skip to main content
survey

A Survey on Fuzzy Deep Neural Networks

Published:28 May 2020Publication History
Skip Abstract Section

Abstract

Deep neural networks are a class of powerful machine learning model that uses successive layers of non-linear processing units to extract features from data. However, the training process of such networks is quite computationally intensive and uses commonly used optimization methods that do not guarantee optimum performance. Furthermore, deep learning methods are often sensitive to noise in data and do not operate well in areas where data are incomplete. An alternative, yet little explored, method in enhancing deep learning performance is the use of fuzzy systems. Fuzzy systems have been previously used in conjunction with neural networks. This survey explores the different ways in which deep learning is improved with fuzzy logic systems. The techniques are classified based on how the two paradigms are combined. Finally, the real-life applications of the models are also explored.

References

  1. Norbert A. Agana and Abdollah Homaifar. 2017a. A deep learning based approach for long-term drought prediction. In Proceedings of the IEEE Region 3 Technical, Professional, and Student Conference (SoutheastCon’17). IEEE, 1--8.Google ScholarGoogle Scholar
  2. Norbert A. Agana and Abdollah Homaifar. 2017b. A hybrid deep belief network for long-term drought prediction. In Proceedings of the Workshop on Mining Big Data in Climate and Environment (MBDCE’17) and the 17th SIAM International Conference on Data Mining (SDM’17). 27--29.Google ScholarGoogle Scholar
  3. Sk Arif Ahmed, Debi Prosad Dogra, Samarjit Kar, and Partha Pratim Roy. 2018. Surveillance scene representation and trajectory abnormality detection using aggregation of multiple concepts. Expert Syst. Appl. 101 (2018), 43--55.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hayat Al-Dmour and Ahmed Al-Ani. 2018. A clustering fusion technique for MR brain tissue segmentation. Neurocomputing 275 (2018), 546--559.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Krassimir T. Atanassov. 1986. Intuitionistic fuzzy sets.Fuzzy Sets Syst. 20, 1 (1986), 87--96.Google ScholarGoogle Scholar
  6. Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2007. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems. 153--160.Google ScholarGoogle Scholar
  7. Christopher M. Bishop. 2012. Pattern recognition and machine learning, 2006. Springer 1 (2012), 78--78.Google ScholarGoogle Scholar
  8. James J. Buckley and Yoichi Hayashi. 1994. Fuzzy neural networks: A survey. Fuzzy Sets Syst. 66, 1 (1994), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. 2018. A systematic study of the class imbalance problem in convolutional neural networks. Neur. Netw. 106 (2018), 249--259.Google ScholarGoogle ScholarCross RefCross Ref
  10. Jing Chao, Furao Shen, and Jinxi Zhao. 2011. Forecasting exchange rate with deep belief networks. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN’11). IEEE, 1259--1266.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. L. Philip Chen, Chun-Yang Zhang, Long Chen, and Min Gan. 2015. Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. 23, 6 (2015), 2163--2173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Shengyong Chen and Zhongjie Wang. 2012. Acceleration strategies in generalized belief propagation. IEEE Trans. Industr. Inf. 8, 1 (2012), 41--48.Google ScholarGoogle ScholarCross RefCross Ref
  13. Weihong Chen, Jiyao An, Renfa Li, Li Fu, Guoqi Xie, Md Zakirul Alam Bhuiyan, and Keqin Li. 2018. A novel fuzzy deep-learning approach to traffic flow prediction with uncertain spatial--temporal data features. Fut. Gener. Comput. Syst. 89 (2018), 78--88.Google ScholarGoogle ScholarCross RefCross Ref
