skip to main content
10.1145/3371158.3371163acmotherconferencesArticle/Chapter ViewAbstractPublication PagescodsConference Proceedingsconference-collections
research-article

Effective EEG Connectivity by Sparse Vector Autoregressive Model

Published:15 January 2020Publication History

ABSTRACT

This paper introduces a time domain approach based on Granger causality for estimating directional flow between multivariate time series. It is formulated under the framework of vector autoregressive model. Sparse regression is used to find the solution to the VAR model and validation of the results are carried out with the help of simulations. We also demonstrate the application of this method on actual EEG dataset.

References

  1. Luiz A Baccalá and Koichi Sameshima. 2001. Partial directed coherence: a new concept in neural structure determination. Biological cybernetics 84, 6 (2001), 463--474.Google ScholarGoogle Scholar
  2. Katarzyna J Blinowska. 2011. Review of the methods of determination of directed connectivity from multichannel data. Medical & biological engineering & computing 49, 5 (2011), 521--529.Google ScholarGoogle Scholar
  3. Clemens Brunner, Martin Billinger, Martin Seeber, Timothy R Mullen, and Scott Makeig. 2016. Volume conduction influences scalp-based connectivity estimates. Frontiers in computational neuroscience 10 (2016), 121.Google ScholarGoogle Scholar
  4. Guillermo A Cecchi, Rahul Garg, and A Ravishankar Rao. 2008. Inferring brain dynamics using Granger causality on fMRI data. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, Paris, France, 604--607.Google ScholarGoogle ScholarCross RefCross Ref
  5. Joyce Chiang, Z Jane Wang, and Martin J McKeown. 2009. Sparse multivariate autoregressive (MAR)-based partial directed coherence (PDC) for electroencephalogram (EEG) analysis. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, Taipei, Taiwan, 457--460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Richard A Davis, Pengfei Zang, and Tian Zheng. 2016. Sparse vector autoregressive modeling. Journal of Computational and Graphical Statistics 25, 4 (2016), 1077--1096.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. 2004. Least angle regression. The Annals of statistics 32, 2 (2004), 407--499.Google ScholarGoogle ScholarCross RefCross Ref
  8. John Geweke. 1982. Measurement of linear dependence and feedback between multiple time series. Journal of the American statistical association 77, 378 (1982), 304--313.Google ScholarGoogle ScholarCross RefCross Ref
  9. Rainer Goebel, Alard Roebroeck, Dae-Shik Kim, and Elia Formisano. 2003. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic resonance imaging 21, 10 (2003), 1251--1261.Google ScholarGoogle Scholar
  10. Clive WJ Granger. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society 37 (1969), 424--438.Google ScholarGoogle ScholarCross RefCross Ref
  11. James Douglas Hamilton. 1994. Time series analysis. Vol. 2. Princeton university press Princeton, NJ, University of California, San Diego.Google ScholarGoogle Scholar
  12. Stefan Haufe, Klaus-Robert Müller, Guido Nolte, and Nicole Krämer. 2008. Sparse Causal Discovery in Multivariate Time Series. In Proceedings of the 2008th International Conference on Causality: Objectives and Assessment - Volume 6 (COA'08). JMLR.org, Whistler, Canada, 97--106. http://dl.acm.org/citation.cfm?id=2996801.2996808Google ScholarGoogle Scholar
  13. Nan-Jung Hsu, Hung-Lin Hung, and Ya-Mei Chang. 2008. Subset selection for vector autoregressive processes using lasso. Computational Statistics & Data Analysis 52, 7 (2008), 3645--3657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kevin Judd and Alistair Mees. 1998. Embedding as a modeling problem. Physica D: Nonlinear Phenomena 120, 3-4 (1998), 273--286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Maciej Kaminski and Katarzyna J Blinowska. 2017. The influence of volume conduction on DTF estimate and the problem of its mitigation. Frontiers in computational neuroscience 11 (2017), 36.Google ScholarGoogle Scholar
  16. Maciej Kamiński, Mingzhou Ding, Wilson A Truccolo, and Steven L Bressler. 2001. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological cybernetics 85, 2 (2001), 145--157.Google ScholarGoogle Scholar
  17. Marcin Jan Kaminski and Katarzyna J Blinowska. 1991. A new method of the description of the information flow in the brain structures. Biological cybernetics 65, 3 (1991), 203--210.Google ScholarGoogle Scholar
