments and any number of robots.

3 Related Work

Different variations of the patrolling problem have been studied recently. A closely related version was studied in [2]
where the border is divided into two different types of segments. Namely, the vital sections that are required to be
visited with the minimum time and the neutral sections that are not required to be visited, but robots can traverse to
reach vital sections. They provide an optimal strategy for the unit segment and the ring. The problem studied in this
paper requires that all points must be visited infinitely often unlike [2].

3
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Another closely related problem was recently studied in [1] where two robots are required to patrol a set of points
on a unit segment. In that paper, points can be assigned different priorities. The problem asks to find strategies that
guarantee that the maximum time that a point remains unvisited is at most the given priority. The authors provide a√

3-approximation algorithm. A similar problem was studied in [6] where a single robot is required to visit a set of
n points with priorities. These priorities are updating at a steady rate, and the problem asks to find a strategy that
minimizes the maximum priority ever observed. The authors study two different variants of the model and provide the
upper bound.

Patrolling without priorities have been studied in different contexts. For example, in [5], the authors studied the
problem of patrolling the edges of a geometric tree. The problem asks to minimize the time that any point in the edges
is left unvisited (idle time). They show an off-line strategy that attains optimal idle time for any number of robots. In
[3] the authors study the patrolling problem in a geometric graph where robots are unreliable. They propose an optimal
algorithm for the line segments that are then used for the general graphs. Giving an Eulerian graph G = (V,E), they
show an idle time of ( f +1)|E|/k where k is the number of robots, f ≤ k is the number of robots that can fail and |E|
is the sum of the lengths of the edges of G. They show that the general problem is NP-hard even with three robots
where at most one can fail. In [4] the authors study the patrolling problem on a unit cycle where robots have different
speed. They obtain optimal results when the number of robots is 2, 3, and 4. Similarly in [7] the authors consider the
same problem in a unit segment with k robots. They show an optimal strategy that attains idle time of (v1+v2,+v3)/2
for three robots where vi is the max speed of robot i.

Patrolling with visibility has been studied in [8] where the authors consider that each robot has visibility ri. They
propose an optimal algorithm to patrol the unit interval when the robots have the same maximum speed. A survey of
the patrolling problem was recently published in [9]. The authors discuss strategies for various number of robots with
different capabilities in different domains.

4 Lid Covers

In this section, we introduce the concept of lids that will be used to derive the lower bound and to describe the
strategies that the robots must follow. In [2] the authors study the patrolling problem when a continuous rectifiable
curve contains vital sections and neutral sections. Unlike our problem, the neutral sections are not required to be
visited. To describe the trajectory, they introduce the concept of lids. More formally, an l-lid is a closed interval of
length l intersecting C. A lid cover is then defined as:
Definition 2. [Single lk-lid cover.] An lk-lid cover is a set {`1, `2 . . . , `k} of k lk-lids such that every high priority point
in p ∈ H is covered by at least one lid, i.e., for every point p ∈ H there exists `i such that p ∈ `i.

Let Le f t(`) and Right(`) be the leftmost and rightmost point in the lid `. For any lid `, define the leftmost high-priority
point of ` by

L(`) =
{

inf(`∩H) if `∩H 6= /0

Right(`) if `∩H = /0

Analogously, we define R(`).

We now introduce the concept of a double lid cover of C that is used as the critical tool to prove the lower bounds and
to provide the strategy that attains the optimal idle time. Essentially, the strong double l-lid cover requires that at least
two lids cover each high priority segment and C is fully covered. The following definition formalizes the concept of
strong double l-lid cover.
Definition 3. [Strong double lk-lid cover.] A strong double lk-lid cover is a set {`1, `2 . . . , `k} of lk-lids such that the
unit segment C is fully covered and every high priority point in p ∈ H is covered by at least two distinct lids, i.e.,⋃k

i=1 `i =C and there exist `i and ` j 6=i such that p ∈ `i∩ ` j for all p ∈ H.

We generally write Wk(l) (respectively Sk(l)) for an arbitrary single lid cover (respectively strong double lid cover)
with k lids of length l. Let Wk(l) (respectively Sk(l)) denote the set of single lid covers (strong double lid covers).
Next, we show the existence of a strong double and single cover with optimal length. For convenience, we order the
lids in Wk(l) and Sk(l) from left to right, i.e., Le f t(`i)≤ Le f t(`i+1) for all i < k. Ties are broken arbitrarily.
Definition 4. The k-single, k-strong lower bound of the lid length l is λk = inf{l |Wk(l) 6= /0}, Λk = inf{l | Sk(l) 6= /0},
respectively.

We omit the subscript k if it is understood from the context.
Lemma 1. Both {l |Wk(l) 6= /0} and {l | Sk(l) 6= /0} have a minimum.
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Proof. We focus on strong double lid covers; the case for single lid cover is similar. For any strong double lid cover
C = {`1, `2 . . . , `k}, let σ(C ) = a1,a2, . . . ,a2k be the sequence of (not-necessarily distinct) endpoints of lids arranged in
the order the lids appear in the sequence `1, . . . , `k. Thus for each j, a2 j−1 is the leftmost point of a lid whose rightmost
point is a2 j.

For each n, let C n be a strong double lid cover with lid length at most Λk +1/n. Write σ(C n) = an
1,a

n
2, . . . ,a

n
2k. Now

(an
1) is a bounded sequence and by the Bolzano-Weierstrass theorem has a convergent subsequence a j1n

1 . Then we apply

the Bolzano-Weierstrass theorem to (a j1n
2 ) to get a convergent subsequence a j2n

2 , where j2
n = jkn

1 for some increasing
sequence k. We continue until we have a ( j2k

n ), which we abbreviate as (rn), such that arn
i converges for each i. For

each i, let limn→∞ arn
i = ai.

We show that the sequence a1,a2, . . . ,a2k is the sequence σ(C ) for some strong double lid cover C with lid-length Λk.
Note that a2 j+2−a2 j+1 = limn→∞ arn

2 j+2− limn→∞ arn
2 j+1 = limn→∞(a

rn
2 j+2−arn

2 j+1) = Λk. So the sequence ai consists
of lids each of length Λk.

To see that every point is covered, suppose toward a contradiction that there is a point z that is not in any lid. Let ε

be the smallest distance from z to any of the ai. Then, there is an N such that each arn
i is within ε of ai for each i and

n≥ N. It is then easy to see that z would have to be left out of each of the Cn for n≥ N, a contradiction.

To show that every priority region is double covered, we use a similar strategy. Suppose z is a high priority point not
double covered. Let S be the set of indices for i such that ai is an endpoint of a lid not containing z (there are at least
2k−2 such i). Let ε be the smallest distance from z to any of the ai for i ∈ S. Then, there is an N such that each arn

i is
within ε of ai for each i ∈ S and n≥ N. It is then easy to see that z would have to be left out of each k−1 lids of Cn for
n≥ N whose endpoints have indices in S, a contradiction.