  14. Yie-Chien Chen and Ching-Cheng Teng. 1995. A model reference control structure using a fuzzy neural network. Fuzzy Sets Syst. 73, 3 (1995), 291--312.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. KyungHyun Cho, Alexander Ilin, and Tapani Raiko. 2011. Improved learning of Gaussian-Bernoulli restricted Boltzmann machines. In Proceedings of the International Conference on Artificial Neural Networks. Springer, 10--17.Google ScholarGoogle ScholarCross RefCross Ref
  16. Heena A. Chopade and Meera Narvekar. 2017. Hybrid auto text summarization using deep neural network and fuzzy logic system. In Proceedings of the International Conference on Inventive Computing and Informatics (ICICI’17). IEEE, 52--56.Google ScholarGoogle Scholar
  17. Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. 2014. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural Information Processing Systems. 2933--2941.Google ScholarGoogle Scholar
  18. Omid E. David and Iddo Greental. 2014. Genetic algorithms for evolving deep neural networks. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation. ACM, 1451--1452.Google ScholarGoogle Scholar
  19. Raheleh Davoodi and Mohammad Hassan Moradi. 2018. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. J. Biomed. Inf. 79 (2018), 48--59.Google ScholarGoogle ScholarCross RefCross Ref
  20. Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. 2016. Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neur. Netw. Learn. Syst. 28, 3 (2016), 653--664.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yue Deng, Youyong Kong, Feng Bao, and Qionghai Dai. 2015. Sparse coding-inspired optimal trading system for HFT industry. IEEE Trans. Industr. Inf. 11, 2 (2015), 467--475.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yue Deng, Yipeng Li, Yanjun Qian, Xiangyang Ji, and Qionghai Dai. 2014. Visual words assignment via information-theoretic manifold embedding. IEEE Trans. Cybernet. 44, 10 (2014), 1924--1937.Google ScholarGoogle ScholarCross RefCross Ref
  23. Yue Deng, Zhiquan Ren, Youyong Kong, Feng Bao, and Qionghai Dai. 2017. A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans. Fuzzy Syst. 25, 4 (2017), 1006--1012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Timon Chih-Ting Du and Philip M. Wolfe. 1995. The amalgamation of neural networks and fuzzy logic systemsâA survey. Comput. Industr. Eng. 29, 1--4 (1995), 193--197.Google ScholarGoogle Scholar
  25. John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, (Jul. 2011), 2121--2159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Chaimae El Hatri and Jaouad Boumhidi. 2018. Fuzzy deep learning based urban traffic incident detection. Cogn. Syst. Res. 50 (2018), 206--213.Google ScholarGoogle ScholarCross RefCross Ref
  27. U. F. Eze, Igoh Emmanuel, and Etim Stephen. 2014. Fuzzy logic model for traffic congestion. IOSR J. Mobile Comput. Appl. 1, 1 (2014), 15--20.Google ScholarGoogle ScholarCross RefCross Ref
  28. Hongqing Fang and Chen Hu. 2014. Recognizing human activity in smart home using deep learning algorithm. In Proceedings of the 33rd Chinese Control Conference. IEEE, 4716--4720.Google ScholarGoogle ScholarCross RefCross Ref
  29. Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. 249--256.Google ScholarGoogle Scholar
  30. M. M. Gupta and D. H. Rao. 1994. On the principles of fuzzy neural networks. Fuzzy Sets Syst. 61, 1 (1994), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Guy Hacohen and Daphna Weinshall. 2019. On the power of curriculum learning in training deep networks. CoRR abs/1904.03626 (2019). arxiv:1904.03626 http://arxiv.org/abs/1904.03626.Google ScholarGoogle Scholar
  32. Jibo He, William Choi, Yan Yang, Junshi Lu, Xiaohui Wu, and Kaiping Peng. 2017. Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor. Appl. Ergon. 65 (2017), 473--480.Google ScholarGoogle ScholarCross RefCross Ref
  33. Yaroslav Hernandez-Potiomkin, Mohammad Saifuzzaman, Emmanuel Bert, Rafael Mena-Yedra, Tamara Djukic, and Jordi Casas. 2018. Unsupervised incident detection model in urban and freeway networks. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC’18). IEEE, 1763--1769.Google ScholarGoogle ScholarCross RefCross Ref