  18. Anna Korzeniewska, Małgorzata Mańczak, Maciej Kamiński, Katarzyna J Blinowska, and Stefan Kasicki. 2003. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. Journal of neuroscience methods 125, 1-2 (2003), 195--207.Google ScholarGoogle ScholarCross RefCross Ref
  19. Rolf Kötter and Klaas E Stephan. 2003. Network participation indices: characterizing component roles for information processing in neural networks. Neural Networks 16, 9 (2003), 1261--1275.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Rafal Kus, Maciej Kaminski, and Katarzyna J Blinowska. 2004. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering 51, 9 (2004), 1501--1510.Google ScholarGoogle Scholar
  21. Yang Li, Chong-Yaw Wee, Biao Jie, Ziwen Peng, and Dinggang Shen. 2014. Sparse multivariate autoregressive modeling for mild cognitive impairment classification. Neuroinformatics 12, 3 (2014), 455--469.Google ScholarGoogle ScholarCross RefCross Ref
  22. Paul L Nunez, Ramesh Srinivasan, et al. 2006. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA, Oxford, England, UK.Google ScholarGoogle Scholar
  23. Ali Shojaie and George Michailidis. 2010. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26, 18 (2010), i517--i523.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Joan G Snodgrass and Mary Vanderwart. 1980. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of experimental psychology: Human learning and memory 6, 2 (1980), 174.Google ScholarGoogle ScholarCross RefCross Ref
  25. Song Song, Wolfgang K Härdle, and Ya'acov Ritov. 2014. Generalized dynamic semi-parametric factor models for high-dimensional non-stationary time series. The Econometrics Journal 17, 2 (2014), S101--S131.Google ScholarGoogle ScholarCross RefCross Ref
  26. Olaf Sporns, Giulio Tononi, and Gerald M Edelman. 2000. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral cortex 10, 2 (2000), 127--141.Google ScholarGoogle Scholar
  27. Olaf Sporns and Jonathan D Zwi. 2004. The small world of the cerebral cortex. Neuroinformatics 2, 2 (2004), 145--162.Google ScholarGoogle ScholarCross RefCross Ref
  28. Toshihiro Tanizawa, Tomomichi Nakamura, Fumihiko Taya, and Michael Small. 2018. Constructing directed networks from multivariate time series using linear modelling technique. Physica A: Statistical Mechanics and its Applications 512 (2018), 437--455.Google ScholarGoogle Scholar
  29. Pedro A Valdés-Sosa, Jose M Sánchez-Bornot, Agustín Lage-Castellanos, Mayrim Vega-Hernández, Jorge Bosch-Bayard, Lester Melie-García, and Erick Canales-Rodríguez. 2005. Estimating brain functional connectivity with sparse multivariate autoregression. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1457 (2005), 969--981.Google ScholarGoogle ScholarCross RefCross Ref
  30. Pedro A Valdés-Sosa, Jose M Sánchez-Bornot, Agustín Lage-Castellanos, Mayrim Vega-Hernández, Jorge Bosch-Bayard, Lester Melie-García, and Erick Canales-Rodríguez. 2005. Estimating brain functional connectivity with sparse multivariate autoregression. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1457 (2005), 969--981.Google ScholarGoogle ScholarCross RefCross Ref
  31. Frederik Van de Steen, Luca Faes, Esin Karahan, Jitkomut Songsiri, Pedro A Valdes-Sosa, and Daniele Marinazzo. 2016. Critical comments on EEG sensor space dynamical connectivity analysis. Brain topography 32 (2016), 1--12.Google ScholarGoogle Scholar
  32. Hansheng Wang, Guodong Li, and Chih-Ling Tsai. 2007. Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 1 (2007), 63--78.Google ScholarGoogle ScholarCross RefCross Ref
  33. Xiao Lei Zhang, Henri Begleiter, Bernice Porjesz, Wenyu Wang, and Ann Litke. 1995. Event related potentials during object recognition tasks. Brain Research Bulletin 38, 6 (1995), 531--538.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Effective EEG Connectivity by Sparse Vector Autoregressive Model

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            CoDS COMAD 2020: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD
            January 2020
            399 pages
            ISBN:9781450377386
            DOI:10.1145/3371158

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 15 January 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            CoDS COMAD 2020 Paper Acceptance Rate78of275submissions,28%Overall Acceptance Rate197of680submissions,29%
          • Article Metrics

            • Downloads (Last 12 months)21
            • Downloads (Last 6 weeks)3

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader