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ABSTRACT
Deep neural networks (DNNs) have achieved state-of-the-art results
on time series classification (TSC) tasks. In this work, we focus on
leveraging DNNs in the often-encountered practical scenario where
access to labeled training data is difficult, andwhere DNNswould be
prone to overfitting. We leverage recent advancements in gradient-
based meta-learning, and propose an approach to train a residual
neural network with convolutional layers as a meta-learning agent
for few-shot TSC. The network is trained on a diverse set of few-
shot tasks sampled from various domains (e.g. healthcare, activity
recognition, etc.) such that it can solve a target task from another
domain using only a small number of training samples from the
target task. Most existing meta-learning approaches are limited
in practice as they assume a fixed number of target classes across
tasks. We overcome this limitation in order to train a common agent
across domains with each domain having different number of target
classes, we utilize a triplet-loss based learning procedure that does
not require any constraints to be enforced on the number of classes
for the few-shot TSC tasks. To the best of our knowledge, we are the
first to use meta-learning based pre-training for TSC. Our approach
sets a new benchmark for few-shot TSC, outperforming several
strong baselines on few-shot tasks sampled from 41 datasets in UCR
TSC Archive. We observe that pre-training under the meta-learning
paradigm allows the network to quickly adapt to new unseen tasks
with small number of labeled instances.
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1 INTRODUCTION
Time series data is ubiquitous in the current digital era with several
applications across domains such as forecasting, healthcare, equip-
ment health monitoring, and meteorology among others. Time
series classification (TSC) has several practical applications such as
disease diagnosis from time series of physiological parameters [4],
classifying heart arrhythmias from ECG signals[28], and human ac-
tivity recognition [43]. Recently, deep neural networks (DNNs) such
as those based on long short term memory networks (LSTMs) [17]
and 1-dimensional convolution neural networks (CNNs) [9, 18, 40]
have achieved state-of-the-art results on TSC tasks. However, it is
well-known that DNNs are prone to overfitting, especially when
access to a large labeled training dataset is not available. [10, 18].

Few recent attempts aim to address the issue of scarce labeled
data for univariate TSC (UTSC) by leveraging transfer learning
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[44] via DNNs, e.g. [10, 18, 22, 36]. These approaches consider pre-
training a deep network in an unsupervised [22] or supervised
[10, 18, 36] manner using a large number of time series from di-
verse domains, and then fine-tune the pre-trained model for the
target task using labeled data from target domain. However, these
transfer learning approaches for TSC based on pre-training a net-
work on large number of diverse time series tasks do not necessarily
guarantee a pre-trained model (or network initialization) that can
be quickly fine-tuned with a very small number of labeled training
instances, and rather rely on ad-hoc fine-tuning procedures.

Rather than learning a new task from scratch, humans lever-
age their pre-existing skills by fine-tuning and recombining them,
and hence are highly data-efficient, i.e. can learn from as little as
one example per category [27]. Meta-learning [34] approaches in-
tend to take a similar approach for few-shot learning, i.e. learning
a task from few examples. More recently, several approaches for
few-shot learning for regression, image classification, and reinforce-
ment learning domains have been proposed under the gradient-
based meta-learning or the “learning to learn" framework, e.g. in
[11, 24, 30]. A neural network-based meta-learning model is explic-
itly trained to quickly learn a new task from a small amount of
data. The model learns to solve several tasks sampled from a given
distribution where each task is, for example, an image classification
problem with few labeled examples. Since each task corresponds
to a learning problem, performing well on a task corresponds to
learning quickly.

Despite the advent of aforementioned pre-trained models for
time series, few-shot learning (i.e. learning from few, say five, ex-
amples per class) for TSC remains an important and unaddressed
research problem. The goal of few-shot TSC is to train a model on
large number of diverse few-shot TSC tasks such that it can lever-
age this experience through the learned parameters, and quickly
generalize to new tasks with small number of labeled instances.
More specifically, we train a residual network (ResNet) [9, 40] on
several few-shot TSC tasks such that the ResNet thus obtained
generalizes to solve new few-shot learning tasks. In contrast to
existing methods for data-efficient transfer learning, our method
provides a way to directly optimize the embedding itself for classi-
fication, rather than an intermediate bottleneck layer such as the
ones proposed in [22, 36].

Key contributions of this work are:

• We define the problem of few-shot learning for univariate
TSC (UTSC), and propose a training and evaluation protocol
for the same.

• We propose a few-shot UTSC approach by training a ResNet
to solve diverse few-shot UTSC tasks using a meta-learning
procedure [24]. The ResNet thus obtained can be quickly
adjusted (fine-tuned) on a new, previously unseen, UTSC
task with few labeled examples per class.
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• As opposed to fixed 𝑁 -way classification setting in most
existing few-shot methods, our approach can handle multi-
way classification problems with varying number of classes
without introducing any additional task-specific parameters
to be trained from scratch such as those in the final classifi-
cation layer [18, 36]: In order to generalize across few-shot
tasks with varying number of classes, we leverage triplet loss
[35, 42] for training the ResNet. This allows our approach to
leverage the same neural network architecture across diverse
applications without introducing any additional task-specific
parameters to be trained from scratch.

• Since the proposed approach uses triplet loss to learn a Eu-
clidean embedding for time series, it can also be seen as a
data-efficient metric learning procedure for time series that
can learn from very small number of labeled instances.