  34. Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neur. Comput. 18, 7 (2006), 1527--1554.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Geoffrey E. Hinton and Ruslan R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786 (2006), 504--507.Google ScholarGoogle Scholar
  36. Qinghua Hu, Zongxia Xie, and Daren Yu. 2007. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recogn. 40, 12 (2007), 3509--3521.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Weiming Hu, Wei Li, Xiaoqin Zhang, and Stephen Maybank. 2015. Single and multiple object tracking using a multi-feature joint sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 37, 4 (2015), 816--833.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Hisao Ishibuchi, Kouichi Morioka, and I. B. Turksen. 1995. Learning by fuzzified neural networks. Int. J. Approx. Reason. 13, 4 (1995), 327--358.Google ScholarGoogle ScholarCross RefCross Ref
  40. Hisao Ishibuchi, Hideo Tanaka, and Hideiko Okada. 1993. Fuzzy neural networks with fuzzy weights and fuzzy biases. In Proceedings of the IEEE International Conference on Neural Networks 1993. IEEE, 1650--1655.Google ScholarGoogle ScholarCross RefCross Ref
  41. Vladimir G. Ivancevic and Tijana T. Ivancevic. 2007. Neuro-fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling. Vol. 45. Springer.Google ScholarGoogle Scholar
  42. Gabriel Babatunde Iwasokun and Oluwole Charles Akinyokun. 2014. Fingerprint singular point detection based on modified poincare index method. Int. J. Sign. Process. Image Process. Pattern Recogn. 7, 5 (2014), 259--272.Google ScholarGoogle Scholar
  43. Nuzhat Jan, Geoffrey D. Hugo, Nitai Mukhopadhyay, and Elisabeth Weiss. 2015. Respiratory motion variability of primary tumors and lymph nodes during radiotherapy of locally advanced non-small-cell lung cancers. Radiat. Oncol. 10, 1 (2015), 133.Google ScholarGoogle ScholarCross RefCross Ref
  44. Yaochu Jin and Lipo Wang. 2008. Fuzzy Systems in Bioinformatics and Computational Biology. Vol. 242. Springer.Google ScholarGoogle Scholar
  45. Andrej Karpathy. 2017. CS231n Convolutional Neural Networks for Visual Recognition. Retrieved from http://cs231n.github.io/optimization-1/.Google ScholarGoogle Scholar
  46. James M. Keller. 1996. Fuzzy logic rules in low and mid level computer vision tasks. In Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS’96). IEEE, 19--22.Google ScholarGoogle ScholarCross RefCross Ref
  47. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  48. John Kipritidis, Geoffrey Hugo, Elisabeth Weiss, Jeffrey Williamson, and Paul J. Keall. 2015. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging. Med. Phys. 42, 3 (2015), 1255--1267.Google ScholarGoogle ScholarCross RefCross Ref
  49. Erich Peter Klement, Werner Schwyhla, and Robert Lowen. 1981. Fuzzy probability measures. Fuzzy Sets Syst. 5, 1 (1981), 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  50. Takashi Kuremoto, Shinsuke Kimura, Kunikazu Kobayashi, and Masanao Obayashi. 2014. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137 (2014), 47--56.Google ScholarGoogle ScholarCross RefCross Ref
  51. Hon Keung Kwan and Yaling Cai. 1994. A fuzzy neural network and its application to pattern recognition. IEEE Trans. Fuzzy Syst. 2, 3 (1994), 185--193.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sean Lander and Yi Shang. 2015. EvoAE--A new evolutionary method for training autoencoders for deep learning networks. In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference (COMPSAC’15), Vol. 2. IEEE, 790--795.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Nicolas Le Roux and Yoshua Bengio. 2008. Representational power of restricted Boltzmann machines and deep belief networks. Neur. Comput. 20, 6 (2008), 1631--1649.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Samuel C. Lee and Edward T. Lee. 1975. Fuzzy neural networks. Math. Biosci. 23, 1--2 (1975), 151--177.Google ScholarGoogle ScholarCross RefCross Ref
