
Global Stabilization for Causally Consistent Partial
Replication

Zhuolun Xiang
Department of Computer Science

University of Illinois at Urbana-Champaign
xiangzl@illinois.edu

Nitin H. Vaidya
Department of Computer Science

Georgetown University
nitin.vaidya@georgetown.edu

Abstract—Causally consistent distributed storage systems have
received significant attention recently due to the potential for
providing high throughput and causality guarantees. Global stabi-
lization is a technique established for achieving causal consistency
in distributed multi-version key-value store systems, adopted
by the previous work such as GentleRain [1] and Cure [2].
Intuitively, this approach serializes all updates by their physical
time and computes the “Global Stable Time” which is a time
point t such that versions with timestamp ≤ t can be returned
to the client without violating causality. However, all previous
designs with global stabilization assume full replication, where
each data center stores a full copy of data, and each client is
restricted to access servers within one data center. In this paper,
we propose a theoretical framework to support general partial
replication with causal consistency via global stabilization, where
each server can store an arbitrary subset of the data, and each
client is allowed to communicate with any subset of the servers
and migrate among them without extra delays. We propose
an algorithm that implements causal consistency for distributed
multi-version key-value stores with general partially replication.
We prove the optimality of the Global Stable Time computation
in our algorithm regarding the remote update visibility latency,
i.e. how fast update from a remote server is visible to the client,
under general partial replication. We also provide trade-offs
to further optimize the remote update visibility by introducing
extra delays during client’s migration. Simulation results on the
performance of our algorithm compared to the previous work
are also provided.

Index Terms—distributed shared memory, causal consistency,
partial replication, optimal

I. INTRODUCTION

The purpose of this paper is to propose global stabilization
for implementing causal consistency in a partially replicated
distributed storage system. Geo-replicated storage system
plays a vital role in many distributed systems, providing fault-
tolerance and low latency when accessing data. In general,
there are two types of replication methods, full replication
where the same set of data are replicated at each server or data
center, and partial replication where each server can store a
different subset of the data. As the amount of data stored grows
rapidly, partial replication is receiving an increasing attention
[3]–[8].

This research is supported in part by National Science Foundation award
1849599, and Toyota InfoTechnology Center. Any opinions, findings, and
conclusions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies or the U.S.
government.

To simplify the applications developed based on distributed
storage, many systems provide consistency guarantees when
clients access the data. Among various consistency models,
causal consistency has received significant attention recently,
for its emerging applications in social networks. To ensure
causal consistency, when a client can get a version of some
key, it must be able to get versions of other keys that are
causally preceding.

There have been numerous designs for causally consistent
distributed storage systems, especially in the context of full
replication. For instance, Lazy Replication [9] and SwiftCloud
[10] utilize vector timestamps as metadata for recording
and checking causal dependencies. COPS [11] and Bolt-on
CC [12] keep dependent updates explicitly to maintain the
causality. GentleRain [1] proposed the global stabilization
technique for achieving causal consistency, which trades off
throughput with data freshness. Eunomia [13] also uses global
stabilization but only within each data center, and serializes
updates between data centers in a total order that is consistent
with causality. Occult [14] moves the dependency checking to
the read operation issued by the client to prevent data centers
from cascading.

In terms of partial replication, there is some recent progress
as well. PRACTI [3] implements a protocol that sends updates
only to the servers that store the corresponding keys, but
the metadata is still sent to all servers. In contrast, our
algorithm only requires sending metadata to a necessary subset
of servers. Saturn [8] implements tree-based metadata dissem-
ination via a shared tree among the datacenters to provide
both high throughput and data visibility. All updates between
data centers are serialized and transmitted through the shared
tree. Our algorithm does not require to maintain such shared
tree topology for propagating metadata. Instead, our algorithm
allows updates and metadata from one server to be sent to
another server directly, without the extra cost of maintaining
a shared tree topology among the servers.

Most relevant to this paper is the global stabilization
techniques used in GentleRain [1]. Distributed systems often
require its components to exchange heartbeat messages period-
ically in order to achieve fault tolerance. In the design of Gen-
tleRain, each server is equipped with a loosely synchronized
physical clock for acquiring the physical time. When sending
heartbeats, the value of physical clock is piggybacked with

ar
X

iv
:1

80
3.

05
57

5v
3

 [
cs

.D
C

]
 6

 M
ay

 2
01

9

the message. Also, the timestamp for each update message
is the physical time when the update is issued, and all
updates are serialized in a total order by their timestamps.
The communication between any two servers is via a FIFO
channel, hence the timestamp received by one server from
another server is always monotonically increasing. Suppose
the latest timestamp server i receives from server j is t, then
any updates from j to i with timestamp ≤ t has already been
received by server i. Due to the total ordering of all updates by
their physical time, to achieve causal consistency, each server
i only need to calculate the time point T such that the latest
timestamp value received from any other server is no less than
T . This indicates that server i has received all updates with
timestamp ≤ T from other servers, and hence there will be no
causal dependency missing if server i returns versions with
timestamp ≤ T . We call such time point T as the Global
Stable Time or GST .

However, there are several constraints on the design of
GentleRain. In particular, (i) GentleRain applies to only full
replication, where each datacenter stores a full copy of all the
data (key-value pairs). Within a data center, the key space is
partitioned among the servers in that data center, and such
partition needs to be identical for every data center, (ii) each
client can only access servers within one data center. Under
these constraints, the global stabilization approach is simple
and straightforward.

In this paper, we develop a theoretical framework for
general partial replication via global stabilization where (i)
we allow arbitrary data replication across all the servers, and
(ii) each client can communicate with an arbitrary subset of
servers for accessing data, and migrate among the servers
without extra delays. As we will see in Section IV, the global
stabilization technique, which is relatively simple in the case
of full replication, becomes much more complicated under
general partial replication, due to the arbitrary data sharing
pattern and clients’ mobility. Finding the right way to compute
the optimal Global Stable Time for general partial replication
is the main challenge of this paper.

The contributions of this paper are the following:

1) We propose an algorithm that implements causal consis-
tency for general partially replicated distributed storage
system. The algorithm allows each server to store an
arbitrary subset of the data, and each client can commu-
nicate with an arbitrary subset of the servers and migrate
among them without extra delays.

2) We prove the optimality of the GST computation in our
algorithm regarding remote update visibility latency, i.e.,
how fast update from the remote server is visible to the
client, under general partial replication.

3) We also provide trade-offs to further optimize the remote
update visibility latency by introducing extra delays
during client’s migration.

4) We provide simulation results on the performance of
our algorithm comparing to the stabilization algorithm
of GentleRain.

II. SYSTEM MODEL

We consider a client-

Fig. 1: Illustration of the sys-
tem model

server architecture, as il-
lustrated in Figure 1. Let
there be n servers, S =
{1, · · · n}. Let there be m
clients, C = {1, · · · ,m}.
Each client c is restricted to
communicate with an arbi-
trary set of servers Sc, and
we will call Sc the server
set of client c. We assume
that client c can access all the keys stored at any server in
Sc. Let G be the set containing all clients’ server sets, i.e.
G = {Sc | ∀ client c}. Notice that the size of G is |G| ≤ 2n

where n is the total number of servers. We say a client migrates
from server i to server j, if the client issues some operation
to server i first, and then to server j.

The communication channel between servers is assumed to
be point-to-point, reliable and FIFO. Each server has multi-
version key-value storage locally, where a new version of
a key is created when a client writes a new value to that
key. Each version of a key also stores some metadata for the
purpose of maintaining causal consistency. Each server has a
physical clock (reflects the physical time in the real world)
that is loosely synchronized across all servers by some time
synchronization protocol such as NTP [15]. Each server will
periodically send heartbeat messages (denote as HB) with its
physical clock value to a selected subset of servers (the choice
of the subset is described later). The clock synchronization
precision may only affect the performance of our algorithm,
not the correctness.

To access the data, a client can issue GET(key) and
PUT(key, value) to a server. GET(key) will return to the client
with the value of the key as well as some metadata. PUT(key,
value) will create a new version of the key at the server,
and return to the client with some metadata. We call all PUT
operations to some server i as local PUT at i, and all other
PUT operations as non-local PUT with respect to i.
A. Model for General Partial Replication

We allow arbitrary replication of the keys among the
servers, i.e. each server can store an arbitrary subset of the
keys. Let Ki denote the set of keys stored at server i. Let
Kij = Ki ∩ Kj denote the set of keys shared by servers
i and j. For example, in Figure 2, let Ki = {k′, k, y, a},
K1 = {k′, x, b}, Kj = {v, d}, then Ki1 = {k′}, Kij = ∅.

In order to model the data partition, we define a share graph,
which was originally introduced by Hélary and Milani [4]. We
also define a augmented share graph that further captures how
clients access servers.

Definition 1 (Share Graph [4]). Share graph is an unweighted
undirected graph, defined as Gs = (V s, Es), where V s =
{1, 2, · · · , n}, where vertex i ∈ V s represents server i, and
there exists an undirected edge (i, j) ∈ Es if Kij 6= ∅.