Let Wk denote a single lid cover with k lids of optimal length λk. Throughout the paper we consider only optimal
single lid covers. A block of Wk is a tuple B = {`a(1), `a(2), ...`a(b)} of lids such Right(`a(i)) = Le f t(`a(i+1)) for all
i ∈ [1,b−1]. Let Le f t(B) = Le f t(`a(1)) and Right(B) = Right(`a(b)). Let

L(B) =
{

inf(H ∩ (⋃b
k=1 `a(k))) if H ∩⋃b

k=1 `a(k) 6= /0

Right(`a(b)) if H ∩⋃b
k=1 `a(k) = /0

and define R(B) analogously. We define a critical block B of Wk as a block such that Le f t(B) is the left endpoint of a
high priority segment and Right(B) is the right endpoint of a high priority segment.

Let W be an optimal single λk-lid cover with k lids. Observe that we can shift all lids that the leftmost point does not
cover a high priority point to the right until the leftmost point reaches a high priority point. Let W→

k denote such a
single lid cover. Analogously, we define W←

k where the rightmost point of every lid covers a high priority point.

Lemma 2. Every W→
k has a critical block.

Proof. Assume by contradiction that W→
k does not have a critical block. Therefore, Right(Bi)−R(Bi)> 0 for each

block Bi. Let

dmin = min
∀Bi

(
Right(Bi)−R(Bi)

|Bi|

)
.

We can shrink each lid by dmin without uncovering any high priority segment, contradicting that the lid length of W→
k

is optimal.

Let Λk be the minimum lid length of a strong double lid cover with k lids. Let Sk denote the optimal double Λk-lid
cover. Throughout the paper, we merely consider Sk. We observe that in Sk some priority points may be triple covered.
We depict this situation in Figure 2. The next lemma guarantees that the high priority points are covered exactly by
two lids unless they are endpoints of the lids, in which case they can be covered by at most three endpoints.

Lemma 3. Every double Λk-lid cover can be transformed into a double Λk-lid cover satisfying:

1. There are no points covered more than three times,

2. Any triply covered point is one of the endpoints of two distinct lids, and

3. For any overlapping segment that has a high-priority point, the leftmost point of the overlapping segment is
a high-priority point.

5
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`1

`2

`3 `4

`5

`6 `7

0.2 0.4 0.6 0.80 1

Figure 2: Priority segments [0.2,0.4] and [0.6,0.8]. Observe that the priority points 0.2,0.4, 0.6 and 0.8 are triply
covered.

Proof. The proof is by construction. Place lids `1, `2, . . . , `k such that:

• `1 = [0,α1] is the leftmost lid such that α1 = Λk.

• `2 = [α2,α2 +Λk] such that α2 = L(`1).

For each i ∈ {3, . . . ,k}, let

• `i = [αi,αi +Λk] where

αi =

{
L(`i−1 \ `i−2) if i < k
min{1,Right(`i−1)} otherwise

By construction, the resulting double Λk-lid cover has the desired conditions.

We call a strong double Λk-lid cover that satisfies conditions 1-3 of Lemma 3 a left shifted double Λk-lid cover and
denoted as S→k . Observe that by reversing the order we can analogously obtain a right shifted double Λk-lid cover
denoted as S←k . Observe that S→k and S←k are unique.

In the context of strong double covers, the endpoints 0 and 1 of the segment C are of particular importance, and we
define H∗ = H∪{0,1}. A block B of a double cover is defined the same way as for single lid covers, and Le f t(B) and
Right(B) are also defined in the same way; let B be the set of all blocks in S→k . We define an order on B by setting
Bi < B j if Le f t(Bi)< Le f t(B j). Ties are arbitrarily broken. We define L∗(`), R∗(`), L∗(B), and R∗(B) the same way
we did for L(`), R(`), L(B), R(B), but with H replaced with H∗.

Next, we show a property that we use for the lower bound in Section 5. A block B is critical in S→k if Le f t(B) is a left
endpoint and Right(B) is a right endpoint of a segment of H.

Lemma 4. S→k has a critical block.

Proof. Let B be the set of all maximal blocks B in S→k . Note that every lid of S→k is either contained in some block in B
or has a left endpoint of 1. Assume by contradiction that S→k does not have a critical block. Then, Right(B)−R(B)> 0

for each B∈B . Let dmin =minB∈B

(
Right(B)−R(B)

|B|

)
and shrink each lid by dmin, fixing the left endpoint of each maximal

block the lid is in, and alining the shrunken lids so that that they still form a block. Observe that after shrinking each
lid, each block B ∈ B decreases by dmin|B| ≤ (Right(B)−R(B)). Therefore, each shrunken block B still covers the
segments that it originally covered in H∗ affecting only its right side. Thus, any high priority point originally covered
by two blocks will still be covered by two blocks. Consider any high priority point p that was originally doubly
covered by a single block B = (`1, `2, . . . , ` j) that is the right endpoint of two lids `i and `i+1 in that block. Suppose
then that p is not an endpoint of a high priority segment. Therefore, there is another block B′ that covers p since p− ε

and p+ ε is single covered by `i and `i+1, respectively. Suppose now that p is an endpoint of a high priority segment.
Therefore, the maximal block B has a sub-block (`1, `2, . . . , `i) that is a critical block, contradicting our assumption
that there are no critical blocks.

To see that the every low priority point is still covered by at least one lid after the lid reduction, suppose p is a low
priority point, and suppose B is a maximal block containing p in the original covering. If B contains an element of
H∗ greater than p, then, since we already saw that the shrinking of the lids does not uncover priority points, it will
not uncover p. If B contains no element of H∗ greater than p, let ` j be the last lid in B containing p involved in the
construction of S→k . By construction, if Le f t(` j+1) > p, then Le f t(` j+1) = Right(` j) since ` j does not contain any
point in H∗ greater than p which contradicts the supposition that B is maximal.

6
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Observe that Le f t(B) is less than 1. In the following lemma, we show that the blocks in S→k are equivalent when we
replace H by H∗.

Lemma 5. Let B be a maximal block in S→k . Then, Le f t(B) = L∗(B) and Le f t(B) is the left endpoint of a segment of
H∗.

Proof. (Lemma 5) Let ` be the leftmost lid in B. Then in the construction of S→k , ` could be either

• `1, in which case Le f t(B) is the left endpoint 0 of a segment of H∗,

• `2, in which case Le f t(B) is L(`1), which is either the left endpoint of a segment in H (hence H∗) or is the
right endpoint of `1 in S→k (contradicting the maximality of B),

• ` j (for j ≥ 3), in which is divided into two cases:

– ` j−1 6= ` j−2, in which case Le f t(B) = Le f t(` j) = L(` j−1 \ ` j−2), which is either the left endpoint of a
region in H or the right endpoint of either ` j−1 or ` j−2 (contradicting the maximality of B).

