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ABSTRACT
A key challenge of human-robot collaboration is to build systems
that balance the usefulness of autonomous robot behaviors with
the benefits of direct human control. This balance is especially rel-
evant for assistive manipulation systems, which promise to help
people with disabilities more easily control wheelchair-mounted
robot arms to accomplish activities of daily living. To provide useful
assistance, robots must understand the user’s goals and preferences
for the task. Our insight is that systems can enhance this under-
standing by monitoring the user’s natural eye gaze behavior, as
psychology research has shown that eye gaze is responsive and
relevant to the task. In this work, we show how using gaze en-
hances assistance algorithms. First, we analyze eye gaze behavior
during teleoperated robot manipulation and compare it to literature
results on by-hand manipulation. Then, we develop a pipeline for
combining the raw eye gaze signal with the task context to build a
rich signal for learning algorithms. Finally, we propose a novel use
of eye gaze in which the robot avoids risky behavior by detecting
when the user believes that the robot’s behavior has a problem.
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• Human-centered computing → Collaborative interaction;
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1 INTRODUCTION
Assistive robotics is among the most promising practical applica-
tions for human-robot interaction to improve people’s lives. Robot
arms that mount on wheelchairs are used by people to perform
activities of daily living today. However, these robots are typically
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Figure 1: (a) A user performs a shared control task with a ro-
bot while wearing an eye tracker. (b) The user looks at the
rightmost marshmallow; the dot indicates the user’s gaze
target.

operated by direct control. Teleoperating a robotic manipulator
to perform a complex task is hard, especially when using low-
dimensional input devices like joysticks.

HRI can help. Shared control methods [8, 11, 12, 18, 22] infer the
operator’s intended goal from their control input and combine this
input with autonomous action towards that goal. We can enhance
these systems by supplementing their inference from direct control
with inference from natural, intuitive, indirect signals. These signals
not only provide specific information about the user’s intended
goals, but can also give more information about the user’s mental
state during the task, which enables additional types of assistance.

One strategy for learning people’s mental states during shared
control is to monitor their eye gaze behavior. Gaze follows con-
sistent patterns when individuals are performing specific tasks
like walking [17] or manipulating objects [13, 16], and standard
learning techniques including support vector machines [10], hidden
Markov models [5], scanpath linguistic matches [15], and template
matching [6] have been successful in understanding intent from
an eye gaze signal. Moreover, these observations have been used
to build collaborative systems that monitor gaze behavior to deter-
mine people’s intentions during food serving [10] or handover [9]
tasks. In addition, gaze is highly responsive to the situation; people
can move their eyes to observe new data much faster than they can
either move their hands or control a robot. Gaze behavior is a rich
signal for understanding people’s mental states.

In this project, we investigate how to use eye gaze signals for
shared manipulator control. We begin by exploring where people
look during teleoperated manipulation and compare their behavior
with existing findings on eye gaze during by-hand manipulation.
Next, we develop a pipeline for combining raw eye gaze data with
the task and environment context to transform it into a signal
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suitable for algorithmic assessment. Finally, we propose a novel
application of eye gaze for assistance: a system that infers user
discomfort by monitoring their eye gaze patterns and modifies its
behavior appropriately. This research project shows how monitor-
ing people’s eye gaze improves shared control.

2 EYE GAZE DURING TELEOPERATED
MANIPULATION

We begin by exploring patterns of human gaze during teleoperated
manipulation in a user study [3]. Participants operated a Kinova
Mico [14] robot arm to spear one of three marshmallows on a
plate, and their gaze data was collected with a mobile eye tracker
(Fig. 1). In the study, we found that people perform anticipatory
glances towards their goals at specific times. While people mostly
look at the robot’s end-effector, people explicitly glance at their
goal object before initiating different types of motion, especially
before translation. In addition, they often alternate between looking
at the end-effector and the goal during translational alignment.
These patterns indicate that while gaze patterns during teleoperated
manipulation differ from those during by-hand manipulation, they
nevertheless remain informative about the operator’s mental state.

