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Abstract
We show an exponential separation between two well-studied models of algebraic computation,
namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three
circuits. In particular we show the following:
1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth

three circuits (with only two product gates) such that every ROABP computing it requires
2Ω(n) size.

2. Any multilinear depth three circuit computing IMMn,d (the iterated matrix multiplication
polynomial formed by multiplying d, n×n symbolic matrices) has nΩ(d) size. IMMn,d can be
easily computed by a poly(n, d) sized ROABP.

3. Further, the proof of 2 yields an exponential separation between multilinear depth four and
multilinear depth three circuits: There is an explicit n-variate, degree d polynomial comput-
able by a poly(n, d) sized multilinear depth four circuit such that any multilinear depth three
circuit computing it has size nΩ(d). This improves upon the quasi-polynomial separation
result by Raz and Yehudayoff [2009] between these two models.

The hard polynomial in 1 is constructed using a novel application of expander graphs in conjunc-
tion with the evaluation dimension measure used previously in Nisan [1991], Raz [2006,2009], Raz
and Yehudayoff [2009], and Forbes and Shpilka [2013], while 2 is proved via a new adaptation of
the dimension of the partial derivatives measure used by Nisan and Wigderson [1997]. Our lower
bounds hold over any field.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases multilinear depth three circuits, read-once oblivious algebraic branching
programs, evaluation dimension, skewed partial derivatives, expander graphs, iterated matrix
multiplication

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.46

1 Introduction

Proving lower bounds and separating complexity classes lie at the heart of complexity theory.
In algebraic complexity, separating classes VP and VNP (the algebraic analogues of P and
NP) equates to proving super-polynomial lower bounds for arithmetic circuits. Another
prominent and pertinent problem is polynomial identity testing (PIT). Here we are given an
arithmetic circuit computing a multivariate polynomial over some field and the problem is
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46:2 Separation Between ROABPs and Multilinear Depth 3 Circuits

to determine whether the polynomial is identically zero. Polynomial time randomized PIT
follows easily from [6, 33, 37]. PIT is one of the very few natural problems in BPP (in fact,
in co-RP) not known to be in P. Showing arithmetic circuit lower bounds and derandomizing
PIT are closely related: [17] showed that a polynomial time PIT over integers implies a
super-polynomial arithmetic circuit lower bound for the family of permanent polynomials
or NEXP * P/poly. [15, 1] showed that a polynomial time blackbox PIT (meaning, we are
only allowed to evaluate the circuit at points from Fn, where n is the number of inputs and
F the underlying field) implies exponential lower bounds for circuits computing polynomials
whose coefficients can be computed in PSPACE. Conversely, [17] also showed that a super-
polynomial (exponential) circuit lower bound for any family of exponential-time computable
multilinear polynomials implies a sub-exponential (quasi-polynomial) time algorithm for PIT,
in fact blackbox PIT, using Nisan-Wigderson generators [24] and Kaltofen’s [18] polynomial
factorization algorithm. [8] showed a similar connection between lower bounds and PIT for
low depth circuits. They proved lower bounds for bounded depth circuits imply efficient
PIT for bounded depth circuits computing polynomials with low individual degree. So, in
this certain sense the complexity of proving strong lower bounds and devising efficient PIT
algorithms are quite similar. Derandomizing PIT is also interesting in its own right. It is
well-known that such a derandomization would imply the problem of checking existence of a
perfect matching in a given graph is in NC [35].

Research over the the past several years has made notable progress on both lower bounds
and PIT for interesting special cases of arithmetic circuits and helped identify the frontiers of
our current knowledge. In particular, we understand better the reason why super-polynomial
lower bounds and poly-time PIT have remained elusive even for depth three circuits: An
exponential lower bound (similarly, a poly-time blackbox PIT) for depth three circuits over
fields of characteristic zero implies an exponential lower bound (similarly, quasi-polynomial-
time PIT) for general circuits [12]. For more on arithmetic circuit lower bounds and PIT
refer to the surveys [34], [4], [30, 21], [31, 32].

A potentially useful and interesting restriction to consider at depth three is multilinear-
ity (meaning, every product gate computes a multilinear polynomial). Most of the hard
polynomials used in the literature are multilinear, e.g. determinant, permanent, iterated
matrix multiplication, Nisan-Wigderson polynomials etc. So, it is worthwhile to develop a
fuller understanding of multilinear models [27, 26, 28, 29, 7]. We do know of strong lower
bounds for multilinear depth three circuits due to [29] and also this paper (Theorem 9), but
as yet no efficient (meaning, quasi-polynomial) PIT is known for this model. One reason
for this is the absence of hardness versus randomness tradeoff results for bounded depth
multilinear circuits. Recently, [5] has given a sub-exponential time blackbox PIT algorithm
for multilinear depth three circuits using recently found quasi-polynomial blackbox PIT for
another model, namely read-once oblivious algebraic branching programs (ROABPs) [10, 2]
(Definition 2), thereby connecting these two interesting models of computation. Could there
be a more efficient reduction from multilinear depth three circuits to ROABPs? If so then
that would readily imply an efficient PIT algorithm for multilinear depth three circuits. This
question has lead us to this work.