– ` j−1 = ` j−2, in which case Le f t(B) is min{1,Right(` j−1)}. However, since Le f t(B) < 1, Le f t(B) =
Right(` j−1). But then Le f t(B) is the right-endpoint of another lid in S→k (contradicting the maximality
of B).

In each of the non-contradictory cases, Le f t(B) is the left endpoint of a segment of H∗, and hence Le f t(B) = L∗(B).

Similarly, we can show that S←k has a critical block. In the following lemma, we show an essential relation within the
left and right shifted double lid cover.

Lemma 6. For every `→i ∈ S→k and `←i ∈ S←k , Le f t(`→i )≥ Le f t(`←i ).

Proof. Given S→k , we will construct S←k with the desired properties. First consider `→k ∈ S→k . Let `←k = [1−Λk,1]. It
is easy to see that Le f t(`→k )≥ Le f t(`←k ). Moreover, the set

{`→1 , `→2 , ..., `→k−1, `
←
k }

strong double covers C. Inductively, suppose that the set

{`→1 , `→2 , ..., `→j , `←j+1, ..., `
←
k }

strong double covers C such that Le f t(`→i )≥ Le f t(`←i ) for all i > j. Let `←j = [R(`→j )−Λk,R(`→j )]. Since R(`→j )≥
Le f t(`→j+1)≥ Le f t(`←j+1), the set {`→1 , `→2 , ..., `→j−1, `

←
j , ..., `←k } still strong double covers C and Le f t(`→j )≥ Le f t(`←j ).

Observe that S←k consists of k lids since otherwise S→k would not be optimal. The lemma follows.

5 Lower-Bound

We use the concept of single lid cover and double lid cover to derive the lower bound when k robots are being used.
Recall that λk−1 is the minimum lid length that accepts a single lid cover with k−1 lids and Λ2k is the minimum lid
length that accepts a strong double lid cover with 2k lids. We compare λk−1 and Λ2k and use the properties to show
the lower bound. More specifically, we show that the lower bound for the patrolling problem with k robots is at least
2min(λk−1,Λ2k).

We define the indicator function that determines if two consecutive lids cover at least one high priority point as follows:

Ii =

{
1 if `i∩ `i+1∩H 6= /0

0 otherwise

A component of a double cover is a set W = {`i, `i+1, .., `w} of consecutive lids of the cover such that Ii,Ii+1, ..,Iw−1
are all one. We say that W is a maximal component if either Ii−1 = 0 or I = 1 and either Iw = 0 or w = 2k. For each
component W , let f (W ) be the minimum number of lids of length Λk needed to singly cover the priority segments in
W . The following lemma is useful for determining when λk−1 > Λ2k

Lemma 7. Let W be a component of S2k. Then f (W ) = b|W |/2c.

7



Optimal Patrolling of High Priority Segments While
Visiting the Unit Interval with a Set of Mobile Robots A PREPRINT

Proof. We can remove every other lid, starting with the leftmost lid for the first overlap of W and still single cover
the region in the overlaps of W . When |W | = 2a (is even), the number of lids needed to cover the high priority
points is a = |W |/2. When |W | = 2a+ 1 (is odd), the number of lids needed to cover the high priority points is
a = (|W |−1)/2.

An essential property of strong double lid covers when Λ2k < λk−1 is that the low priority segments must be of a short
length and uniformly distributed. In other words, every lid must cover at least one high priority point as we show in
the following lemma.

Lemma 8. If Λ2k < λk−1, then every lid of S2k covers at least one point of H.

Proof. Given a double cover S2k, the set of even lids cover all the high priority points as well as the set of odd lids.
Assume that `i is not covering any high priority point. Therefore, if i is even, k−1 even lids cover all the high priority
points and therefore, Λ2k ≥ λk−1 contradicts the assumption. Similarly, if i is odd.

The component partition of S2k is the set {W1,W2, . . . ,Wm} of all maximal components ordered from left to right. Next
we show that if Λ2k ≤ λk−1, the size of each maximal component |Wi| is even.

Lemma 9. Let {W1,W2, . . . ,Wm} be the component partition of S2k. Then, |Wi| is even for all i ∈ [1,m] provided that
Λ2k < λk−1.

Proof. Consider the indicative function

IW =

{
1 if |W | is odd
0 otherwise

Let wodd = ∑
m
i=1IWi . Observe that ∑

m
i=1 f (Wi)+wodd ≤ k since at most k lids cover H. Therefore, if wodd > 0 we can

cover the priority segments with less than k lids of length Λ2k.

The lower-bound proof is based on finding k+1 points far apart. Thus, k robots are forced to move constantly to visit
k+1 points. The following theorem provides such a condition.

Theorem 2. Suppose C contains p1, p2, . . . . , pk+1 points where k of the points are high priority and p j+1− p j ≥ x for
each j ∈ [1,k], then, I∗k ≥ 2x where x is a positive real number.

Proof. Suppose toward a contradiction that there is a strategy with idle time less than 2x. Let pi be the point of low
priority. Let ti be the time that one robot, say r j, visits pi. Since every point in C is visited infinitely often such a time
exists; see Figure 3. Observe that at time ti, pi splits the number of points and robots into i−1 points and j−1 robots
to the left and k− i points and k− j robots to the right. Either there are more priority points than robots to the right of
pi (i.e. j > i), or there are at least as many priority points as robots to the left of pi (i.e. j ≤ i). We consider the case
where j > i (the case where j ≤ i is symmetric). Since pi is at distance at least x from pi+1, the last time that r j could
have visited pi+1 was not later than ti− x and the earliest time that r j can visit pi+1 is ti + x. Therefore, another robot,
say r j+1, must visit pi+1 at time ti+1 ∈ [ti− x, ti + x]. Observe that j robots are on the left of pi+1 and they cannot visit
pi+1 at time ti+1 ∈ [ti− x, ti + x] as well. Similarly, r j+1 cannot visit pi+2 in the interval [ti+1− x, ti+1 + x]. Therefore,
another robot, say r j+2, must visit pi+2 at time ti+2 ∈ [ti+1− x, ti+1 + x]. Continuing this reasoning, the last robot, say
rk cannot visit pk+1 in the interval [tk+1− x, tk+1 + x] leaving pk+1 unvisited for at least 2x time which contradicts the
assumption that the idle time is less than 2x. In the case where j ≤ i, we consider r j moving to the left of pi and
symmetrically run into the same contradiction.

