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ABSTRACT
The service quality of web search depends considerably on the re-
quest tail latency from Index Serving Nodes (ISNs), prompting data
centers to operate them at low utilization and wasting server power.
ISNs can be made more energy efficient utilizing Dynamic Voltage
and Frequency Scaling (DVFS) or sleep states techniques to take
advantage of slack in latency of search queries. However, state-of-
the-art frameworks use a single distribution to predict a request’s
service time and select a high percentile tail latency to derive the
CPU’s frequency or sleep states. Unfortunately, this misses plenty
of energy saving opportunities. In this paper, we develop a simple
linear regression predictor to estimate each individual search re-
quest’s service time, based on the length of the request’s posting list.
To use this prediction for power management, the major challenge
lies in reducing miss rates for deadlines due to prediction errors,
while improving energy efficiency. We present Swan, a two-Step
poWer mAnagement for distributed search eNgines. For each re-
quest, Swan selects an initial, lower frequency to optimize power,
and then appropriately boosts the CPU frequency just at the right
time to meet the deadline. Additionally, we re-configure the time
instant for boosting frequency, when a critical request arrives and
avoid deadline violations. Swan is implemented on the widely-used
Solr search engine and evaluated with two representative, large
query traces. Evaluations show Swan outperforms state-of-the-art
approaches, saving at least 39% CPU power on average.

CCS CONCEPTS
• Hardware → Enterprise level and data centers power is-
sues; Chip-level power issues.
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1 INTRODUCTION
Latency-sensitive applications such as Web Search are critical to a
data center operator’s revenue. The service quality of web search
is significantly affected by the request processing latency at Index
Serving Nodes (ISNs) [8], which store the document index and re-
trieve matching results for a query. To meet the strict tail latency
constraints, ISN servers typically run at low utilization [10]. Thus,
there exists a latency slack between a query’s latency and its dead-
line for most search requests [14]. But, low server utilization of
ISNs wastes lots of energy [9, 16].

Energy inefficiency of search applications has prompted plenty
of prior research [2, 5, 6, 14, 17] to exploit the latency slack by
slowing down request processing and finishing the job just-in-time.
Most of the research has been based on two techniques: Dynamic
Voltage and Frequency Scaling (DVFS) and Sleep States. DVFS
schemes such as Rubik [5] and Pegasus [6] dynamically adjust
the CPU’s frequency, while guaranteeing that the high percentile
latency constraint is not exceeded. Sleep states frameworks such
as PowerNap [9] and DreamWeaver [10] put the server into sleep
during idle periods. Another paper has considered a combination
of sleep states and DVFS to meet the deadline challenge [2].

State-of-the-art power managements for search engines seek to
estimate each request’s service time and then properly re-configure
the current power management setup. A common approach for ser-
vice time prediction [2, 5, 6, 10, 14] is to assume that each request’s
CPU cycles can be estimated from the same single distribution,
based on offline profiling. By using the high percentile tail of this
service time distribution and then deriving the CPU frequency or
sleep states, they seek to achieve a low deadline violation rate while
also slowing down search queries. However, the drawback of this
approach is that individual queries have different distributions giv-
ing rise to inaccurate service time prediction. The major challenge
here is that the service time prediction cannot be 100% accurate,
which may result in energy inefficiency (because of longer pre-
dicted service times) or worse, even deadline violations (due to
shorter predicted times).

An intuitive solution to overcome this energy wastage is to
develop an individual query-specific service time predictor. An ISN
server scores each document on the search query’s posting list [1, 8]
one by one to find the most relevant results for a search query. Each
query’s posting list is different and stored at the ISN server during
the offline indexing phase. This information retrieval workflow
motivates us to develop a simple Linear Regression model with
negligible overheads to predict each search request’s service time.
This service time is roughly proportional to the corresponding
posting list length. The posting list length is the existing term
statistic of the search index [8]. Even then, we realize that the
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service time prediction is not accurate and some sort of correction
process needs to be applied.