The augmented share graph extends the share graph by
adding virtual edges between nodes i, j such that i, j ∈ Sc

for some client c.

Definition 2 (Augmented Share Graph [7]). Augmented share
graph is an unweighted undirected multi-graph, defined as
Ga = (V a, Ea). V a = {1, 2, · · · , n}, where vertex i ∈ V a

represents server i. There exists a real edge (i, j) ∈ Ea if
Kij 6= ∅, and there exists a virtual edge (i, j) ∈ Ea if there
exists some client c such that i, j ∈ Sc. Denote the set of real
edges in Ga as E1(Ga) and the set of virtual edges in Ga as
E2(Ga).

Example: Figure 2 shows an example of the augmented
share graph defined above. In the example, Ga consists 7
vertices h, i, j, 1, 2, 3, 4, and the common keys shared by any
two servers are labeled on each edge. There exists a client c
that can access h, i, j, thus vertices h, i, j are connected by
virtual edges.

For convenience, we as-

Fig. 2: Illustration of Ga

sume that both Gs and Ga

are connected. However, our
results can be easily ex-
tended to the case when the
graph is partitioned. We as-
sume the augmented share
graph is static for most
of the paper, and briefly discuss how our algorithm
may be adapted when there is data insertion/deletion or
adding/removing servers in Section IX-C.

B. Causal Consistency
Now we provide the formal definition of causal consistency.

Firstly, we define the happened-before relation for a pair of
operations.

Definition 3 (Happened-before [16]). Let e and f be two
operations (PUT or GET). e happens before f , denoted as
e → f , if and only if at least one of the following rules is
satisfied:

1) e and f are two operations by the same client, and e
happens earlier than f

2) e is a PUT(k, v) operation, f is a GET(k) operation and
GET(k) returns the value written by e

3) there is another operation g such that e→ g and g → f .

The above happens-before relation defines a standard causal
relationship between two operations. Recall that each client’s
PUT operation will create a new version of the key.

Definition 4 (Causal Dependency [17]). Let K be a version
of key k, and K ′ be a version of key k′. We say K causally
depends on K ′, and denote it as K dep K ′ if and only if
PUT(k′,K ′) → PUT(k,K). We use ¬(K dep K ′) to denote
that K does not causally depend on K ′.

Now we define the meaning of visibility for a client.

Definition 5 (Visibility [17]). A version K of key k is visible
to a client c, if and only if GET (k) issued by client c to any

server in Sc returns a version K ′ such that K ′ = K or ¬(K
dep K ′). We say K is visible to a client c from a server i if
the version K is returned from server i.

We say a client c can access a key k if the client can issue
PUT and GET operations to a server that stores k. Causal
consistency is defined based on the visibility of versions to
the clients as follows.

Definition 6 (Causal Consistency [17]). The key-value storage
is causally consistent if both of the following conditions are
satisfied.
• Let k and k′ be any two keys in the store. Let K be a

version of key k, and K ′ be a version of key k′ such that
K dep K ′. For any client c that can access both k and
k′, when K is read by client c, K ′ is visible to c.

• Version K of a key k is visible to a client c after c
completes PUT(k,K) operation.

In Section III, we will first present the structure of the
algorithm for both clients and servers. Then in Section IV,
we complete the algorithm by specifying the definition of
the Heartbeat Summary (HS) and Global Stable Time (GST)
used for maintaining causal consistency. We also prove in
Section VI the optimality of our algorithm regarding remote
update visibility latency, i.e., how fast update is visible to
clients at remote servers, under general partial replication.
By introducing extra delays during client’s migration, we
present algorithms in Section VII that can provide a trade-off
between the visibility latency and client migration latencies.
The evaluation of our algorithm is provided in Section VIII.
More discussions can be found in Section IX.

III. ALGORITHM

In this section, we propose the algorithms for the client
(Algorithm 1) and the server (Algorithm 2). The algorithm
structure is inspired by GentleRain [1] and designed for
general partial replication. The main idea of our algorithm
is to serialize all PUT operations and resulting versions by
their physical clock time (which is a scalar). For all causally
dependent versions, our algorithm guarantees that the total
order established by their timestamps is consistent with their
causal relation, i.e., if K dep K ′ then K’s timestamp is strictly
larger than K ′’s timestamp. Such ordering simplifies causality
checking since now each server can learn that up to which
physical time point it has received updates from other servers
when assuming FIFO channels between all servers. When a
server returns a version K of key k to a client, the server
needs to guarantee that all causally dependent versions of K
are already visible to the client. How to decide the version of
the key to returning is the main challenge of our algorithm,
as represented by computing and using Global Stable Time
(GST) in the algorithm below and Section IV. While GST
is relatively easy to compute for full replication as in Gen-
tleRain, we will show that general partial replication makes
the computation of optimal GST much more complicated.

When presenting our algorithm in this section, we left the
Global Stable Time (GST) and Heartbeat Summary (HS)

undefined, and the definitions are provided later in Section
IV. Intuitively, GST defines a time point, and the versions
no later than this time point can be returned to the client
while satisfying causal consistency. HS is a component for
computing GST . We prove the correctness of our algorithm
in Section V. We also prove in Section VI that our definition of
GST is optimal regarding the remote update visibility latency,
i.e., how fast a version of a remote update is visible to the
client. In Table I below, we provide a summary of the symbols
used in our algorithm. Recall that Sc is the set of servers that
client c can access, and G = {Sc | ∀ client c}.

Symbols Explanations
ut update time, scalar
K version of some key k with value v, tuple < k, v, ut >
GTc metadata stored at client c for get dependencies, scalar
PTc metadata stored at client c for put dependencies, scalar
HSc Heartbeat Summary stored at client c, vector of size |Sc|
HSi(g) Heartbeat Summary for server set g ∈ G at server i, scalar
GST Global Stable Time, scalar
g server set that g ∈ G
Ns

i set of neighbors of server i in the share graph excluding i
HBji heartbeat value from server j to server i
Clocki physical clock at server i
Oi set of servers that server i needs to send heartbeat to

TABLE I: Explanations of symbols

Algorithm 1 is the client’s algorithm. Each client is re-
stricted to issue GET and PUT operations to the servers in
Sc. Each client will store a put dependency clock PTc (which
is a scalar) for PUT operations, a get dependency clock GTc
(scalar) for GET operations, and a vector HSc of length |Sc|
for remote dependencies. All these parameters will be specified
in Section IV. When issuing operations, the client will attach
its clocks with the operation, as in lines 3, 9 in Algorithm
1. When receiving the result from the server, the client will
update its clocks as in lines 5, 6, 11 in Algorithm 1.

Algorithm 1 Client operations at client c.

1: GET(key k) from server i
2: compute rd(c, i) = minj∈Sc,j 6=iHSc[j]
3: send 〈GETREQ k, PTc, rd(c, i), Sc〉 to server i
4: receive 〈GETREPLY v, t, {hsj | j ∈ Sc, j 6= i}〉 from

server i
5: GTc ← max(GTc, t)
6: HSc[j]← max(HSc[j], hsj) for all j ∈ Sc, j 6= i
7: return v

8: PUT(key k, value v) to server i
9: send 〈PUTREQ k, v,max(PTc, GTc)〉 to server i

10: receive 〈PUTREPLY t〉
11: PTc ← max(PTc, t)

Algorithm 2 below is inspired by the algorithm in [1], with
several important differences: (1) The Global Stable Time
computation is different and more complicated due to the
general partial replication, as will be specified in Section IV.
(2) The heartbeat/HS exchange procedures are different (lines

Algorithm 2 Server operations at server i

1: upon receive 〈GETREQ k, t, rd, g〉 from client c
2: // The computation of GST is provided in Section IV
3: if k shared by j ∈ g ∩Ns

i then
4: wait until GST ≥ t
5: obtain the latest version K of key k with largest

timestamps from local storage s.t. K.ut ≤ GST or K
is due to a local PUT operation at server i

6: send 〈GETREPLY K.v,K.ut, {HSj(g) | j ∈ g, j 6= i}〉
to client c

7: upon receive 〈PUTREQ k, v, t〉 from client c
8: wait until t < Clocki
9: create new version K

10: K.k ← k, K.v ← v, K.ut← Clocki
11: insert K to local storage
12: for each server j that stores key k do
13: send 〈UPDATE uK = K〉 to j
14: send 〈PUTREPLY K.ut〉 to client c

15: upon receive 〈UPDATE u〉 from j
16: insert u to local storage
17: HBji ← u.ut

18: upon every ∆ time
19: for each server j ∈ Oi do
20: send 〈HEARTBEAT Clocki〉 to j

21: upon receive 〈HEARTBEAT hb〉 from j
22: HBji ← hb

23: upon every θ time
24: compute HSi(g) for every g ∈ G such that i ∈ g
25: for each server j ∈ g do
26: send 〈HEARTBEAT SUMMARY HSi(g), g〉 to j

27: upon receive 〈HEARTBEAT SUMMARY hs, g〉 from j
28: HSj(g)← hs

19 − 20, 25 − 26 in Algorithm 2). (3) The client will keep
slightly more metadata locally, such as a vector of length |Sc|.
(4) There may be blocking for the GET operation of the client
as in lines 3, 4 of Algorithm 2. Such blocking is necessary for
satisfying the second condition of causal consistency as in
Definition 6, i.e., the version of client’s own PUT is always
visible to the client.