Related work and motivation. The model ROABP (see Definition 2) has been studied in-
tensely in the recent years in the context of black-box PIT, equivalently hitting-set generators
(Definition 20). This has resulted in deterministic, quasi-polynomial time hitting-set generat-
ors for ROABPs [2, 10] and other associated models like set-multilinear algebraic branching
programs [9, 10] (a special case of which is set-multilinear depth three circuits [3, 10], see
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also Definition 4), non-commutative algebraic branching programs [10] and diagonal depth-3
circuits [3, 10]. Quite recently, [5] has given a 2Õ(n

2
3 (1+δ)) time hitting-set generator for

multilinear depth three circuits of size at most 2nδ by ‘reducing’ a multilinear depth three
circuit to a collection of ROABPs and ‘putting together’ the hitting-sets of the ROABPs.
This ‘putting together’ process raises the hitting-set complexity from quasi-polynomial (for
a single ROABP) to sub-exponential (for a composition of several ROABPs). Had it been
the case that a multilinear depth three circuit can be directly reduced to a single small size
ROABP, an efficient hitting set for the former would have ensued immediately from [2, 10].
One of the results in the paper (Theorem 7), rules out this possibility. In fact, Theorem 7
shows something stronger as described below.

A closer look at [2] and [5] reveals an interesting, and potentially useful, intermediate
model that we call superposition of (two or more) set-multilinear depth three circuits (see
Definition 5). An example of superposition of two set-multilinear depth three circuits is,

C(X,Y ) = (1 + 3x1 + 5y2)(4 + x2 + y1) + (6 + 9x1 + 4y1)(2 + 5x2 + 3y2).

The variable sets X = {x1, x2} and Y = {y1, y2} are completely disjoint and are called the
base sets of C(X,Y ). When projected on X variables (i.e after putting the Y variables to
zero), C(X,Y ) is a set-multilinear depth three circuit in the X variables. A similar thing
is true for the Y variables. Thus, every base set is associated with a set-multilinear depth
three circuit and vice versa. Any multilinear depth three circuit can be trivially viewed as
a superposition of n set-multilinear depth three circuits with single variable in every base
set, where n is the number of variables. A crucial observation in [5] is that every multilinear
depth three circuit is “almost” a superposition of nε set-multilinear depth three circuits for
some ε < 1, and further the associated nε base sets can be found in sub-exponential time
using k-wise independent hash functions. Once we know the r = nε base sets corresponding
to r set-multilinear depth three circuits whose superposition forms a circuit of size s, finding
a hitting set for the circuit in time sr. log s follows easily by taking a direct product of hitting
sets for r many ROABPs (in fact, set-multilinear depth three circuits). We think a useful
model to consider at this juncture is superposition of constantly many set-multilinear depth
three circuits with unknown base sets. In this case knowing the r = O(1) base sets readily
gives us a quasi-polynomial time hitting set, but finding these base sets from a given circuit is
NP-hard for r ≥ 3 (as we show in Observation 6), which rules out the possibility of knowing
the base-sets even if we are allowed to see the circuit (as in the white-box case). Indeed,
even in this special case where the given multilinear depth three circuit is promised to be a
superposition of constantly many (say, 2) set-multilinear depth three circuits, the algorithm
in [5] finds and works with many base sets and the resulting hitting set complexity grows to
roughly exp(

√
n). Could it be that superposition of constantly many set-multilinear depth

three circuits efficiently reduce to ROABPs? Unfortunately, the answer to this also turns out
to be negative as Theorem 7 gives an explicit example of a superposition of two set-multilinear
depth three circuit computing an n-variate polynomial f such that any ROABP computing
f has width 2Ω(n).

While comparing two models (here multilinear depth three circuits and ROABPs), it is
desirable to show a separation in both directions whenever an efficient reduction from one to
the other seems infeasible. In this sense, we show a complete seperation between the models
under consideration by giving an explicit polynomial computable by a polynomial sized
ROABP such that every multilinear depth three circuit computing it requires exponential
size. In fact, this explicit polynomial is simply the Iterated Matrix Multiplication IMMn,d

– the (1, 1)-th entry of a product of d n × n symbolic matrices (Theorem 9). IMMn,d can
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46:4 Separation Between ROABPs and Multilinear Depth 3 Circuits

be easily computed by a polynomial-sized ROABP (see Observation 10). Although, a 2Ω(d)

lower bound for multilinear depth three circuit computing Detd is known [29], this does not
imply a lower bound for IMMn,d (despite the fact that Det and IMM are both complete
for algebraic branching programs (ABPs) [22]) as the projection from IMM to Det can
make the circuit non-multilinear. Another related work by [7] showed a separation between
multilinear ABPs and multilinear formulas by exhibiting an explicit polynomial (namely, an
arc-full-rank polynomial) that is computable by a linear size multilinear ABP but requires
super-polynomial size multilinear formulas. But again multilinearity of a circuit can be lost
when IMM is projected to arc-full-rank polynomials, and hence this result too does not imply
a lower bound for IMM. An extension of Theorem 9 to a super-polynomial lower bound
for multilinear formulas computing IMM will have interesting consequences in separating
noncommutative formulas and noncommutative ABPs. In a contemporary work [20], some
of the authors of this work and Sébastien Tavenas have been able to show an nΩ(

√
d) lower

bound for multilinear depth four circuits computing IMMn,d by significantly extending a
few of the ideas present in this work and building upon (thereby improving) the work of
[11]. Thus, in summary the models poly-sized ROABPs and poly-sized multilinear depth
three ciruits have provably different computational powers, although they share a non-trivial
intersection as poly-sized set-multilinear depth three circuits is harbored in both.