In few-shot setting, we demonstrate that a vanilla nearest-neighbor
classifier over the embeddings obtained using our approach out-
performs existing nearest-neighbor classifiers based on the highly
effective dynamic time warping (DTW) classifier [2] and even state-
of-the-art time series classifier BOSS [32]. The rest of the paper is
organized as follows: we contrast our work to existing literature in
Section 2. We define the problem of few-shot learning for UTSC in
Section 3. We then provide details of the neural network architec-
ture used for training the few-shot learner in Section 4 followed by
the details of meta-learning based training algorithm for few-shot
UTSC in Section 5. We provide details of empirical evaluation of
proposed approach in Section 6 and conclude in Section 7.

2 RELATEDWORK
Several approaches have been proposed to deal with scarce labeled
data for TSC, via data augmentation, warping, simulation, trans-
fer learning, etc. in e.g. [6, 8, 18, 20]. Regularization in DNNs, e.g.
decorrelating convolutional filter weights [25] has been found to be
effective for TSC and avoid overfitting in scarce data scenarios. It-
erative semi-supervised learning [41] also addresses scarce labeled
data scenario by iteratively increasing the labeled set but assumes
availability of a relatively large amount of data albeit initially un-
labeled. In this work, we take a different route to deal with scarce
labeled data scenarios and leverage gradient-based meta-learning to
explicitly train a network to quickly adapt and solve new few-shot
TSC tasks.

Transfer learning using pre-trained DNNs has been shown to
achieve better classification performance than training DNNs from
scratch for TSC: a few instances of pre-trained DNNs for TSC have
been recently proposed in e.g. [18, 22, 36]. However, none of these
methods are explicitly trained to quickly adapt to a target task and
tend to rely on ad-hoc fine-tuning procedures. Furthermore, they
do not study the extreme case of few-shot TSC: while [22] relies
on training an SVM classifier on top of unsupervised embeddings
obtained via a deep LSTM, [18, 36] rely on introducing and train-
ing a new final softmax layer from scratch for each new task. Our
approach explicitly pre-trains a DNN using triplet loss to optimize
for quick adaptation to a few-shot task. Moreover, unlike existing
methods, our approach directly optimizes for time series embed-
dings over which the similarity of time series can be defined, and
hence can work in a kNN setting without requiring the training of

additional parameters like those of an SVM in [22], or those of a
feedforward final layer in [18, 36].

Several approaches for few-shot learning have been recently
introduced for image classification, regression, and reinforcement
learning, e.g. [11, 24, 30, 38]. To the best of our knowledge, our
work is the first attempt to study few-shot learning for TSC. We
formulate the few-shot learning problem for UTSC, and build on
top of the following recent advances in deep learning research to
develop an effective few-shot approach for TSC: i) gradient-based
meta-learning [11, 24], ii) residual network with convolutional
layers for TSC [40], iii) leveraging multi-length filters to ensure
generalizability of filters to tasks with varying time series length
and temporal properties [18, 29], and iv) triplet loss [35] to ensure
generalizability to tasks with varying number of classes without
introducing any additional parameters.

Dynamic time warping (DTW) and its variants [16, 37] are
known to be very robust and strong distance metric baselines for
TSC over a diverse set of applications [2]. However, it is also well-
known that no single distance metric works well across scenarios as
they lack the ability to leverage the data-distribution and properties
of the task at hand [2, 39]. It has been shown that k-nearest-neighbor
(kNN) TSC can be significantly improved by learning a distance
metric from labeled examples [1, 23]. Similarly, modeling time se-
ries similarity using Siamese recurrent networks based supervised
learning has been proposed in [26]. CNNs trained using triplet loss
for TSC have been very recently proposed for unsupervised learn-
ing in [13] and for supervised learning in [3]. However, to the best
of our knowledge, none of the metric learning approaches consider
pre-training a neural network that can be quickly fine-tuned for
new TSC few-shot tasks.

3 PROBLEM DEFINITION
Consider a 𝐾-shot learning problem for UTSC sampled from a
distribution 𝑝 (T ) that requires learning a multi-way classifier for a
test task given only 𝐾 labeled time series instances per class. Rather
than training a classifier from scratch for the test task, the goal
is to obtain a neural network with parameters 𝜙 that is trained
to efficiently (e.g. in a few iterations of updates of 𝜙 via gradient
descent) solve several 𝐾-shot learning tasks sampled from 𝑝 (T ).
These 𝐾-shot tasks are divided into three sets: a training meta-
set S𝑡𝑟 , a validation meta-set S𝑣𝑎 , and a testing meta-set S𝑡𝑒 . The
training meta-set is used to obtain the parameters 𝜙 , the validation
meta-set is used for model selection (hyperparameters for neural
network training), and the testing meta-set is used only for final
evaluation.

Each task instance T𝑗 ∼ 𝑝 (T ) in S𝑡𝑟 and S𝑣𝑎 consists of a
labeled training set of univariate time series D𝑡𝑟

𝑗
=
{
(x𝑛,𝑘
𝑗
, 𝑦
𝑛,𝑘
𝑗

) |
𝑘 = 1 . . . 𝐾 ;𝑛 = 1 . . . 𝑁 𝑗

}
, where 𝐾 is the number of univariate

time series instances for each of the 𝑁 𝑗 classes. Ignoring the sub-
and super-scripts, each univariate time series x = 𝑥1, 𝑥2, . . . , 𝑥𝑇
with 𝑥𝑡 ∈ R for 𝑡 = 1, . . . ,𝑇 , where 𝑇 is the length of time series,
and 𝑦 is the class label. Unlike the tasks in S𝑡𝑟 and S𝑣𝑎 , which
only contain a training set, each task in S𝑡𝑒 also contains a testing
set D𝑡𝑒

𝑗
=

{
(x𝑛,𝑘
𝑗
, 𝑦
𝑛,𝑘
𝑗

) | 𝑘 = 1 . . . 𝐾 ′;𝑛 = 1 . . . 𝑁 𝑗
}
apart from a

training set D𝑡𝑟
𝑗
. The classes in D𝑡𝑟

𝑗
and D𝑡𝑒

𝑗
are the same while
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classes across tasks are, in general, different. For any x𝑛,𝑘
𝑗

fromD𝑡𝑒
𝑗
,

the goal is to estimate the corresponding label 𝑦𝑛,𝑘
𝑗

by using an
updated version 𝜙 of 𝜙 obtained by fine-tuning the neural network
using the 𝐾 × 𝑁 𝑗 labeled samples from D𝑡𝑟

𝑗
. In other words, the

training setD𝑡𝑟
𝑗
of a task T𝑗 ∈ S𝑡𝑒 is used for fine-tuning the neural

network parameters 𝜙 , while the corresponding testing set D𝑡𝑒
𝑗

of
the task T𝑗 is used for evaluation.