The intuition of the algorithm is straightforward. When
handling GET operations, the server will first check if the
client may have issued a PUT at other servers on some key
that it also stores, and make sure such version is visible to
the client (lines 3, 4). Then the server will return the latest
version of the key that satisfies causal consistency (line 5). The
computation of Global Stable Time (GST) is designed for this

purpose, as will be specified in Section IV. When handling
PUT operations, the server will first wait until its physical
clock exceeds the client’s causal dependencies (line 8). Then
the server performs a put locally (lines 9, 10, 11), sends the
update to other servers that stores the same key (lines 12, 13),
and replies to the client (line 14).

Lines 15 − 17 is for receiving updates from other servers.
Rest of the algorithm (lines 18− 28) specifies how heartbeats
and HSs are exchanged among the servers.

IV. COMPUTING GLOBAL STABLE TIME

In this section, we complete the algorithm by defining heart-
beat exchange procedure and Global Stable Time computation.
We will specify for each server the set of destination servers
its heartbeat/HS messages need to be sent to and how to
compute GST from received messages. The Global Stable
Time is a function of the augmented share graph defined in
Section II. As we will see in this section and Section VI, the
computation of the optimal GST is much more complicated
than GentleRain due to general partial replication.

A. Server Side: GST Computation and Heartbeat Exchange

Let HBxy denote the clock value attached with the heartbeat
message sent from server x to y. We will later use the term
heartbeat value, heartbeat message or heartbeat to refer HBxy .
Basically, the Global Stable Time (GST) in our Algorithm 2
computes a time point that is “safe” for returning versions
whose timestamps are no larger than this time point. More
specifically, GST is computed as the minimum of a set of
heartbeat values, which is the time point that all the causal
dependencies have been received at corresponding servers. In
this section, we provide the computation of GST .

We say a cycle or path is simple if it has no vertex repetition.
We define the length of a cycle to be the number of nodes in
the cycle. Nodes a, b with both a real edge and a virtual edge
between a, b is considered a valid simple cycle of length 2.
We will use (a, b) to denote the directed edge from node a to
b. We will next define two sets Li(k) and Ri(g) each contains
a set of directed edges.

Define set Li(k) with respect to server i and a key k ∈ Ki as
follows. For every simple cycle (i, v1, · · · , vm, i) of length≥ 2
in Ga such that m ≥ 1, k ∈ Kv1i, we have (v1, i) ∈ Li(k),
and if (vm, i) is a real edge, we also have (vm, i) ∈ Li(k).
For instance, in Figure 3, Li(k) = {(1, i), (2, i)}. Intuitively,
if (v, i) ∈ Li(k), then server v may send updates to i that are
causal dependencies of key k’s version. For example, there
can be updates uK′ → uX → uK , as shown in Figure 3.

Recall that G is the set of all clients’ server sets, i.e. G =
{Sc | ∀ client c}, and |G| ≤ 2n where n is the total number
of servers.

Define set Ri(g) with respect to server i ∈ g and g ∈ G as
follows. For every simple path (v1, · · · , vm) in Ga such that
v1, vm ∈ g, m ≥ 2, we have (v2, v1) ∈ Ri(g) if v1 6= i and
(v2, v1) is a real edge. For instance, in Figure 3, let g = Sc =
{h, i, j}, then Ri(g) = {(3, h), (4, h), (4, j)}. Intuitively, if
(a, b) ∈ Ri(g), then server a may send updates to b that are

causal dependencies of key k’s version. For example in Figure
3, there can be updates uV → uW , and then some client c′

reads version W from server h and puts a new version K of
key k to server i, leading to K dep V .

As mentioned,

Fig. 3: Intuition for set Li(k), Ri(g)

set Li(k) ∪ Ri(g)
contains directed
edges along which the
causal dependencies
of key k’s version
may be sent, and
these dependencies
can be read by client
c whose server set
is Sc = g. The computation of GST involves all heartbeat
values in the set

{HBxy | (x, y) ∈ Li(k) ∪Ri(g)}

To be more specific, the following two values need to be
computed for GST :

LDi(k) = min
(v,i)∈Li(k)

(HBvi), RDi(g) = min
(x,y)∈Ri(g)

(HBxy)

which stands for local dependencies (LD) and remote de-
pendencies (RD) respectively. The intuition for LDi(k) is to
compute the time point up to which server i has received all
causally dependent updates of key k’s version. For example
in Figure 3, suppose uK′ .ut = 0, uX .ut = ε and uK .ut = 2ε
where ε is some small number. Our algorithm guarantees that if
updates u→ v, then u.ut < v.ut as will be shown in the next
section. Recall that servers communicate via FIFO channels,
once server i has received HB1i ≥ 2ε and HB2i ≥ 2ε, it
has received all the causal dependencies of version K from its
neighbors in the augmented share graph. Therefore for version
K or similarly other versions of k with timestamp ≤ LDi(k),
server i has received the causal dependencies of those versions
from its neighbors. The intuition for Ri(g) is similar, which
computes the time point when all servers in the server set g
have received all the causal dependencies of key k’s version.
More details can be found in the correctness proof of our
algorithm in the next section.

Heartbeat and HS exchange.
In order to compute LDi(k), server i needs to know the

set of heartbeat values HBvi for all pairs (v, i) ∈ Li(k).
Therefore,

• For ∀v such that (v, i) ∈ Li(k), v will send heartbeat
messages to i.

In order to compute RDi(g), server i ∈ g needs to know
the value of min(v,j)∈Ri(g)HBvj for each server j such that
∃(v, j) ∈ Ri(g). Therefore,

• For ∀v, j such that (v, j) ∈ Ri(g), v will send heartbeat
messages to j. Notice that j 6= i by the definition of
Ri(g).

• For each server j above, j will periodically send to i a
summary of heartbeats (denoted as Heartbeat Summary
or HS) it received, as

HSi
j(g) = min

(v,j)∈Ri(g)
(HBvj)

Note that if (v, j) ∈ Ri(g) then j ∈ g. Also notice that for
∀i, i′ ∈ g and j 6= i, i′, by definition HSi

j(g) = HSi′

j (g),
since the set {(v, j) ∈ Ri(g)} = {(v, j) ∈ Ri′(g)}. We
will denote HSj(g) = HSi

j(g) for brevity.
Then RDi(g) = minj∈g,j 6=i(HSj(g)) by the definition of HS
above. The target server set Oi that server i needs to send
heartbeats to can be written as Oi = {j|(i, j) ∈ Lj(k), k ∈
Kj} ∪ {j|(i, j) ∈ Rz(g), z ∈ S, g ∈ G}.

Finally, the computation of GST used in our Algorithm also
depends on the client’s dependency clock rd. Intuitively, due
to the delay of communication between servers, the values of
HSs may be different at different servers in g. For instance,
server i may receive HSj(g) = 10 from server j at time t, but
server i′ may only receive an old message HSj(g) = 5 at t
due to network delay. To avoid such inconsistency, the client
c accessing server set g will keep the value of the largest
HSj(g) it has seen so far for ∀j ∈ g, denoted as HSc[j]. And
the client’s dependency clock rd(c, i) is defined as

rd(c, i) = min
j∈Sc,j 6=i

HSc[j]

Since client’s dependency clock rd(c, i) (or rd) reflects latest
remote dependencies that have been observed by the client,
when computing GST , the larger value between RDi(g) and
rd should be considered for remote dependencies. Therefore,
the computation of GST can be written as

GST = min (LDi(k),max(RDi(g), rd))

B. Client Side

Each client maintains a vector of size |g| = |Sc| for HS
values as mentioned above. Also, the client will keep two
scalars GTc and PTc as the dependency clock for GET and
PUT dependencies respectively.

V. CORRECTNESS OF ALGORITHM 1 AND 2

In this section, we prove that our Algorithm 1 and 2
implement causal consistency by Definition 6.

Lemma 1. Suppose that PUT(k′,K ′)→ PUT(k,K), and thus
K dep K ′. Let uK′ , uK denote the corresponding updates of
PUT(k′,K ′) and PUT(k,K), and let uK′ .ut, uK .ut denote
their timestamps. Then uK′ .ut < uK .ut, and K ′.ut < K.ut.

Proof. The proof is provided in Appendix A.

Lemma 2. Suppose at some real time t, a version K of key k
is read by client c from server i. Consider any server i′ ∈ Sc

and version K ′ of key k′ ∈ Ki′ such that K ′ is due to a PUT
at some server other than i′, and K dep K ′. Then at time t,
(i) K ′ has been received by server i′, (ii) the version K ′ is
visible to client c from server i′.

Proof. The proof is provided in Appendix B.