  55. Suk Jin Lee, Yuichi Motai, and Martin Murphy. 2012a. Respiratory motion estimation with hybrid implementation of extended Kalman filter. IEEE Trans. Industr. Electron. 59, 11 (2012), 4421--4432.Google ScholarGoogle ScholarCross RefCross Ref
  56. Suk Jin Lee, Yuichi Motai, Elisabeth Weiss, and Shumei S. Sun. 2012b. Irregular breathing classification from multiple patient datasets using neural networks. IEEE Trans. Inf. Technol. Biomed. 16, 6 (2012), 1253--1264.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Suk Jin Lee, Yuichi Motai, Elisabeth Weiss, and Shumei S. Sun. 2013. Customized prediction of respiratory motion with clustering from multiple patient interaction. ACM Trans. Intell. Syst. Technol. 4, 4 (2013), 69.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Chin-Teng Lin, Chang-Mao Yeh, Sheng-Fu Liang, Jen-Feng Chung, and Nimit Kumar. 2006. Support-vector-based fuzzy neural network for pattern classification. IEEE Trans. Fuzzy Syst. 14, 1 (2006), 31--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Faa-Jeng Lin, Chih-Hong Lin, and Po-Hung Shen. 2001. Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive. IEEE Trans. Fuzzy Syst. 9, 5 (2001), 751--759.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Hsien-I Lin, Ming-Hsiang Hsu, and Wei-Kai Chen. 2014. Human hand gesture recognition using a convolution neural network. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE’14). IEEE, 1038--1043.Google ScholarGoogle ScholarCross RefCross Ref
  61. Wei Lu, Michelle M. Nystrom, Parag J. Parikh, David R. Fooshee, James P. Hubenschmidt, Jeffrey D. Bradley, and Daniel A. Low. 2006. A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms. Med. Phys. 33, 10 (2006), 3634--3636.Google ScholarGoogle ScholarCross RefCross Ref
  62. Chao Luo, Chenhao Tan, Xingyuan Wang, and Yuanjie Zheng. 2019. An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl. Soft Comput. 78 (2019), 150--163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Mukesh Kumar Mehlawat and Pankaj Gupta. 2014. Fuzzy chance-constrained multiobjective portfolio selection model. IEEE Trans. Fuzzy Syst. 22, 3 (2014), 653--671.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw--Hill, Inc., New York, NY.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Sushmita Mitra and Yoichi Hayashi. 2000. Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans. Neur. Netw. 11, 3 (2000), 748--768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. 2009. Deep belief networks for phone recognition. In Proceedings of the NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, Vol. 1. Vancouver, Canada, 39.Google ScholarGoogle Scholar
  67. Mário W. L. Moreira, Joel J. P. C. Rodrigues, Neeraj Kumar, Jalal Al-Muhtadi, and Valeriy Korotaev. 2018. Evolutionary radial basis function network for gestational diabetes data analytics. J. Comput. Sci. 27 (2018), 410--417.Google ScholarGoogle ScholarCross RefCross Ref
  68. Martin J. Murphy and Damodar Pokhrel. 2009. Optimization of an adaptive neural network to predict breathing. Med. Phys. 36, 1 (2009), 40--47.Google ScholarGoogle ScholarCross RefCross Ref
  69. Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML’10). 807--814.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Mounir Ben Nasr and Mohamed Chtourou. 2006. A hybrid training algorithm for feedforward neural networks. Neur. Process. Lett. 24, 2 (2006), 107--117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and James Martens. 2015. Adding gradient noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807 (2015).Google ScholarGoogle Scholar
  72. Yurii Nesterov. 1983. A method for unconstrained convex minimization problem with the rate of convergence O (1/k^2). In Doklady AN USSR, Vol. 269. 543--547.Google ScholarGoogle Scholar