It is to be noted that the tasks in the threemeta-sets correspond to
time series from disjoint sets of classes, i.e. the classes in any task in
training meta-set are different from those of any task in validation
meta-set, and so on. In practice, we sample the tasks from diverse
domains such as electric devices, motion capture, spectrographs,
sensor readings, ECGs, simulated time series, etc. taken from the
UCR TSC Archive [5]. Each dataset, and in turn tasks sampled from
it, have a different notion of classes depending upon the domain, a
different number of classes 𝑁 , and a different 𝑇 .

4 NEURAL NETWORK
As shown in Figure 1, we consider a ResNet consisting of multiple
convolutional blocks with shortcut residual connections [14] be-
tween them, eventually followed by a global average pooling (GAP)
layer such that the network does not have any feedforward layers
at the end. Each convolutional block consists of a convolutional
layer followed by a batch normalization (BN) layer [15] which acts
as a regularizer. Each BN layer is in turn followed by a ReLU layer.
We omit further architecture details and refer the reader to [18].
In order to quickly adapt to any unseen task, the neural network
should be able to extract temporal features at multiple time scales
and should ensure that the fine-tuned network can generalize to
time series of varying lengths across tasks. We, therefore, use filters
of multiple lengths in each convolutional block to capture temporal
features at various time scales, as found to be useful in [3, 18, 29].

In a nutshell, ResNet takes a univariate time series x of any length
𝑇 as input and converts it to a fixed-dimensional feature vector
z ∈ R𝑚 , where𝑚 is the number of filters in the final convolutional
layer. We denote the set of all the trainable parameters of the ResNet
consisting of filter weights and biases across convolutional layers,
and BN layer parameters by 𝜙 .

Most ResNet implementations for TSC [9, 18, 36, 40] use a feed-
forward layer followed by a softmax layer to eventually map z to
class probabilities, and use cross-entropy loss for training. Further,
when training the ResNet for multiple tasks with varying num-
ber of classes across tasks, a multi-head output with different final
feedforward layer for each task is typically used, e.g. as in [18, 36].
However, in our setting, this implies a different feedforward layer
for each new few-shot task, introducing at least𝑚 × 𝑁 𝑗 additional
task-specific parameters1 that need to be trained from scratch for
each new few-shot task. This is not desirable in a few-shot learning
setting given only a small number of 𝐾 samples per class, as this
can lead to overfitting: this is one reason due to which most few-
shot learning formulations, e.g. [11, 38], consider a fixed number of
target classes across tasks. However, we intend to learn a few-shot
learning algorithm that overcomes this limitation. We propose us-
ing triplet loss [3, 35, 42] as the training objective which allows for

1when the GAP layer is followed by a single feedforward layer and a softmax layer
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Figure 1: ResNet Architecture depicting two residual blocks
each with two convolutional layers, and variable-length fil-
ters in each convolutional layer.

generalization to varying number of classes without introducing
any additional task-specific parameters, as detailed next.

4.1 Loss Function
Triplet loss relies on pairwise distance between representations of
time series samples from within and across classes, irrespective
of the number of classes. Using triplet loss at time of fine-tuning
for the test task, therefore, allows the network to adapt to a given
few-shot classification task without introducing any additional task-
specific parameters. Triplets consist of two matching time series
and a non-matching time series such that the loss aims to separate
the positive pair from the negative by a distance margin. Given
the set S𝑗 of all valid triplets of time series for a training task T𝑗
of the form

(
x𝑎
𝑙
, x𝑝
𝑙
, x𝑛
𝑙

)
∈ S𝑗 consisting of an anchor time series

x𝑎
𝑙
, a positive time series x𝑝

𝑙
, and a negative time series x𝑛

𝑙
; where

the positive time series is another instance from same class as the
anchor, while the negative is from a different class than the anchor.
We aim to obtain corresponding representations

(
z𝑎
𝑙
, z𝑝
𝑙
, z𝑛
𝑙

)
such

that the distance between the representations of an anchor and
any positive time series is lower than the distance between the
representations of the anchor and any negative time series.

More specifically, we consider triplet loss based on Euclidean
norm given by:

∥z𝑎
𝑙
− z𝑛

𝑙
∥22 − ∥z𝑎

𝑙
− z𝑝

𝑙
∥22 > 𝛼 , (1)
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where 𝛼 > 0 is the distance-margin between the positive and
negative pairs. The loss to be minimized is then given by:

LT𝑗 =
|S𝑗 |∑︁
𝑙=1

[
∥z𝑎
𝑙
− z𝑝

𝑙
∥22 − ∥z𝑎

𝑙
− z𝑛

𝑙
∥22 + 𝛼

]
+
, (2)

where [𝑧]+ =𝑚𝑎𝑥 (𝑧, 0), such that only those triplets violating the
constraint in Eq. 1 contribute to the loss. Note that since we use
triplet loss for training, the number of instances per class 𝐾 > 1.