Let {W1,W2, . . . ,Wm} be the component partition of S2k. From Lemma 8, every lid covers at least one high priority
point if Λ2k < λk−1. Therefore, for any two consecutive maximal consecutive lids, Wi,Wi+1 there exist ` ∈Wi and
`′ ∈Wi+1 such that `∩ `′∩H = /0.

We say that a set of points P of C is in general position if for all a,b,c,d ∈ P, with a ≤ b and c ≤ d, if b− a is a
rational multiple of d−c, then a = c and b = d. We say that a high priority set H is in general position if the set of all
endpoints of intervals in H are in general position.

Lemma 10. Suppose that Λ2k < λk−1 If H is in general position, then S→2k ∩ S←2k = {`→a(1), `→a(2), ..., `→a(b)} =

{`←a(1), `←a(2), ..., `←a(b)} is the only critical block.
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pi

ti ti+1

tk

pi+1 pi+1 pk pk+1

xx xx

Figure 3: The minimum idle time for k robots with k+1 points with k points being high priority at distance at least x
is at least 2x.

Proof. From Lemma 4, S→2k and S←2k each has a critical block. The length of a critical block must be a multiple of the
lid-length Λ2k, and hence any two critical blocks (of potentially distinct double Λ2k-lid covers) would have lengths that
are rational multiples of each other, violating the assumption that the priority set H is in general position. Thus the
critical block is unique, and must be the same for any two double Λ2k-lid covers. Therefore, {`→a(1), `→a(2), ..., `→a(b)} =
{`←a′(1), `←a′(2), ..., `←a′(b)}.
We need to show that `→a(i) = `←a′(i) for all i. Suppose by contradiction that `→a(i) 6= `←a′(i) for some i. From Lemma 6,
Le f t(`→j ) ≥ Le f t(`←j ) for all j. Therefore, a′(i) < a(i). Suppose that a′(i) + 1 = a(i). Therefore, Le f t(`→a(i)) ≥
Le f t(`←a′(i)+1) ≥ Le f t(`←a′(i)) and the set {`→1 , `→2 , .., `→a(i)−1, `

→
a(i) = `←a′(i)+1, ...`

←
2k} strong double covers C with 2k− 1

lids. Therefore, from Lemma 8, Λ2k ≥ λk−1 which contradicts the assumption.

Theorem 3. If the priority set H is in general position, then I∗k ≥ 2min(Λ2k,λk−1).

Proof. Let S→2k = {`→1 , `→2 , . . . , `→2k} and S←2k = {`←1 , `←2 , . . . , `←2k} be a strong shift left and right double Λ2k-lid covers
of C with 2k lids.Let W→

k−1 = {`→1 , `→2 , ..., `→k−1} and W←
k−1 = {`←1 , `←2 , ..., `←k−1} be the lids of the left shift and right

shift λk−1-lid covers of H with k−1 lids.

First consider the case where Λ2k < λk−1. Let {W→1 ,W→2 , . . . ,W→m } be the component partition of S→2k and
{W←1 ,W←2 , . . . ,W←m } be the component partition of S←2k . From Lemma 9, W←i and W→i have even number and from
Lemma 8, every lid covers at least one point in H.

Recall that from Lemma 4, S→2k and S←2k have a critical block each. Further, since the high priority segments are in
general position, the critical blocks are unique from Lemma 10. Let B = {`a(1), `a(2), . . . , `a(b)} be the critical block
(of both S→2k and S←2k ). The proof is based on three claims. In the first claim we show how to select the points in the
segment determined by B, meanwhile in the second and third claims we show how to select the points on the left and
right of B such that all points are at a distance at least Λ2k from each other and k of them are high priority.

Claim 1. Let PB = {p : p = le f t(`a(l)) or p = Right(`a(l))∀`a(l) ∈ B}. Every two points in PB are at distance at least
Λ2k, |PB|= 1+b and if

1. i = j and a(1) and a(b) are even then all the points in PB are in H ∪{1}.
2. i = j and a(1) and a(b) are odd then all the points in PB are in H ∪{0}.
3. i 6= j then j = i+1, a(1) is even, a(b) is odd and PB has b high priority points.

Proof. (Claim 1.) We use the main observation that the common point p of every two consecutive lids `a(l) and `a(l′) in
a block is either high priority which implies that there is a high priority segment that starts on the left of p and finishes
on the right of p, or a low priority point which implies that `a(l) and `a(l′) belong to two different components. In the
former case, the high priority segment must be covered by a lid not in the block. Observe that since B is a critical
block, Le f t(`a(1)) and Right(`a(b)) are in H∗.

From the construction of PB, it is not difficult to see that every two points in PB are at distance at least Λ2k and
|PB|= 1+b. We show each case separately.

1. Since all the lids in the block are maximal and in the same component, there must be a lid not in B in-
between every two consecutive lids in the block. That implies that a(1) and a(l) are even for all lids in
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B. Therefore, Le f t(B) is high priority since from Lemma 7, each component W→i has even number of lids.
Further, Right(B) ∈ H ∪{1} since B is a critical block.

2. Similar as before, since all the lids in the block are in the same component, there must be a lid not in B
in-between every two consecutive lids in the block. That implies that a(1) and a(l) and are odd for all lids in
B. Therefore, Right(B) is high priority since from Lemma 7, each component W→i has even number of lids.
Further, Le f t(B) ∈ H ∪{0} since B is a critical block.

W2W1 W3

`→1

`→2

`→3

`→4

`→5

`6

`7

`8

`9

`10

`11

`←12

`←13

`←14

Figure 4: Block B = {`6, `8, `10, `11}. (Vertical dashed lines represent high priority point and black square the chosen
of points.)

3. Since i 6= j, there must exist a lid `a(l) that is the right end lid of the component Wi. Therefore, a(l) is even
since from Lemma 7, W→i has even number of lids; Refer to Figure 4. In consequence a(1) is also even since
both are in W→i . Suppose that j > i+ 1. Therefore, the last lid in the block in the component W→i+1 is odd
since a(l)+1 is odd which contradicts that every component is even. Therefore, j = i+1. It is not difficult
to see that Right(`a(l)) = Le f t(`a(l)+1) is the unique low priority point.

Claim 2. We can select a set P−B that consists of b a(1)−1
2 c points at distance at least Λ2k from each other and from

every point in PB such that if a(1) is even, |P−B | points are high priority, otherwise |P−B |−1 points are high priority.

Proof. (Claim 2) We prove each case independently:

• a(1) is even: Let P−B = {p : Le f t(`→2l )∀l ∈ [1, a(1)−2
2 ]}. Clearly, |P−B | =

a(1)−2
2 = b a(1)−1

2 c. Since each com-
ponent is even, Le f t(`→2l ) covers a high priority point for each lid `→2l . Therefore, |P−B | points in P−B are high
priority. Further, they are at distance at least Λ2k from each other and from every point in PB; see Figure 5.