An interesting outcome of the proof of the lower bound for multilinear depth three circuits
computing IMM is an exponential separation between multilinear depth three and multilinear
depth four circuits. Previously, [29] showed a super-polynomial separation between multilinear
constant depth h and depth h+ 1 circuits, which when applied to the depth three versus
four setting gives a quasi-polynomial seperation between the two models. In comparison,
Theorem 11 gives an exponential separation.

The models and our results. We define the relevant models and state our results now.

I Definition 1 (Algebraic Branching Program). An Algebraic Branching Program(ABP) in
the variables X = {x1, x2, ..., xn} is a directed acyclic graph with a source vertex s and a sink
vertex t. It has (d+ 1) sets or layers of vertices V1, V2, ..., Vd+1, where V1 and Vd+1 contain
only s and t respectively. The width of an ABP is the maximum number of vertices in any
of the (d+ 1) layers. All the edges in an ABP are such that an edge starts from a vertex in
Vi and is directed to a vertex in Vi+1, where Vi belongs to the set {V1, V2, ..., Vd}. The edges
in an ABP are labelled by polynomials over a base field F. The weight of a path between
any two vertices u and v in an ABP is computed by taking the product of the edge labels on
the path from u to v. An ABP computes the sum of the weights of all the paths from s to t.

Note that in another standard definition of an ABP, the edges are labeled by linear polynomials
over a base field F. A special kind of ABP, namely ROABP, is defined in [10].

I Definition 2 (Read-Once Oblivious Algebraic Branching Program). A Read-Once Oblivious
Algebraic Branching Program(ROABP) over a field F has an associated permutation π :
[n]→ [n] of the variables in X. The number of variables is equal to the number of layers of
vertices minus one, i.e. n = (d+ 1)− 1 = d. The label associated with an edge from a vertex
in Vi to a vertex in Vi+1 is an univariate polynomial over F in the variable xπ(i).

I Definition 3 (Multilinear depth 4 and depth 3 circuits). A circuit C =
∑s
i=1
∏di
j=1Qij(Xi

j)
is a multilinear depth four (ΣΠΣΠ) circuit in X variables over a field F, if X = ]dij=1X

i
j and

Qij ∈ F[Xi
j ] is a multilinear polynomial for every i ∈ [s] and j ∈ [di]. If Qij ’s are linear

polynomials then C is a multilinear depth three (ΣΠΣ) circuit. The parameter s is the top
fan-in of C.
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I Definition 4 (Set-multilinear depth three circuit). A circuit C =
∑s
i=1
∏d
j=1 lij(Xj) is a

set-multilinear depth three (ΣΠΣ) circuit in X variables over a field F, if X = ]dj=1Xj and
lij ∈ F[Xj ] is a linear polynomial for every i ∈ [s] and j ∈ [d]. The sets X1, X2, ..., Xd are
called the colors of X. If |Xj | = 1 for every j ∈ [d] then we say X has singleton colors and
C is a set-multilinear depth three circuit with singleton colors.

As a bridge between multilinear and set-multilinear depth three circuits we define a model
called superposition of set-multilinear depth three circuits.

I Definition 5 (Superposition of set-multilinear depth three circuits). A multilinear depth
three (ΣΠΣ) circuit C over a field F is a superposition of t set-multilinear depth three circuits
over variables X = ]ti=1Yi, if for every i ∈ [t], C is a set-multilinear depth three circuit in Yi
variables over the field F(X \ Yi). The sets Y1, ..., Yt are called the base sets of C. Further,
we restrict the Yi to have singleton colors for every i ∈ [t].

Although the notion of superposition makes sense even if Yi’s do not have singleton colors,
we restrict to singletons as this model itself captures multilinear depth three circuits. We
make the following observation for superposition of set-multilinear depth three circuits.

I Observation 6. Given a circuit C which is a superposition of t set-multilinear circuits on
unknown base sets Y1, Y2, ..., Yt, finding t base sets Y

′

1 , Y
′

2 , ..., Y
′

t such that C is a superposition
of t set-multilinear circuits on base sets Y ′1 , Y

′

2 , ..., Y
′

t is NP-hard when t > 2.

Due to space constraint the proof of Observation 6 is omitted. It can be found in an extended
version of this paper [19]. We now state the main results of this paper.

I Theorem 7 (Main Theorem 1).
1. There is an explicit family of 2n-variate polynomials {gn}n≥1 over any field F such that

the following hold: gn is computable by a multilinear depth three circuit C over F with
top fanin three and C is also a superposition of two set-multilinear depth three circuits.
Any ROABP over F computing gn has width 2Ω(n).

2. There is an explicit family of 3n-variate polynomials {gn}n≥1 over any field F such that
the following hold: gn is computable by a multilinear depth three circuit C over F with
top fanin two and C is also a superposition of three set-multilinear depth three circuits.
Any ROABP over F computing fn has width 2Ω(n).