5 FEW-SHOT LEARNING FOR UTSC
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Figure 2: Few-Shot Training Approach.

We consider a meta-learning approach for few-shot UTSC based
on Reptile [24], a first-order gradient descent based meta-learning
algorithm, and refer to that as FS-1. We also consider a simpler
variant of this approach and refer to that as FS-2: similar to the
training procedure of FS-1, FS-2 is also trained to solve multiple
UTSC tasks but not explicitly trained in a manner that ensures
quick adaptation to any new UTSC task. Except for the triplet loss,
FS-2 is similar to [18, 36] in the way data is sampled and used for
training.

5.1 FS-1
5.1.1 Objective. FS-1 learns an initialization for the parameters𝜙
of the ResNet such that these parameters can be quickly optimized
using gradient-based learning at test time to solve a new few-shot
UTSC task—i.e., the model generalizes from a small number of
examples from the test task. In order to learn the parameters 𝜙 ,
we train the ResNet on a diverse set of UTSC tasks in S𝑡𝑟 with
varying number of classes and time series lengths. As explained in
Section 4, the same neural network parameters 𝜙 are shared across
all tasks owing to the fact that: i. ResNet yields a fixed-dimensional
representation for varying length time series, and ii. the nature
of the loss function that does not require any changes due to the
varying number of classes across tasks.

Similar to [11, 24], we consider the following optimization prob-
lem: find an initial set of parameters 𝜙 for the ResNet, such that for
a randomly sampled task T𝑗 with corresponding loss 𝐿T𝑗 as given
in Eq. 2, the learner will have low loss after 𝑘 updates, such that:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜙ET𝑗
[
LT𝑗

(
𝑈 𝑘T𝑗 (𝜙)

)]
, (3)

where 𝑈 𝑘T𝑗 is the operator (e.g. corresponding to Adam optimizer
or SGD) that updates 𝜙 using 𝑘 mini-batches from D𝑡𝑟

𝑗
.

5.1.2 Implementation Details. FS-1 sequentially samples few-
shot tasks from the set of tasks S𝑡𝑟 . As summarized in Algorithm 1
and depicted in Figure 2, the meta-learning procedure consists of
𝑀 meta-iterations. Each meta-iteration involves sampling 𝐵 𝐾-shot
tasks. Each task, in turn, is solved using 𝑘 steps of gradient-based
optimization, e.g. using stochastic gradient descent (SGD) or Adam
[19] – this, in turn, involves randomly sampling mini-batches from
the𝐾 ×𝑁 instances in the task. Each task is associated with a triplet
loss defined over the valid triplets as described in Section 4.1.

Given that each task has a varying number of instances owing
to varying 𝑁 , we set the number of iterations for each task to
𝑘 = ⌊𝐾×𝑁

𝑏
⌋ × 𝑒 , where 𝑏 is the mini-batch size and 𝑒 is the number

of epochs. Therefore, instead of fixing the number of iterations 𝑘 for
each sampled task, we fix the number of epochs 𝑒 across datasets,
such that the network is trained to adapt quickly in a fixed number
of epochs, as described later. Also note that the number of triplets
in each batch is significantly more than the number of unique time
series in a mini-batch.

Algorithm 1 Few-Shot UTSC Approach-1 (FS-1)

𝜙0: initial parameters of the ResNet
for meta-iteration 𝑖 = 1, 2, . . . , 𝑀 do

for 𝑗 = 1, 2, . . . , 𝐵 do
Sample a 𝐾-shot task T𝑗
Get number of classes 𝑁 𝑗 for task T𝑗
Set 𝑘 = ⌊𝐾×𝑁 𝑗

𝑏
⌋ × 𝑒

Compute 𝜙𝑖
𝑗
= 𝑈 𝑘T𝑗 (𝜙

𝑖−1) using 𝑘 steps (mini-batches) of
Adam to minimize loss LT𝑗

end for
Update 𝜙𝑖 = 𝜙𝑖−1 + 𝜖 1

𝐵

∑𝐵
𝑗=1 (𝜙𝑖𝑗 − 𝜙

𝑖−1)
end for

Algorithm 2 Few-Shot UTSC Approach-2 (FS-2)

𝜙0: initial parameters of the ResNet
for iteration 𝑖 = 1, 2, . . . , 𝑀 do

for 𝑗 = 1, 2, . . . , 𝐵 do
Sample a 𝐾-shot task T𝑗
Get number of classes 𝑁 𝑗 for task T𝑗
Set 𝑘 = ⌊𝐾×𝑁 𝑗

𝑏
⌋ × 𝑒

Compute 𝜙𝑖+𝑗 = 𝑈 𝑘T𝑗 (𝜙
𝑖+𝑗−1) using 𝑘 𝑗 steps (mini-

batches) of SGD or Adam to minimize loss LT𝑗
end for

end for

The filter weights of the ResNet are randomly initialized, e.g.
via orthogonal initialization [31]. In the 𝑖th meta-iteration, ResNet
for each of the 𝐵 tasks is initialized with 𝜙𝑖−1. Each task T𝑗 with
labeled data D𝑡𝑟

𝑗
is solved by updating the parameters 𝜙𝑖−1 of the
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network 𝑘 (= ⌊𝐾×𝑁 𝑗

𝑏
⌋ × 𝑒 , where 𝑁 𝑗 is number of classes in T𝑗 )

times to obtain
𝜙𝑖𝑗 = 𝑈

𝑘
T𝑗 (𝜙

𝑖−1) . (4)
In practice, we use a batch version of the optimization problem in

Equation 3 and use a meta-batch of 𝐵 tasks to update 𝜙 as follows:

𝜙𝑖 = 𝜙𝑖−1 + 𝜖 1
𝐵

𝐵∑︁
𝑗=1

(𝜙𝑖𝑗 − 𝜙
𝑖−1). (5)

Note that 𝜙 𝑗 − 𝜙 with 𝑘 > 1 implies that 𝜙 is updated using the
updated values 𝜙 𝑗 obtained after solving 𝐵 tasks for 𝑘 iterations
each. It is this particular way of updating 𝜙 by internally solving
multiple tasks, that this algorithm is considered an example of
gradient descent based meta-learning. As shown in [24], when
performing multiple gradient updates as per Eqs. 4 and 5, i.e. having
𝑘 > 1 while solving few-shot tasks, then the expected update
ET𝑗

[
𝑈 𝑘T𝑗 (𝜙)

]
is very different from taking a gradient step on the

expected loss ET𝑗
[
LT𝑗 (𝜙)

]
, i.e. having 𝑘 = 1. In fact, it is easy to

note that the update of 𝜙 consists of terms from the second-and-
higher derivatives of LT𝑗 due to the presence of derivatives of LT𝑗
in 𝜙 𝑗 . Hence, the final solution using 𝑘 > 1 is significantly different
from the one obtained using 𝑘 = 1.

5.1.3 Fine-tuning and inference in a test 𝐾-shot task. We de-
note the optimal parameters of ResNet after meta-training as 𝜙∗,
and use this as initialization of target task-specific ResNet. For any
new 𝐾-shot 𝑁 -way test task with labeled instances in D𝑡𝑟 and
any test time series x∗ taken from D𝑡𝑒 , first 𝜙∗ is updated to 𝜙
using D𝑡𝑟 . The embeddings for all the 𝑁 × 𝐾 samples in D𝑡𝑟 is
compared to the embedding for x∗ using 1NN classifier to get the
class estimate.

5.2 FS-2
As shown in Algorithm 2, FS-2 is a simpler variant of FS-1 where
instead of updating the parameters 𝜙 by collectively using updated
values from 𝐵 tasks, 𝜙 is continuously updated at each mini-batch
irrespective of the task. As a result, the network is trained for a few
iterations on a task, and then the task is changed. Unlike FS-1, FS-2
uses only the first-order derivatives of LT𝑗 .

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
6.1.1 Sampling few-shot UTSC tasks. We restrict the distribu-
tion of tasks to univariate TSC with a constraint on the maximum
length of the time series such that 𝑇 ≤ 512. We sample tasks from
the publicly available UCR Archive of UTSC datasets [5], where
each dataset corresponds to a 𝑁 -way multi-class classification task
with number of classes 𝑁 and the length of time series 𝑇 varies
across datasets. However, all the time series in any dataset are of
same length. Each time series is 𝑧-normalized using the mean and
standard deviation of all the points in the time series.

Out of the total of 65 datasets on UCR Archive with 𝑇 ≤ 512,
we use 18 datasets to sample tasks for training meta-set S𝑡𝑟 and
6 datasets to sample tasks for the validation meta-set S𝑣𝑎 (dataset
level splits are same as in [22]). Any task in S𝑡𝑟 or S𝑣𝑎 has 𝐾
randomly sampled time series for each of the 𝑁 classes in the

dataset. The remaining 41 datasets with length 𝑇 ≤ 512 as listed
in Table 1 are used to create tasks for the testing meta-set. As a
result of this way of creating the training, validation and testing
meta-sets, the classes in each meta-set are disjoint. However, the
classes in the train and test sets of a task in a testing meta-set is, of
course, the same.
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Figure 3: Evaluation protocol for FS-1 and FS-2 on a UCR
dataset. For ResNet, 𝜙 is randomly initialized for each task.
𝐴 𝑗 is the accuracy on 𝑗-th task.

Each dataset in UCR Archive is a 𝑁 -way classification problem
with an original train and test split. As shown in Figure 3, we sample
100 𝐾-shot tasks from each of the 41 datasets. Each task (out of the
100) sampled from a dataset contains 𝐾 samples from each of the 𝑁
classes for D𝑡𝑟 and 𝐾 ′ samples from each of the 𝑁 classes for D𝑡𝑒

for each task are sampled from the respective original train and
test split of the dataset2. The 𝐾 (or 𝐾 ′) samples for each class in
D𝑡𝑟 (or D𝑡𝑒 ) are sampled uniformly from the entire set of samples
of the respective class. While D𝑡𝑟 is used for fine-tuning 𝜙∗ to get
𝜙 , D𝑡𝑒 is used to evaluate the updated task-specific model 𝜙 . (Note
that while the class distribution in the original dataset may not be
uniform, each 𝐾-shot task consists of equal number, i.e. 𝐾 , samples
per class.)

6.1.2 Hyperparameters for FS-1 and FS-2. On the basis of ini-
tial experiments on a subset of the training meta-set, we use the
ResNet architecture with 𝐿 = 4 layers and𝑚 = 165 convolution
filters per layer (33 filters each of length 4,8,16,32,64). We use Adam
optimizer with a learning rate of 0.0001 for updating 𝜙 on each
task while using 𝜖 = 1 in the meta-update step in Equation 5. FS-1
and FS-2 are trained for a total of 𝑀 = 2000 meta-iterations with
meta-batch size of 𝐵 = 5, and mini-batch size 𝑏 = 10. We trained
FS-1 and FS-2 using 𝐾 = 5 and 10 for the tasks in training meta-set
while 𝐾 = 5 is used for validation and testing meta-sets. 𝐾 ′ = 5
across all experiments unless stated otherwise. We found the model
with 𝐾 = 10 for tasks in training meta-set to be better based on
average triplet loss on validation meta-set. We use epochs 𝑒 = 4 for
2We also considered the original test split for each test task D𝑡𝑒 during evaluation.
We obtained similar conclusions under this evaluation strategy as well, and hence,
omit those results for brevity.
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solving each task while training FS-1 and FS-2 models. The number
of epochs 𝑒 ′ to be used while fine-tuning for tasks in testing meta-
set is chosen from the range 1-100 based on average triplet loss on
tasks in validation meta-set. We found 𝑒 ′ = 16 and 8 to be best for
FS-1 and FS-2 models, respectively. Therefore, 𝜙∗ is fine-tuned for
𝑒 ′ epochs for each task in testing meta-set. For the triplet loss, we
use 𝛼 = 0.5.