Theorem 1. The key-value storage is causally consistent.

Proof. The proof is provided in Appendix C.

VI. OPTIMALITY OF THE ALGORITHM

In this section, we prove that the GST computed by our
algorithm is optimal for general partial replication regarding
remote update visibility latency, which is defined as the period
from when a remote update is received by the server to when
the remote update is visible to the client. Recall that in general
partial replication, clients are allowed to migrate among the
servers freely without extra delays, and our GST is optimal for
this case. Later in Section VII, we show that if extra delays
can be introduced during the client’s migration, the remote
update visibility latency can be further reduced. To show the
optimality for general partial replication, we show that at line 5
of Algorithm 2, returning any version with a timestamp larger
than our GST value may violate causal consistency, indicating
our definition of GST is optimal regarding remote update
visibility latency. Formally, we have the following theorem.

Theorem 2. Consider Algorithm 1 and 4 for general partial
replication. If any version K with K.ut > GST is returned to
client c from server i as a result of its GET (k) operation, the
causal consistency may be violated. More specifically, there
may exists a version K ′ of some key k′ such that K dep K ′
and client c can access key k′, but version K ′ is not visible
to client c.

Proof. The proof is provided in Appendix D.

VII. OPTIMIZATION FOR BETTER VISIBILITY

Previously in Section III and IV, we allow each client to
migrate among the servers in Sc without extra delays. In
reality, the frequency of such migration may be low, i.e. a
client is likely to communicate with a single server for a
long period before changing to another one. If such migration
among different servers occurs infrequently, it is reasonable
to introduce extra delays during the migration, in exchange
for better remote update visibility latency when clients issue
GET operations. In fact, some system designs already observed
such trade-off, such as Saturn [8]. However, Saturn’s solution
requires to maintain an extra shared tree topology among all
the servers, and is quite different from our global stabilization
approach. In Section VII-A below, we demonstrate how to
design the algorithm to achieve better remote update visibility
latency as the discussion above. Then in Section VII-B, we
generalize the above idea from a single server to a group of
servers.

A. One Server as a Group

We will use the same notation from Section III and IV.
Recall that the Global Stable Time GST , computed for the
client c accessing server i for the value of key k, is the mini-
mum of a set of heartbeat clock values, reflecting all possible

local dependencies and remote dependencies. Essentially, the
reason for taking remote heartbeat values received by servers
other than i is to ensure that the client can migrate freely
among the servers in its server set Sc. During the client’s
migration to another server, there is no extra delay since all
causal dependencies are guaranteed to be visible to the client
as proven in Lemma 2. One natural idea is that, if the client
can wait for a certain period during its migration to ensure
that the client’s causal dependencies are visible from the target
server, then the GST computation does not need to include
the remote heartbeat values necessarily. To be more specific,
the Global Stable Time simply becomes

GST = LDi(k) = min
(v,i)∈Li(k)

(HBvi)

which only reflects the causal dependencies locally.
When a client migrates to another server, it needs to execute

operation MIGRATE as shown in Algorithm 3. Basically,
the client will send its dependencies clock max(PTc, GTc)
to the new target server for migration. For the target server, it
needs to ensure the local storage has already included all the
versions in the client’s causal dependencies before returning
an acknowledgment. Specifically, the server needs to wait until
mink∈Ki

(LDi(k)) is no less than the client’s dependency
clock, as shown in line 13 of Algorithm 3.

Algorithm 3 One Server as a Group

1: // Client operations at client c
2: MIGRATE to server i
3: send 〈MIGRATE max(PTc, GTc)〉 to server i
4: wait for 〈REPLY〉
5: return

6: // Server operations at server i
7: upon receive 〈MIGRATE t〉 from client c
8: wait until t ≤ mink∈Ki

(LDi(k))
9: send 〈REPLY〉 to client

Also, there is no exchange of Heartbeat Summary among the
servers, since now the computation of GST does not depen-
dent on the remote heartbeat values. This implies significant
savings in bandwidth usage as the number of servers increases.

Another advantage of Algorithm 3 is to decrease the visibil-
ity latency. As mentioned, the GST is now equal to LDi(k),
which is very likely to be larger than the original GST, because
the original GST also takes the remote heartbeat values for
computation. Therefore the version returned is likely to have
larger timestamps and thus fresher compared to Algorithm 2.
Although there are extra delays incurred during the client’s
migration procedure as in line 13 of Algorithm 3, the penalty
caused by migration delays is small if the frequency of
migration is low.

B. Multiple Servers as a Group

In the basic case, we consider a single server as a “group”,
and introduce extra delays when clients migrate from one

group to another. In general, a client may frequently access
some subset of servers for some time, and then migrate to
another subset of servers for frequent accessing. For instance,
each subset may be a data center that consists of several
servers, and each client usually accesses only one datacenter
for PUT/GET operations. In this case, each “group” that the
client will access contains a subset of servers.

Algorithm 4 Multiple Servers as a Group

1: // Client operations at client c
2: MIGRATE to another group g′

3: send 〈MIGRATE max(PTc, GTc), g
′〉 to some server

i ∈ g′
4: receive 〈REPLY {hsj}〉 from server i
5: HSc[j]← max(HSc[j], hsj) for all j ∈ g′
6: return

7: GET(key k) from server i ∈ g
8: compute rd = minj∈g,j 6=iHSc[j]
9: send 〈GETREQ k, PTc, rd, g〉 to server i

10: receive 〈GETREPLY v, t, {hsj}〉 from server i
11: GTc ← max(GTc, t)
12: HSc[j]← max(HSc[j], hsj) for all j ∈ g
13: return v

14: // Server operations at server i
15: upon receive 〈MIGRATE t, g〉 from client c
16: wait until t ≤ min(mink∈Ki

(LDi(k)), RDi(g))
17: send 〈REPLY {HSj(g) | j ∈ g}〉 to client

18: upon receive 〈GETREQ k, t, rd, g〉 from client c
19: // GST = min(LDi(k),max(RDi(g), rd))
20: if k shared by j ∈ g ∩Ns

i then
21: wait until t ≤ GST
22: obtain latest version K of key k with largest timestamps

from local storage s.t. K.ut ≤ GST or K is due to a local
PUT operation at server i

23: send 〈GETREPLY K.v,K.ut, {HSj(g) | j ∈ g}〉 to
client

Thus, we can design an algorithm where the client can
migrate among the servers within a group without extra delays,
and need to wait extra time when migrating across different
groups, as presented in Algorithm 4. We only show the
different parts compared to the algorithm in Section III here
for brevity.

We will use the same notation from Section III and IV.
The augmented share graph in this section contains virtual
edges connecting all servers accessible by one client, including
servers within the same group and across groups. Then, when
a client is accessing group g, and issues GET operation to
server i, the Global Stable Time is computed as

GST = min(LDi(k),max(RDi(g), rd))

where rd = minj∈g,j 6=iHSc[j], HSc is the vector of Heart-
beat Summarys stored at client c. Note for the case g = {i},
by definition GST = LDi(k) since Ri(g) = ∅.

When the client migrates to another group g′, extra delay
will be enforced. In particular, the server i′ in group g′ needs
to wait until min(mink∈Ki′ (LDi′(k)), RDi′(g)) ≥ t, where
t is the dependency clock of the client. The extra delay here
ensures that all client’s causal dependencies has been received
by the servers in the group g′, and visible to the client.

Notice that the algorithm in Section III and Algorithm 3 are
both special cases of Algorithm 4, where group g equals Sc

and some single server i respectively.

VIII. SIMULATION RESULTS

In this section, we evaluate the heartbeat message overhead
and the remote update visibility latency (or visibility latency
in short) of our algorithm comparing to the global stabilization
algorithm of GentleRain (or GentleRain in short) [1]. Some
simulation results are deferred to the Appendix E due to lack
of space. The remote update visibility latency is defined as the
period from when a remote update is received by the server
to when this remote update is visible to the client.

Recall in Section VI, we have proved that our GST com-
putation is optimal in terms of remote update visibility latency
for general partial replication. To give some insights on how
well our algorithm performs, we provide simulation results on
remote update visibility latency under various settings.

A. Simulation Setup

For evaluation purpose, we implement and evaluate the
global stabilization layer as described in our algorithm from
Section III. We simulate servers by running multiple server
processes within a single machine, and control network
latencies by manually adding extra delays to all network
packages. Each server process will execute multiple threads
concurrently, including i) one thread that periodically sends
heartbeat messages to target server processes according to
the heartbeat frequency ii) one thread that periodically sends
update messages (due to PUT operations) to target nodes
according to the update throughput iii) one thread that listens
and receives messages from other nodes and iv) one thread that
periodically computes GST and checks which remote updates
are visible. We use synthetic workloads for the simulation.
The machine used in this experiment runs Ubuntu 16.04 with
8-core CPU of 3.4GHZ, 16 GB memory and 128GB SSD
storage. The program is written in Golang, and uses standard
TCP socket communication for exchanging messages.