  73. Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. 2011. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML’11). 689--696.Google ScholarGoogle Scholar
  74. Tuan-Linh Nguyen, Swathi Kavuri, and Minho Lee. 2018. A fuzzy convolutional neural network for text sentiment analysis. J. Intell. Fuzzy Syst. 35, 6 (2018), 6025--6034.Google ScholarGoogle ScholarCross RefCross Ref
  75. Laisen Nie, Dingde Jiang, Shui Yu, and Houbing Song. 2017. Network traffic prediction based on deep belief network in wireless mesh backbone networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC’17). IEEE, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  76. Guangyuan Pan, Liping Fu, and Lalita Thakali. 2017. Development of a global road safety performance function using deep neural networks. Int. J. Transport. Sci. Technol. 6, 3 (2017), 159--173.Google ScholarGoogle ScholarCross RefCross Ref
  77. João Paulo Papa, Walter Scheirer, and David Daniel Cox. 2016. Fine-tuning deep belief networks using harmony search. Appl. Soft Comput. 46 (2016), 875--885.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Seonyeong Park, Suk Jin Lee, Elisabeth Weiss, and Yuichi Motai. 2016. Intra-and inter-fractional variation prediction of lung tumors using fuzzy deep learning. IEEE J. Transl. Eng. Health Med. 4 (2016), 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  79. Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the Trade. Springer, 55--69.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Ning Qian. 1999. On the momentum term in gradient descent learning algorithms. Neur. Netw. 12, 1 (1999), 145--151.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Tian Qiao, Yixu Song, and Chao Ren. 2017. Real-time tumor tracking with respiratory motion based on short-term prediction. In Proceedings of the 2017 2nd International Conference on Control, Automation and Artificial Intelligence (CAAI’17). Atlantis Press.Google ScholarGoogle ScholarCross RefCross Ref
  82. Basuki Rahmat, Endra Joelianto, I. Ketut Eddy Purnama, and Mauridhi Hery. 2016. Vehicle license plate image segmentation system using cellular neural network optimized by adaptive fuzzy and neuro-fuzzy algorithms. Int. J. Multimedia Ubiq. Eng. 11, 12 (2016), 383--400.Google ScholarGoogle ScholarCross RefCross Ref
  83. Shreedharkumar Rajurkar and Nishchal Kumar Verma. 2017. Developing deep fuzzy network with Takagi Sugeno fuzzy inference system. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’17). IEEE, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  84. Peijia Ren, Zeshui Xu, and Xunjie Gou. 2016. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42 (2016), 246--259.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Saman Riaz, Ali Arshad, and Licheng Jiao. 2019. A semi-supervised CNN with fuzzy rough C-mean for image classification. IEEE Access 7 (2019), 49641--49652.Google ScholarGoogle ScholarCross RefCross Ref
  86. Herbert Robbins and Sutton Monro. 1985. A stochastic approximation method. In Herbert Robbins Selected Papers. Springer, 102--109.Google ScholarGoogle Scholar
  87. Junhu Ruan, Xuping Wang, and Yan Shi. 2013. Developing fast predictors for large-scale time series using fuzzy granular support vector machines. Appl. Soft Comput. 13, 9 (2013), 3981--4000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016). arxiv:1609.04747 http://arxiv.org/abs/1609.04747.Google ScholarGoogle Scholar
  89. David E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group (Eds.). 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2: Psychological and Biological Models. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  90. Danuta Rutkowska. 2012. Neuro-fuzzy Architectures and Hybrid Learning. Vol. 85. Physica.Google ScholarGoogle Scholar
  91. Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Deep Boltzmann machines. In Artificial Intelligence and Statistics. PMLR, Florida, 448--455.Google ScholarGoogle Scholar