6.1.3 Baselines Considered. For comparison, we consider fol-
lowing baseline classifiers each using 1NN as the final classifier
over raw time series or extracted features3:

(1) ED: 1NN based on Euclidean distance is the simplest baseline
considered, where time series of length 𝑇 is represented by a
fixed-dimensional vector of the same length. (Note: For any
given dataset and subsequent tasks sampled from it, the length
𝑇 is same across samples, and hence 1NN based on ED is appli-
cable.)

(2) DTW: 1NN based on dynamic time warping (DTW) approach is
one of the highly effective and strong baseline for UTSC [2]. We
use leave-one-out cross-validation on D𝑡𝑟 of each task to find
the best warping window in the range𝑤 = 0.02𝑇, 0.04𝑇, . . . ,𝑇 ,
where𝑤 is the window length and 𝑇 is the time series length.

(3) BOSS: Bag-of-SFA-Symbols [32] is a state-of-the-art time series
feature extraction technique that provides time series represen-
tations while being tolerant to noise. BOSS provides a symbolic
representation based on Symbolic Fourier Approximation (SFA)
[33] on each fixed-length sliding window extracted from a time
series while providing low pass filtering and quantization for
noise reduction. The hyper-parameters, i.e. wordLength and nor-
malization are chosen based on leave-one-out cross validation
over the ranges {8, 10, 12, 14, 16} and {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} respectively,
while default values of remaining hyper-parameters is used.
1NN is applied on the extracted features for final classification
decision.

(4) ResNet: Instead of using 𝜙∗ obtained via FS-1 or FS-2 as a start-
ing point for fine-tuning, we consider a ResNet-based baseline
where the model is trained from scratch for each task using
triplet loss. The architecture is same as those used for FS-1 and
FS-2 (also similar to state-of-the-art ResNet versions studied
in [9, 18, 40]). Given that each task has a very small number
of training samples and the parameters are to be trained from
scratch, ResNet architectures are likely to be prone to overfit-
ting despite batch normalization. To mitigate this issue, apart
from the same network architecture as FS-1 and FS-2, we also
consider smaller networks with smaller number of trainable
parameters. More specifically, we considered four combinations
resulting from number of layers = { 𝐿2 , 𝐿} and number of filters
per layer = {⌊𝑚2 ⌋,𝑚}, where 𝐿 = 4 and𝑚 = 165. We consider
the model with best overall results amongst these four combi-
nations as baseline, viz. number of layers = 2 and number of
filters = 165. For fair comparison, each ResNet model is trained
for 16 epochs4 as for FS-1.

3For DTW and BOSS, we use implementations as available at http://www.
timeseriesclassification.com/code.php.
4We also tried training till 32 epochs for ResNet and found insignificant improvement
in results.

6.1.4 Performance Metrics. Each task is evaluated using clas-
sification accuracy rate on the test set—inference is correct if the
estimated label is same as the ground truth label. Each task consists
of 𝐾 ′×𝑁 test samples: the performance results for each task equals
the fraction of correctly classified test samples. Further, we follow
the methodology from [2, 7] to compare the proposed approach
with various baselines considered. For each dataset, we average
the classification error results over 100 randomly sampled tasks (as
described in Section 6.1.1). To study the relative performance of the
approaches over multiple data sets, we compare classifiers by ranks
using the Friedman test and a post-hoc pairwise Nemenyi test.

1 2 3 4 5 6

FS-1 2.561
FS-2 3.244

ResNet 3.305 DTW3.463
BOSS3.890
ED4.537

CD

Figure 5: Critical Difference Diagram comparing ranks of
few-shot learning approaches (FS-1 and FS-2) with other
baselines for 𝐾 = 5 samples per class used for fine-tuning.

Table 2: Comparison of various approaches in terms of
ranks over classification accuracy rates on all the 4100 tasks
from 41 datasets with varying𝐾 . Best approach ismarked in
bold and second-best is underlined.

K ED DTW BOSS ResNet FS-2 FS-1
2 4.232 2.976 3.902 3.805 3.207 2.878
5 4.537 3.463 3.890 3.305 3.244 2.561
10 4.573 3.476 3.646 3.683 3.427 2.195
20 4.439 3.354 2.927 3.902 3.793 2.585

Table 3: Comparison of ranks across datasets with varying
number of classes 𝑁 in 5-shot task and 𝑛 is the number of
datasets.