To overcome the above challenge, we present Swan, a two-Step
poWer mAnagement for distributed search eNgines. Our major
goal is to properly schedule the various gating domains in sleep
states or clock domains in DVFS [15] for optimal power saving
achieving a very limited deadline violation rate. We focus on the
DVFS technique in this paper, but our framework also applies to
sleep states based schemes. Upon every request arrival or departure,
the first step in Swan selects an initial CPU frequency 𝑓𝑎 according
to the predicted service time 𝑆∗. The first step makes sure that the
power saving is optimal based on current estimation of the service
time. But this prediction is likely to have some error, 𝐸. Then, the
second step in Swan judiciously boosts the CPU frequency to 𝑓𝑏 at
the correct time 𝑇 , to catch up with the request’s deadline. Deter-
mining 𝑇 accurately is crucial to the success of a two-step DVFS
strategy. In our design, 𝑇 is chosen based on a detailed analysis
of the latency-constrained power saving. Additionally, we adjust
the original boosting time 𝑇 whenever a critical request arrives at
the queue, because the original boosting time 𝑇 might cause later
requests to violate their deadlines.

Our paper has some resemblance to the step-wise DVFS scheme,
proposed in [7]. However, the theoretical framework is difficult to
implement in practice. To validate our design, Swan is implemented
in the commercial Solr search engine, which is deployed on a server
with user-space DVFS control and power management. Experimen-
tal results on Wikipedia [13] and the Lucene nightly benchmark
[4] query traces prove that Swan outperforms both Rubik [5] and
Pegasus [6], achieving at least 39% CPU power saving on average.
Our major contributions in this paper include:

• We first develop a simple linear regression model with negli-
gible overheads to predict each search request’s service time,
at runtime depending on the posting list.

• To minimize the impact of prediction errors, we propose
a two-step DVFS scheme which properly boosts the CPU
frequency to catch-up to deadlines, on a per query basis.

• Third, we consider Swan under the general case where there
are multiple request arrivals, and reconfigure the original
boosting time for the CPU to consider the new request, thus
avoiding deadline violations.

• Finally, Swan is implemented on a real platform using the
commonly used Solr search engine in production, and energy
saving is evaluated with two representative query traces.

2 BACKGROUND AND MOTIVATION
Search Engine Architecture. Fig. 1 (a) depicts the partition aggre-
gation architecture of a distributed search engine [12]. The database
utilized by a search engine typically contains billions of documents
which are partitioned among a group of ISN servers [11]. The front-
end (e.g., a web server) forwards clients’ search requests to an
aggregator. The aggregator generates internal parallel queries to
all the ISN servers to retrieve matched documents. To meet user-
perceived latency requirements, the ISNs are required to complete
the task for a query within a given time budget (i.e., deadline), so
that the aggregator can collect all the ISN’s results and report the
final result to the client.

term-1 1 5 8 10 19

term-2 3 5 9

term-3 1 9 19 28 39 44 87

posting listTerm 
Dictionary
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Request
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Figure 1: (a) The partition-aggregate architecture of search
engine. (b) Inverted index format.

y = 0.0258x + 7.9434

0
10
20
30
40
50
60

0 500 1000 1500

Se
rv

ic
e 

Ti
m

e 
(m

s)

Posting List Length (K)
Figure 2: Search request’s service time is roughly linear to
its query’s posting list length.

Fig. 1 (b) shows the format of an inverted index [1] stored on
each ISN server. A search query phrase typically consists of a few
query terms. Whenever an ISN receives a search request from the
aggregator, it looks up the term dictionary for each query term in
the local index and creates a corresponding posting list [8]. Then,
each document on the posting list is scored one by one. This search
workflow suggests that a search request’s service time is roughly
proportional to the number of postings (i.e., document) for a search
query [1, 8]. As shown in Fig. 1 (b), each query term may have a
different posting list length, thus resulting in a variable service time
for each search request. To validate this hypothesis, we measure
request service times on our platform for different posting list
length, shown in Fig. 2. On the figure, we also plot a trending
line for a least squares linear regression model. The trending line
confirms that a search request’s service time is roughly linear to its
posting list length, subject to some prediction errors.

Motivation. In order to make the ISN server energy efficient,
earlier power management schemes use DVFS [5, 6] or Sleep States
[2, 10] and exploit the latency slack to slow down a request’s pro-
cessing so as to finish the retrieval of a document just-in-time. Fig.
3 plots the actual service time distribution obtained from our plat-
form. Typically, we specify the request deadline as a high percentile
tail latency under high load [2]. However, ISN servers in data cen-
ters are usually operated at low utilization levels [10] and requests
may finish well before their deadlines. To take advantage of the
latency slack, prior works [2, 5, 10] assume that a search request’s
service time 𝑆 follows the same distribution 𝑃 [𝑆 = 𝑐]. Then, they
leverage the slack between the 95𝑡ℎ percentile of the latency distri-
bution 𝑃 [𝑆 = 𝑐] and the deadline to save power while guaranteeing
a deadline violation rate less than 5%. However, a query’s actual
service time might be much shorter than the distribution’s tail and
promises a significant energy saving improvement, if we use the
query specific service time to slow down request processing.