We evaluate our algorithm for a family of share graphs for
the ease of comprehension. The graphs used are ring graphs
of size n, with each node to be both a client and a server.
The client of one node will only access the server of that
node. This family of share graph can represent simple robotic
networks in practice – each node is a robot that stores key-
value pairs depending on its physical location, and only share
keys with its neighbors. In order to achieve causal consistency,
by our algorithm, each node will send heartbeat messages to

only its neighbors, and GST is computed as the minimum
of the heartbeat values received from its neighbors. As for
the global stabilization algorithm in GentleRain, they cannot
handle partial replication directly. Therefore we pretend the
system to be fully replicated so that GentleRain can achieve
causal consistency correctly. Then, in GentleRain, the GST
for each node is computed as the minimum of heartbeat values
from all nodes in the ring. Hence intuitively, GentleRain will
have a smaller GST value comparing to our algorithm because
its GST is computed as the minimum of a larger set of
heartbeat values. This implies that only older versions can be
visible to the client comparing to our algorithm, which leads
to higher remote update visibility latencies. Also, the heartbeat
message overhead should be larger in GentleRain.

In each experiment, we repeat the measurement 3 times and
take the average as a data point. Each experiment will vary one
or two parameters while keeping other parameters constant.
The default parameters for all experiments are listed below:
stabilization frequency = 1000/ sec, heartbeat frequency =
10/ sec, network delay = 0ms or 100ms, ring size = 10, update
throughput = 5k/ sec and clock skew = 0ms.

B. Simulation Results and Observations

Message Overhead: We first measure the overhead of
heartbeat messages in our algorithm and GentleRain, as a
function of the ring size. Here the heartbeat frequency is set
to be 50/ sec. The overhead presented below is computed as
the average overhead over all the servers. As we can see
from Figure 4, the message cost is almost constant in our
algorithm, while the cost increases dramatically in GentleRain.
It is because our algorithm only requires each server to receive
heartbeat messages from a small set of servers (neighbors
in the ring) in order to achieve causal consistency, while
GentleRain needs heartbeat messages from all other servers.

Next, we measure the

Fig. 4: Different Network De-
lays

visibility latency of our al-
gorithm and GentleRain,
under the influence of sev-
eral parameters including
heartbeat frequency, sta-
bilization frequency, clock
skew, update throughput,
ring size and network de-
lay (the last three are pre-
sented in Appendix E due to lack of space). The visibility
latency presented in this section is computed as the average
latencies over all the updates from all servers.

Stabilization Frequencies and Heartbeat Frequencies:
In this section, we set both stabilization frequencies and
heartbeat frequencies to be variables. The network delay is
set to be 100ms in this experiment.

From Table II we can observe that there are significant
improvements on latencies by our algorithm comparing to
GentleRain in the simulation. Here are some observations:
• For both algorithms, the visibility latency decreases sig-

nificantly with higher stabilization frequencies, except

PPPPPPHB fq.
Stab fq. 1 10 100 500 1000

Ours

1 508.09 54.87 10.44 5.69 4.87
10 505.92 55.53 9.37 5.88 4.76
50 505.33 54.52 10.02 5.47 6.21

100 506.51 54.13 9.22 5.09 4.75
200 505.77 53.28 8.47 4.64 3.97

GR

1 1468.42 778.51 729.88 715.95 720.42
10 578.99 127.41 79.89 79.82 77.02
50 515.96 64.95 22.63 18.23 15.71

100 690.01 214.11 258.27 276.5 292.56
200 2973.86 3612.18 2736.22 2737.07 3685.53

TABLE II: Different Stabilization/Heartbeat Frequency

the case when the heartbeat frequency is too high in
GentleRain. In the latter case, the machine is already
overwhelmed by heartbeat message, so increasing stabi-
lization frequency actually damages the performance.

• The heartbeat frequency does not influence the visibility
latency of our algorithm much, since update messages at
a frequency about 5k/ sec also carries clock values, and
GST computation can proceed with such clock values.
However, this is not the case for GentleRain, since each
node needs to receive clocks from all other nodes, but
the update messages each node receives only come from
its neighbors. Then low heartbeat frequencies will delay
the GST computation and thus increase the visibility
latencies of GentleRain. Therefore, the visibility latencies
improve with higher heartbeat frequencies in GentleRain,
until the number of heartbeat messages is too large for
the simulation. Our algorithm does not suffer from such
a problem since the heartbeat messages in our algorithm
will only be sent to a small set of nodes.
Clock Skew: To evaluate the influence of clock skew on

the visibility latency, we manually add clock skews between
any pair of neighbors in the ring. Label the nodes in the ring
with id 0, 1, · · · , n − 1 where n is the ring size. For a skew
value t, we add clock skew (i · t)/(n− 1) to node i. We vary
the skew value from 0ms to 100ms, and plot the visibility
latency change in Figure 5 below.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Fig. 5: Different Clock Skew

As we can observe from Figures 5a and 5b, the remote
update visibility latencies increase with the clock skew in both
cases. This is predictable since the latency is determined by the
minimum clock value received by the server, which is affected
by the clock skew between servers. Also, our algorithm per-
forms significantly better than GentleRain regarding visibility
latency under various clock skews in the simulation.

More simulation results can be found in Appendix E.

IX. DISCUSSIONS AND EXTENSIONS

A. Fault Tolerance

In this section, we discuss how various failures such as
server failure, network failure or network partitioning may
affect our algorithm. Our discussion is analogous to the one
in GentleRain [1], and can be applied to other stabilization
based algorithms as well.

The main observation is that our stabilization algorithm
will guarantee causal consistency even if the system suffers
from machine failure, machine slowdown, network delay or
partitioning. Recall that in our algorithm, versions are totally
ordered by their timestamps which equals the physical time
point when the version is created. When a client issues a GET
operation, the version returned will have timestamp value no
more than the Global Stable Time.

When a server fails, the client may not receive any response
from the server. However, since our algorithm allows clients to
migrate across servers, the client can timeout after a period of
waiting and then connect to another server to issue operations.
The failure of the server will affect the computation of GST
at other servers, since the failed server no long sends heartbeat
messages to other servers and thus the value of GST at some
server may stop updating. In this case, the causal consistency
is ensured, since the version returning to the client may be out-
of-date but still causally consistent. To make sure the system
can make progress and have newer versions visible to the client
eventually, other servers should be able to detect the failure
eventually. For instance, servers can set a timeout for heartbeat
and HS exchanges. If one server does not receive the message
from another server after the timeout, it can mark this server as
failed. How to recompute the new GST to make progress after
failure while ensuring causally consistency is an interesting
open problem.

For other issues such as machine slowdown, network delay
or partitioning, similarly, the computation of GST may stop
making progress, but the version returned to the client is
guaranteed to be causally consistent. Then when the failure is
recovered, the pending heartbeats or updates can be applied at
corresponding servers, and GST can continue to increment.
One possible failure that can cause the violation of causal
consistency is packet loss, in particular, the loss of update
messages. Update loss may result in returning a version
to the client that is not causally consistent due to missing
dependencies. In practice, we can use reliable communication
protocols for transmitting update messages to handle the issue.

B. Using Hybrid Logical Clocks

To reduce the latency of the PUT operation caused by clock
skew, we can use hybrid logical clocks (HLC) [17] instead of
a single scalar as the timestamps. The HLC for an event e has
two parts, a physical clock l.e and a bounded logical clock
c.e. The HLC is designed to have the property that if event e
happens before event f , then (l.e < l.f)∨((l.e = l.f)∧(c.e <
c.f)) [17]. By replacing the scalar timestamp with HLC, we

may be able to avoid the blocking at line 8 of Algorithm 2.
More details about HLC can be found in [17].

C. Dynamic Systems

This section will briefly discuss the ideas on how the
algorithm can be adapted for dynamic systems where keys
can be inserted or deleted, and servers themselves can also be
added or removed. The change in the system can be essentially
modeled as augmented share graph change from G to G′.

When the system experiences changes, the algorithm should
guarantee that the causal consistency is not violated. That is,
the versions returned to the client should always be causally
consistent. Therefore, the algorithm should ensure that during
the dynamic change, the Global Stable Time computed is
nondecreasing. However, due to the change of the augmented
share graph, it is possible that GST computed in the new
augmented share graph becomes smaller. To ensure causal
consistency, the algorithm can continue to use the old GST
value v at the time point when the augmented share graph
changes, until the new GST value exceeds v. Then the GST
used for GET operations is nondecreasing, and the version
returned to the client is causally consistent. How to design an
efficient algorithm for achieving causal consistency in dynamic
systems is interesting and left for future work.