W2W1 W3

`→1

`→2

`→3

`→4

`→5

`6

`7

`8

`←9

`←10

`←11
`←12

`←13

`←14

Figure 5: Block B = {`6, `8}. (Vertical dashed lines represent high priority point and black square the chosen of
points.)

• a(1) is odd: Suppose that `→c is the leftmost lid in Wi. Since each component has even number of lids, c is
odd. Let

P−B =

{
p :

{
Le f t(`→2l ) ∀l ∈ [1, c−1

2 ] or
Le f t(`→2l−1) ∀l ∈ [ c+1

2 , a(1)−1
2 ]

}
Thus, the number of points is ( a(1)−1

2 − c+1
2 + 1)+ ( c−1

2 − 1+ 1) = a(1)−1
2 . Observe that only Le f t(`→c ) is

low priority since c is the leftmost lid in Wi. Therefore, |P−B |−1 points in P−B are high priority; see Figure 6.

Claim 3. We can select a set P+
B that consists of b 2k−a(b)

2 c points at distance at least Λ2k from each other and from
every point in PB such that if a(b) is even, |P−B |−1 points are high priority, otherwise |P−B | points are high priority.

Proof. (Claim 3) We prove each case independently:

10



Optimal Patrolling of High Priority Segments While
Visiting the Unit Interval with a Set of Mobile Robots A PREPRINT

W2W1 W3

`→1

`→2

`→3

`→4

`→5

`→6

`7

`8

`9

`←10

`←11
`←12

`←13

`←14

Figure 6: Block B = {`7, `9}. (Vertical dashed lines represent high priority point and black square the chosen of
points.)

• a(b) is even: Suppose that `←c is the right most lid in Wi. Since each set of consecutive lids is even, c is even.
Let

P+
B =

{
p :

{
Right(`←2l−1) ∀l ∈ [ c+2

2 ,k] or
Right(`←2l ) ∀l ∈ [ a(b)+2

2 , c
2 , ]

}
Thus, |P+

B | = (k− c+2
2 + 1)+ ( c

2 −
a(b)+2

2 + 1) = 2k−a(b)
2 ; see Figure 5. Observe that only Right(`←c ) is low

priority since c is the right most lid in Wi. Therefore, |P+
B |−1 points in P−B are high priority.

• a(b) is odd: Let P+
B = {p : Right(`←2l−1)∀l ∈ [ a(b)+3

2 ,k]}. Clearly, |P−B | = k− a(b)−3
2 + 1 = 2k−a(b)−1

2 ; see
Figure 6. Since Right(`←2l ) covers a high priority point for each lid `→2l+1, |P+

B | points in P+
B are high priority.

Further, they are at distance at least Λ2k from each other and from every point in PB.

Now we show that P = P−B ∪PB∪P+
B consists of k+1 points at distance at least Λ2k from each other where k are high

prioirity. From Claim 1, 2 and 3, |P|= (b a(1)−1
2 c)+(d a(b)−a(1)

2 e+2)+(b 2k−a(b)
2 c). We consider three cases:

• a(1) and a(b) are odd:
|P| = a(1)−1+a(b)−a(1)+4+2k−a(b)−1

2
= 2k+2

2
= k+1.

And the number of critical points are

|P−B |−1+ |PB|+ |P+
B |= k.

• a(1) and a(b) are even:
|P| = a(1)−2+a(b)−a(1)+4+2k−a(b)

2
= 2k+2

2
= k+1.

And the number of critical points are

|P−B |+ |PB|+ |P+
B |−1 = k.

• a(1) is even and a(b) is odd:
|P| = a(1)−2+a(b)−a(1)+1+4+2k−a(b)−1

2
= 2k+2

2
= k+1.

And the number of critical points are

|P−B |+ |PB|−1+ |P+
B |= k.

The theorem follows when Λ2k < λk−1 since we can select k+ 1 points at distance a least Λ2k such that k are high
priority.

Now we consider Λ2k ≥ λk−1. First, we show in the next claim that there exists a common critical block in the right
and left shifted single λk−1-lid cover.

Claim 4. W→
k−1 and W←

k−1 has a common maximal critical block.

11
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< 2λk−1 < 2λk−1 < 2λk−1< λk−1

`→2 = `←2 `←4`←3`→1

`5`2 `4`3

< λk−1

`1

Figure 7: Double strong λk−1-lid cover with 2k lids obtained when there is not a set of high priority points P such that
p j− p j−1 < 2λk−1, p1 < λk−1 and pk > 1−λk−1.

Proof. (Claim 4) Let B→ = {`→a(1), ..., `→a(b)} be the critical block in W→
k−1 and let B← = {`←a′(1), ..., `←a′(b′)} be the critical

block in W←
k−1. Suppose that B→ 6= B←. Thefore, there must exist a lid `←i such that Le f t(`←i ) ≤ Right(`→a(b)) <

Right(`←i ), otherwise B→ = B← since Right(`→a(b)) = Right(`←a′(b′)). Observe that Le f t(`→j ) ≥ Le f t(`←j ). Therefore,
λk−1 is not minimum since

{`→1 , ..., `→a(1), ..., `
→
a(b−1), `

←
i , ..., `←k−1}

has not critical block.

We prove by contradiction. Suppose that there are not k+ 1 points at distance at least λk−1 from each other where k
points are high priority. Let {`→a(1), ..., `→a(b)} = {`←a(1), ..., `←a(b)} be the critical block. First, we consider the set P of k
high priority points as follows:

p j =

{
Le f t(`→j ) if j ∈ [1,a(b)]
Right(`←j ) if j ∈ [a(b),k−1]

Observe that p j−1− p j ≥ λk−1. Therefore, if either p j−1− p j ≥ 2λk−1 or p1 ≥ λk−1 or pk ≤ 1−λk−1, then we can
select a point that is at distance at least λk−1 from every point in P. Let us assume that there does not exist any point
at distance at least λk−1 from every point in P.

Let `1 = [0,λk−1] and ` j = [L(`→j−1 \ ` j−1),L(`→j−1 \ ` j−1)+λk−1] for 1 < j ≤ a(1); see Figure 7. Suppose that there
exists j such that Right(` j) ≤ Le f t(`→j ). Let j < a(1) be the largest index such that Le f t(` j) is low priority point.
Consider the set of k+1 points as follows:

p′j =


Le f t(`→l ) if l ∈ [1, j−1]
Le f t(`l) if l ∈ [ j,a(b)]
Right(`←l ) if l ∈ [a(b),k−1]

Observe that p′j−1− p′j ≥ λk−1 and k are high priority (only Le f t(` j)) is a low priority points). Therefore, we can
assume that Right(` j)> Le f t(`→j ) for all j.