Fig. 2 shows that a search request’s service time is roughly linear
to its posting list length. This motivates us to develop a simple
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Figure 3: Predicted service time promises significant energy
saving improvements, but we needs a two-step DVFS control
to guarantee the latency constraints.
linear regressionmodel to predict each request’s service time during
runtime, with negligible overheads. Each query’s posting list length
is already stored in the ISN index as a term statistic [8]. The major
challenge of course is that it is impossible to have a model with 100%
prediction accuracy. If the predicted service time is longer than its
actual value, wewaste some CPU energy (i.e., area-2).What is worse
is that deadline violations will happen when the predicted service
time is shorter than the actual value (i.e., area-1). To meet this
challenge, we propose a novel two-step DVFS scheme. Our design,
Swan, first selects an initial frequency for power optimization and
then boosts it at the proper time to meet latency constraints.

Comparison with Prior Works. A few researchers have theo-
retically shown that a step-wise DVFS can produce better energy
savings even though the actual service time is unknown [7, 15].
While the two previous papers dealt with minimizing the energy
consumption of a single request, the work in [4] addresses multi-
ple arrivals based on adjustments at a time epoch. In this paper,
we consider this problem in a practical environment with a real
application and using an implementation on a testbed rather than
the theoretical simulation. To limit complexity, we restrict our
power management approach for search engines to have a two-step
scheme for reducing the transition time and power [2]. One major
difference in Swan is that we use the runtime query phrase and its
posting list length to predict the request’s service time and then
calculate the CPU frequency and boosting time. However, prior
works [4, 7] still utilize sampling of the distributions to estimate
the residual task time and then select the next step in the CPU
frequency. The profiled distributions have to be obtained offline as
a prior knowledge. Finally, another important feature of some prior
research [3, 4, 15] is that they need feedback signals to make the
control decision, with the same criteria to enter the next step of fre-
quency. Swan has a query specific design with an initial frequency
and a boosting time depending on the predicted service time and
queuing conditions, without the overhead and delay for feedback.

3 DESIGN
We now provide details of Swan. To make the analysis easy to
understand, we first describe our design with the assumption that
there is always one request in the queue. Then, we extend it to the
general case with N requests.

Single Request. As shown in Fig. 4 Case 1a, search request 𝑅1
arrives at time 𝐴1 and has to finish its work before its deadline 𝐷1.
Suppose the CPU is running at the constant default frequency 𝑓𝑑
before 𝑅1 enters the queue. For power management, we predict
request 𝑅1’s service time with our Linear Regression (LR) prediction
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Figure 4: Swan design overview.

model. The predicted service time 𝑆∗1 is:

𝑆∗1 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐿𝑅 (𝑄1, 𝐼 |𝑓𝑑 ) (1)

where𝑄1 is the request’s query and 𝐼 is an ISN’s index. Given𝑄1 and
𝐼 , we can obtain request 𝑅1’s posting list length. All the predicted
service times are conditioned by the default CPU frequency 𝑓𝑑 .
For simplicity, we assume every request’s amount of computation
needed𝐶 (i.e., CPU cycles) and the work done for memory accesses
𝑀 (i.e., memory cycles) don’t change. A request’s total work𝑊 is
the sum of its CPU cycles 𝐶 and memory cycles𝑀 . But the service
time, 𝑆 of the CPU is inversely proportional to the frequency 𝑓 .
Therefore,𝑊 = 𝐶 +𝑀 = 𝑓 ∗ 𝑆 [2, 5]. The time delay for the CPU
to transition from one frequency to another during with the CPU
stalls, is a constant, 𝑇𝑑𝑣𝑓 𝑠 .