We prove Theorem 7 in Section 3. The tightness of the theorem is shown by this observation.

I Observation 8. A polynomial computed by a multilinear ΣΠΣ circuit with top fan-in two
and at most two variables per linear polynomial can also be computed by an ROABP with
constant width.

In the interest of space the proof of Observation 8 is omitted, see [19]. Thus, it follows from
Theorem 7 that if we increase either the top fan-in or the number of variables per linear
polynomial from two to three in multilinear depth three circuits then there exist polynomials
computed by such circuits such that ROABPs computing these polynomials have exponential
width. We now state the “converse" of Theorem 7.

I Theorem 9 (Main Theorem 2). Any multilinear depth three circuit (over any field) com-
puting IMMn,d, the (1, 1)-th entry of a product of d n× n symbolic matrices, has top fan-in
nΩ(d) for n ≥ 11. (Note: This also implies a lower bound for determinant, see Corollary 38.)

We prove Theorem 9 in Section 4. It is not hard to observe the following.
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46:6 Separation Between ROABPs and Multilinear Depth 3 Circuits

I Observation 10. IMMn,d can be computed by an n2 width ROABP.

The proof of Observation 10 is omitted, see [19]. Thus, Theorem 7, Theorem 9 and Observa-
tion 10 together imply a complete separation between multilinear depth three circuits and
ROABPs. As a consequence of the proof of Theorem 9 we also get an exponential separation
between multilinear depth three and multilinear depth four circuits (proof in Section 4).

I Theorem 11. There is an explicit family of O(n2d)-variate polynomials of degree d,
{fd}d≥1, such that fd is computable by a O(n2d)-sized multilinear depth four circuit with top
fan-in one (i.e. a ΠΣΠ circuit) and every multilinear depth three circuit computing fd has
top fan-in nΩ(d) for n ≥ 11.

Observe that the hard polynomials used in Theorem 7 belong to a special class of multilinear
depth three circuits – they are both superpositions of constantly many set-multilinear depth
three circuits and simultaneously a sum of constantly many set-multilinear depth three
circuits. Here is an example of a circuit from this class.

C(X,Y ) = (1 + 3x1 + 5y2)(4 + x2 + y1) + (9 + 6x1 + 4y2)(3 + 2x2 + 5y1)
+ (6 + 9x1 + 4y1)(2 + 5x2 + 3y2) + (3 + 6x1 + 9y1)(5 + 8x2 + 2y2)

C(X,Y ) is a superposition of two set-multilinear depth three circuits with base sets X =
{x1} ∪ {x2} and Y = {y1} ∪ {y2}. But C(X,Y ) is also a sum of two set-multilinear depth
three circuits with {x1, y2}, {x2, y1} being the colors in the first set-multilinear depth three
circuit (corresponding to the first two products) and {x1, y1}, {x2, y2} the colors in the
second set-multilinear depth three circuit (corresponding to the last two products). For such
a subclass of multilinear depth three circuits, we give a quasi-polynomial time hitting set by
extending the proof technique of [3].

I Theorem 12. Let Cn,m,l,s be a subclass of multilinear depth three circuits computing
n-variate polynomials such that every circuit in Cn,m,l,s is a superposition of at most m
set-multilinear depth three circuits and simultaneously a sum of at most l set-multilinear
depth three circuits, and has top fan-in bounded by s. There is a hitting-set generator for
Cn,m,l,s running in (ns)O(lm log s) time.

When m and l are bounded by poly(logns), we get quasi-polynomial time hitting sets. The
proof of Theorem 12, which extends the shift and rank concentration technique of [3], is
omitted, see [19]. To our understanding, even if m and l are constants, [5]’s algorithm yields
an exp(

√
n) hitting set complexity. Also, [13] has recently given a (ndw)O(l2l log(ndw)) time

hitting set generator for n-variate, individual (variable) degree d polynomials computed
by sum of l ROABPs each of width less than w. Sum of l set-multilinear depth three
circuits reduces to sum of l ROABPs as set-multilinear depth three circuits readily reduce to
poly-sized ROABPs. But, observe the doubly exponential dependence on l in their result.
On the contrary, in Theorem 12 the dependence is singly exponential in l. So, the hitting-set
complexity remains quasi-polynomial for l = (logn)O(1) whereas [13] gives an exponential
time hitting-set generator when applied to the model in Theorem 12. However, it is also
important to note that the model considered in Theorem 12 is somewhat weaker than the
sum of ROABPs model in [13] because of the additional restriction that our model is also a
superposition of m set-multilinear depth three circuits.

2 Preliminaries

Measures. We have used two complexity measures, namely evaluation dimension and a
novel variant of the dimension of the space of partial derivatives, to prove Theorem 7 and 9
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respectively. Evaluation dimension was first defined in [10]1. Let X be a set of variables.

I Definition 13 (Evaluation Dimension). The evaluation dimension of a polynomial g ∈ F[X]
with respect to a set S ⊆ X, denoted as EvaldimS(g), is defined as

dim(spanF{g(X)|∀xj∈S xj=αj : ∀xj ∈ S αj ∈ F}).