  92. Ruslan Salakhutdinov and Hugo Larochelle. 2010. Efficient learning of deep Boltzmann machines. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. 693--700.Google ScholarGoogle Scholar
  93. Takahiro Shinozaki and Shinji Watanabe. 2015. Structure discovery of deep neural network based on evolutionary algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’15). IEEE, 4979--4983.Google ScholarGoogle ScholarCross RefCross Ref
  94. Nikhil S. Shirwandkar and Samidha Kulkarni. 2018. Extractive text summarization using deep learning. In Proceedings of the 2018 4th International Conference on Computing Communication Control and Automation (ICCUBEA’18). IEEE, 1--5.Google ScholarGoogle Scholar
  95. Dan Simon. 2008. Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 6 (2008), 702--713.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Paul Smolensky. 1986. Information Processing in Dynamical Systems: Foundations of Harmony Theory. Technical Report. Department of Computer Science, University of Colorado at Boulder.Google ScholarGoogle Scholar
  97. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929--1958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Nitish Srivastava and Ruslan R. Salakhutdinov. 2012. Multimodal learning with deep boltzmann machines. In Advances in Neural Information Processing Systems. 2222--2230.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Pooneh R. Tabrizi, Awais Mansoor, Juan J. Cerrolaza, James Jago, and Marius George Linguraru. 2018. Automatic kidney segmentation in 3D pediatric ultrasound images using deep neural networks and weighted fuzzy active shape model. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI’18). IEEE, 1170--1173.Google ScholarGoogle ScholarCross RefCross Ref
  100. Tomohiro Takagi and Michio Sugeno. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybernet.1 (1985), 116--132.Google ScholarGoogle ScholarCross RefCross Ref
  101. Andrea Tettamanzi and Marco Tomassini. 2013. Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  102. Jin Tian, Minqiang Li, Fuzan Chen, and Nan Feng. 2016. Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks. IEEE Trans. Neur. Netw. Learn. Syst. 27, 1 (2016), 47--61.Google ScholarGoogle ScholarCross RefCross Ref
  103. Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA 4, 2 (2012), 26--31.Google ScholarGoogle Scholar
  104. Jan C. Van Gemert, Jan-Mark Geusebroek, Cor J. Veenman, and Arnold W. M. Smeulders. 2008. Kernel codebooks for scene categorization. In Proceedings of the European Conference on Computer Vision. Springer, 696--709.Google ScholarGoogle Scholar
  105. S. S. Vedam, P. J. Keall, A. Docef, D. A. Todor, V. R. Kini, and R. Mohan. 2004. Predicting respiratory motion for four-dimensional radiotherapy. Med. Phys. 31, 8 (2004), 2274--2283.Google ScholarGoogle ScholarCross RefCross Ref
  106. Jose Vieira, F. Morgado Dias, and Alexandre Mota. 2004. Neuro-fuzzy systems: A survey. In Proceedings of the 5th WSEAS NNA International Conference on Neural Networks and Applications. 87--92.Google ScholarGoogle Scholar
  107. Navneet Walia, Harsukhpreet Singh, and Anurag Sharma. 2015. ANFIS: Adaptive neuro-fuzzy inference system-a survey. Int. J. Comput. Appl. 123, 13 (2015).Google ScholarGoogle Scholar
  108. Li-Xin Wang and Jerry M. Mendel. 1991. Generating Fuzzy Rules from Numerical Data, with Applications. Signal and Image Processing Institute, University of Southern California.Google ScholarGoogle Scholar
  109. Yani Wang, Zhendong Wu, and Jianwu Zhang. 2016. Damaged fingerprint classification by deep learning with fuzzy feature points. In Proceedings of the International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI’16). IEEE, 280--285.Google ScholarGoogle ScholarCross RefCross Ref
  110. F. S. Wong, P. Z. Wang, T. H. Goh, and B. K. Quek. 1992. Fuzzy neural systems for stock selection. Financ. Anal. J. 48, 1 (1992), 47--52.Google ScholarGoogle ScholarCross RefCross Ref