If the predicted service time 𝑆∗1 equals 𝑅1’s actual service time 𝑆1
with 100% prediction accuracy, the frequency set during the time
interval 𝐴1 to 𝐷1 should be constant (i.e., the dotted line in Fig. 4
Case 1b). This optimal frequency 𝑓1 can be calculated as follows:

𝑓1 = 𝑆∗1 ∗ 𝑓𝑑/(𝐷1 −𝐴1 −𝑇𝑑𝑣𝑓 𝑠 ) (2)

However, a prediction is likely to not be 100% accurate. Accounting
for this, we have the following:

𝑆∗1 = 𝑆1 + 𝐸1 (3)

, where 𝐸1 is the prediction error. With unknown 𝑆1 during runtime,
a step-wise DVFS control can produce better power savings [7]. For
a two step DVFS as shown in Fig. 4 Case 1b, we have to solve three
problems: 1.) select the initial frequency 𝑓1𝑎 2.) determine the time
𝑇1 for frequency boosting and 3.) choose the boosted frequency
𝑓1𝑏 . In Swan, we intuitively use the predicted service time 𝑆∗1 to
select the 𝑓1𝑎 as we want the initial frequency 𝑓1𝑎 to be close to the
optimal frequency 𝑓1. Then, 𝑓1𝑎 is:

𝑓1𝑎 = 𝑆∗1 ∗ 𝑓𝑑/(𝐷1 −𝐴1) (4)
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In the following analysis, we focus on the case when 𝑆∗1 is shorter
than 𝑆1, as a deadline violation is more serious than energy inef-
ficiency. If the prediction of 𝑆∗1 is accurate, the line of 𝑓1𝑎 in Fig. 4
Case 1b would be straight (to 𝐷1). Nevertheless, the shaded area
reflects period we have to boost to 𝑓1𝑏 to accommodate for predic-
tion errors so that we meet the latency requirement. To find the
correct value of 𝑇1, we choose 𝑓1𝑏 to be equal to 𝑓𝑑 since we want
the CPU frequency to stay at the lower 𝑓1𝑎 for as long as possible.
Since we do not know 𝑆1 precisely during the runtime, a moving
average of prediction errors is maintained and updated upon every
request departure.

𝐸𝑎𝑣𝑔 = 𝛼 ∗ 𝐸𝑜𝑙𝑑 + (1 − 𝛼) |𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 | (5)

Intuitively, we leave a little latency slack for prediction errors. Then,
the following equation holds.

𝑓1𝑎 ∗ (𝑇1 −𝐴1) + 𝑓1𝑏 ∗ (𝐷1 −𝑇1 −𝑇𝑑𝑣𝑓 𝑠 ) = (𝑆∗1 + 𝐸𝑎𝑣𝑔 ) ∗ 𝑓𝑑 (6)

Notice that we execute at frequency 𝑓1𝑏 for a time interval𝐷1−𝑇1−
𝑇𝑑𝑣𝑓 𝑠 , since the CPU will stall for 𝑇𝑑𝑣𝑓 𝑠 whenever we change the
frequency. By combining equations 4 and 6, 𝑇1 can be calculated.
In the worst case, 𝑇1 will be at the beginning, 𝐴1, where we have
to boost the frequency right away to meet the deadline.

Two Requests. As shown in Fig. 4 Case 2 and 3, the scenario
when at most two requests might stay in the queue can be more
complicated as we need to re-configure 𝑇1 to guarantee the request
𝑅2’s latency requirement. When the inter-arrival time 𝐴2 −𝐴1 is
large enough in Case 2b such that request𝑅2 can finish its job during
the interval 𝐷1 to 𝐷2, we call request 𝑅2 non-critical. When a non-
critical request arrives at the queue, we don’t need to re-configure
the current setup. However, request 𝑅2 in Case 3a will violate its
deadline when the interval 𝐷1 to 𝐷2 is too short. In Case 3b, request
𝑅2 is considered to be a critical request when the following happens:

(𝐷2 − 𝐷1) ∗ 𝑓2𝑏 < (𝑆∗2 + 𝐸𝑎𝑣𝑔 ) ∗ 𝑓𝑑 (7)

𝑊 𝑒
2 = (𝑆∗2 + 𝐸𝑎𝑣𝑔 ) ∗ 𝑓𝑑 is the total amount of predicted work for re-

quest 𝑅2, including prediction errors. When request 𝑅1 finishes, we
skip step one for request 𝑅2 and directly boost the CPU frequency
to 𝑓2𝑏 (i.e., 𝑓𝑑 ). Then, the maximum amount of work that can be
done within the residual time 𝐷2 − 𝐷1 is (𝐷2 − 𝐷1) ∗ 𝑓2𝑏 . Request
𝑅2 is critical when (𝐷2−𝐷1) ∗ 𝑓2𝑏 is smaller than𝑊 𝑒

2 . In our design,
we always run a critical request at 𝑓2𝑏 all the time.