Evaluation dimension is a nearly equivalent variant of another measure, the rank of the
partial derivatives matrix, defined and used earlier in [27, 26, 28, 29, 7] to prove lower bounds
and separations for several multilinear models. These two measures are identical over fields
of characteristic zero (or sufficiently large), but the former is well defined over any field.

The partial derivatives measure was introduced in [23, 25]. The following is a simple
variant of this measure that is also inspired by the measure used in [27].

I Definition 14 (“Skewed” partial derivatives). Let f ∈ F[X,Y ], where X and Y are disjoint
sets of variables, and Yk be the set of all monomials in Y variables of degree k ∈ N. Define
the measure PDYk(f) as

dim
(

spanF

{[
∂f(X,Y )
∂m

]
∀y∈Y y=0

: m ∈ Yk

})
.

In proving Theorem 9, we apply the above measure with a significant difference (or skew)
between the number of X and Y variables – it is this imbalance that plays a crucial role in
the proof. It is easy to see that both the above measures obey subadditivity.

I Lemma 15 (Subadditivity).
1. Let g1, g2 ∈ F[X] and S ⊆ X. Then

EvaldimS(g1 + g2) ≤ EvaldimS(g1) + EvaldimS(g2).

2. Let f1, f2 ∈ F[X,Y ]. Then PDYk(f1 + f2) ≤ PDYk(f1) + PDYk(f2).

Expander Graphs. A vital ingredient that helps us construct the hard polynomials in
Theorem 7 is a family of explicit 3-regular expanders. We recall a few definitions from [16].

I Definition 16 (Edge expansion and family of expanders). Let G = (V,E) be an undirected
d-regular graph. For S ⊆ V , let E(S, S) be the set of edges with one end incident on a vertex
in S and the other incident on a vertex in S = V \S. The edge expansion of G denoted h(G)
is defined as:

h(G) = min
S: |S|≤ |V |2

|E(S, S)|
|S|

.

A sequence of d-regular graphs {Gi}i∈N of size increasing with i is a family of d-regular
expanders if there exists an ε > 0 such that h(Gi) > ε for every i.

I Definition 17 (Mildly explicit expanders). Let G = {Gi}i∈N be a family of d-regular
expanders such that the number of vertices in Gi is bounded by a polynomial in i. G is mildly
explicit if there exists an algorithm that takes input i and constructs Gi in time polynomial
in the size of Gi.

1 They attributed the notion to Ramprasad Saptharishi.
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46:8 Separation Between ROABPs and Multilinear Depth 3 Circuits

A family of mildly explicit expanders. [16] mentions a family of mildly explicit 3-regular
p-vertex expanders {Gp}p prime such that for every graph Gp in the family: h(Gp) > 2+10−4

2 .
The vertices of Gp correspond to elements in Zp. A vertex x in Gp is connected to x+1, x−1
and to its inverse x−1 (operations are modulo p and inverse of 0 is defined as 0). We refer
the reader to [16], section 11.1.2, for more details. Denote this family of 3-regular p-vertex
expanders by S.

Double Cover. The proof of Theorem 7 works with bipartite expanders. It is standard to
transform a d-regular expander graph to a d-regular bipartite expander graph by taking its
double cover.

I Definition 18 (Double Cover). The double cover of a graph G = (V,E) is the bipartite
graph G̃ = (L ]R, Ẽ) where |L| = |R| = |V |. Corresponding to a vertex u ∈ V we have two
vertices uL ∈ L and uR ∈ R. Edges (uL, vR) and (uR, vL) ∈ Ẽ if and only if there is an
edge (u, v) ∈ E.

I Lemma 19. Let S = {Gp}p prime be the family of expanders as described above, and
S̃ = {G̃p}p the family of double covers of graphs in S. Then h(G̃p) > 2+10−4

2 for every p.
[In the interest of space the proof is omitted.]

Hitting-set generators. In Theorem 12, we give a quasi-polynomial time hitting-set gener-
ator for a subclass of multilinear depth three circuits.

I Definition 20 (Hitting-set generators). A hitting-set generator for a class of circuits C is a
Turing machine H that takes (1n, 1s) as input and outputs a set {a1, . . . , am} ⊆ Zn such that
for every circuit C ∈ C of size bounded by s and computing a nonzero n-variate polynomial
over a field F ⊃ Z, there is an i ∈ [m] for which C(ai) 6= 0. Complexity of H is its running
time. Hitting-set generators can be defined similarly over finite fields by considering field
extensions.1

Technical Lemmas. The following lemmas are used in Theorem 7. Lemma 21 follows from
Hall’s marriage theorem [14]. The proofs of Lemmas 22 and 23 are omitted, see [19].

I Lemma 21. A d-regular graph can be split into d edge disjoint perfect matchings.

I Lemma 22. Suppose g1(X), g2(X), ..., gm(X) ∈ F[X] are F-linearly independent polyno-
mials in the variables X = {x1, x2, ...., xn} where m = 2n. If Y = {y1, y2, ...., yn} are n
variables different from X then (by identifying an i ∈ [m] with an S ⊆ [n]),

EvaldimY (
∑
S⊆[n]

yS · gS(X)) = m, where for S ⊆ [n], yS :=
∏
j∈S

yj .

I Lemma 23. If R is a width-k ROABP that computes g(X) then for every i ∈ [0, |X|] there
exists a set S ⊆ X of size i such that EvaldimS(g) ≤ k.