  111. J. Y. Xia, X. Li, and Y. X. Liu. 2016. Application of a new restricted Boltzmann machine to radar target recognition. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS’16). IEEE, 2195--2201.Google ScholarGoogle Scholar
  112. Ronald R. Yager. 1999. Decision making with fuzzy probability assessments. IEEE Trans. Fuzzy Syst. 7, 4 (1999), 462--467.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Ronald R. Yager. 2013. Pythagorean fuzzy subsets. In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS’13). IEEE, 57--61.Google ScholarGoogle ScholarCross RefCross Ref
  114. Ronald R. Yager. 2014. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22, 4 (2014), 958--965.Google ScholarGoogle ScholarCross RefCross Ref
  115. Chenggang Yan, Yongdong Zhang, Jizheng Xu, Feng Dai, Liang Li, Qionghai Dai, and Feng Wu. 2014. A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Sign. Process. Lett. 21, 5 (2014), 573--576.Google ScholarGoogle ScholarCross RefCross Ref
  116. JingTao Yao and Yiyu Y. Yao. 2003. Information granulation for web-based information support systems. In Data Mining and Knowledge Discovery: Theory, Tools, and Technology V, Vol. 5098. International Society for Optics and Photonics, 138--146.Google ScholarGoogle Scholar
  117. Xin Yao. 1993. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8, 4 (1993), 539--567.Google ScholarGoogle ScholarCross RefCross Ref
  118. Sue S. Yom, Zhongxing Liao, H. Helen Liu, Susan L. Tucker, Chao-Su Hu, Xiong Wei, Xuanming Wang, Shulian Wang, Radhe Mohan, James D. Cox, et al. 2007. Initial evaluation of treatment-related pneumonitis in advanced-stage non--small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68, 1 (2007), 94--102.Google ScholarGoogle ScholarCross RefCross Ref
  119. Lotfi A. Zadeh. 1996. On fuzzy algorithms. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh. World Scientific, Singapore, 127--147.Google ScholarGoogle Scholar
  120. Lotfi A. Zadeh. 1997. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 2 (1997), 111--127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Matthew D. Zeiler. 2012. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012).Google ScholarGoogle Scholar
  122. Feng Zhang, Yuanyuan Wang, Minjie Cao, Xiaoxiao Sun, Zhenhong Du, Renyi Liu, and Xinyue Ye. 2016. Deep-learning-based approach for prediction of algal blooms. Sustainability 8, 10 (2016), 1060.Google ScholarGoogle ScholarCross RefCross Ref
  123. Ren Zhang, Furao Shen, and Jinxi Zhao. 2014. A model with fuzzy granulation and deep belief networks for exchange rate forecasting. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’14). IEEE, 366--373.Google ScholarGoogle ScholarCross RefCross Ref
  124. Xiaolu Zhang and Zeshui Xu. 2014. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29, 12 (2014), 1061--1078.Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Yu-Jun Zheng, Sheng-Yong Chen, Yu Xue, and Jin-Yun Xue. 2017a. A Pythagorean-type fuzzy deep denoising autoencoder for industrial accident early warning. IEEE Trans. Fuzzy Syst. 25, 6 (2017), 1561--1575.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Yu-Jun Zheng, Wei-Guo Sheng, Xing-Ming Sun, and Sheng-Yong Chen. 2017b. Airline passenger profiling based on fuzzy deep machine learning. IEEE Trans. Neur. Netw. Learn. Syst. 28, 12 (2017), 2911--2923.Google ScholarGoogle ScholarCross RefCross Ref
  127. Shusen Zhou, Qingcai Chen, and Xiaolong Wang. 2014. Fuzzy deep belief networks for semi-supervised sentiment classification. Neurocomputing 131 (2014), 312--322.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey on Fuzzy Deep Neural Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 53, Issue 3
      May 2021
      787 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3403423
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 May 2020
      • Accepted: 1 October 2019
      • Revised: 1 September 2019
      • Received: 1 May 2019
      Published in csur Volume 53, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format