In order to guarantee 𝑅2’s latency constraint in Case 4b, we have
to re-configure 𝑇1 to an earlier point, 𝑇

′
1 , in order to finish 𝑅1 early.

Then, request 𝑅2 (i.e., orange shaded area in Case 4b) can begin to
execute even before 𝐷1. Notice that we can only boost earlier when
the arrival time 𝐴2 of request 𝑅2 is earlier than the initial boosting
time 𝑇1. Otherwise, nothing can be adjusted as frequency 𝑓1𝑏 in
Case 4b is already 𝑓𝑑 , when𝐴2 is between the initial value of𝑇1 and
𝐷1. The adjusted boosting time 𝑇

′
1 can be obtained from:

𝑓1𝑎 ∗ (𝑇
′
1 −𝐴1) + 𝑓1𝑏 ∗ (𝐷2 −𝑇

′
1 −𝑇𝑑𝑣𝑓 𝑠 ) =𝑊 𝑒

1 +𝑊 𝑒
2 (8)

, where wemust finish the total work for the two requests –𝑊 𝑒
1 +𝑊

𝑒
2

– before 𝐷2. Notice that 𝑇
′
1 is always earlier than 𝑇1. So, we don’t

need to worry about request 𝑅1’s deadline requirement as it will
finish earlier because we change the frequency earlier than 𝑇1.
A special scenario of Case 4b is when an incoming request 𝑅2
cannot finish its work even if we boost the CPU frequency to 𝑓𝑑

Client

Web Server

SearchHandler

Search
Request

Query Components

StatsStats ID Doc

IndexSearcher

Lucene Search 
APIs

Task<Callable>

Task-1Task-2
Blocking Queue

Working 
Thread

Index

Swan

Submit Take

Figure 5: Swan implementation in the Solr search engine

immediately after it arrives (i.e.,𝑇
′
1 = 𝐴2). In such a case, it is safe to

just directly drop request 𝑅2, in the interest of saving more energy.
N Requests. We now address the general case. Suppose that

there are 𝑁 − 1 requests in the queue and request 𝑅𝑘 is the critical
request among them. Similar to the case with two requests, nothing
needs to be changed if the next request 𝑅𝑁 is non-critical. If request
𝑅𝑁 is critical, there are𝑁 −1 options to adjust the current frequency
plan to complete the request 𝑅𝑁 just-in-time. In Swan, our greedy
algorithm tries to boost request 𝑅𝑁−1 frequency earlier to see if
request 𝑅𝑁 can finish before 𝐷𝑁 . If that adjustment cannot result
in meeting the deadline, then we keep moving 𝑇𝑗 earlier, towards
𝐷 𝑗−1, in decreasing order of 𝑗 until 𝑗 equals 1. Request 𝑅𝑁 will be
dropped when all 𝑁 requests in the queue are set to be executed at
𝑓𝑑 , and still 𝑅𝑁 is unable to meet its deadline. Assuming that 𝑇𝑚 is
selected to be changed, its value can be obtained as:

𝑓𝑚𝑎 ∗ (𝑇
′
𝑚 −𝐴𝑚) + 𝑓𝑚𝑏 ∗ (𝐷𝑁 −𝑇

′
𝑚 −𝑇𝑑𝑣𝑓 𝑠 ) =

𝑁∑
𝑟=𝑚

𝑊 𝑒
𝑟 (9)

4 SWAN IMPLEMENTATION
Swan is implemented on the Solr search engine. Fig. 5 shows the
essential parts of an ISN that are directly related with the Swan im-
plementation. The Solr search engine contains three major parts: a
web server, a Solr ISN instance and the underlying Lucene index
searching APIs. The web server accepts a client’s search request and
forwards it to the SearchHandler. The SearchHandler searches for
the query over the ISN index. All search queries are finally served
by the IndexSearcher which calls the Apache Lucene APIs. The
entire Solr search engine is written in Java. To implement Swan,
we wrap the Query Components, IndexSearcher and Lucene Index
Searching in Fig. 5 as a Java Callable task. The reason for doing
this is that the Java Executor framework can automatically handle
Callable tasks in a Blocking Queue and provide mechanisms for
thread management. When a search request arrives, we submit its
task to the Blocking Queue and wait for an idle working thread
to process its query. Currently, our implementation has only one
working thread as we focus on single core power management.
Finally, we conduct the ISN power management on submission or
completion of each task.