3 Lower bounds for ROABP: Proof of Theorem 7

Proof of part 1
Construction of the polynomial family. We construct a family of 2n-variate multilinear
polynomials {gn}n≥1 from the explicit family of 3-regular expander graphs S (described
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in Section 2). From an n-vertex graph G = (V,E) in S, construct a polynomial g(X,Y )
in variables X = {x1, . . . , xn} and Y = {y1, . . . , yn} as follows: Let G̃ = (L ]R, Ẽ) be the
double cover of G. By Lemma 19, h(G̃) > 2+10−4

2 . With every vertex in L (similarly, R)
associate a unique variable in X (respectively, Y ), thus vertices in L and R are identified
with the X and Y variables respectively. An edge between xi and yj is associated with the
linear polynomial (1 + xi + yj). By Lemma 21, G̃ can be split into three edge disjoint perfect
matchings. Polynomial g(X,Y ) is a sum of three product terms corresponding to the three
edge disjoint perfect matchings of G̃; a product term is formed by taking product of the
linear polynomials associated with the edges of the corresponding matching. It is easy to
show the following claim. We leave the proof to the reader.

I Claim 24. Polynomial g (constructed above) is computed by a multilinear depth three
circuit C of size Θ(n) and top fan-in three, and C is a superposition of two set-multilinear
depth three circuits.

High evaluation dimension of g(X, Y ). It turns out that the evaluation dimension of
g(X,Y ) with respect to any subset of variables of size n/10 is large.

I Lemma 25. For any set S ⊆ X ] Y of size n/10, EvaldimS(g) ≥ 2εn where ε > 0 is a
constant.

Proof. Consider any subset S of n/10 variables from X ] Y . With respect to set S we can
classify the linear polynomials in the product terms of g(X,Y ) into three types: untouched
– if none of the two variables in the linear polynomial belong to S, partially touched – if
exactly one of the variables in the linear polynomial belongs to S, and completely touched –
if both variables belong to S. Call the three product terms of g – P1, P2 and P3. Proof of
the next claim is omitted, see [19].

I Claim 26. There exists a set X0 ⊆ X of
( 7n

10 − 4
)
X-variables such that every x ∈

X0 appears in an untouched linear polynomial in every Pi (for i ∈ [3]), and further if
(1 + x+ yj1), (1 + x+ yj2) and (1 + x+ yj3) are the linear polynomials occurring in P1, P2
and P3 respectively then yj1 6= yj2 6= yj3 .

For i ∈ [3], let Bi be the set of partially touched linear polynomials in term Pi.

I Claim 27. There is an i ∈ [3] such that |Bi| ≥ εn where ε = 0.01.

Proof. Let T be such that, for all i ∈ [3], |Bi| ≤ T . Recall that g has been constructed
from the bipartite expander G̃, and vertices in G̃ identified with the variable set X ] Y . We
denote the vertices in G̃ corresponding to the variables in S also by S, and denote the set of
edges going out from S to S = L]R\S in G̃ by Ẽ(S, S). Using the expansion property of G̃,

|Ẽ(S, S)| ≥ h(G̃) · |S| ≥ 2 + 10−4

2 ·
( n

10

)
.

Every edge in Ẽ(S, S) corresponds to a partially touched linear polynomial. Since G̃

is 3-regular, at least |Ẽ(S,S)|
3 of the edges correspond to distinct partially touched linear

polynomials. By assumption, the number of such partially touched linear polynomials is at
most 3T ; and so T ≥ 0.01n. J

The next claim completes the proof of Lemma 25.

I Claim 28. If there exists an i ∈ [3] such that |Bi| ≥ εn for ε > 0, then EvaldimS(g) ≥ 2εn.
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Proof. Without loss of generality, assume |B1| ≥ εn. Pick two variables, say x and x′,
from the set X0 (as described in Claim 26). Let (1 + x + yj2) and (1 + x′ + y′j3

) be the
linear polynomials appearing in P2 and P3 respectively. By substituting x = −(1 + yj2) and
x′ = −(1 + y′j3

) in g, the terms P2 and P3 vanish but P1 does not (by Claim 26). Let ĝ be
the polynomial g after the substitution. Polynomial ĝ has only one product term P̂1 (i.e. P1
under the substitution), and P̂1 has as many partially touched linear polynomials as P1. At
this point, it is not difficult to prove the following observation.

I Observation 29. EvaldimS(g) ≥ EvaldimS(ĝ) = EvaldimS(P̂1) ≥ 2εn.