N 𝑛 ED DTW BOSS ResNet FS-2 FS-1
2-5 24 4.167 4.083 3.375 3.458 3.042 2.875
6-10 9 4.778 2.333 5.333 2.389 3.778 2.389
>10 8 5.375 2.875 3.812 3.902 3.875 1.812

Overall 41 4.537 3.463 3.890 3.305 3.244 2.561

6.2 Results and Observations
• As shown in Figure 5, we observe that FS-1 improves upon all the
baselines considered for 5-shot tasks. The pairwise comparison
of FS-1 with other baselines in Figure 4 show significant gains in
accuracies across many datasets. FS-1 has Win/Tie/Loss (W/T/L)
counts of 26/2/13 when compared to the best non-few-shot-
learning model, i.e. ResNet. On 27/41 datasets, FS-1 is amongst
the top-2 models. Refer Table 1 for dataset-wise detailed results.
Our approach FS-2 with a simpler update rule than FS-1 is the
second best model but is very closely followed by the ResNet
models trained from scratch.
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(a) FS-1 vs ResNet
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(b) FS-1 vs DTW
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(c) FS-1 vs BOSS
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(d) FS-1 vs FS-2

Figure 4: Classification accuracy rates comparison for 5-shot UTSC. Each point in a scatter plot corresponds to a dataset.

Table 1: Comparison of classification accuracy rates for 5-shot learning scenario. Best approach is marked in bold and second-
best is underlined. N denotes the number of classes.

Dataset Name N ED DTW BOSS ResNet FS-2
(ours)

FS-1
(ours) Dataset Name N ED DTW BOSS ResNet FS-2

(ours)
FS-1
(ours)

50words 50 0.483 0.644 0.499 0.513 0.524 0.591 InsectW.B.Sound 11 0.489 0.473 0.398 0.485 0.452 0.487
Adiac 37 0.538 0.540 0.709 0.539 0.674 0.671 Meat 3 0.919 0.919 0.876 0.559 0.880 0.890
Beef 5 0.618 0.626 0.701 0.519 0.595 0.653 MedicalImages 10 0.579 0.675 0.488 0.620 0.585 0.592
BeetleFly 2 0.667 0.614 0.789 0.702 0.958 0.900 Mid.Phal.O.A.G 3 0.529 0.558 0.478 0.527 0.515 0.547
BirdChicken 2 0.468 0.496 0.921 0.692 1.000 0.929 Mid.Phal.O.C 2 0.563 0.550 0.526 0.540 0.531 0.529
Chlor.Conc. 3 0.339 0.338 0.356 0.342 0.331 0.329 Mid.Phal.TW 6 0.338 0.339 0.348 0.341 0.351 0.353
Coffee 2 0.920 0.914 0.977 0.934 0.970 0.978 PhalangesO.C 2 0.532 0.535 0.512 0.544 0.536 0.539
Cricket_X 12 0.348 0.567 0.491 0.555 0.544 0.594 Prox.Phal.O.A.G 3 0.692 0.719 0.731 0.729 0.697 0.682
Cricket_Y 12 0.375 0.556 0.461 0.505 0.516 0.562 Prox.Phal.O.C 2 0.633 0.626 0.645 0.65 0.638 0.634
Cricket_Z 12 0.357 0.560 0.481 0.523 0.541 0.598 Prox.Phal.TW 6 0.427 0.445 0.419 0.517 0.411 0.432
Dist.Phal.O.A.G 3 0.710 0.698 0.658 0.709 0.705 0.664 Strawberry 2 0.682 0.671 0.714 0.722 0.755 0.741
Dist.Phal.O.C 2 0.571 0.583 0.575 0.609 0.569 0.588 SwedishLeaf 15 0.599 0.690 0.776 0.765 0.778 0.776
Dist.Phal.TW 6 0.444 0.448 0.437 0.476 0.481 0.463 synthetic_control 6 0.736 0.958 0.867 0.96 0.948 0.971
ECG200 2 0.771 0.755 0.728 0.712 0.738 0.758 Two_Patterns 4 0.361 0.970 0.692 0.874 0.811 0.831
ECG5000 5 0.524 0.494 0.533 0.533 0.548 0.533 uWave_X 8 0.591 0.615 0.479 0.598 0.546 0.606
ECGFiveDays 2 0.685 0.666 0.909 0.916 0.928 0.939 uWave_Y 8 0.504 0.518 0.363 0.478 0.430 0.478
ElectricDevices 7 0.239 0.423 0.351 0.381 0.380 0.375 uWave_Z 8 0.536 0.551 0.489 0.57 0.541 0.599
FaceAll 14 0.545 0.764 0.795 0.742 0.712 0.785 wafer 2 0.922 0.922 0.936 0.911 0.894 0.892
FaceFour 4 0.812 0.869 1.000 0.792 0.958 0.934 Wine 2 0.496 0.493 0.571 0.562 0.631 0.578
FordA 2 0.561 0.541 0.693 0.769 0.777 0.797 yoga 2 0.505 0.525 0.548 0.501 0.546 0.528
FordB 2 0.515 0.535 0.585 0.692 0.726 0.787 W/T/L of FS-1 32/0/9 27/0/14 30/2/9 26/2/13 24/0/17 -

Mean Arithmetic Rank 4.537 3.463 3.890 3.305 3.244 2.561

• To study the effect of number of training samples per class avail-
able in end task, we consider 𝐾 = {2, 5, 10, 20} for D𝑡𝑟 (while
D𝑡𝑒 remains the same with 𝐾 ′ = 5), and experiment under same
protocol of 4100 tasks (with 100 tasks sampled from each of the
41 datasets). As observed by ranks comparison in Table 2,
– FS-1 is the best performing model, especially for 5 and 10-shot
scenarios with large gaps in ranks.

– When considering very small number of training samples per
class, i.e. for 𝐾 = 2, we observe that FS-1 is still the best
model although it is very closely followed by DTW. This is
expected as given just two samples per class, it is very difficult
to effectively learn any data distribution patterns, especially
when the domain of the task is unseen while training. The
fact that FS-1 and FS-2 still perform significantly better than
ResNet models trained from scratch show the generic nature
of filters learned in 𝜙∗. As expected, data-intensive machine
learning and deep learning models like BOSS and ResNet that
are trained from scratch only on the target task data tend to
overfit, and are even worse than DTW.