X. OTHER RELATED WORK

Aside from the previous work mentioned in Section I, there
has been other work dedicated to implementing causal con-
sistency without any false dependencies in partially replicated
distributed shared memory. Hélary and Milani [4] identified
the difficulty of implementing causal consistency in partially
replicated distributed storage systems. They proposed the
notion of share graph and argued that the metadata size
would be large if causal consistency is achieved without false
dependencies. Reynal and Ahamad [18] proposed an algorithm
that uses metadata of size O(mn) in the worst case, where
n is the number of servers and m is the number of objects
replicated. Shen et al. [5] proposed two algorithms, Full-Track
and Opt-Track, that keep track of dependent updates explicitly
to achieve causal consistency without false dependencies,
where Opt-Track is proved to be optimal with respect to the
size of metadata in local logs and on update messages. Their
amortized message size complexity increases linearly with the
number of operations, the number of nodes in the system, and
the replication factor. Xiang and Vaidya [7] investigated how
metadata is affected by data replication and client migration,
by proposing an algorithm that utilizes vector timestamps
and studying the lower bounds on the size of metadata.
The vector timestamp in their algorithm is a function of the
share graph and client-server communication pattern, and have
worst case timestamp size O(n2) where n is the number of
nodes in the system. In the above-mentioned algorithms, in
order to eliminate false dependencies, the metadata sizes are
large, in particular, superlinear in the number of servers. In
comparison, the global stabilization technique used in our al-
gorithm adopted for partial replication only requires metadata

of constant size, independent of the number of servers, clients
or keys.

XI. CONCLUSION

This paper proposes global stabilization for implementing
causal consistency in partially replicated distributed storage
systems. The algorithm proposed allows each server to store
an arbitrary subset of the data, and each client to communicate
with an arbitrary set of the servers. We prove the correctness of
the algorithm, show the optimality of our Global Stable Time
computation under general partial replication, and also discuss
several optimizations that can further improve the performance
of the algorithm in practice. Simulartion results demonstrate
the effectiveness of our GST computation compared to Gen-
tleRain for causally consistent partial replication.

REFERENCES

[1] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in SoCC, 2014.

[2] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets high avail-
ability and low latency,” in Distributed Computing Systems (ICDCS),
2016 IEEE 36th International Conference on. IEEE, 2016, pp. 405–
414.

[3] M. Dahlin, L. Gao, A. Nayate, P. Yalagandula, J. Zheng, and
A. Venkataramani, “Practi replication,” in IN PROC NSDI. Citeseer,
2006.

[4] J. Hélary and A. Milani, “About the efficiency of partial replication to
implement distributed shared memory,” in ICPP, 2006.

[5] M. Shen, A. Kshemkalyani, and T. Hsu, “Causal consistency for geo-
replicated cloud storage under partial replication,” in IPDPS Workshops,
2015.

[6] T. Crain and M. Shapiro, “Designing a causally consistent protocol for
geo-distributed partial replication,” in PaPoC. ACM, 2015.

[7] Z. Xiang and N. Vaidya, “Lower bounds and algorithm for par-
tially replicated causally consistent shared memory,” arXiv preprint
arXiv:1703.05424, 2017.

[8] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: a distributed metadata
service for causal consistency,” in Proceedings of the Twelfth European
Conference on Computer Systems. ACM, 2017, pp. 111–126.

[9] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing high
availability using lazy replication,” ACM Trans. Comput. Syst., vol. 10,
pp. 360–391, 1992.

[10] M. Zawirski et al., “Swiftcloud: Fault-tolerant geo-replication integrated
all the way to the client machine,” CoRR, vol. abs/1310.3107, 2014.

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage with
cops,” in SOSP, 2011.

[12] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal
consistency,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. ACM, 2013, pp. 761–772.

[13] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive de-
ferred update stabilization for efficient geo-replication,” arXiv preprint
arXiv:1702.01786, 2017.

[14] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd,
“I can’t believe it’s not causal! scalable causal consistency with no
slowdown cascades,” in Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation. USENIX Association,
2017, pp. 453–468.

[15] D. Mills, “Network time protocol (version 3) specification, implemen-
tation and analysis,” Tech. Rep., 1992.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[17] M. Roohitavaf, M. Demirbas, and S. Kulkarni, “Causalspartan: Causal
consistency for distributed data stores using hybrid logical clocks,” in
Reliable Distributed Systems (SRDS), 2017 IEEE 36th Symposium on.
IEEE, 2017, pp. 184–193.

[18] M. Raynal and M. Ahamad, “Exploiting write semantics in implement-
ing partially replicated causal objects,” in PDP. IEEE, 1998.

APPENDIX A
PROOF FOR LEMMA 1

Proof. If two PUTs are issued by the same client, when
PUT(k,K) is issued, by lines 8, 10 of Algorithm 2, uK .ut
will be larger than the client’s max(PTc, GTc) value, which
is ≥ uK′ .ut by line 14 of Algorithm 2 and lines 9, 11 of
Algorithm 1. Hence uK′ .ut < uK .ut.

If two PUTs are issued by different clients, and the happen-
before relation is due to the second client reading the version
of the first client’s PUT(k′,K ′), and then issuing PUT(k,K).
By line 6 of Algorithm 2 and line 5 of Algorithm 1, when the
second client issues PUT(k,K), the dependency timestamp
max(PTc, GTc) in line 9 of Algorithm 1 will be ≥ uK′ .ut.
Similarly, by lines 8, 10 of Algorithm 2, uK .ut will be larger
than the client’s max(PTc, GTc) value. Hence uK′ .ut <
uK .ut.

For other cases when PUT(k′,K ′) → PUT(k,K), by tran-
sitivity we have uK′ .ut < uK .ut.

Since the timestamp of a version K equals the timestamp
for the corresponding replication update uK , we also have
K ′.ut < K.ut.

APPENDIX B
PROOF FOR LEMMA 2

First we list several observations regarding the definitions
of the set Li(k), Ri(g) mentioned in Section IV. The obser-
vations will be used in later proofs.

Observation 1: For any (v, i), (v′, i) ∈ Li(k) and k ∈
Kvi, k

′ ∈ Kv′i, we have Li(k) = Li(k
′).

Observation 2: For any (v, i) ∈ Li(k), if (v, i) ∈ Rj(g) for
some server j 6= i, we have Li(k) ⊆ Rj(g).

Observation 3: For a server set g containing server i, j and
(v, i) ∈ Li(k), if (v, i) ∈ Rj(g), we have LDi(k) = HSi(g).

Proof of the lemma. In order to have K dep K ′, there must
be a chain of versions on a simple path (no vertex repetition)
from i′ to i in Ga such that K = K1 dep K2 dep · · · dep
Km dep Km+1 = K ′ where each version Kx corresponds to
key kx.

We prove the lemma in two cases, i′ = i and i′ 6= i.
Case I: i′ = i. Since the version K could be due to a local

PUT at server i or a non-local PUT at a server other than i,
there are two cases.

1) K is due to a non-local PUT at a server other than i.
There are two cases, namely none of Kx is issued at i
for 1 ≤ x ≤ m+ 1, or at least one Kx is issued at i.

a) None of Kx is issued at i. This implies that there
exists a simple cycle C = (i, v1, · · · , vm, i) such
that k ∈ Kiv1 , k′ ∈ Kivm , and K is the result of
PUT(k,K) at v1, K ′ is the result of PUT(k′,K ′)
at vm. Since K dep K ′, the dependency is propa-
gated along the path vm, vm−1, · · · , v1 in Ga. We
illustrate one possible execution as follows.
First, a client cm+1 issues PUT(k′,K ′) at server
vm, which leads to an update uK′ from vm to i.
Then for x = m,m−1, · · · , 2 sequentially, a client

cx reads the version written by the previous client
cx+1 from server vx via a GET operation at server
vx. If (vx−1, vx) ∈ E1(Ga), client cx then issues
PUT(kx,Kx) at vx where kx ∈ Kvx−1vx , which
leads to an update message from vx to vx−1. If
(vx−1, vx) ∈ E2(Ga), without loss of generality,
suppose cx can access both vx−1, vx. Then cx
issues PUT(kx,Kx) at vx−1 where kx ∈ Kvx−1 .
In the end, client c1 read the version K2, written
by client c2, from server v1, and issues PUT(k,K)
at server v1, which results in an update uK from v1
to i. By the definition of happens-before relation,
it is clear that PUT(k′,K ′) → PUT(k,K), namely
K dep K ′.