This completes the proof of Claim 28. J

From Lemma 23 and 25 we conclude that any ROABP computing g(X,Y ) has width at least
2εn. J

Proof of part 2
Construction of the polynomial family. Similar to part 1, we construct a family of 3n-
variate multilinear polynomials {gn}n≥1 from the explicit family of 3-regular expanders S –
but this time edges will be associated with variables and vertices with linear polynomials.
From an n-vertex graph G = (V,E) in S, construct a polynomial g(X,Y, Z) in variables
X = {x1, . . . , xn}, Y = {y1, . . . , yn} and Z = {z1, . . . , zn} as follows: Let G̃ = (L ]R, Ẽ) be
the double cover of G, and as before h(G̃) > 2+10−4

2 . Edges of G̃ can be split into three edge
disjoint perfect matchings (by Lemma 21). Label the edges of the first perfect matching by
distinct X-variables, the edges of the second matching by distinct Y -variables, and the edges
of the third by distinct Z-variables. Vertices of G̃ now correspond to linear polynomials
naturally – if the three edges incident on a vertex are labelled xi, yj and zk then associate
the linear polynomial (1 + xi + yj + zk) with the vertex. Let P1 be the product of the linear
polynomials associated with the vertices of L, and P2 the product of linear polynomials
associated with the vertices of R. Polynomial g(X,Y, Z) is the sum of P1 and P2. The
following claim is easy to show (just like Claim 24).

I Claim 30. Polynomial g (constructed above) is computed by a multilinear depth three
circuit C of size Θ(n) and top fan-in two, and C is a superposition of three set-multilinear
depth three circuits.

High evaluation dimension of g(X, Y ). The proof of the following lemma is similar to
that of Lemma 25, differences arise only due to the ‘dual’ nature of g.

I Lemma 31. For any S ⊆ X ] Y ] Z of size n/10, EvaldimS(g) ≥ 2εn where ε > 0 is a
constant.

Proof. Let S be any set of n
10 variables from X ] Y ] Z. The definitions of untouched,

partially touched and completely touched linear polynomials are almost the same as in the
proof of Lemma 25. The difference is we have three variables instead of two in a linear
polynomial in g. So, a linear polynomial is partially touched if at most two of the three
variables belong to S. For i ∈ [2], let Bi be the set of partially touched linear polynomials
and Ci the set of completely touched linear polynomials in product term Pi of g.

I Claim 32. There is an i ∈ [2] such that |Bi| ≥ εn where ε = 0.01.

Proof. Let T be such that, for all i ∈ [2], |Bi| ≤ T . The proof of the next observation is
omitted, see [19].
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Figure 1 ABP M.

I Observation 33. |C1|+ |C2| is at least n
15 −

8T
3 .

Let C be the set of vertices in G̃ corresponding to the completely touched linear polynomials
in both the product gates, thus |C| = |C1|+ |C2| ≥ n

15 −
8T
3 . Each edge in Ẽ(C,C) connects

a vertex which corresponds to a completely touched linear polynomial to a vertex which
corresponds to a partially touched linear polynomial. Using expansion of G̃,

|Ẽ(C,C)| ≥ h(G̃) · |C| ≥ 2 + 10−4

2 ·
(
n

15 −
8T
3

)
.

Since edges in Ẽ(C,C) are associated with variables in S, a vertex corresponding to a partially
touched linear polynomial has at most two edges from Ẽ(C,C) incident on it. Hence the
number of vertices corresponding to partially touched linear polynomials is at least Ẽ(C,C)

2 .
But, by assumption, the number of such vertices is at most 2T . Thus,

2T ≥ |Ẽ(C,C)|
2 ≥ 2 + 10−4

4 ·
(
n

15 −
8T
3

)
⇒ T ≥ 0.01n .

J

The proof of the next claim is much like that of Claim 28 and is omitted.

I Claim 34. If there exists an i ∈ [2] such that |Bi| ≥ εn for ε > 0, then EvaldimS(g) ≥ 2εn.

This completes the proof of Lemma 31. From Lemma 23 and 31 we conclude that any
ROABP computing g has width at least 2εn. J

4 Lower bounds for multilinear depth three circuits

The proofs of Theorems 9 and 11 are inspired by a particular kind of projection of IMMn,d

considered in [11]. We say a polynomial f is a simple projection of another polynomial g if f
is obtained by simply setting some variables to field constants in g.

Proof of Theorem 9. The proof proceeds by constructing an ABPM of width n and with
d + 1 layers of vertices such that (a) the polynomial computed by M, say f , is a simple
projection of IMMn,d, and (b) any multilinear depth three circuit computing f has top fan-in
nΩ(d). Since an ABP can be viewed equivalently as a product of matrices, we will describe
M using matrices. Figure 1 depicts the ABPM.
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Description of M. The polynomial f , computed byM, is defined over two disjoint sets
of variables, X and Y . The Y variables are contained in k matrices, {Y (1), ..., Y (k)}; the
(u, v)-th entry in Y (i) is a formal variable y(i)

u,v. There are (k − 1) matrices {A(1), ..., A(k−1)},
such that all the entries in these matrices are ones. The X variables are contained in r

matrices, {X(1), ..., X(r)}. Matrices X(1) and X(r) are row and column vectors of size n
respectively. The u-th entry in X(1) (similarly, X(r)) is x(1)

u (respectively, x(r)
u ). All the

remaining matrices {X(2), ..., X(r−1)} are diagonal matrices in the X variables, i.e. the
(u, u)-th entry in X(i) is x(i)

u and all other entries are zero for i ∈ [2, r− 1]. The matrices are
placed as follows: Between two adjacent Y matrices, Y (i) and Y (i+1), we have five matrices
ordered from left to right as X(4i−1), X(4i), A(i), X(4i+1) and X(4i+2) for every i ∈ [1, k − 1].
Ordered from left to right, X(1) and X(2) are on the left of Y (1) and X(r−1) and X(r) are
on the right of Y (k). Naturally, we have the following relation among k, r and d: r = 4k
and d = r + 2k − 1, i.e. k = d+1

6 . Thus |X| = nr = 4nk and |Y | = n2k. This imbalance
between the X and Y variables plays a vital role in the proof. As before, call the polynomial
computed by this ABPM as f(X,Y ).