As Swan is implemented as a part of the ISN, we leverage user-
space DVFS control mechanisms. Swan leverages the Advanced
Configuration and Power Interface (ACPI) to update the CPU core’s
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Figure 6: CPU power consumption results for Wikipedia and Lucene traces.

frequency at runtime. To reduce transition overheads, our fre-
quency enforcement is achieved by manipulating each core’s “scal-
ing_setspeed” file. When this device file is changed, Linux triggers
a group of system calls that take only 40 microseconds totally to
update the CPU core’s frequency. Thus, the extra latency overheads
from the Swan implementation are negligible.

Our experimental setup has two machines connected by a 1G
Ethernet link: one as the client and the other as the search engine
server. The server machine is a 12-core Intel Xeon E5-2697 CPU,
128G memory running CentOS 7 operating system. On the client
side, we wrote a Python program to replay our real search query
traces. Two representative query traces are used in our experiments:
a Wikipedia [13] trace and the Lucene nightly benchmark [4]. As
only the Wikipedia query trace has request arrival timestamps, we
use the same inter-request arrival pattern seen with Wikipedia for
our Lucene nightly benchmark evaluations as well. On the server
side, we deploy 12 single-working-thread based Solr ISNs on a 12-
core CPU chip. Thus, each ISN is bound to one core of the CPU chip.
The 12 ISNs receive the same search query from our Solr aggregator
but schedule their core’s frequency independently. In the search
engine, we index the complete dump of entire English Wikipedia
web pages taken on December 1st, 2018. This 65GB index has a total
of 34 millions documents, which are uniformly distributed across
the 12 ISNs. The search engine node supports per-core frequency
scaling and per-socket voltage scaling. The CPU frequency can be
selected over the range of 1.2 GHz to 2.7 GHz. Also, we disabled
the CPU frequency Turbo Boost, and the default CPU frequency
is 2.7 GHz (i.e., no power management). For power measurement,
our CPU has sensors to monitor per socket’s energy consumption
with negligible overhead. The accumulated energy consumption
of a CPU socket is stored in a Machine Specific Register (MSR).
By writing an energy measurement daemon which reads the MSR
register every 1 second through the Running Average Power Limit
(RAPL) interface, we can obtain a CPU socket’s power consumption.

5 EVALUATION RESULTS
To evaluate the effectiveness of Swan, we implement Rubik [5] and
Pegasus [6] on our infrastructure and compare our framework on
two representative query traces. Rubik is an analytical, per request-
based power management scheme, which utilizes a request’s tail
latency (e.g., 95th%tile) to select CPU frequency. On the other hand,
Pegasus is a feedback based design, which measures the request’s
latency periodically and selects the highest CPU frequency if a
deadline violation happens. When the measured latency is smaller
than 65% of given time budget, the CPU frequency is reduced [6].

We will not compare our results to some other techniques that are
based on CPU sleep states [9, 10] because ours is a DVFS strategy.
Also, it is known that the deep state (C6) transition times are much
higher than the DVFS.

Power Saving. Fig. 6 shows the CPU power consumption re-
sults under the Wikipedia and Lucene nightly benchmark query
traces. The time series for the load variation for the two traces is
in Fig. 6 (a). The ISN server load varies from 13% to 72% and the
corresponding CPU power consumption is in Fig. 6 (b) and (c). Due
to server load variations, the baseline with 2.7 GHz CPU frequency
consumes 29.03 - 18.18 Watts for CPU power when running each
of the two query traces. Pegasus results in the highest CPU power
consumption, since its design is based on the feedback of deadline
violations. It increases the CPU frequency immediately after a dead-
line violation, but decreases the frequency gradually, only after
the measured latency is smaller than 65% of the given time budget.
This hysteresis in reducing the frequency after a deadline violation
means that some energy saving opportunities are lost. Next, we
observe that Rubik consumes less CPU power than Pegasus. Rubik
uses the tail of the service time distribution to guide the selection
of the CPU frequency, striving to avoid even a low rate of dead-
line violations. Because it is so conservative, Rubik wastes a large
amount of energy saving opportunities.