Fig. 6: Illustration for Case I.1(a)

We first prove that K ′ is received by server i.
Let HB0

vmi denote the heartbeat value received
by i from vm when K is read by the client.
Since K is read by the client, by line 5 of
Algorithm 2 we have K.ut ≤ GST . By defini-
tion GST = min(LDi(k),max(RDi(g), rd)) ≤
LDi(k), we have K.ut ≤ LDi(k). By the defini-
tion of set Li(k), we have (vm, i) ∈ Li(k), and
thus LDi(k) = min(v,i)∈Li(k)(HBvi) ≤ HB0

vmi,
which implies that K.ut ≤ HB0

vmi. By Lemma
1, K ′.ut < K.ut since K dep K ′. Therefore we
have K ′.ut ≤ HB0

vmi, which implies that K ′ is
received by server i since the channel is assumed
to be FIFO.
Now we prove that K ′ is visible to client c
from server i. Let GST 0 denote the Global Sta-
ble Time when K is read by the client, then
GST 0 ≥ K.ut by line 5 of Algorithm 2. Since
(v1, i), (vm, i) ∈ Li(k), by Observation 1, Li(k) =
Li(k

′) and thus LDi(k) = LDi(k
′). Notice that

at any server, the heartbeat values received from
another server is nondecreasing, thus the value
of LDi(k

′) and RDi(g) at any server are also
nondecreasing. By line 6 and 2 of Algorithm 1,
the value of rd computed at line 2 of Algo-
rithm 1 is also nondecreasing. Therefore when
client c issues GET (k′) at server i, GST =
min(LDi(k

′),max(RDi(g), rd)) ≥ GST 0 ≥

K.ut. By Lemma 1, K ′.ut < K.ut, which implies
that GST ≥ K ′.ut and thus K ′ is visible to client
c from server i.

b) At least one Kx is issued at i. Let Kf be the first
version that is issued at i, namely Kf is the version
issued at i with the largest subscript. Since Kf dep
Kf+1 dep · · · dep K ′, there exists a simple cycle
C = (i, vf+1, vf+2, · · · , vm, i), where k′ ∈ Kivm

and K ′ is the result of PUT(k′,K ′) at vm. Depend-
ing on the edge (i, vf+1) and how dependencies
propagate, there are two cases.
i) (i, vf+1) is a real edge. Let kf+1 ∈ Kivf+1

and Kf+1 is the result of PUT(kf+1,Kf+1) at
vf+1. The dependency between K ′ and Kf+1

is propagated along the path (i, vm, · · · , vf+1)
similarly as in Case I.1(a), and Kf is issued
by some client c′ after c′ read Kf+1 from
server i. Then when Kf+1 is read by the client
c′ at server i, the conclusion of Case I.1(a)
guarantees that the lemma holds.

Fig. 7: Illustration for Case I.1(b).i

ii) (i, vf+1) is a virtual edge. Without loss of
generality, suppose that i, vf+1 ∈ Sc′ . The
dependency between Kf and K ′ is propagated
along the path similarly as in Case I.1(a), and
Kf is issued by client c′ at server i after c′

reads Kf+2 from server vf+1.
We first prove that K ′ is received by server i.
Let HB0

vmi denote the heartbeat value received
by i from vm when Kf+2 is read by the
client from server vf+1. Consider the time
point when Kf+2 is read by the client from
server vf+1. By line 5 of Algorithm 2 we have
Kf+2.ut ≤ GST . By definition, RDvf+1

(g) =
min(x,y)∈Rvf+1

(g)(HBxy) ≤ HB0
vmi since

(vm, i) ∈ Rvf+1
(g). Also, by line 2 and 6 of

Algorithm 1, rd = minj∈Sc,j 6=vf+1
HSc[j] ≤

HSc[i] ≤ HB0
vmi. When Kf+2 is re-

turned, by the definition of GST , GST =
min

(
LDvf+1

(kf+2),max(RDvf+1
(g), rd)

)
≤

max(RDvf+1
(g), rd) ≤ HB0

vmi. Hence we

have Kf+2.ut ≤ GST ≤ HB0
vmi. By Lemma

1, K ′.ut < Kf+2.ut since Kf+2 dep K ′.
Therefore we have K ′.ut ≤ HB0

vmi, which
implies that K ′ is received by server i since
the channel is assumed to be FIFO.

Fig. 8: Illustration for Case I.1(b).ii

Now we prove K ′ is visible to client c from
server i.
We first show that LDi(k

′) ≥ K ′.ut when
client c issues GET (k′) to server i. Con-
sider the time point when Kf+2 is read by
the client c′ from server vf+1. We have
Kf+2.ut ≤ GST ≤ max(RDvf+1

(g′), rd)
where g′ = Sc′ . Notice that ∀(v, i) ∈ Li(k

′),
we have (v, i) ∈ Rvf+1

(g′), since we can
find a cycle containing (v, i) that satisfies the
requirement for Rvf+1

(g′). This implies that
LDi(k

′) ≥ RDvf+1
(g′) at any time point.

For the value of rd, it is computed as rd =
minj∈Sc′ ,j 6=vf+1

HSc′ [j] ≤ HSc′ [i]. By defini-
tion, HSc′ [i] ≤ HSi(g

′) ≤ LDi(k
′). The first

inequality is because that HSc′ [i] is updated
by HSi(g

′), and the second inequality is be-
cause that HSi(g

′) includes the heartbeat value
HBvi for all (v, i) ∈ Li(k

′) and calculates the
minimum. Therefore, we have rd ≤ LDi(k

′),
together with RDvf+1

(g′) ≤ LDi(k
′) and

Kf+2.ut ≤ max(RDvf+1
(g′), rd), we have

Kf+2.ut ≤ LDi(k
′) at the time point when

Kf+2 is returned. By Lemma 1, K ′.ut <
Kf+2.ut and thus K ′.ut ≤ LDi(k

′). Since
LDi(k

′) is nondecreasing, this condition re-
mains true later when client c reads K ′ from
i.
Now we show that max(RDi(g), rd) ≥ K ′.ut
when client c issues GET (k′) to server
i. When K is read by the client c from
server i, by line 5 of Algorithm 2 we have
K.ut ≤ GST ≤ max(RDi(g), rd). Since
the value of max(RDi(g), rd) is nondecreas-
ing, when client c issues GET (k′) later, we

also have K.ut ≤ max(RDi(g), rd). By
Lemma 1, K ′.ut < K.ut and thus K ′.ut ≤
max(RDi(g), rd).
Summarizing the conclusions above, we have
GST = min(LDi(k

′),max(RD(g), rd)) ≥
K ′.ut, which implies that K ′ is visible to client
c from server i.

2) K is due to a local PUT at server i. Since K is issued
at server i, Case I.1(b) proves that the lemma holds.

Case II: i′ 6= i.

1) First consider the case where there exists at least one
Kx issued at server i′. Let Kf be the last version that
is issued at server i′, namely Kf is the version with the
largest subscript. Then the same proof for Case I.1(b)
proves that K ′ is received by server i′, and LDi′(k

′) ≥
K ′.ut.
Now we will prove that K ′ is visible to client
c from server i′. When K is read by client c
from server i, by line 5 of Algorithm 2, we have
K.ut ≤ GST = min (LDi(k),max(RDi(g), rd)) ≤
max(RDi(g), rd) where g = Sc. By defini-
tion, RDi(g) = minj∈g,j 6=i(HSj(g)) and rd =
minj∈g,j 6=i(HSc[j]). Since the client will store the
largest HS values for each server j ∈ Sc, we have
HSc[j] ≥ K.ut > K ′.ut stored at the client c for each
server j 6= i in Sc.
Now we will show that HSc[i] ≥ K ′.ut when client c
issues GET (k′) to server i′. Since K = K1 dep K2 dep
· · · dep Kf , there exists a simple path (i, v1, · · · , vm, i′)
connects i′ and i that propagates the dependency above.
Similarly to Case I.1.(b), there are two cases, i.e. (i, v1)
is a real edge or virtual edge. If (i, v1) is a real edge, let
version Kt of key kt be the version that is sent from v1
to i, and read by some client at i. Since Kt is visible, we
have LDi(kt) ≥ GST ≥ Kt.ut. Notice that (v1, i) ∈
Ri′(g) due to the simple path above, by Observation
3, we know that LDi(kt) = HSi(g). Thus HSi(g) ≥
Kt.ut > K ′.ut. If (i, v1) is a virtual edge, let client c′

be the one that gets a version Kt from server v1 and then
puts a version to server i. When Kt is returned, we have
HSi(Sc′) ≥ Kt.ut. Notice that for ∀(u, i) ∈ Ri′(g)
where g = Sc, we also have (u, i) ∈ Rv1(Sc′) since
v1, i

′ are connected by a simple path. Thus HSi(g) ≥
HSi(Sc′) ≥ Kt.ut > K ′.ut. Since the client will keep
largest HS values, we have HSc[i] ≥ HSi(g) ≥ K ′.ut.
Then, when client c issues GET (k′) to server i′,
we have proved that LDi′(k

′) ≥ K ′.ut, HSc[j] ≥
K ′.ut stored at the client c for each server j ∈
Sc. According to line 2 of Algorithm 1, the de-
pendency clock value that client c passes to server
i′ is rd = minj∈Sc,j 6=i′ HSc[j] ≥ K ′.ut. Re-
call that we already proved LDi′(k

′) ≥ K ′.ut.
Then GST = min (LDi′(k),max(RDi′(g), rd)) ≥
min(LDi′(k), rd) ≥ K ′.ut, and hence K ′ is visible to
client c from server i′.

2) Now consider the case where none of Kx is issued at i′.
Then there exists a simple path (i′, vm, · · · , v1, i) such
that the causal dependencies are propagated through the
path. Notice that the situation is identical to the second
part of Case II.1 above, and the same proof will show
that K ′ is received by server i′, and K ′ is visible to
client c from server i′.