The following claim is easy to verify as f is a simple projection of IMMn,d.

I Claim 35. If IMMn,d is computed by a multilinear depth three circuit having top fan-in s
then f is also computed by a multilinear depth three circuit having top fan-in s.

We show every multilinear depth three circuit computing f has top fan-in nΩ(d) for n ≥ 11.

Lower bounding PDYk(f). Let Ỹk ⊆ Yk be the set of monomials formed by picking
exactly one Y -variable from each of the matrices Y (1), ..., Y (k) and taking their product.
Then, |Ỹk| = n2k.

I Claim 36. PDYk(f(X,Y )) = |Ỹk| = n2k.

Proof. The derivative of f with respect to a monomial m ∈ Yk is nonzero if and only if
m ∈ Ỹk. Also, such a derivative ∂f

∂m is a multilinear degree-r monomial in X-variables. The
derivatives of f with respect to two distinct monomials m and m′ in Ỹk give two distinct
multilinear degree-r monomials in X-variables. Hence, PDYk(f) = |Ỹk|. J

Upper bounding PDYk of a multilinear depth three circuit.

I Lemma 37. Let C be a multilinear depth three circuit having top fan-in s computing a
polynomial in X and Y variables. Then PDYk(C) ≤ s · (k + 1) ·

(|X|
k

)
if k ≤ |X|2 .

Proof. Let C =
∑s
i=1 Ti, where each Ti is a product of linear polynomials on disjoint sets

of variables. From Lemma 15, PDYk(C) ≤ s ·maxi∈[s] PDYk(Ti). We need to upper bound
the dimension of the “skewed” partial derivatives of a term Ti = T (say). Let T =

∏q
j=1 lj ,

where lj is a linear polynomial. Among the q linear polynomials at most |X| of them contain
the X variables. Without loss of generality, assume the linear polynomials l1, . . . , lp contain
X-variables and the remaining lp+1, . . . , lq are X-free (here p ≤ |X|). Let Q =

∏q
j=p+1 lj .

Then, T = Q ·
∏p
j=1 lj . We take the derivative of T with respect to a monomial m ∈ Yk and

then substitute the Y variables to zero. Applying the product rule of differentiation and
observing that the derivative of a linear polynomial with respect to a variable makes it a
constant we have the following:[

∂T

∂m

]
Y=0

=
∑
S⊆[p]
|S|≤k

αS
∏

j∈[p]\S

[lj ]Y=0
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where αS ’s are constants from the field. Here m is a representative element of the set
Yk. Hence every such derivative can be expressed as a linear combination of

∑k
t=0
(
p
t

)
≤

(k+ 1) ·
(|X|
k

)
polynomials, where the last inequality is due to k ≤ |X|2 (if t > p then

(
p
t

) def= 0).
Therefore, PDYk(T ) ≤ (k + 1) ·

(|X|
k

)
and PDYk(C) ≤ s · (k + 1) ·

(|X|
k

)
. J

It follows from Claim 36 and Lemma 37 that the top fan-in s of any multilinear depth three
circuit computing f(X,Y ) is such that

s ≥ n2k

(k + 1) ·
(4nk
k

) ≥ n2k

(k + 1) · (4ne)k = nΩ(d),

as n ≥ 11 and k ≤ |X|/2 (required in Lemma 37). Claim 35 now completes the proof of
Theorem 9. J

Theorem 9 implies the following corollary (already known due to [29]) as IMMn,d is a
simple projection of Detnd, the determinant of an nd× nd symbolic matrix [36].

I Corollary 38 ([29]). Any multilinear depth three circuit (over any field) computing Detd,
the determinant of a d× d symbolic matrix, has top fan-in 2Ω(d).

Proof of Theorem 11. We now show that the polynomial f(X,Y ), computed by the ABP
M, can also be computed a multilinear depth four circuit of size O(n2d) and having top fan-in
just one. ABPM has k matrices, Y (1), . . . , Y (k), containing the Y -variables. Associate with
each matrix Y (i) four matrices containing the X-variables, two on the immediate left X(4i−3)

and X(4i−2), and two on the immediate right X(4i−1) and X(4i). Every monomial in f is
formed by picking exactly one variable from every matrix and taking their product. Once we
pick y(i)

u,v from Y (i), this automatically fixes the variables picked fromX(4i−3), X(4i−2), X(4i−1)

and X(4i), as these are diagonal matrices. Moreover, any variable can be picked from Y (i)

irrespective of which other Y-variables are picked from Y (1), . . . , Y (i−1), Y (i+1), . . . , Y (k).
This observation can be easily formalized to show that

f =
k∏
i=1

∑
u,v∈[n]

x(4i−3)
u x(4i−2)

u · y(i)
u,v · x(4i−1)

v x(4i)
v .

The size of this multilinear ΠΣΠ circuit is O(n2k) = O(n2d). J
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