Instead, Swan boosts the frequency before the deadline antici-
pating a possible violation. Hence, the results in Fig. 6 (b) and (c)
show that Swan has the least CPU power consumption at most of
time. The reasons for this better energy efficiency are: a) the query
specific latency prediction; and b) the two-step DVFS control. We
must point out that Swan consumes more power than Pegasus at
a limited number of data points due to the randomness of errors
in latency prediction. To account for these prediction errors and
meet request deadlines, Swan has to reserve a little latency slack for
prediction errors. With improved prediction accuracy from a more
sophisticated model, our design can consume even less CPU power.
Fig. 6 (d) depicts the average CPU power savings for bothWikipedia
and Lucene query traces across the three approaches compared to
no power management. On the Wikipedia trace, the average power
savings for Pegasus and Rubik are 20.07% and 27.78%, respectively.
Swan performs the best with an average power saving of 39.08%.
For the Lucene trace, we see similar results, with Swan achieving
40.85% CPU power saving.

Latency Distribution. In Fig. 7 (a), we plot the latency distri-
bution for search requests with the Lucene query trace (results for
the Wikipedia trace are similar). Request latencies are measured
on one ISN. Similar to prior work [2, 5, 6, 10], the request deadline
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Figure 7: (a) Latency distribution for Lucene trace. Results
for Wikipedia trace are similar. (b) Deadline violation rates.

is defined as the tail latency (e.g., 95th%tile in our experiments) of
the baseline. As shown in Fig. 7 (a), the request latency under the
baseline policy is around 10ms, while the request’s time budget is
40ms. We observe that the “knee” of the latency distribution for
the baseline moves from around 10ms to 16.2ms with the epoch-
based Pegasus. With its per request frequency selection, Rubik
shifts the latency distribution “knee” closer to the deadline. As we
have a query specific latency predictor, most of the requests under
Swan are closer to their deadlines, in comparison with Rubik and
Pegasus. For all the power management schemes in Fig. 7 (a), there
is still a large gap between the “knee” of latency distribution and
deadline. The reason is that all the schemes have to guarantee that
at least 95% of the search requests meet their deadline. One possible
solution to reduce this gap is to develop a multi-feature model [8]
in Swan with high prediction accuracy. This is work we plan for
the near future.

Fig. 7 (b) reports the deadline violation rates of Rubik, Pegasus
and Swan with two different query traces. All three frameworks
achieve around 5% deadline violations on both traces, with Rubik
having the least – 4.7% – on the Wikipedia trace. The deadline
violations in Swan are due to inaccurate service time prediction. In
Section 3, we use a moving average 𝐸𝑎𝑣𝑔 to quantify the prediction
error. Besides improving the predictor’s accuracy, a simple way to
reduce Swan’s deadline violation rate (shown in Fig. 7 (b)) is to
add an extra time to 𝐸𝑎𝑣𝑔 (i.e., results in increasing the estimate
of residual work, hence service time estimate, so the frequency is
boosted earlier). The impact of adding the extra time to 𝐸𝑎𝑣𝑔 on
deadline violation rate and average power saving for Wikipedia
trace are given in Fig. 8. In this experiment, we keep increasing
the estimate of the prediction error by 1ms each step. In Fig. 8 (a),
the violation rate without any extra time to 𝐸𝑎𝑣𝑔 is 5.76%, which is
a bit better than Pegasus (5.8%). After adding 3ms, Swan is better
than Rubik (4.7%), by going down to a 4.68% violation rate. This is a
reasonable trade-off, as we see in Fig. 8 (b) that the corresponding
average power saving of Swan deteriorates only by 0.58%. Mainly,
the average power saving of Swan can still be quite high, at 38.5%,
much better than Rubik’s 27.78%.

6 CONCLUSION
We present Swan, a two-Step poWer mAnagement for distributed
search eNgines, that achieves significant power savings even when
the accurate query-specific service time is unknown. Swan utilizes a
simple linear model to roughly estimate each request’s service time
and then selects an initial CPU frequency for power optimization. To
minimize deadline violations due to prediction errors, we boost the
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Figure 8: Sensitivity results for 𝐸𝑎𝑣𝑔 estimation in Swan (blue
bars).

initial frequency at the right time to catch-up on a request’s deadline.
Further, the boosting time of a current request is re-configured
on the arrival of each critical request so that we meet its latency
constraints. Swan is implemented in the Solr search engine and
evaluated on a real multi-core server, achieving at least 39% CPU
power saving on average.
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