People also displayed revealing eye gaze patterns when some-
thing went wrong. In another data set we collected and made avail-
able to researchers [19], we identified two categories of eye gaze
behaviors that occurred when something went wrong in a task [1].
When the robot blocks the user’s view of the goal, people move
their heads for a better view.When the robot falls into a problematic
kinematic configuration, such as a joint limit or collision prevent-
ing the robot from proceeding, users look at the problematic joint
in question.This behavior shows that eye gaze can reveal not just
people’s intentions but also their view of the state of the task.

3 EYE GAZE PROCESSING PIPELINE
To use eye gaze for assistance, we must process the raw eye gaze
signal into a usable form. Eye trackers typically report only a pixel
location in an egocentric camera corresponding to where the user is
looking. However, this contextless information is difficult to use di-
rectly. We observe that eye gaze during manipulation (both by-hand
and teleoperated) is almost always directed at a specific, relevant
scene object. Therefore, we augment the raw signal by matching
each gaze fixation with a known object in the scene to determine at
which object the user is looking (semantic gaze labeling). Then, we
use timed, labeled fixations as inputs to a learning system. Typical
approaches to semantic labeling use ray tracing to match the gaze
location with scene objects [4, 20, 21]. To improve performance, we
introduced velocity-based feature matching [2], which compares
the relative motion of the gaze target over time with the motion
of the objects in the scene. We show that this additional feature
improves the robustness of the semantic gaze labeling procedure to
constant errors such as those due to initial calibration. In addition,
preliminary work shows that learning methods using this semantic
gaze signal can predict task goal and failure conditions.

4 GAZE-BASED ASSISTANCE
Finally, we will apply the eye gaze analysis above to enhance robot
assistance during shared control. First, we will build a model to

predict the user’s goal from their eye gaze behaviors. We can then
compare eye gaze and joystick signals for intention recognition
during assistance. In particular, eye gaze gives an absolute signal
directed towards the ultimate goal, while joystick input only gives
relative information about the direction towards the goal from
the current state. Therefore, we expect that adding eye gaze will
enhance the performance of shared control algorithms, and we will
evaluate this claim in a user study.

In addition, we propose a new way to use people’s eye gaze
behavior for assistance. Existing psychology research [13] and our
results both suggest that people look at aspects of a task that cause
problems, such as obstacles that the robot must avoid. We hypothe-
size that when the user believes that the robot must be especially
careful around a particular obstacle (due to sensing uncertainty,
undetected obstacle properties like fragility, or user unfamiliarity
with the system), the user will look more at that object. The robot
can detect this eye gaze behavior and adjust its accordingly.

To validate this assistance behavior, we propose to develop a
variant of the morsel spearing task, in which the user must also
maneuver the robot around an obstacle. The robot assistance helps
in obstacle avoidance, but it must trade off between optimal per-
formance (passing as close to the obstacle as possible) and user
confidence (giving the obstacle a wide berth to comfort the user) [7].
When the user glances more than usual towards the obstacle, the
robot will give it a wider berth. We will evaluate this behavior in
a user study to determine how this responsiveness enhances the
robot’s performance as well as users’ confidence in its behavior.

5 CONCLUSIONS
In this work, we show how eye gaze can improve robot performance
during shared control. First, we demonstrate features of users’ eye
gaze behavior during a teleoperation task. Then, we develop a
pipeline for processing the raw eye gaze signal to include context.
Finally, we propose an assistive application for eye gaze: adapting
the safety margin of a robot navigating around an obstacle by
measuring people’s comfort with its behavior from their eye gaze.
This project shows how eye gaze helps assistive robotics.

One important future direction of this project is to evaluate the
systems we have developed with people with upper mobility im-
pairments. While the systems described here have been entirely
evaluated with non-disabled participants, making gaze-based as-
sistance useful for people who use a wheelchair-mounted assistive
robot arm requires additional studies and verification.

Beyond assistance, however, this work illustrates the usefulness
of nonverbal natural signals like eye gaze behavior for understand-
ing complex human mental states. Eye gaze research has shown
that gaze patterns can reveal many different aspects of a person’s
mental state, from their expertise on a task to their cognitive load
to which areas they are focusing more on. Incorporating natural
signals enables human-robot collaboration paradigms to move be-
yond goal-only models of humans to encompass a wide variety of
information about a collaborator’s mental state.
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