Let `k = [1− λk−1,1] and ` j = [R(`←j \ ` j+1),R(`→ j \ ` j+1)+ λk−1] for a(b) ≤ j < k. Similarly we can show that
Le f t(` j)> Right(`←j−1).

Thus, we can assume that Right(` j)< Le f t(`→j ) and Le f t(` j)> Right(`←j−1). Let,

S = {{`→l |l ≤ a(b)}∪{`←l |l ≥ a(1)}∪{`l |l ≤ a(1)}∪{`l |l > a(b)}}.
Observe that S is a valid strong double cover with a(b)+(k−1+a(1)+1)+a(1)+(k−a(b)) = 2k lids. Furthermore,
B is not longer a critical block since since R(`→l ) < Right(`→l ) and R(`l) < Right(`l) for l less or equal to a(1) as
well as L(`←l )> Le f t(`←l ) and L(`l)> Le f t(`l) for l ≥ a(b), which contradicts the fact that Λ2k ≥ λk−1. The theorem
follows.

6 Upper bound
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In this section, we provide upper bounds for the idle time. Given k robots, our approach considers a weak cover of H
with k−1 lids of length λk−1 as well as a strong double cover of H with 2k lids of length Λ2k. First, we show a simple
strategy that attains an idle time of 2λk−1 where we split the unit line into k−1 segments of equal length. Then, each
robot patrols a segment and one robot moves back and forth in the unit segment. The 2λk−1 idle time is attained when
all robots start synchronously on the leftmost point. Second, we provide a strategy that attains a 1.5 approximation of
the optimal idle time. We split the unit line into k segments of equal length. Then each robot patrols a segment. The
3Λk idle time is attained when all robots start synchronously on the leftmost point. Finally, we show a more complex
strategy that attains optimal idle time, i.e., 2Λ2k where robots are assigned to segments of different length.

Strategy 1. Let Wk−1 = {`1, `2, ..., `k−1}. Let robot ri move back and forth at maximum speed in lid `i and robot rk
move back and forth on the unique line segment. Refer to Figure 8.

`i`i−1 `i+1

Figure 8: Strategy 1.

Theorem 4. Strategy 1 attains idle time 2λk−1.

Proof. Observe that robot rk visits all C infinitely often. Further, the idle time of the high priority point in each lid is
bounded by two times the length of the lid, i.e., 2λk−1.

In the second strategy we consider the minimum strong double lid cover S2k = `1, `2, ..., `2k. We define a cap ci as the
union of two consecutive lids `2i−1, `2i, i.e., ci = {`2i−1, `2i} for all i ∈ [1,k].

Strategy 2. For each i let ci = {`2i−1, `2i} be the i-th cap, and let c∗ = maxi(len(ci)), where len(ci) is the length of
the i-th cap. For every cap ci, let xi be the center of ci. Place robot ri at xi + c∗/2 and let it move back and forth at
maximum speed in the segment [xi− c∗/2,xi + c∗/2]. Refer to Figure 9.

`2i
`2i−1

xi
`2(i−1)−1

`2(i−1)
`2(i+1)−1

`2(i+1)

xi−1 xi+1

c∗ c∗ c∗

Figure 9: Strategy 2.

Theorem 5. Strategy 2 attains idle time of at most 3Λ2k.

Proof. It is easy to see that the strategy 2 covers the unit interval since the strong double cover already covers it. Let
c j = {`2 j−1, `2 j} be any cap. First consider the high priority points in the intracap, i.e., H ∩ `2 j−1∩ `2 j. Observe that
r j visits Le f t(`2 j) after visiting x j + c∗/2.Therefore, the maximum idle time of Le f t(`2 j) is:

2(x j + c∗/2−Le f t(`2 j))≤ 2(x j + c∗/2− (x j−Λ2k/2))≤ 3Λ2k

since c∗ ≤ 2Λ2k. Similarly, r j visits Right(`2 j−1) after visiting x j − c ∗ /2.Therefore, the maximum idle time of
Right(`2 j−1) is

2(Right(`2 j−1)− (x j− c∗/2))≤ 2(x j +Λ2k/2− (x j− c∗/2)))≤ 3Λ2k.
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Now consider the high priority points in the intercaps, in other words the intersection of two lids of different caps.
Let ci = {`2i−1, `2i} and ci+1 = {`2i+1, `2(i+1)} be two consecutive caps. Consider any point p in H ∩ ci ∩ ci+1 =
H ∩ `2i ∩ `2i+1, and assume p ≥ x j (otherwise p would also in the intracap region `2i−1 ∩ `2i, and the previous case
applies). Both ri and ri+1 will visit p, as their paths span all ci and ci+1 (and possibly more). Observe that after ri
visits p, it will take at most c∗ time for ri+1 to reach p. Similarly, after ri+1 visits p, it will take at most c∗ time for ri
to reach p. The theorem follows since c∗ ≤ 2Λ2k.

From Theorems 4 and 5 we obtain a 1.5 approximation to the optimal idle time.

Corollary 1. I∗ ≤min(2λk−1,3Λ2k)≤ 3min(λk−1,Λ2k)
2 .

Proof. The corollary follows from Theorems 5 and 4

We improve the result of Corollary 1 with a more complex strategy where we also consider the minimum strong double
Λ2k-lid cover S2k = `1, `2, ..., `2k. In the third strategy, robots do not move synchronously. Instead, robots cover all the
odd lids, and eventually, they switch to the even lids one by one and return to the odd lids eventually. That process is
executed infinitely often.

We say that a lid with endpoints p and q (with either p < q or q < p) is periodically covered by a robot r if r is
returning to p having just traveled from p to q.

Strategy 3. Each robot first covers (travels back and forth) the odd lids until (at time t0) for each i the lid `2i−1 is
periodically covered by ri. Then, the first time after t0 that r1 turns right, r1 continues right to cover `2. Once `2 is
periodically covered and r2 turns right, r2 will continue to cover `4, and so on until all the even lids are periodically
covered. Then the process is reversed, with rk switching to covering the odd lid `2k−1, and so on until finally r1 switches
to cover `1, and we repeat. Refer to Figure 10.

`2i
`2i−1`2(i−1)−1

`2(i−1)
`2(i+1)−1

`2(i+1)

Figure 10: Strategy 3.

Theorem 6. Strategy 3 attains idle time 2Λ2k.

Proof. The first observation is that when all the robots are either covering the even or odd lids, all high priority points
are covered since each set of odd and even lids form a single Λ2k-lid cover. Indeed, if a high priority point p is
covered by only one set, say the odd lids, then two odd lids must cover p which would contradict the order of the lids.
Moreover, the idle time is bounded by 2Λ2k. We show by induction that the idle time of the high priority points does
not increase when the robots switch from odd to even. The case when the robots switch from even to odd is analogous
and left to the reader as an exercise. The inductive hypothesis is that the first i robots on the left are covering the even
lids, the k− i− 1 are covering the odd lids, and the idle time is bounded by 2Λ2k. For the base case, consider i = 1.
Since `1 does not intersect a lid on the left, when robot ri switches to `2, it can return to Le f t(`2) in time 2Λ2k. Assume
that the inductive hypothesis is true for some i−1 greater than one. Consider robot ri. Observe that the high priority
points in `2(i−1)∩ `2i−1 are being covered by robot ri−1 with idle time bounded by 2Λ2k. When robot ri switches to lid
`2i it returns to Le f t(`2i) in time 2Λ2k. Since the union of the odd and even lids covers C, the low priority points are
being visited infinitely often. The theorem follows.

From Theorems 4 and 6 we obtain an algorithm that attains optimal idle time.

Corollary 2. I∗ ≤ 2min(λk−1,Λ2k).

14



Optimal Patrolling of High Priority Segments While
Visiting the Unit Interval with a Set of Mobile Robots A PREPRINT

7 Computing Optimal Lid Covers

In this section, we show how to efficiently compute a strong double lid cover with 2k lids of minimum length and a
single lid cover with k− 1 lids of minimum length. We show that they can be computed in O(max(k,n) logn) time
where n is the number of high priority sections. A feasible solution is a solution where at least one block is critical.
First, we show that given a length l, we can determine in O(max(k,n)) time whether the unit segment accepts a strong
double cover and a single cover with 2k and k− 1 lids of length l, respectively. Then we obtain the lid length of a
feasible solution to find the optimal value using a binary search.

We store the high priority sections in an array H of dimension n where Hi = {le f t,right}, i.e., the initial point and
final point of the i-high priority section. The set of lids is store in the array L with the appropriate dimension where
Li = {le f t,right,h} such that Li.le f t and Li.right indicates the initial and final position of the i-lid and Li.h is the
index of the right most high priority section such that HLi.h.le f t ≤ right.

Given k and the lid length l, we can decide whether C accepts a strong double l-lid cover with k lids in time
O(max(k,n)).

Lemma 11. There exists an algorithm that decides if C accepts a right shifted strong double l-lid cover with k lids in
time O(max(k,n)) where n is the number of high priority sections.

Proof. For the proof, we consider two sentinel high priority sections H0 and Hn+1 where H0.le f t = H0.right = 0 and
Hn+1.le f t = Hn+1.right = 1. We also consider one sentinel lid L0 where L0.h = 0.

We prove by induction on i. The inductive hypothesis is that for every i ∈ [1,2k], the segments [0,Li−1.right],
[0,Li.right] are strong double covered and single covered with i lids (not necessarily disjoint), respectively and Li.h is
the index of the right most high priority section such that HLi.h.le f t ≤ Li.right. Consequently, HLi.h+1.le f t > Li.right.

Base step (i = 1): Let Li = {0, l,h} where h is the index of the high priority section such that Hh.le f t ≤ L1.right
and Hh+1.le f t > Li.right. Trivially, the segments [0,L0.right] and [0,L1.right] are double covered and single covered,
respectively.

Inductive step (i > 1): Assume that the inductive hypothesis is true for i− 1. Therefore, the segment [0,Li−2.right]
is double covered and the segment [0,Li−1.right] is single covered. Moreover, HLi−1.h.le f t ≤ Li−1.right and
HLi−1.h+1.le f t > Li−1.right.

Algorithm 1: Computes right shifted strong double l-lid cover with k ≥ 2 lids if C accepts it

1 Algorithm: DoubleLidCover
Input: H: The set of disjoint high priority segments
Input: k: The number of lids
Input: l: Lid length
Output: True: If C accepts a strong double l-lid cover
Output: L: The set of lids

2 L1 = {0, l,h : Hh.le f t ≤ l and Hh+1.le f t > l};
3 for i = 2→ k do
4 if HLi−2.h.right ≤ Li−2.right then
5 if HLi−1.h.le f t > Li−2.right then
6 le f t← HLi−1.h.le f t ;
7 else
8 le f t← Li−1.right ;
9 else

10 le f t← HLi−2.h.right;
11 Li = {le f t, le f t + l,h : Hh.le f t ≤ le f t + l and Hh+1.le f t > le f t + l};
12 return (Lk.right ≥ 1 and Lk−1.right ≥ Hn.right, L);

We consider two cases:

1. The rightmost point of HLi−2.h is at most Li−2.right, i.e., HLi−2.h.right ≤ Li−2.right. We consider two sub
cases.
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(a) Li−1 \ Li−2 contains high priority points, i.e., Li−2.right < HLi−1.h.le f t ≤ Li−1.right. Let le f t =
HLi−1.h.le f t.

(b) Li−1 \ Li−2 does not contain any one high priority point, i.e., HLi−1.h.le f t > Li−1.right. Let le f t =
Li−1.right.

2. The rightmost point of HLi−2.h is beyond Li−2.right, i.e., HLi−2.h.right > Li−2.right. Let le f t = Li−2.right.

Let Li = {le f t, le f t + l,h} where Hh.le f t ≤ Li.right and Hh+1.le f t > Li.right. The inductive hypothesis holds since
the segment [0,Li−1.right] is double cover and the segment [0,Li.right] is single covered.

C accepts a strong double l-lid cover if C is fully covered, i.e., Lk.right ≥ 1 and all the high priority segments are in
the segment [0,Lk−1.right], i.e., Hn.right ≤ Lk−1.right.

Regarding the time complexity, computing the index h for lid i takes O(Li.h−Li−1.h). Hence, computing h for all lids
takes O(n). Further, computing all lids takes time O(k). Therefore, the time complexity is O(max(n,k)).

The pseudo-code of Lemma 11 is presented in Algorithm 1 . Similarly, given k and the lid length we can decide
whether C accepts a single lid cover with k lids in time O(max(k,n)).
Lemma 12. There exists an algorithm that decides if C accepts a right shifted single l-lid cover with k lids in time
O(max(k,n)) where n is the number of high priority sections.

Proof. For the proof, we consider one sentinel high priority sections H0 where H0.le f t = H0.right = 0. We also
consider one sentinel lid L0 where L0.h= 0. The proof is constructive. Suppose that at step i, the segment [0,Li−1.right]
is being covered with i−1 lids of length l. Therefore, if

1. HLi−1.h.right > Li−1.right. Let Li.le f t = Li−1.right.
2. HLi−1.h.right ≤ Li−1.right. Let Li.le f t = H[HLi−1.h+1.le f t.

Clearly the segment [0,Li.right] is being covered with i lids. Inductively, the lemma follows.

C accepts a single l-lid cover if Hn.right ≤ Lk.right. Regarding the time complexity, observe that computing Li.h takes
at most O(Li.h−Li−1.h) time. Therefore, the time complexity is O(max(n,k)).