APPENDIX C
PROOF FOR THEOREM 1

Proof. To prove the first condition, which is: Let k and k′

be any two keys in the store. Let K be a version of key k, and
K ′ be a version of key k′ such that K dep K ′. For any client
c that can access both k and k′, when K is read by client c,
K ′ is visible to c.

If K ′ is due to a local PUT at the server that client c is
accessing, then by line 5 of Algorithm 2, K ′ is visible to client
c. Otherwise, if K ′ is due to a non-local PUT, according to
Lemma 2, K ′ is received by the server which the client is
accessing, and is also visible to the client.

To prove the second condition, which is: A version K of
a key k is visible to a client c after c completes PUT(k,K)
operation.

Consider a client c issuing GET(k) after a PUT(k,K)
operation. If client c reads from the same server, according
to line 5 of Algorithm 2, K is visible to the client. If client c
reads from a different server, to pass lines 3, 4 of Algorithm
2, we have K.ut ≤ PTc = t ≤ GST . By definition,
GST = min(LDi(k),max(RDi(g), rd)) ≤ LDi(k). Thus
K.ut ≤ LDi(k), and the definition of LDi(k) implies that K
is already received by i. Then, since K.ut ≤ GST , version
K is visible to client c.

APPENDIX D
PROOF FOR THEOREM 2

Proof. Recall the definition of GST from Section IV.

GST = min (LDi(k),max(RDi(g), rd))

where LDi(k) = min(v,i)∈Li(k)(HBvi), RDi(g) =
min(x,y)∈Ri(g)(HBxy), and rd = minj∈Sc,j 6=i(HSc[j]).

By line 6 of Algorithm 1 and line 6 of Algorithm 2, the
value of HSc[j] the client keeps is the largest HSj(g) value it
has seen so far from servers it accessed so far for ∀j ∈ Sc. By
definition, HSj(g) = min∀(z,j)∈Ri(g)(HBzj), which implies
that rd is also computed as the minimum value of a set of
heartbeat values.

By the definitions above, we observe that our GST is
computed as the minimum of a set of heartbeat values from
server x to server y where (x, y) ∈ Li(k)∪Ri(g). Let HBpq

be the minimum heartbeat value from the set and therefore
GST = HBpq . There are two cases.

Case I: (p, q) ∈ Li(k), and thus q = i.
By the definition of Li(k), there exists a simple cycle

(i, v1, · · · , vm, i) of length ≥ 2 in Ga such that m ≥ 1,

k ∈ (v1, i), we have (v1, i) ∈ Li(k), and (vm, i) ∈ Li(k)
if (vm, i) is a real edge. First observe that due to the fact
that version K with K.ut > GST = HBpi is returned
to the client, we have p 6= v1, otherwise version K is
not received by server i yet since the latest heartbeat value
received by i from v1 is HBpi < K.ut. Without loss of
generality, let p = vm. We can show the following possible
execution that will violate causal consistency. Let there be
a PUT (k′,K ′) at server p which results in a version K ′

with timestamp Hpi < K ′.ut < K.ut such that K dep
K ′. The causal dependency can be created by the same
procedure as described in Case I of the proof for Lemma 2. For
completeness, we state the procedure here again. First, a client
cm+1 issues PUT(k′,K ′) at server j, which leads to an update
uK′ from j to i. Then for x = m,m− 1, · · · , 2 sequentially,
a client cx reads the version written by the previous client
cx+1 from server vx via a GET operation at server vx. If
(vx−1, vx) ∈ E1(Ga), client cx then issues PUT(kx,Kx) at
vx where kx ∈ Kvx−1vx , which leads to a replication update
from vx to vx−1. If (vx−1, vx) ∈ E2(Ga), without loss of
generality, suppose cx can access both vx−1, vx. Then cx
issues PUT(kx,Kx) at vx−1 where kx ∈ Kvx−1

. In the end,
client c1 reads the version K2, written by client c2, from server
v1, and issues PUT(k,K) at server v1, which results in an
update uK from v1 to i. By the definition of happens-before
relation, it is clear that PUT(k′,K ′)→ PUT(k,K), namely K
dep K ′.

Fig. 9: Illustration for Case I

Since K ′.ut > Hpi, K ′ is not received by i at the time
when version K is returned to the client c. Now let uK′
be delayed indefinitely, which is possible since the system is
asynchronous. Consider the case that after reading version K,
client c issues GET (k′) at server i. Suppose that client c does
not issue any PUT operation before, and thus its PTc = 0.
Notice that the get operation is non-blocking when PTc = 0
by lines 3, 4 of Algorithm 2, it is possible that an older version
K ′0 of key k′ such that K ′ dep K ′0 is returned to client c since
uK′ is delayed and not received by server i. Hence K ′ is not
visible to the client c, which violates the causal consistency.

Case II: (p, q) ∈ Ri(g). Then by definition, there exists a
simple cycle (i = v1, · · · , vm−1 = p, vm = q) of length ≥ 2

in Ga such that m ≥ 2 and i, q ∈ g.

Fig. 10: Illustration for Case II

Let k′ ∈ Kpq . Let there be a PUT (k′,K ′) at server p which
results in a version K ′ with timestamp Hpq < K ′.ut < K.ut
such that K dep K ′. The causal dependency can be created
by a similar procedure as described in Case I above, with
differences at the end: client c1 reads the version K2 from
server v2, and issues PUT(k1,K1) at server v2 where k1 ∈
Kiv2 . Then some client c′ that only access server i (Sc′ = {i})
reads the version K1 and issues PUT(k,K) at server i. The
fact that Sc′ = {i} ensure that when client c′ can read K1

without K ′ being received by q.
Now let uK′ be delayed indefinitely. Suppose that after

client c gets version K, it issues GET (k′) at server i′. Similar
to Case I, K ′ is not visible to client c, which violates the causal
consistency.

APPENDIX E
MORE SIMULATION RESULTS

Update Throughput: Since we simulate servers by
running multiple server processes in a single machine, there
is a limitation on the maximum update throughput, which is
about 12.5k updates per second for each server program when
we have 10 processes running. There also exists a threshold
after which the machine cannot handle the update messages in
time, leading to a dramatic increase in the visibility latencies.
To find such threshold, we plot the latency changes with
respect to the update throughput in Figure 11a and 11b with
0ms and 100ms network delays respectively.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Fig. 11: Different Update Throughput

As we can see from Figure 11a and 11b, the threshold would
be some value > 10k when network delay is 0ms and > 7.5k
when network delay is 100ms. Hence for other evaluations, we
set the update throughput to be 5k/ sec for each node, since we
will increase the other parameters such as ring size, heartbeat
frequency, and stabilization frequency for other experiments.

Ring Sizes: Intuitively, the ring size will affect the
visibility latency of the stabilization algorithm in GentleRain,
since the number of heartbeat values received by any node
will grow linearly with the ring size, leading to smaller GST
and larger visibility latencies. However, our algorithm will not
be affected too much since the number of heartbeat values
received is equal to the number of neighbors in the ring.
Figure 12a and 12b below validate the discussion above, and
demonstrate the scalability of our algorithm. In both cases,
the visibility latency in our algorithm remains relatively stable
while the latency in GentleRain increases as ring size incre-
ments. Notice that with network delay of 100ms, the visibility
latency grows dramatically larger (more than 1000ms) as ring
size increases. The reason may be that the queue size of
messages becomes too large with artificial delay when the ring
size is large, which results in high latency in our simulation.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Fig. 12: Different Ring Size

Network Latencies

To measure the influence of network latencies on the
visibility latency, we manually add extra delays to all network
packages via Linux tc command. Although the network delays
are set to be constants in our experiment which may not be
true in practice, the results give us some insights on how
network delay will affect the visibility latencies. As shown
in Figure 13, the visibility latency is mostly stable with low
network delays (< 150ms), and increases when network delay
becomes large (> 150ms). By definition, visibility latency is
the period from when a remote update is received to when
the remote update can be returned. Hence in theory, with
good network conditions, the visibility latency should not be
affected much by network delays. However, when network
conditions become worse, the computation of GST may be
negatively affected by the network delays, leading to increment
in the visibility latencies.

Fig. 13: Different Network Delays

	I Introduction
	II System Model
	II-A Model for General Partial Replication
	II-B Causal Consistency

	III Algorithm
	IV Computing Global Stable Time
	IV-A Server Side: GST Computation and Heartbeat Exchange
	IV-B Client Side

	V Correctness of Algorithm 1 and 2
	VI Optimality of the Algorithm
	VII Optimization for Better Visibility
	VII-A One Server as a Group
	VII-B Multiple Servers as a Group

	VIII Simulation Results
	VIII-A Simulation Setup
	VIII-B Simulation Results and Observations

	IX Discussions and Extensions
	IX-A Fault Tolerance
	IX-B Using Hybrid Logical Clocks
	IX-C Dynamic Systems

	X Other Related Work
	XI Conclusion
	References
	Appendix A: Proof for Lemma 1
	Appendix B: Proof for Lemma 2
	Appendix C: Proof for Theorem 1
	Appendix D: Proof for Theorem 2
	Appendix E: More Simulation Results