– For tasks with larger number of training samples per class,
i.e. 𝐾 = 20, FS-1 is still the best algorithm. As expected, ma-
chine learning based state-of-the-art model BOSS performs
better than other baselines when sufficient training samples
are available and is closer to FS-1.

• To study the generalizability of FS-1 to varying 𝑁 as a result
of leveraging triplet loss, we group the datasets based on 𝑁 . As
shown in Table 3, we observe that FS-1 is consistently amongst
the top-2 models across values of 𝑁 . While FS-1 is significantly
better than other algorithms for 2 ≤ 𝑁 ≤ 5 and 𝑁 > 10, it is as
good as the best algorithm DTW for 6 ≤ 𝑁 ≤ 9.

6.2.1 Importance of fine-tuning different layers in deep ResNet. We
also study the importance of fine-tuning different convolutional
layers of FS-1. We consider four variants FS-1-𝑙 with 𝑙 = 1, 2, 3, 4,
where we freeze parameters of lowermost 𝑙 convolutional layers
of the pre-trained model, while fine-tuning top 𝐿 − 𝑙 layers only.
From Figure 6, we observe that FS-1-1, i.e. where the filter weights
of only the first convolutional layer are frozen while those of all
higher layers are fine-tuned, performs better than the default FS-1
model where all layers are fine-tuned. On the other hand, freezing
higher layers as well (FS-1-2 and FS-1-3) or freezing all the layers
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(FS-1-4, i.e. no fine-tuning on target task) leads to significant drop
in classification performance. These results indicate that the first
layer has learned generic features while being trained on diverse
set of 𝐾-shot tasks and that the higher layers of the FS-1 model are
important to quickly adapt to the target 𝐾-shot task.

1 2 3 4 5

FS-1-1 2.305
FS-1 2.720

FS-1-2 2.793
FS-1-32.951
FS-1-44.232

CD

Figure 6: Effect of freezing parameters of different layers
while fine-tuning for target few-shot task using FS-1.

Table 4: Results on 5-shot 5-way classification tasks using
dataset-specific pre-training.

Dataset ED DTW BOSS ResNet FS-2 FS-1
50Words 0.614 0.812 0.713 0.733 0.719 0.784
Adiac 0.723 0.692 0.791 0.652 0.808 0.827

ShapesAll 0.854 0.897 0.942 0.915 0.924 0.958

6.2.2 Few-shot learning to adapt to new classes for a given dataset.
Apart from the above scenario where the UCR datasets used to
sample tasks in training, validation and testing meta-sets are differ-
ent, we also consider a scenario (similar to [38]) where there are
a large number of classes within a TSC dataset, and the goal is to
quickly adapt to a new set of classes given a model that has been
pre-trained on another disjoint set of classes from the same dataset.

We consider three datasets with large number of classes from the
UCR Archive, namely, 50Words, Adiac and ShapesAll, containing
50, 37, and 60 classes, respectively. We use half of the classes (ran-
domly chosen) to form the training meta-set, 1/4th of the classes for
validation meta-set, and remaining 1/4th of the classes for testing
meta-set. We train the FS-1 and FS-2 models on 5-shot 5-way TSC
tasks from training meta-set for 𝑀 = 50 and 𝐵 = 5. We chose the
best meta-iteration based on average triplet loss on the validation
meta-set (also containing 5-shot 5-way classification tasks). Note
that ED, DTW and BOSS are trained on the respective task from
the testing meta-set only. Also, whenever number of samples for
a class is less than 5, we take all samples for that class in all tasks.
The average classification accuracy rates on 100 5-shot 5-way tasks
from the testing meta-set are shown in Table 4. We observe that
FS-1 outperforms other approaches indicating the ability to quickly
generalize to new classes for a given domain.

6.2.3 Non-few-shot learning scenario. We also evaluate FS-1 when
sufficient labeled data is available for training, i.e. the standard
non-few-shot learning scenario with original class distributions
and train-test splits as provided in [5]. As shown in Figure 7a, we
observe that the meta-learned FS-1 outperforms other approaches
even in non-few-shot scenarios proving the benefit of meta-learning
based initialization. Furthermore, when compared to the results in
Figure 5, we observe increased performance gap between the deep
learning approaches (FS-1, FS-2 and ResNet) and other approaches

1 2 3 4 5 6
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(a) Critical Difference Diagram
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(b) FS-1 vs second best method (ResNet)

Figure 7: Non-few-shot learning scenario using original
train-test splits from UCR Archive.

(BOSS, DTW, ED) due to availability of sufficient training data. We
provide scatter-plot comparison for FS-1 with second best approach
ResNet in Figure 7b and omit other dataset-wise results for lack of
space.

7 CONCLUSION AND FUTUREWORK
The ability to quickly adapt to any given time series classifica-
tion task with a small number of labeled samples is an important
task with several practical applications. We have proposed a meta-
learning approach for few-shot time series classification (TSC). It
can also be seen as a data-efficient metric learning mechanism
that leverages a pre-trained model. We have shown that it is possi-
ble to train a model on few-shot tasks from diverse domains such
that the model gathers an ability to quickly generalize and solve
few-shot tasks from previously unseen domains. By leveraging the
triplet loss, we are able to generalize across classification tasks with
different number of classes.

We hope that this work opens a promising direction for future
research in meta-learning for time series modeling. In this work,
we have explored first-order meta-learning algorithms. In future, it
would be interesting to explore more sophisticated meta-learning
algorithms such as [11, 12, 30] for the same. A similar approach for
time series forecasting will be interesting to explore as well.
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