Algorithm 2: Computes right shifted single l-lid cover with k ≥ 1 lids if C accepts it

1 Algorithm: LidCover
Input: H: The set of disjoint high priority segments
Input: k: The number of lids
Input: l: Lid length
Output: True: If C accepts a single l-lid cover

2 for i = 1→ k do
3 if HLi−1.h.right > Li−1.right then
4 le f t← Li−1.right ;
5 else
6 le f t← HLi−1.h+1.le f t;
7 L1 = {le f t, le f t + l,h : Hh.le f t ≤ le f t + l and Hh+1.le f t > le f t + l};
8 return Hn.right ≤ Lk.right;

The proof and the pseudo-code (Algorithm 1). Recall that a block B is the set of lids {`a(1), `a(2), ..., `a(b)} such that
Right(`a(i)) = Le f t(`a(i+1)). We say that a (strong double) l-lid cover is feasible if there exists a block B such that
Le f t(B) and Right(B) are the endpoints of high priority sections. Next we show that if C admits a (strong double)
l-lid cover, then we can obtain in linear time a new lid length l′ ≤ l such that C admits a feasible (strong double) l′-lid
cover.
Lemma 13. Suppose C admits a strong double l-lid cover. There exists an algorithm that computes the lid length l′
such that C admits a feasible strong double l′-lid cover in O(n) time such that l′ ≤ l.

Proof. Let B be the set of the maximal blocks in a right shifted (strong double) l-lids cover. Let `i be the i-lid in the
block B and let

mB(`i) =

{
`i.right−H`i.h.right

i if `i.right ≥ H[`i.h].right
`i.right−H`i.h.le f t

i if `i.right < H[`i.h].right
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and let
m = min

(∀B∈B)
min

(∀`i∈B)
(mB(`i)).

Let l′ = l−m. Now we show that C accepts a strong double l′-lid cover with at least one feasible block. Let B ′ denote
the blocks with lid length l′. We assume that B and B ′ are sorted.

We show that for all B j ∈ B and B′j ∈ B ′ Le f t(B j) = Le f t(B′j) and for each lid `i ∈ B j such that

• `i.right ≥ H`i.h.right, we show that

H`i.h.right ≤ `′i.right = `i.right− im.

• `i.right < H`i.h.right, we show that

H`i.h.le f t ≤ `′i.right = `i.right− im.

We show for a block B j by induction on j. For the base case assume j = 1. Trivially, Le f t(B1) = Le f t(B′1) = 0. Let
`i ∈ B1 and `′i ∈ B′1.

If `i.right ≥ H`i.h.right, then `i.right− im≥ H`i.h.right since

m≤ `i.right−H`i.h.right
i

.

If `i.right < H`i.h.right then H`i.h.le f t ≤ `i.right− im since

m≤ `i.right−H`i.h.le f t
i

.

Assume that Le f t(B j−1) = Le f t(B′j−1) for some j > 1. Therefore, for each lid `i ∈ B j−1,

• if `i.right ≥ H`i.h.right,
H`i.h.right ≤ `′i.right = `i.right− im.

Therefore, Le f t(B j) = Le f t(B′j) = H`i.h+1.le f t and each Hl where l ≤ `i.h is double cover.
• if `i.right < H`i.h.right,

H`i.h.le f t ≤ `′i.right = `i.right− im.

Observe that R(B′j) = R(B j) since m≤ `l .right−H`l .h.right
i where `l ∈ B j is the rightmost lid.

Observe that at least one block is feasible. It is not difficult to see that the running time is linear on the number of lids
since the blocks are disjoint.

Algorithm 3: Given a set of maximal blocks of a strong double l-lid cover, it returns m where C accepts a feasible
strong double (l−m)-lid cover

1 Algorithm: FeasibleSolution
Input: B: The set of maximal blocks of a strong double l-lid cover
Output: m: such that C accepts a feasible strong double (l−m)-lid cover

2 m = ∞;
3 for B ∈ B do
4 for `i ∈ |B| do
5 if `i.right > H`i.h.right then
6 m = min(m,(`i.right−H`i.h.right)/i) ;
7 else
8 m = min(m,(`i.right−H`i.h.le f t)/i) ;
9 return m;

The pseudo-code is presented in Algorithm 3). The case of the single cover is analogous and is left to the reader as
an exercise. Given a strong double l-lid cover, we can obtain a feasible solution in linear time and use it in a binary
search to obtain an exact lid length in time O(n logn).
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Theorem 7. There exists an algorithm that finds the minimum length Λ2k such that C accepts a strong double Λ2k-lid
cover in O(max(n,k) logn) time.

Proof. Observe that 1/(2k) ≤ Λ2k ≤ 1/k since C. We use these values to perform a binary search. In other words,
Let upper = 1/k, lower = 1/(2k) and l = (upper+ lower)/2. If C does not admit a strong double l-lid cover (using
Lemma 11) then the solution is in the interval upper,mid. Otherwise, the solution is in mid, lower. Observe that after
enough number of rounds, the result is an approximation. To guarantee an exact solution, when C accepts a strong
double l-lid cover, we obtain l′ such that C accepts a feasible strong double l′-lid cover using Algorithm 3. To check
whether l′ is the optimal we check if C accepts a strong double (l′− ε)-lid cover and return l′ if C does not accept it.

For the time complexity, from Lemma 12, checking and computing the strong double lid cover takes linear time.
We can compute the maximal blocks greedily in linear time since they are mutually exclusive. Obtaining a feasible
solution also takes linear time from Lemma 13. The theorem follows since there are at most n2 critical blocks and
each step it reduces the critical blocks by half.

Algorithm 4: Computes the strong double Λ2k-lid cover
Input: H: The set of disjoint high priority segments
Input: k: The number of lids

1 upper = 1/k;
2 lower = 1/(2k);
3 while true do
4 l← (upper+ lower)/2;
5 Let L be the set of l lids in C;
6 if L strong double cover C then
7 Let B be the set of maximal blocks;
8 Compute l′ such that C accepts a feasible strong double l′-lid cover ;
9 upper← l′;

10 if C does not accept a feasible strong double (l′− ε)-lid cover then
11 return upper;
12 else
13 lower← l;
14 return l;

The pseudo-code is presented in Algorithm 4.

8 Conclusion

We study the problem of patrolling a unit line segment that consists of high priority segments that require the maximum
protection and low priority segments that require to be visited infinitely often. We provide lower and tight upper
bounds when k robots are available using the concept of strong double lid cover and single lid cover. We also provide
a O(max(n,k) logn) running time algorithm that finds the strong double lid cover and single lid cover with optimal lid
length. Future work includes different topologies such as trees and graphs as well as distributed online strategies 1.
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